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Abstract: Urban Heat Islands increase surface temperatures which impact the health and well-being

of urban populations. Radiative forcing is impacted by changes to the land surface associated

with urbanization that are particularly significant immediately after sunset. This paper aimed to

analyze the behavior of UHI in different Local Climate Zones (LCZ) in Bragança city (Portugal),

using Air Temperature (Ta), satellite images (Landsat 8), and on-site data. The methodology included

a seasonal approach, integrating data with different scales (spatial, radiometric, and spectral) and

qualitative and quantitative analyses. Google Earth Engine (GEE) optimized the processing time and

computation requirement to generate the Land Surface Temperature (LST) maps. The integration of

data with different scales corroborated the complementation of information/analysis and detected

the correlation between the Ta and LST. However, the identification of the UHI was compromised

due to the time of the passage of Landsat 8, and it was identified as the Urban Cool Island (UCI), a

complementary effect of UHI, supporting the results of previous studies and for the use of Remote

Sensing (RS) for thermal effects analysis.

Keywords: climate change; land surface temperature; landsat; google earth engine; correlation; regression

1. Introduction

For human life to be viable in a place, it is necessary to make anthropogenic adap-
tations, that can suppress the vegetation, soil sealing, albedo variation, and increase the
unsealed areas with civil construction [1,2]. These anthropic changes influence the local
energy balance and contribute to the formation of the Urban Heat Island (UHI) effect which
consists of greater absorption of electromagnetic energy and slower night cooling of urban-
ized surfaces when compared to surrounding areas with the presence of vegetation [3–5].

Voogt and Oke (2003) [6] suggested a sub-classification analogous to UHI, called Sur-
face Urban Heat Island (SUHI) that, in addition to studying surface temperature differences
between urban and rural areas, also addresses temporal variability [7]. This paper draws a
parallel between these two related variables that can be used to describe the UHI effect.

The main causes for the formation of the UHI effect are: (i) urban morphology and
geometry [8,9]; (ii) thermal properties of the constituent materials and their layouts [10,11];
(iii) the heat storage capacity of building materials (such as solar factor, shading coefficient,
irradiance, radiosity, emissivity, absorptance, reflectance, and transmittance) [5,12]; (iv) the
change and influence on wind speed, depending on surface roughness; (v) the increased
absorption of solar radiation, due to the albedo of some surfaces; (vi) albedo [13]; (vii) Width
(W)/Height (H)/Length (L) and urban canyons [14]; (viii) Sky View Factor (SVF) [14];
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(ix) urban densification [15]; (x) rugosity; (xi) porosity [16]); (xiv) anthropogenic heat [17];
(xii) energy balance in a building and between buildings [17].

There are several impacts associated with UHI, and the most recurrent are: (i) influ-
ence on local microclimate (contributing to an increase in surface temperature, reducing
Relative Humidity (RH) and latent heat, and intensifying sensible heat); (ii) changes in
the displacement of air masses, precipitation, hydrological behavior (such as displacement
of water bodies) [10,18]; (iii) thermal discomfort [19]; (iv) socio-environmental and public
health impacts [2,16]; (v) increasing mortalities when combined with natural phenomena
(such as Heat Waves (HWs)) [20].

One complementary effect of UHI is the Urban Cool Island (UCI), which may occur as
a consequence of multiple factors and is normally felt during the morning [21]. One of the
determining factors comes from the fact that the UHI effect is, in some studies, calculated
using the difference in temperature between open rural areas, with no obstacles to the
penetration of electromagnetic energy, and urban areas where the presence of buildings
reduces the contact surface and generate shadows in their surroundings. Under these
particular circumstances, the UCI may occur from soon after sunrise until late in the
morning [3,22]. The effect has already been identified in previous studies conducted in
Bragança, the study area of this paper, in the morning period [23].

Both UHI and UCI effects can be studied through the use of several methodolo-
gies, such as Remote Sensing (RS), with the number of publications growing, especially
since 2016 [24]. Considering this methodology, satellites equipped with thermal sensors
operate in the atmospheric window of the Thermal Infrared (TIR) (8–14 µm, whose absorp-
tion rate is minimal), and measure, at the top of the atmosphere, the radiation emitted by
the Earth’s surface [25,26]. The recorded data varies according to the albedo of the analyzed
surface, that is, the absorption or reflection of electromagnetic energy will depend on the
constitution of the material, the density of construction, the heterogeneity, etc. [17]. Each
sensor has its operational specificities, such as spatial resolution (the pixel size, in meters),
spectral resolution (the measure of the width of the spectral bands: the more numerous
and narrow the bands, the greater the spectral resolution and the sensor’s sensitivity in
distinguishing between two levels of intensity of the return signal, which contributes to the
production of more accurate spectral signatures), radiometric resolution (the sensor’s ability
to discriminate small variations in energy, i.e., the higher the radiometric resolution, the
more sensitive it is to detect small emitted/reflected differences) and temporal resolution
(the period between two consecutive observations of the same point) [27].

In this paper, Landsat 8 data was used. Landsat mission has had a long and unin-
terrupted observation program, since 1972 [28]. The data are released free of charge by
the United States Geological Survey (USGS), at levels 1 and 2 (without pre-processing and
with processing, respectively) [29]. OLI sensor (Landsat 8) consists of a panchromatic band
and eight multispectral bands, with a resolution of 15 and 30 m, respectively. In the TIRS
sensor, there are two thermal bands with a resolution of 100 m, whose data are resampled to
30 m [29]. The band used in this work was band 10, relative to TIRS 1 (10.3–11.19 µm), with
a radiometric resolution of 16 bits.

For UHI studies, it is common to use TIR, RGB, and Near Infrared (NIR) bands, the
provenience of RS, to understand the Land Use Land Cover (LULC), estimate the LST, and
differentiate the Vegetation Index (VI). LST is a variable in the physics of local and global
surface processes, linked to radiative, latent, and sensible heat fluxes at the surface. It is
known as radiometric or “skin” temperature and consists of the direct measurement of
the Earth’s surface temperature [30]. The LST will comprise the radiometric temperature
aggregate of the set of components, including in the field of view of the sensor [30,31]. The
value is recovered by estimating the emitted surface radiance (obtained by an atmospheric
correction in the radiance sensor), and by inverse application of the Planck function,
considering the effects of emissivity variation [30].

