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Abstract—In heterogeneous computing systems, general pur-
pose CPUs are coupled with co-processors of different architec-
tures, like GPUs and FPGAs. Applications may take advantage
of this heterogeneous device ensemble to accelerate execution.
However, developing heterogeneous applications requires specific
programming models, under which applications unfold into
code components targeting different computing devices. OpenCL
is one of the main programming models for heterogeneous
applications, set apart from others due to its openness, vendor
independence and support for different co-processors.

In the original OpenCL application model, a heterogeneous
application starts in a certain host node, and then resorts to the
local co-processors attached to that host. Therefore, co-processors
at other nodes, networked with the host node, are inaccessible and
cannot be used to accelerate the application. rOpenCL (remote
OpenCL) overcomes this limitation for a significant set of the
OpenCL 1.2 API, offering OpenCL applications transparent
access to remote devices through a TPC/IP based network.
This paper presents the architecture and the most relevant
implementation details of rOpenCL, together with the results
of a preliminary set of reference benchmarks. These prove
the stability of the current prototype and show that, in many
scenarios, the network overhead is smaller than expected.

Index Terms—OpenCL, heterogeneous computing, API for-
warding, remote execution, parallel and distributed computing

I. INTRODUCTION

The last decade saw the emergence of heterogeneous
computing systems, where different architectures co-exist, in
addition to the main architecture embodied by the familiar
general purpose CPU. In such systems, traditional multi-core
CPUs are coupled with auxiliary co-processor devices, like
Graphics Processing Units (GPUs), Field Programmable Gate
Arrays (FPGAs), and Digital Signal Processors (DSPs). These
devices are exploitable beyond their primary original goal
(i.e., graphics/signal processing), in order to accelerate the
execution of computationally demanding applications [1], [2].

For heterogeneous systems to be efficiently exploited, appli-
cations must be developed using special programming models.
With low-level programming approaches, like the vendor-
specific NVIDIA CUDA Driver API [3] or the OpenCL
open standard [4], heterogeneous applications are non-single
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source, unfolding explicitly into different code components per
architecture. These components are written in C (with some
extensions) or in C++ (using the bindings provided), and target
separately the co-processor devices and the host system where
devices are attached to; typically, the host-side code creates
the necessary data structures to interact with the devices and
triggers the relevant operations (data exchanges with / issuing
code to / synchronization with the devices); sometimes, host
code solves parts of the problem, in parallel with the devices.

Another common denominator to CUDA and OpenCL is
that their original application model is intra-node centric, that
is, an heterogeneous application launched on a certain host
can only exploit the co-processor devices directly attached to
that host. This necessarily implies a limited number of locally
usable co-processors, due to physical and logical constraints
(power, cooling, chassis, maximum number of devices sup-
ported by the drivers and the system BIOS, etc.).

However, scaling-out execution of heterogeneous applica-
tions to co-processors in multiple nodes has been possible,
from some time now, with NVIDIA GPUDirect-RDMA [5] or
AMD ROCn-RDMA [6], that rely on inter-node GPU commu-
nication over Infiniband. Basically, Infiniband RDMA-enabled
network cards have direct access (via the PCIe bus) to GPU
memory, allowing for data exchanges between GPU memory
in different nodes, bypassing the main memory subsystem.
At a higher-level, these RDMA-based approaches, namely
NVIDIA GPUDirect-RDMA, have been taken advantage of by
popular MPI-compliant [7] message passing libraries that can
be combined with CUDA in developing distributed parallel
hybrid applications [8]; in essence, with CUDA-aware MPI
implementations, the MPI library can send and receive GPU
buffers directly, thus optimizing data exchanges (notably,
opposed to the availability of several CUDA-aware MPI im-
plementations, there’s currently no OpenCL equivalent).