In addition to understanding LST, for UHI studies it is necessary to understand the
dynamics of the local urban climate. The formation of the topography of mountainous
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regions, such as Bragança, is due to the movement of tectonic plates and erosion processes
(which depend on other factors, such as climate) [32,33]. The specific climate is one of the
parameters used to distinguish from other systems, such as valley and lowland zones, and
is associated with three effects: (i) synoptic weather systems or air flows that alter dynamic
and thermodynamic processes; (ii) differences generated in regional conditions (cloudiness,
precipitation regimes, dynamic and thermal winds, etc.); (iii) terrain morphologies and
slopes [32,33].

Altitude and orography can play a vital role in local variabilities, such as warmer
environments on slopes that favor solar exposure or on enclosed valleys during the day,
while the same locations may be cold and humid during the night and, particularly, in
winter [34].

Mountains can be considered complex for UHI studies due to the variability of some
environmental parameters (such as temperature, radiation, precipitation, etc.) in a short
period, the high daily and annual temperature range, lower mean annual temperatures,
extreme winter behavior, interannual climate variability, and snow cover during the year
or in some months [33,35], while there is a challenge in separating anthropogenic from
natural influences for the formation of this effect.

Considering the methodological application in other locations [36–38], Bragança (Por-
tugal) was chosen as the study area for this work because it has the following characteristics:
(i) there are no previous studies using RS data to analyze the LST at the site; (ii) it has
the previous classification of Bragança in Local Climate Zones (LCZ) and UHI studies
considering data from air temperature measured by the sensor network (TaSN) [23,32,39],
that can be used to validate the data obtained in RS; (iii) its mountainous configuration can
influence the circulation and speed of winds corroborating, naturally, to the formation of
the UHI; (iv) presence of centralized urban densification with surrounding rural areas.

The objectives of this paper are: (i) compare SUHI and UHI data; (ii) analyze data
collection on-site, to evaluate their possible correlations; (iii) apply descriptive and quan-
titative statistical analyses (correlation and regression model), to analyze the behavior of
Bragança’s UHI in each LCZ, in summer and winter (seasonality).

2. Materials and Methods

2.1. Study Area

Located in the extreme Northeast of Portugal’s mainland (41◦48′20′′ N, 6◦45′42′′ W)
(Figure 1), Bragança Municipality has 24,078 inhabitants and an area of approximately
1174 km2. It is located in a mountainous region, with a relief considered complex due to
the variability of its elevation [23].

The urban area of Bragança is composed of a diverse urban fabric, including different
buildings and vegetation densities. The climate is characterized by high annual and
monthly thermal amplitude. Precipitation has characteristics of a Mediterranean climate,
with frequent rainfall in the winter and relatively dry summers [23].

Climate change issues are relevant to Bragança, which is one of the municipalities that
integrate the ClimAdapt.Local project, launched in 2015, which supports projects that aim to
develop adaptations to climate change in Portugal [40]. The “Bragança: Estratégia Municipal
de Adaptação às Alterações Climáticas” document proposes climate change mitigation actions
for several areas, such as agriculture and livestock, water resources, forestry, in addition to
proposals for awareness and environmental education of the population and policies that
prioritize the green economy [40]. Although the municipality has identified addressing
climate change as a priority, additional actions may still be considered to moderate the
UHI effects, such as the integration of vegetation or the preservation of ventilation paths in
more densely urbanized areas.

In a previous study of the UHI, Bragança was classified into seven different LCZs,
following the methodological procedures indicated by Oke [14]: (i) Compact midrise (CM):
areas with the existence of modern construction of medium-high height, high density, and
paved surfaces—sensors 3, 7, and 13; (ii) Compact low-rise (CLR): the ancient center of
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the city, with medium-low height, high-density, built-in rock, and brick—sensors 4 and 6;
(iii) Open midrise (OM): medium density, streets of low height dwellings in bands or
isolated—sensor 10, 12, 18 and 22; (iv) 8–Large low-rise (LLR): commercial and industrial,
low average density with low and high buildings with paved parking—sensors 5, 17, and
21; (v) Urban Green Spaces (GAB): urban green spaces, predominantly green cover with
undergrowth and trees—sensors 2, 8, 9, and 11; (vi) Sparsely built (SB): transition space
between urban and rural environments, scattered houses with agricultural and forestry
surroundings—sensors 1, 14, and 15; (vii) Rural Areas (RCD): isolated rural areas in the
suburbs of the city are representative of the characteristics of the local landscape—sensors
16, 19, 20, and 23 [32].

TaSN is obtained by 23 sensors (model TGP-4500, TinyTag, Gemini Data Loggers,
Chichester, UK), was installed in December 2011 (three meters above ground level, encapsu-
lated by white boxes, facing south, and semi-leveled from street lights [23]) and distributed
according to LCZs classification, in the urban and peri-urban context (Figure 1). There are
at least three sensors in each LCZ, in a dispersed way, considering the urban and rural
gradient [16]. For each point, the following parameters were identified: (i) the land use,
occupation, and land cover; (ii) the SVF (recorded through photographs—fisheye); (iii) the
roughness length [41]; (iv) the fraction of impervious surface, within a radius of 25 m,
estimated in ArcGIS software [23].

 

Figure 1. Study area, with the sensor delimitation (in red) and the sensor network installation site

(23 sensors).

2.2. Data Collection

Four on-site data collections were performed: three in summer and one in spring,
coinciding with the satellite overpass. It was not possible to perform any collection on-site
in the winter due to the weather conditions (precipitation and/or clouds on data) and
due to the pandemic period (COVID-19 [42]), since traveling between different districts
of Portugal was limited. This limitation does not apply to the LST obtained from Landsat
8 data (LSTL8) and TaSN data.

Ta of Bragança were obtained from the website of the Instituto Português do Mar e da
Atmosfera [43] and meteoblue [44]. The information is detailed in Table 1.

The data collected used can be divided into: (i) TaSN, collected between 2013 and 2021;
(ii) LST obtained with the handheld thermal camera (LSTHTC) and photographs obtained
at 10 points; (iii) Wind Speed—Va (m/s), and Average Radiation Temperature—Tr (◦C)
measured by four portable monitoring equipment; (iv) LSTL8 between 2013 and 2021.
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Table 1. Collection dates and Ta of Bragança.

Collection
Date

(mm/dd/yyyy) Season
Ta (◦C)

Min. Max. Mean

C1 08/03/2020 Summer 12.0 26.0 19.0

C2 09/04/2020 Summer 12.0 34.0 23.0

C3 04/16/2021 Spring 2.0 16.0 9.0

C4 07/05/2021 Summer 14.0 25.0 19.5

The definition of the site for the LSTHTC measurement followed these criteria: (i) ten
locations with diverse spatial distribution were chosen, to contemplate, at least, one sensor
of each of the seven LCZs; (ii) the data from the sensor present in the chosen area would
serve as validation; (iii) for each of the ten locations, different surfaces were sampled,
considering, as much as possible, the local heterogeneity. As a result, 27 different surfaces
were sampled, and the respective coordinates were registered.

HT Instruments THT33 were used, with a resolution of 80 × 80 pixels, Field Of View
(FOV) of 21◦ × 21◦, a spectral field between 8–14 µm, and an Instantaneous Field Of View
(IFOV) (@1m) of 4.53 mrad. The collection followed a standard height of 1.5 m between
the camera and the target (the error associated with the operator was the same for all
sampled data). The samples were collected twice at each point: in the morning, between
10 h and 12 h (UTC) (considering the limit of one hour before and one hour after the satellite
overpass), and in the afternoon, between 13 h to 15 h (UTC). Photographs were recorded
with a camera to assist in the classification of the surfaces, according to their composition.

The portable monitoring equipment (Delta Ohm 32.1 and 32.3) included the sensors:
AP3203—Omnidirectional Hot Wire Probe; TP3275–Globe Temperature Probe; HP3217R—
Combined Temperature and RH Probe. They were positioned at different points on the
days of on-site collection, considering the heterogeneity of the surfaces and the proximity
to at least one of the 23 sensors: (i) sensor 17–Industrial Zone (1–LLR); (ii) sensor 9–inside
the IPB campus (2–GAB); (iii) sensor 6–“Praça Camões”, in a historic square in the city
center (3–CLR); (iv) sensor 3–densely urbanized neighborhood (4–CM). Each station was
programmed to record data every two minutes, between 10 h and 15 h (UTC). To minimize
the effects of shadow in the data collection process, the equipment was placed in sun-
exposed locations.

For the LSTL8 collection, Landsat 8 overpass time in Bragança is at 11 h 15 (UTC), with a
temporal resolution of 16 days. To compare the RS data with those obtained by the sensor
network, 87 winter and summer scenes were processed between 29 June 2013 and 5 July 2021.

2.3. Data Processing

For TaSN, 87 dates coinciding with the Landsat 8 flyover (in summer and winter) were
considered. The mean was calculated between 10 h and 12 h (UTC) (considering one
hour before and one hour after the satellite overpass). For the four on-site collections, one
additional average was performed, between 13 h and 15 h (UTC).

For LSTHTC, adapting methodologies that were used to analyze the UHI on different
surfaces [12,45,46], the 27 surfaces were classified into six classes, namely: (i) Asphalt
(As); (ii) Sidewalk (S); (iii) Vegetation (V); (iv) Vegetation with exposed Soil (Vs); (v) Dry
Vegetation (DV), and (vi) Dry Vegetation and Rock (DVSt) (Table 2). The sampling areas
were selected by considering at least one representative from each LCZ (which acts as an
urban-level classification).

For the result, the average temperatures (◦C) generated by the HTMercury33
application [47] were included.
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Table 2. Classification of the points sampled with the handheld thermal camera and the equivalent

fixed sensor.

Point Sensor LCZs No. of Surfaces Sampled Description/Surface Classification

P1 23 RCD 2

P1A–DV (collection 1, 2, and 4)
P1A–V (collection 3)

P1B–Vs (collection 1, 2 and 4)
P1B–V (collection 3)

P2 18 OM 3

P2A–As (all collections)

P2B–S (all collections)

P2C–Vs (collection 1, 2 and 4)
P2C–V (collection 3)

P3 17 LLR 4

P3A–As (all collections)

P3B–Vs (collection 1 and 2)
P3B–V (collection 3 e 4)

P3C–S (all collections)

P3D–V (collection 1, 2 and 4)
P3D–Vs (collection 3)

P4 15 SB 3

P4A–AS (all collections)

P4B–S (all collections)

P4C–DVSt (collection 1, 2, and 4)
P4C–VSt (collection 3)

P5 9 GAB 2

P5A–Vs (collection 1, 2 and 4)
P5A–V (collection 3)

P5B–V (collection 1, 2 and 3)
P5B–DV (collection 4)

P6 5 LLR 5

P6A–V (collection 1, 2 and 4)
P6A–DV (collection 3)

P6B–As (all collections)

P6C–S (all collections) 1

P6D–S (all collections)

P6E–S (all collections)

P7 6 CLR 2
P7A–S (all collections)

P7B–S (all collections)

P8 3 CM 2
P8A–S (all collections)

P8B–As (all collections)

P9 14 SB 2

P9A–V (collection 1, 2 and 4)
P9A–Vs (collection 3)

P9B–As (all collections)

P10 22 OM 2
P10A–As (all collections)

P10B–S (all collections)
1 Due to structural changes in the surface, the data from this point were disregarded in the analysis.