An alternative to exploit inter-node multi-accelerator con-
figurations, while being able to use the original programming
models of CUDA and OpenCL, is to provide, through its
runtime systems, access to remote accelerator devices (that
is, devices attached to other nodes than the one in which the
host-side of the heterogeneous applications is launched), as if
they were local, effectively creating a unified view of all the
available accelerators. This even allows to start heterogeneous
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applications in nodes where accelerators are absent, provided
nodes with co-processors are networked with the starting node.
Of course, issuing CUDA/OpenCL API calls and kernels for
remote execution, or exchanging data with or between remote
devices, is expected to exhibit less performance, compared
to using only local co-processors. However, this may not
always be the case: depending on the computing capabilities
differential between local and remote devices, and also on
the behavior of the heterogeneous application (namely its
workload distribution algorithm), it may pay off to offload
certain tasks to remote devices, despite the penalty introduced
by the network. Moreover, if enough transparency is ensured,
such transparency may be regarded as a key advantage to
counteract the expected performance limitations (ideally, pre-
compiled binary code should be transparently executed in the
overall set of devices exposed to the application by the unified
runtime, irregardless of the devices location). On the other
hand, when developing new applications, or when the source
code is available, if the unified runtime offers extensions that
allow to determine whether a device is local or remote, such
information (together with the results of previous benchmarks)
may be used during the distribution of the workload.

This paper introduces rOpenCL (remote OpenCL), as an
approach that tackles the previous scenario for the specific
case of distributed OpenCL heterogeneous applications and
TCP/IP networks where hosts support the traditional BSD
sockets mechanism (meaning virtually any networked host).
Thus, rOpenCL does not depend on niche network technolo-
gies (e.g., Infiniband), but takes advantage of them when
available (provided they support TCP/IP). Also, rOpenCL (and
similar approaches, including CUDA-related – see section
IV), is not meant to compete with dense intra-node multi-
accelerator systems, or multi-node multi-accelerator clusters
built on specialized communication fabrics; it is a comple-
mentary multi-node multi-accelerator approach that may be
deployed on commodity hardware and networks, or on high-
performance infrastructures when available. Finally, in opting
to extend OpenCL to a distributed environment, in detriment
of alternatives like CUDA, the key factors considered were i)
standard openness, ii) application portability, and iii) support
for a wide range of co-processors (and not only GPUs).

The remainder of the paper is organized as follows: section
II covers the software architecture of rOpenCL and impor-
tant implementation details; section III provides results of a
preliminary evaluation of the stability and performance of the
rOpenCL prototype; section IV offers a brief survey of the
most relevant approaches comparable to rOpenCL; section V
concludes and defines directions for future work.

II. ARCHITECTURE AND IMPLEMENTATION

A. Overview

OpenCL is a specification that allows applications to take
advantage of different architecture devices [4]. Such hetero-
geneous applications are composed of host code and a set of
kernels. A kernel is a specific core function of an OpenCL
application. Typically, a kernel is meant to be executed in

a co-processor that is faster (regarding the specific kernel
operations) than the processor(s) where the host code runs;
exceptionally, a kernel may also execute on the same proces-
sor(s) as the host code, e.g., if no co-processors are available.

The OpenCL programming model is currently supported
by four major implementations of the official specification,
targeting different device types: NVIDIA GPU drivers [9];
ROCm [10] OpenCL runtime for AMD CPUs and GPUs; Intel
OpenCL SDK [11] for Intel CPUs, GPUs and FPGAs; POCL
[12], vendor-agnostic and mainly CPU-oriented, though with
some GPU support. In OpenCL parlance, an implementation
of the specification is a platform. A platform typically supports
a limited set of devices, accessible by the platform runtime.

However, despite all the features offered by the OpenCL
model for the building of heterogeneous applications, and
the variety of platforms, OpenCL applications that run on
top of conventional OpenCL platforms (those conforming to
the official specification) can only use devices from the ma-
chine where they run. To circumvent this limitation, allowing
network-reachable devices from other machines to be used,
several alternatives were developed (see section IV for a brief
survey), including rOpenCL, introduced in this paper.