LSTL8

To obtain the LSTL8, its necessary to convert the Digital Number (DN) into LST. For
this task, the Google Earth Engine (GEE) was used, which performs the data processing
in a cloud [48], using the collection LANDSAT/LC08/C02/T1_L2. It is already available
with the calculated LST, including atmospheric, emissivity correction, and cloud mask
application (when necessary) [49–51]. To evaluate if this collection presented reliable values,
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the calculation of the LST L8 of 4 September 2020 was performed, using the raw Landsat 8
data, following the standardized procedures [31] in ArcGIS software. The result obtained
in ArcGIS and GEE were compared and showed an average difference of 0.36 ◦C, with the
largest difference being 1.5 ◦C in the highest temperatures, which can be associated with
the extra corrections applied in GEE [49].

To extract the LSTL8, the ArcGIS software was used, applying a 30 m buffer around
each of the 23 sensors on-site. This criterion was defined to guarantee representative-
ness, considering the values measured in the radius corresponding to a pixel around the
sensor [52].

2.4. Statistics Analysis

From the plotting of LSTL8 maps in GEE, a general analysis of the influence of season-
ality on surface temperatures and the discrepancies (if existent) was performed. The LSTL8

maps generated in this step were bounded to the sensor area and assigned a similar color
scale to enable comparison and visual analysis of the products.

To calculate the SUHIInt and UHIInt, the mean of the LSTL8 and TaSN values were
calculated for sensors 16, 19, 20, and 23, which integrate the RCD (rural areas) LCZ, sepa-
rately. The resulting values were used as a reference to calculate the difference between the
registered value in the others LCZs (Equations (1) and (2), respectively). This methodology
has already been adopted in other UHI studies [53–55]

SUHIInt = LSTL8(LCZ) − LSTL8(RCD) (1)

where SUHIInt is the intensity value of the LSTL8 at each point; LSTL8(LCz) is the LSTL8

value extracted from the buffer at each sensor; LSTL8(RCD) refers to the mean of the LSTL8

values from RCD sensors.

UHIInt = TaSN(LCZ) − TaSN(RCD) (2)

where UHIInt is the intensity value of the TaSN at each point; TaSN(LCZ) is the TaSN in each

sensor; TaSN(RCD) is the average TaSN registered in RCD sensors.
The results were analyzed with a boxplot in RStudio [56], a methodology commonly

applied in UHI studies [57,58].
For the correlation analysis, the Shapiro test [59] was applied to understand the

distribution of the TaSN and LSTL8. When the results point to a normal distribution,
Pearson’s correlation method [60] was applied and, for non-normal distribution, Spearman
was used [61]. Both tests are commonly used in UHI studies [62,63].

2.5. Validation

From the local data collected by the portable thermal camera and the four portable
monitoring equipment, an analysis of the thermal behavior of the measured surfaces and a
comparison with the values recorded by the Landsat 8 sensor were proposed, safeguarding
the specificities and different scales of each technique.

To evaluate if the UHI values measured on each surface (relative to the ten points)
were higher in the afternoon period compared to the morning one, according to previous
UHI studies [64], the LSTHTC was analyzed. Wind speed and Tr were recorded at four
points in different LCZs (LLR, GAB, CLR, and CM), to assess the influence of the urban
context on air circulation and local radiant temperature. These four points were chosen for
their characteristics and relevance to UHI studies (vegetated areas, highly urbanized areas,
and industrial areas). The points RCD, OM, and SB were not considered in this stage due
to the amount of available equipment.

Linear Regressions

Linear regressions, a methodology adopted in other UHI studies [65], were applied to
analyze the relationship between TaSN data (response variable) from the LSTL8 (explanatory
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variable), considering all the sensors and the influence of seasonality, in RStudio [56,66]. In
this paper, the r2 adjusted was used in these analyses.

3. Results and Discussion

3.1. LSTL8 Mapping

As expected, seasonality influences the behavior of the city’s surface temperature,
as the temperatures observed in summer are significantly higher than in winter, as has
been identified in studies conducted in some cities in China [38,67,68]. Figure 2 shows an
example of a map of each season–31 July 2013 (summer) (A) and 1 March 2016 (winter) (B)
and a map from 8 February 2014 (winter) (C), whose result showed values below −5 ◦C in
the analyzed area. All generated LSTL8 maps are shown in Appendix A (Figure A1).

−

−

−

Figure 2. Example LSTL8 maps, calculated/generated in GEE, with the area delimitation of the 23

fixed sensors (black square) and the respective sensors plotted (black dots). (A): relative to 31 July

2013 (summer); (B) relative to 1 March 2016 (winter); (C) relative to 8 February 2014 (winter), which

exemplifies the results with values below −5 ◦C in the study area.

When results fall below −5 ◦C in at least one of the 23 sensors (Figure 2C), the data for
that day were disregarded. Thus, of the 87 dates/scenes processed, 17 were ignored. Of
the 69 images processed, 43 were from summer and 26 from winter. This negative value
may be associated with the presence of dense clouds that influence data registration, even
with the application of a mask and standard methodologies [69]. Of the remaining 70 dates,
69 were considered in all statistical analyses. The image referring to 16 April 2021, was
considered only for the field data validation stage because it was the only processed image
of the spring.
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SUHIInt and UHIInt

From the boxplot analysis considering the time of the satellite’s passage, both the
SUHIInt (Figure 3) and UHIInt (Figure 4) showed similar behavior for the local LCZs. The
data from the UHIInt in summer showed fewer outliers than those of the SUHIInt, and in
winter, the UHIInt showed more amplitude in the data, especially for the GAB locations,
compared to the SUHIInt.

Figure 3. Boxplot with the SUHIint, calculated for the measurements taking place in the summer and

winter, at each sensor and its respective LCZ (the circles refer to the outliers, colored according to

their LCZ).

 

Figure 4. Boxplot with the UHIint, calculated for the measurement taking place in the summer and

winter, at each sensor and its respective LCZ (the circles refer to the outliers, colored according to

their LCZ).

CM locations (in red) showed medians near zero or negative for SUHIInt and UHIInt.
CLR locations (in gray) presented median values of SUHIInt close to zero, in UHIInt (winter
and summer). In the SUHIInt, the behavior was similar, despite presenting median values
slightly below 0 ◦C (near −2.00 ◦C in sensors 4 and 6 in summer and sensor 6 in winter).
Both locations have anthropically altered elements and similar behavior for the UCI effect.

OM locations (in blue) presented median values of UHIInt also close to 0.00 ◦C, except
for sensor 22 in the summer, with a median close to 2.00 ◦C, and sensor 18, in winter,
which presented a median close to −3.00 ◦C. As for the SUHIInt, the summer median
was around 0.00 ◦C in all sensors, except for sensor 10, which was around −2.00 ◦C. The
median in winter was close to −2.00 ◦C, except for sensor 12, whose value was close to
0.00 ◦C. The anthropic elements in these locations are less dense, which is reflected in
higher temperatures than observed in the CM and CLR.
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LLR locations (in orange) the median UHIInt was close to −2.00 ◦C in the summer. In
the winter, the behaviors were distinct: near −1.00 ◦C at sensor 5, 1.00 ◦C at sensor 17, and
−3.00 ◦C at sensor 21. As for the SUHIInt, in the summer, sensors 5 and 21 showed median
values near −3.00 ◦C and sensor 17 around 1.00 ◦C. In winter, sensor 17 maintained its
behavior, and sensors 5 and 21 showed similar results at −1.00 ◦C. Since this is an area
with commercial/industrial buildings, the temperature differential is higher, similar to CM
and CLR.

GAB locations (in green) showed negative SUHIInt and UHIInt values in both winter
and summer, with the highest air temperature amplitudes recorded in winter and the
lowest median in sensor 9.

SB locations (in purple) the UHIInt was varied in winter and summer, but recorded
results were close to 0.00 ◦C (exceptions in sensor 1, which presented −3.00 ◦C in winter
and summer, and in sensor 15, which presented 2.00 ◦C in summer). As for the SUHIInt,
the data presented more outliers, especially in the summer. The median results in both
stations ranged between 0.00 and −2.00 ◦C, except for sensor 15, which showed a median of
−3.00 ◦C in the summer. The behavior of the SB sites was close to the RCD, considering that
the boxplot is more homogeneous compared to the other CZUs, which may be associated
with the presence of vegetation at the site (considering that it is a transition area between
urban and rural spaces).

As for the maximum UHIInt in the summer, it was recorded by the CLR (sensor 6)
followed by CM (sensor 3). In the winter, the highest SUHIInt were recorded at the LLR
(sensor 17) and CLR (sensor 6). The highest values of the SUHIInt in the summer were
recorded by the OM locations (sensors 12 and 22). In the winter were recorded by OM
(sensor 12) and LLR (sensor 17).

The lowest UHIInt values in the summer were recorded by the CM (sensor 13) and
GAB (sensor 9). In the winter, the lowest SUHIInt were recorded by locations GAB (sensors
9 and 11) and CLR (sensor 6). In the SUHIInt, the lowest values in the summer were
recorded by GAB (sensor 9), SB (sensor 15), and LLR (sensor 5). In the winter, by GAB
(sensors 9 and 11) and OM (sensor 10).

In a general analysis, lower SUHIInt and UHIint values were observed in more anthrop-
ically altered areas. As the Landsat 8 overpass occurs near the solar nadir (11 h 15 UTC),
which minimizes the projection of shadows, it was expected that the UCI effect would
have been less evident. However, considering that the rural vegetated areas had more
exposure to electromagnetic energy in the early morning hours compared to urban areas,
these conditions have determined the presence of higher LSTL8 and TaSN, thus determining
a negative UHIInt. These results are similar to preliminary studies that identified UCI in
Bragança [23], and RS data came to corroborate the same results.

In a study carried out in Iraq, UCI was also identified using RS data obtained by
Landsat 8 in the morning period: open spaces, airports, and low-density housing in
the peripheral regions of the city showed higher LST values [70], just as occurred in the
peripheral and less dense rural areas in Bragança.

3.2. Correlation

The Shapiro test results for TaSN and LSTL8, considering all data, i.e., without separa-
tion by season, indicated a non-normalized behavior in all sensors (p-value < 0.05), which
justifies the application of the Spearman correlation method. Considering all dates (without
separation by season), data shows a non-normal distribution, therefore Spearman’s statisti-
cal method was adopted.

The same test was applied considering the summer and winter seasons. In the summer,
the same non-normalized behavior was observed for LSTL8 data. The behavior of the TaSN

data followed a normal distribution. As the assumption of the Pearson method is that all
data that will be used in the processing present normality, the Spearman method was also
applied in the summer.
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In the winter, the data mostly presented p-values > 0.05, for LSTL8 except for three
sensors. To make the analysis coherent and to apply the appropriate method in data
analysis, Pearson’s correlation was adopted (even for the data that did not present a
p-value > 0.05 LSTL8 in sensors 9, 16, and 19), to minimize possible discrepancies that could
be associated with the difference of the analytical method in the same sample group. The
normalized behavior of the winter data may be associated with a smaller temperature
range, due to the specific environmental conditions of winter, which affect the net solar
radiation available [71], and the smaller number of observations, compared to the summer
data. In summary, Spearman was the method applied for all data and summer data, and
Pearson was applied to winter data.

3.3. Correlation between TaSN and LSTL8

Although LSTL8 and TaSN are different parameters and that weak correlations can be
expected due to the different external factors affecting them [65], all correlations were positive,
and, considering all days, the results were classified as “Strong” and “Very Strong”. In summer,
17 sensors (73.91%) had a “Strong” correlation, and six sensors (26.09%) had a “Very Strong”
correlation. In winter, all correlations were “Very Strong”, which may be associated with lower
solar incidence and shadow projections compared to summer (Figure 5).

 

Figure 5. Statistical values were obtained from the correlation between TaSN andLSTL8 (absolute values).