The main feature that sets rOpenCL apart, when com-
pared with similar approaches, is its transparency: OpenCL
applications do not need to be recompiled in order to use
rOpenCL to reach out and exploit remote platforms and their
devices; this is because rOpenCL exposes remote platforms to
applications as if they were local platforms, that is, rOpenCL
is an aggregator of remote platforms; also, rOpenCL doesn’t
expose any local devices (such concerns only to the local
conventional platforms); thus, with rOpenCL installed in its
host node, an OpenCL application is able to use any mix of
local platforms/devices and remote platforms/devices.

TABLE I
OPENCL 1.2 API COVERAGE OF ROPENCL.

Function Categories Implemented Not Implemented
OpenCL Platform Layer 13 0

OpenCL Runtime 4 0
Buffer Objects 13 3

Program Objects 11 0
Kernel and Event Objects 22 1

Image Objects 7 3
Sampler Objects 4 0
OpenGL Sharing 0 9

Direct3D 10 Sharing 0 6
DX9 Media Surface Sharing 0 4

Direct3D 11 Sharing 0 6

In its current stage, rOpenCL supports ≈ 71% of the
OpenCL 1.2 API [13] – see Table I. Most image/graphic
processing primitives (categories in italic) were left out, as
usual in other distributed OpenCL implementations, where
the main focus is also pure computing. Thus, consider-
ing only the computing-related primitives, rOpenCL cover-
age of the OpenCL 1.2 API is ≈ 94%, with the follow-
ing functions yet to be supported: clEnqueueCopyBuffer

(partially implemented; doesn’t support copies between de-
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vices of different machines); clEnqueueCopyBufferRect,
clEnqueueMigrateMemObjects and clEnqueueNative

Kernel (none support). Nevertheless, the primitives already
supported by rOpenCL are enough to conduct a comprehensive
range of OpenCL benchmarks (see section III). Moreover, by
targeting OpenCL 1.2, rOpenCL is in line with the recently
released OpenCL 3.0 specification [14], which only mandates
full support for OpenCL 1.2 (though with more focus in C++).

B. Architecture

rOpenCL consists of two main components: a client driver
(rOpenCL Driver) and a set of remote services (rOpenCL
Services) responsible for executing OpenCL requests in the
underlying devices. Figure 1 provides a representation of these
components and their relations with the OpenCL environment.

Host Program

ICD Loader

rOpenCL Driver

Client Node(s)

OpenCL Drivers
(NVIDIA, AMD, ...)

Local Device
Local Device

to Local
Devices

to Remote
Devices

Remote NodeTCP/IP
Network

rOpenCL Service

ICD Loader

OpenCL Drivers
(NVIDIA, AMD, ...)

to Local
Devices

Local Device
Local Device

Remote Node

Remote Node

Fig. 1. rOpenCL architecture

At a host node, where an OpenCL application starts, the
rOpenCL Driver is installed, like if it were another vendor
driver; such drivers are known as installable client drivers
(ICDs), and so rOpenCL has its own ICD. This way, the
OpenCL runtime (the ICD Loader), is able to locate the ICD
for rOpenCL and redirect OpenCL calls to it. In a Linux
system, where rOpenCL was developed, this means there is a
/etc/OpenCL/vendors/rOpenCL.icd file containing
the path to an rOpenCL shared library where OpenCL calls are
redirected to. Thus, by providing its own ICD, rOpenCL offers
OpenCL applications full transparent access to the remote
platforms and devices beneath the rOpenCL Services.

An OpenCL application may, however, want to know about
the location of a specific remote OpenCL platform (and corre-
sponding devices). This knowledge may be used, for instance,
to implement client-side load balancing mechanisms, where an
OpenCL application does not blindly assign requests to remote
platforms that may happen to co-exist in the same remote
node (thus overloading its devices); instead, it may decide
to spread the requests among platforms in different nodes,
by following a round-robin distribution, or other algorithms.
rOpenCL makes this possible by extending the OpenCL
clGetPlatformInfo primitive to support the new value
CL_PLATFORM_IPADDR for its parameter param_name.

Another important architectural consideration is how
rOpenCL manages OpenCL contexts in a distributed en-
vironment. A context is used by the OpenCL runtime to

manage several interrelated objects (like command-queues –
used to submit commands to devices –, memory buffers,
program and kernel objects), and also to execute kernels
on the devices specified for that context; these devices may
even be of different types (e.g., CPUs and GPUs); however,
they all must belong to the same OpenCL platform; in turn,
an OpenCL platform object is, per the OpenCL standard,
specific to a certain node, and rOpenCL complies with this;
as such, rOpenCL doesn’t replicate contexts (and subordinated
objects) among different nodes; avoiding the burden of replica
management simplifies the implementation; however, it pre-
vents the creation of inter-node contexts, based on virtual
platforms encompassing devices from different nodes; such
objects, with a broader view of the nodes device set, could
perform some form of automatic load-balancing; instead, with
rOpenCL, that task is left to the programmer, by exploiting
the CL_PLATFORM_IPADDR extension, as already stated.

Figure 1 also reveals that all network communication be-
tween the rOpenCL components happens via TCP/IP; such is
because one of the goals for rOpenCL was network portability;
this, coupled with the need for maximal network efficiency,
lead to the choice of C-based BSD sockets as the programming
framework for network communication; there are lower-level
alternatives [15], but usually they do not support routing and so
can only be used in the same LAN segment (thus limiting the
remote device set that can be reached); moreover, the rOpenCL
code base was designed from the very beginning to support
the choice between TCP and UDP; currently, only the TCP
code path is considered sufficiently robust, with the advantage
of being usable with any network topology; UDP support is
still experimental and meant to be used only on local network
segments in order to minimize the probability of packet loss.

C. Connections Management

When an OpenCL application starts at the host node,
OpenCL requests begin to be forwarded to the various OpenCL
drivers configured, including the rOpenCL Driver. At mini-
mum, this driver will be queried for platforms (and devices),
in accordance with the usual workflow of OpenCL applica-
tions; after this inquiry phase, the application decides which
platforms (and devices) to use, and further OpenCL requests
will follow, directed to the drivers behind the platforms chosen.

To honor the platforms and device queries, as well as any
other subsequent OpenCL request, the rOpenCL Driver will
forward those requests to the appropriate rOpenCL Services. In
order to make an efficient use of the communication layer, the
driver minimizes the number of TCP connections and reuses
them as much as possible. Every time the driver receives an
OpenCL request, it checks the unique OS kernel thread ID
(TID) of the requester process/thread, as well as a particular
OpenCL parameter of the request (the main parameter – see
section II-D) that, together with the TID, is mappable on the IP
address of a rOpenCL service, using a Red-Black tree (RBT1);
it then uses the TID and the remote IP address to find out if
it is necessary to create a new socket descriptor and establish
a connection between the requester and the remote rOpenCL
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Service; subsequent requests from the same process/thread to
the same remote service will reuse the previously established
connection; the inventory of TCP connections, by local TID
and remote IP address, is hold on another Red-Black tree
(RBT2). To understand the importance of connection reuse, it
was found, at an early stage of the development of rOpenCL,
that establishing a TCP connection per each OpenCL call
would consume around 30% of the execution time of the call
(for OpenCL functions that involved small network transfers).

At each rOpenCL Service, POSIX threads are used. A fron-
tend thread accepts connection requests from client threads (at
host nodes), and assigns each new connection to a new worker
thread. A worker thread will be responsible to forward the
OpenCL requests received from a client thread, to the proper
underlying OpenCL platform. When an OpenCL application at
the host node ends, all open sockets descriptors will be closed
by the operating system; this makes all remote worker threads
that were previously paired with the application to unblock
from the closed connections and to self terminate.