In summer, the incidence of solar energy is more intense and the parameters of TaSN

and LSTL8 are affected differently. The Landsat 8 pass time is close to the solar nadir, but
there may still be shadows casting on the surface, resulting in lower correlations in this
season compared to winter. These shadows may be associated with: (i) the configuration of
buildings, which in periods of greater availability of electromagnetic energy can influence
the result obtained by comparing a shaded area to another exposed, unobstructed area;
(ii) the vegetation, especially trees as a consequence of the canopy cover, who will provide
shadow. Unlike most urban structures, some trees (deciduous) will present changes in their
capacity to intercept solar radiation, due to the changes in the foliage around the year, with
notable influence on the microclimate in its surroundings [9,71].

The local sensors record the TaSN in a microscale context, while the LSTL8 is obtained
covering a more extended scale, closer to the level of generalization used for the definition
of the LCZs [72]. RS was able to identify patterns in the thermal behavior of the different
LCZs in Bragança, which are correlated to the TaSN.

The correlation between Ta and LST has already been identified in other studies and
locations, such as in South Korea and Brazil [73,74], which corroborates the methodology
and the relationship between both indicators for UHI analysis.

3.4. On-Site Collection Data for Validation

The classification of the surfaces measured with the handheld thermal camera was
performed and, in Table 2 there is the identification of the area, the proximity fixed sensor,



Environments 2022, 9, 98 12 of 37

the classification of LCZs, the number of surfaces collected in each point, and the respective
description, based on the data obtained by the photo camera. Due to seasonality, some
points with the presence of vegetation had their surface classification changed throughout
the measurements taken.

3.4.1. Analysis of the LSTHTC and LSTL8

LSTHTC allows detailed thermal data from different spatial resolutions, which enables
a more specific evaluation of the spectral responses of the surface materials [75]. Data
collection is performed point by point, an hourly difference that can be influenced by
weather changes, such as the presence/intensification of clouds or shadows, which can
influence the net radiation reaching the analyzed surface [9,76].

The revisit time also presents specificity between the techniques: while Landsat 8
performs acquisitions every 16 days at the same local time (UTC) and under different
environmental conditions, the on-site collections are more flexible and can be performed
at shorter intervals (depending on the availability of financial, human and equipment
resources). However, the satellite revisits time and also ensures a data history, that can be
important to UHI studies [28].

LSTHTC sampled on each surface in the morning compared to LSTL8 showed higher
temperatures in most cases. The justification for this behavior may be associated with the
special resolution of the collection, since the LST averages the thermal values existing in
a pixel, while the handheld thermal camera presents a smaller FOV, with the ability to
present more details of the sampled surface [24].

Furthermore, there are different influencing factors between both techniques, such as
the atmosphere that affects satellite data, i.e., the presence of clouds, while casting possible
shadows, is less impactful in local collections.

Overall, vegetated surfaces showed lower temperatures than anthropic ones, and, in
addition to LULC, the configuration of the surroundings exerts influences on the results,
since densely urbanized areas can corroborate with air circulation obstacles [9,77].

P6 (LLR) (Figure 6), with the presence of vegetation and anthropic areas, will exemplify
the thermal behavior. There were five different surfaces, and two correspond to Sidewalks
(S) (both are in gray—P6D and P6E) (Figure 7). The vegetation was classified in V/DV due
to the seasonality (details in Table 2).

Figure 6. Surface sampled in P6 (LLR) and their respective classifications.
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Figure 7. Analysis of the temperatures on the various sampled surfaces at P6 (LLR).

The values recorded on the vegetation surfaces were the lowest in all collections,
compared to the anthropic surface materials (As, S and S), except for C3 in which the area
sampled D showed slightly lower values, which can be associated with the seasonality
(spring)/ availability of electromagnetic energy [71]. The highest temperatures were
measured on asphalt [12,78] (Figure 7).

3.4.2. Analysis of LSTHTC Differences between Morning and Afternoon Collections

In general, the thermal behavior indicated higher temperatures in anthropically altered
surfaces compared to those with vegetation. Moreover, on C2 and C4 with the presence of
clouds, the anthropic areas were more affected than the vegetated ones, which corroborates
that clouds/shadow effects have a direct influence on thermal behavior.

The results for P2 (OM) (Figure 8) exemplify this behavior: where there is low-density
construction, a higher thermal behavior is observed in the afternoon, except for P2C (Vs),
in C3 and C4, whose result was similar in both morning and afternoon. The LSTHTC in the
Vs showed greater variation between collections in C2 (summer) (Figure 9).

 

Figure 8. Surface sampled in P2 (OM) and their respective classifications.

3.4.3. Analysis of TaSN Differences between Morning and Afternoon Collections

TaSN showed variability between the on-site collections in most of the points, with a
higher range in the afternoon period. This behavior can be justified by the accumulation of
electromagnetic energy that occurs throughout the day and that enhances the UHI effect in
places with a considerable density of urban construction, especially after sunset [64].

P8 (CM) exemplifies this behavior: the maximum value of TaSN of 31.15 ◦C (afternoon),
which can be associated with anthropic construction, which may have contributed to the
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increase in TaSN due to surfaces materials (mostly low albedo), and obstacles regarding
wind circulation and heat dissipation [79]. A large amplitude of TaSN is observed, which
may be associated with the existence of trees that can act as a natural obstacle to air
circulation and, consequently, to the dissipation of absorbed heat (Figure 10) [80,81].

 

Figure 9. LSTHTC recorded at Morning (M) and Afternoon (A) collection, at each surface of P2 (OM).

 

Figure 10. Analysis of the TaSN data collected in the morning and afternoon of collection 1

(3 August 2020—Summer).

3.4.4. Wind Speed Analysis (Portable Monitoring Equipment)

C4 (5 July 2021) showed the highest values for wind speed in all portable monitoring
equipment, with the highest results observed at station 4 (CM) (Figure 11). This behavior
may be associated with the Venturi effect, recorded in street canyon contexts [82] (Figure 12).