The startup of an OpenCL application in a host node also
involves the discovery of rOpenCL Services. This is done
simply, by reading a hostfile, that may be user-specific (default
hostfile) or system-wide (in the absence of the former). The file
contains the IP addresses and ports of the rOpenCL Services,
as well as the local interface that the host node should use
to communicate with those services (useful if the host node
is a multi-homed system). The initial discovery process is
conducted by a certain thread of the OpenCL application, that
is usually (but not necessarily) the main thread; that discovery
triggers the creation of an initial set of connections to each
rOpenCL Service; at this initial stage, they are used to inquiry
the remote platforms and devices; latter, those connections
may be reused by the same client thread, if it needs to conduct
new OpenCL transactions with the same rOpenCL Services.

D. Objects Management

OpenCL applications at the host node are supposed to deal
with local pointers, referencing local memory areas where
the various OpenCL objects, necessary to the application, are
stored. However, when an OpenCL application makes use of
the rOpenCL Driver, all local pointers must be mapped into
remote pointers, for the same kind of objects, referencing
memory zones of the nodes where rOpenCL Services run.

Every time an OpenCL primitive is called, the ICD Loader
redirects that call to the proper driver. It does so by taking
advantage of function pointers that the ICD Loader learned
from the driver. That redirection submits and receives back
certain OpenCL objects that must be well-formed (with an
internal valid structure), once they may be passed along to
other primitives by the ICD Loader. This means that, at the
driver level, is risky to return fake pointers to the ICD Loader,
once they may have and unpredictable effect. Fake pointers
are used used by other distributed OpenCL implementations
as equivalents to remote pointers; they can do so because their
approach to the forwarding of OpenCL primitives to remote
nodes is higher-level (wrapper-based), and not as lower level

(driver level) as the one followed by rOpenCL in order to
attain maximum transparency. Thus, instead of returning fake
pointers, the rOpenCL Driver does indeed create real local
OpenCL objects; however, it treats them as “hollow” objects,
without any further use than misleading the ICD Loader. The
real usefulness lies on the twin remote object that rOpenCL
Services create for each local object. Once both objects are
created, the rOpenCL Driver must register their equivalence.
It does so in the RBT1 Red-Black tree, that maps <TID, local
pointer> keys into <remote pointer, IP address> values.

When the rOpenCL Driver receives a OpenCL request, one
of its parameters (usually the 1st) is considered the main
parameter, meaning its local address is already valid and
registered in the RBT1 tree; the local address of the main
parameter, together with the requester TID, are used to search
this tree, for the remote pointer and its IP address; local
addresses of other parameters are also searched in the RBT1

tree, for their remote addresses (some local addressees may
already have been mapped into remotes, and others may not);
the TID and IP address for the main parameter are used to
search the RBT2 tree for a previously open connection to the
remote service; then, a message is sent to this service, carrying
all necessary remote addresses; that message may result in the
creation of new remote objects; the addresses of these objects
are returned to the client thread; the twin local objects are then
created and the new mappings registered in the RBT1 tree.

E. Concurrency Management

At the client side, in the rOpenCL Driver, there’s con-
current access to the RBT1 and RBT2 trees by different
OS kernel threads; a MultipleReaderOneWriter (MROW) lock
(rw_semaphore) is used, per tree, to ensure its consistency.

At the services side, there are several worker threads, each
one dealing with a separate connection from a client thread. A
worker thread unmarshalls the requests received from its client
thread, triggers appropriate actions in the OpenCL layer, and
replies accordingly to the client thread. Thus, at any time,
there may be multiple worker threads issuing OpenCL calls.
This rises the question of thread-safety. Per the OpenCL 1.2
specification [16], all OpenCL API calls are thread-safe except
clSetKernelArg and even this function is not thread-
safe only when called from multiple threads on the same
cl_kernel object at the same time. Even though this is
a corner case, it is dealt with, at cost of some overhead. Cur-
rently, a single MROW lock (a POSIX pthread_rwlock_t
object), shared by all worker threads, serializes all calls
to clSetKernelArg; an alternative, with less contention,
planned for future work, is to register all cl_kernel objects
in a tree-like structure (like the Red-Black trees used in the
rOpenCL Driver), together with a MROW lock per object.

III. PRELIMINARY EVALUATION

This section provides results of a preliminary evaluation of
rOpenCL. The tests conducted prove that rOpenCL is able
to sustain the full execution of a set of well-know OpenCL
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reference benchmarks, in various experimental conditions. Be-
sides asserting the compliance of rOpenCL with the OpenCL
standards, the tests also measure the overhead of the remote
execution over local execution. One of the tests, using many
devices, provides an initial insight into the scalability of
rOpenCL. The tests selected are listed in Table II.

TABLE II
OPENCL BENCHMARKS USED TO EVALUATE ROPENCL

OpenCL Benchmark Profile
Benchmark Memory Compute Multi-Device

BabelStream [17] X
cl-mem [18] X
clpeak [19] X X

FinanceBench [20] X
Hashcat [21] X X

The choice of this particular set of benchmarks is due
to the following reasons: i) they stress different device sub-
systems (compute vs memory), ii) they are all open-source
(some instrumentation code was necessary to automate the
benchmarks), iii) they have been actively maintained in the
last few years, iv) they run in Linux (the OS environment
targeted by rOpenCL), v) at least one of them (Hashcat) is
able to issue OpenCL calls to multiple devices in parallel.

A. Experimental Conditions

The tests were conducted between two nodes of an HPC
cluster at CeDRI/IPB, each with the HW & SW of Table III.

TABLE III
SPECIFICATIONS OF EACH TEST NODE

CPUs 2 x AMD EPYC 7351 16-Core 2.4/2.9GHz
RAM 256 GB ECC DDR4 2666 MHz

Network 10Gbps Ethernet
GPUs 2 x NVIDIA RTX 2080 Ti

OS Linux Ubuntu 18.04.3 LTS 64 bits
OpenCL NVIDIA Driver 430.50

All benchmarks were repeated 5 times. The times presented
in the charts of the next section are averages of the times
measured in all 5 runs (the time of the 1st run was observed
to be similar to the others). The execution overhead (deac-
celeration), in percentage, is given by (Tr/Tl − 1) × 100,
where Tr is a remote execution average time and Tl is its
corresponding local execution average time. Also, to remove
the start latency caused by the loading of the GPU driver at
the beginning of each run, the NVIDIA Persistence Daemon
[22] was configured on the two test nodes (the absence of this
service would only affect the client-side of the benchmark –
and would be only noticeably on short-duration benchmarks –
once an rOpenCL Service forces the pre-load of the driver).

B. Results

The results for the BabelStream benchmark are shown in
Figure 2. BabelStream provides a measure of what mem-
ory bandwidth performance can be attained when executing
five kernels (copy, mul add, triad and dot). Although the

benchmark is quick to execute, it is the one tested with the
highest remote execution overhead, varying between 256%
and 638%, depending on the sub-benchmarks, and with an
overhead average of 353%. So, on average, BabelStream is
3,5 times slower when using a remote GPU via rOpenCL.
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Fig. 2. BabelStream results (copy, mult, add, triad, dot).

cl-mem is a very simple benchmark with three different
OpenCL kernels, to test the speed of sequential write, read
and copy operations (of 128 GB of data, by default); these
operations are executed in parallel, by groups of threads, in
the device being tested; also, it does not require the previous
transfer of the data to the device memory, once the data used in
the test is generated on-the-fly; thus, cl-mem makes very little
use of the network connection between the rOpenCL Driver in
the client node and the rOpenCL Service in the remote node.
This is clearly visible in the results presented in Figure 3.

write test read test copy test
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276,2283,6
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Local Execution Time (ms)

Remote Execution Time (ms)

Remote Overhead (%)

Fig. 3. cl-mem results (write, read and copy).

These results show very little differences between the local
and the remote execution. And, in fact, for the copy kernel test,
the remote execution turns out to be slightly faster. We have
tried to uncover the reason for this, but that investigation was
inconclusive; a possible explanation may lie in the fact that
the nodes used for benchmarking have a NUMA architecture
and the attachment of GPUs to the PCIe bus may be different.