 

Figure 11. P4—Portable monitoring equipment and the surroundings involved.
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Figure 12. Comparison of wind speed at each portable monitoring equipment, per collection day.

The radiation emitted by walls is long-wave while the incoming (solar) radiation is
short-wave and is also influenced by the orientation and reflective power of the surfaces.
Therefore, the SVF influences the energy exchange at a site and is associated with the W and
H of the canyon [83]. When considering a street, the temperature may be somewhat higher
than in a more open location, due to the trapping of solar radiation, which is intensified
during the night period. If the ambient flow is approximately perpendicular to the axis of a
street canyon, a vortex can form, which will carry the ambient air down and the canyon
air up the canyon. This mechanism causes the wind speed to be enhanced and, in the case
of places with air contamination, can serve to transport the polluting elements to other
places [83,84]. For this characteristic to be confirmed at this point, it is recommended that
complementary field collections be carried out.

3.4.5. Tr Analysis (Portable Monitoring Equipment)

There is an equivalence between the values measured in each of the collections, with
the highest temperatures from the summer measurements, confirming the influence of
seasonality on a local scale, because Tr is a consequence of the thermal radiation released
from surrounding elements [85].

In the C4, the presence of clouds possibly affected the results, especially CM (P4),
which showed the highest values in C1, C2, and C3. Being an area with medium and
high-density construction, this behavior may be associated with the retention of solar
energy in this LCZ (Figure 13).

 

Figure 13. Comparison of Tr at each portable monitoring equipment, per collection day.
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The portable monitoring equipment 1 installed in the LLR, showed similar results in
all collections, except for C3, which may be associated with seasonality. As for the GAB, it
is observed that the recorded data were similar to the data from LLR (P1) and CLR (P3),
except in C4, which presents the highest temperature of this collection (69.38 ◦C). In C4,
lower results than those observed in the other summer collections were observed, which
may be associated with the presence of clouds on that day. The station installed in the CLR
showed temperature regularity in the collections performed (Figure 13).

3.5. Linear Regression between TaSN and LSTL8

The p-value results were lower than 0.05, i.e., therefore TaSN is a significant parameter
for the model. The adjusted coefficient of determination (r2 adjusted) demonstrates that,
when using all dates, it is possible to predict TaSN from the LSTL8 in all sensors, with
explainability starting at 65% in sensor 13 (CM) (Figure 14).

 

Figure 14. r2 adjusted referring to the linear regression model between TaSN and the LSTL8.

Considering all dates, CLR sensors presented 75 and 72% (sensors 4 and 6, respectively).
SB sensors presented 68, 66, and 74% of explainability results (sensors 1, 14, and 15). Compar-
ing both results, the behavior may be associated with the distinct surface composition in
each of the classes: SB has elements of transition between urban and rural areas, and CLR,
a former traditional city center, has more heterogeneous anthropogenic surfaces, which
may influence the LSTL8 and TaSN results more distinctly (Figure 14).

Sensors 2, 8, 9, and 11 (GAB) showed 70, 73, 81, and 74% of explainability for all dates.
Sensors 3, 7, and 13 (CM) presented results of 76, 69, and 65%, respectively (all dates). The
explainability of GAB is higher than CM and can be associated with the specific surfaces:
GAB is composed of green spaces (more homogeneous albedos), compared to CM, which
has anthropogenic surfaces, which can affect the TaSN and LSTL8 results in specific/distinct
ways (Figure 14).

For all dates, sensors 10, 12, 18, and 22 (OM) showed explainability of 80, 67, 78, and
80%, respectively. Sensors 5, 17 and 21 (LLR) resulted in 73, 71 and 74% explainability, and
sensors 16, 19, 20 and 23 (RCD) accounted for 72, 73, 76 and 77%, respectively. These three
LCZs showed similar behavior in the results, with the highest representatives observed in
the OM sensors (except for 12), which have isolated building surfaces of medium density.

Considering the seasonality, the explainability of TaSN is lower in summer than in
winter (Figure 14). In addition, a large part of the sensors in the same LCZ presented
variable data. This behavior may be associated with the smaller number of observations
and the greater homogeneity of the data in winter, compared to those in summer.

Sensor 10 (OM) was the one that presented the lowest explainability, both in summer
and winter (12 and 58%, respectively). Sensors 1, 14, and 15 (SB) showed results of 83, 88,
and 62% in winter and 19, 26, and 30% in summer, respectively.
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In the CLR sensors (4 and 6), in summer, the TaSN could be explained from the
LSTL8 with 28 and 22%, respectively. In winter, the results were 70 and 68%, respectively.
Regarding sensors 2, 8, 9, and 11 (GAB), the results were 21, 14, 22, and 22% in summer
and 75, 67, 81, and 74%, respectively. In the winter results, despite being higher, were less
homogeneous than in the summer. Sensors 3, 7, and 13 (CM) showed results of 28, 27, and
20% in summer, and 83, 63, and 79% in winter. Sensors 10, 12, 18, and 22 (OM) showed
explainability of 12, 27, 24, and 26% in summer and 58, 67, 75, and 62% in winter. Sensors 5,
17, and 21 (LLR) resulted in 32, 16, and 18% in summer and 83, 78, and 70% in winter.

3.6. UHI Mitigation Actions

Mitigation actions for the UHI effect should be supported by studies that identify its
causes and which technologies are available/viable from an environmental, social, and
economic point of view. The understanding of building structures, LULC, local climate
characteristics, and socioeconomic data is relevant for a more assertive public policy
proposition [86].

A methodology that can be adopted is the development of a local bioclimatic model
that uses urban elements strategically to minimize heat storage, and includes actions such
as: (i) inclusion and adjustments of built-up areas to decentralize urban densification;
(ii) inclusion and/or maintenance of water bodies, wetlands and/or vegetated areas in
urbanized zones, favoring heat exchange between different surfaces; (iii) preservation
and/or revitalization of parks, water bodies, and vegetated surfaces (prioritizing densities,
tree canopy sizes, and species-appropriate for the location that one wishes to remediate
surface temperature); (iv) prioritizing the use of building materials that favor heat exchange
rather than heat retention, such as the use of permeable asphalt, for example [24,87,88].

Environmental awareness, urban planning [24], identification of areas with more
intensified UHI behavior, change in materials used for construction and/or urban greening,
encouraging the use of public transport [89], and tools that can alert residents about heat
waves [90] are other examples of mitigating strategies.

To make a specific mitigation proposal for Bragança, aligned with the ClimAdapt.Local
project [40], it is necessary to continue this work, overcome some identified limitations and
acquire additional information that will allow a deeper analysis of the UHI effect, such as
socio-environmental data.

4. Conclusions

Studies based on climate change and the analysis of its impacts on microclimates show
a growing trend. The UHI, an effect that increases temperatures in places with a higher
density of urban construction compared to the surroundings and that can promote impacts
on the health and welfare of a population, has been increasingly studied and associated
with public policy measures focused on its mitigation.

Since it is an effect with transversal influence, its identification, and analysis, especially
in mountainous regions, as in the case of Bragança, becomes a methodological challenge
since its formation is associated with several direct and/or indirect factors. For instance,
the mountainous configuration of this city, added to the urban density, especially in the city
center, corroborates the intensification of the effect, which has been previously identified
through scientific research developed in the region, using data from the sensor network.

In this study, data from several sources were used, such as RS, sensors (with continuous
data collection), and on-site collections. The integration of different sources and levels
of information allows for the analysis at different scales. When using LSTL8 compared
to LSTHTC, different spatial scales are involved. The RS offers a less detailed spatial
scale, due to the pixel resolution, and in transition zones between two different LULC
(such as vegetation and urbanization areas), the record considers the average spectral
behavior contained in the pixel, which may influence the identification of site-specific and
representative spectral contrasts.
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Aiming to complement earlier studies carried out in Bragança, this research used a
multivariate methodology, including the use of GEE software, RS, and sensor network
data from 2013 to 2021, with additional on-site data (portable monitoring equipment and
handheld thermal camera), in addition to qualitative and quantitative analysis of the UHI,
at different spatial scales. For the collection on-site, the selection of sites prioritized the
diversity of LCZs (established in previous studies).

The computation of LSTL8 in GEE optimizes the computer’s processing time and
capacity. The collection used with the application of atmospheric and cloud corrections adds
value to the process, since it allowed the use of standardized raw data, with minimization
of climatic influences and random effects that could be associated with the calculation of
each scene, individually.

The integration of different types of data made it possible to obtain more detailed
information about the study site and to overcome some limitations inherent to using a single
technique, with the addition of complementary results, for example, using the LSTHTC data
with lower IFOV than LSTL8, it was possible to obtain a higher spatial detail, especially in
the transition zones with different LULC.

Seasonality (winter and summer) was identified in all data. This behavior can be
justified as a function of the amount of electromagnetic energy available for exchange with
the environment, which reaches greater amplitudes during the summer.

Although the TaSN and LSTL8 are different parameters and a strong correlation be-
tween them is not necessarily present, since the result of the LSTL8 depends on the character-
istics of the surface, how heterogeneous is the site, and their respective albedos, the results
showed “strong” and “very strong” correlation in all sensors. In the summer, approxi-
mately 74% of the results showed a “strong correlation” and 26% showed a “very strong”
correlation between these parameters. In winter, all data showed a “strong correlation”.
The observed differences point out the influence of seasonality, where the TaSN and the
LSTL8 are more convergent when considering winter measurements. Considering that the
UHI is a phenomenon affected by several parameters, the availability of electromagnetic
energy in the summer for longer periods and at a solar angulation that corroborates energy
storage, can be a justification for this behavior. In addition, as the number of observations
considered in winter was lower than in summer, this may have influenced the results. Since
there are considerable correlations (strong and very strong), RS data/techniques proved to
be an effective complementary methodology for UHI studies in Bragança.

As for the UHI, it was not possible to identify this effect due to the time of the Landsat
8 overpass in Bragança, which occurs near the solar nadir (11 h 15 UTC). For the UHI effect
to be evident in the results, the collection of thermal data from the night period, provided
by satellite missions (thermal sensor or microwave) or by local data collection campaigns,
with a UAV with a thermal camera, should be considered.

However, the UCI was identified in the UHIInt results for both LSTL8 and TaSN, i.e., the
effect is observed at different analytical scales, since the TaSN refers to the micro-scale and
LSTL8 related to a level closer to the LCZ scale. This equivalence ratifies the possibility
of integrating RS data in UHI studies, which presented itself as a possible technique for
validation, with field data.

The correlation of the UHIint data from LSTL8 was “very strong” and positive, which
may indicate that the differences in thermal behavior are associated with surface albedo,
LULC, roughness, permeability, and other urban parameters.

As for the local measurements, although none of them were performed in winter, due
to the limitations imposed by the pandemic and the weather conditions, seasonality can
be assessed, on a local scale, by considering the differences between the three summer
collections and one in spring.

The LST analysis obtained by the thermal camera showed higher temperatures in
anthropically altered surfaces when compared to vegetated areas (even dry vegetation). The
afternoon collections showed mostly higher temperatures when compared to the morning
ones, especially on the anthropically altered surfaces.
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It is worth noting that wind speed is a relevant parameter from the point of view
of heat dispersion. Tr also followed the same behavior and did not present significant
differences in the results, although station 4 (PMA) presented the highest temperatures
relative to locations 1 to 3.

Regarding the linear regression and the determination coefficient, it is observed that
the air temperature is a relevant parameter in the equation (considering the calculated
p-value) and that it is possible to obtain its estimated values from the LST data. The summer
data present lower predictive/explainability values compared to winter.

Studies of urban climate transcend urban geometry and surface materials and include
the landscape interactions, dynamics of housing, commerce, industry, and vehicle circula-
tion, which corroborates the complexity and the need to develop public policies aimed at
minimizing the impacts that can be caused to the local population and the environment.
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Figure A1. LSTL8 maps are generated in GEE.
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