Another benchmark conduced was clpeak. This is a simple
hybrid benchmark, stressing both device memory and pro-
cessing elements. It measure peak capabilities achieved using
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vector operations and does not represent a real-world use case.
Thus, we restrain from showing the peak memory bandwidth
and compute power; instead, Figure 4 presents only the kernel
launch latency; for the remote execution, it is interesting to
see the impact introduced by the network on such a small
operation; the overhead measured was modest: just an excess
of 16%, compared to the latency of a local kernel launch.

Kernel latency
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12%

18%

7,00

8,14

16,4%Local Execution Time (us)

Remote Execution Time (us)

Remote Overhead (%)

Fig. 4. clpeak results (kernel launch latency).

The last mono-device benchmark executed was Fi-
nanceBench, more compute focused. Even though four spe-
cific tests are available (Black-Scholes, Monte-Carlo, Bonds,
Repo), all of which are financial applications, only two have
an OpenCL version (Black-Scholes and Monte-Carlo), and so
results are only presented for these two – see Figure 5. For one
of the test (Black-Scholes) the remote overhead is minimal;
for the other (Monte-Carlo), it is rather modest (21% more).
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Fig. 5. FinanceBench results (Black-Scholes and Monte-Carlo).

The last benchmark results presented are for the Hashcat
application, a well-known advanced password recovery tool
[21]. It contains a built-in benchmark option – a single hash
brute force attack; however, this benchmark involves very little
data transfers between the host program and the devices, once
the hash space is known a prior and is evenly divided by
the used GPUs; instead, a dictionary attack with rules [23]
(recovering 28 password from their MD5 hash) was chosen
as the Hashcat benchmark. Moreover, once Hashcat is able
to use multiple GPUs, this created the opportunity to put

rOpenCL to the test with 2 GPUs (the maximum number of
remote GPUs available in our test bed). Table IV shows all
GPU combinations tested, and Figure 6 shows the respective
execution times; depending on the specific combination of
local and remote GPUs, these times are for pure local cracking,
pure remote cracking, or include both alternatives.

TABLE IV
GPU COMBINATIONS FOR THE HASHCAT TEST.

Test Scenario Local GPUs Remote GPUs
T1 0 1
T2 0 2
T3 1 0
T4 1 1
T5 1 2
T6 2 0
T7 2 1
T8 2 2

The test results show that: i) when working only with remote
GPUs, it certainly pays off to add an extra GPU (speedup
is 494/249 = 1,98 ≈ 2); ii) the moment a local GPU is
added, adding 1 remote GPU has little benefit (speedup is
249/229,8 = 1,08), and only by adding a 2nd remote GPU
does the gain become noticeable (speedup is 249/171 = 1,45);
iii) with 2 local GPUs, the benefit of 1 or 2 remote GPUs is
again noticeable (speedup with 1 remote GPU is 112,8/93,6 =
1,20, and speedup with 2 remote GPUs is 112,8/81,8 = 1,38).
The general conclusion is that the more GPUs, the better,
and having local GPUs together with remote GPUs is always
beneficial. Moreover, rOpenCL shows to be a viable tool to
improve the performance of real-world OpenCL applications.
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Fig. 6. Hashcat results (dictionary attack with rules on 25 MD5 hashes).

IV. RELATED WORK

Vendors released the first public OpenCL implementations
in 2009. Soon after, distributed variants started to be developed
[24], [25]. This section surveys the most relevant, and includes
comparisons with correlated rOpenCL features.

dOpenCL [26] is probably the most thorough distributed
OpenCL implementation to date, and to which a comparison
with rOpenCL is more meaningful. Both approaches build on
a client driver at the host system and a set of services deployed
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in the nodes of the distributed system with co-processors.
Transparency is also a primary goal that both share, with the
intent of allowing to run existing OpenCL applications in a
heterogeneous distributed environment without any modifica-
tions. There are, however, important differences.

dOpenCL is represented by one dOpenCL platform object
that gathers all the nodes and respective devices; this allows
for a device management mechanism with transparent load
balancing and exclusive access to specific remote devices by
client applications; a single global unified platform implies,
however, the need to maintain consistency of several shared
distributed objects, like OpenCL contexts built on devices from
different nodes (and such need extends to objects subordinated
to contexts, like command queues and buffers). In turn,
rOpenCL exposes the remote platforms and devices separately;
so, it is up to the client application to choose which ones to
use and to do its own load balancing; also, because different
applications may share the same remote devices, rOpenCL
services must perform some basic concurrency control in
the particular situations where thread-safety is not ensured;
moreover, because OpenCL contexts are restricted to use
devices from the same platform, and platforms are separate per
node, there’s no need in rOpenCL to do replica management as
in dOpenCL; this implies, though, that an application wanting
to exploit devices from different nodes will have to use as
many contexts at minimum (there may be more than one
platform per node), while in dOpenCL one context suffices.

dOpenCL doesn’t support the ICD loader mechanism; this
implies that before running an OpenCL application on top of
dOpenCL, the OpenCL system loader must be replaced by
the dOpenCL loader, or the dOpenCL ICD must be explicitly
preloaded; in this regard, rOpenCL is more transparent, once
its ICD is fully integrated with the OpenCL system loader. In
both, the client driver only exposes remote devices (unless a
service to expose local nods is also installed in the host node).

Finally, in dOpenCL the client driver and services com-
municate using a Generic Communication Framework (GFC),
part of a Real-Time Framework (RTF) developed for high-
performance communication in distributed real-time applica-
tions, namely massively multi-player online computer games
[27]. Though GFC supports TCP and UDP communication,
dOpenCL opts for TCP. Likewise, rOpenCL also uses TCP
communication, but via BSD sockets, a more portable and
lighter approach (though arguably less feature-rich) than GFC.

Another approach to a distributed OpenCL implementation
is clOpenCL (cluster OpenCL) [28]. It’s architecture is similar
to rOpenCL’s, separately exposing the remote platforms, but
it was not as transparent: legacy OpenCL applications needn’t
to be modified, but they needed to be recompiled in order to
be linked with a library of wrapper functions that intercepted
the OpenCL API calls. Moreover, in an effort to increase the
performance of message passing between client applications
and remote services, it relied on the low-level Open-MX
library [15], directly above the Ethernet layer, thus restricting
its use to non-routed LAN scenarios (e.g., HPC clusters).

Also tailored to heterogeneous cluster environments, SnuCL

[29] is another distributed OpenCL framework that provides
a single unified view of all the cluster compute devices
and, at the same time, supports different partitions of the
cluster device set: a compute device may be a GPU, or any
sub-set of the CPU cores of a cluster node (including the
host node, where the host program is launched); thus, other
compute devices besides CPUs and GPUs are not supported.
SnuCL relies on its own implementation of OpenCL: it uses a
OpenCL-C-to-CUDA-C translator for kernels that target GPUs
(NVIDIA only) and an OpenCL-C-to-C translator for kernels
that target CPU devices; these translations are performed in the
host node, the translated code is sent to compute nodes and
there it’s compiled with the native compiler for each compute
device; thus, SnuCL requires the original OpenCL source code
of applications to be available, although no modifications to
it. Notably, SnuCL is not an API-forwarding approach: the
OpenCL primitives of an OpenCL application are executed
in the host node up to the point in which commands are
enqued to command-queues; commands are then schedule
across compute devices in the cluster. Communication between
the components of the SnuCL framework is done via MPI and
OpenCL is enriched with collective communication operations
between buffers. For large scale clusters, the centralized task
scheduling model of SnuCL degrades performance; SnuCL-D
[30], a recent evolution of SnuCL, tackles this problem.

API-forwarding and source-to-source translation (thus re-
quiring the original source code of OpenCL applications)
were combined in Hybrid OpenCL [24], one of the first
distributed OpenCL proposals. In Hybrid OpenCL, OpenCL
code is translated to readable C code that uses embedded IA-
32 SSE functions, thus targeting only multi-core x86 devices
and excluding GPUs or other co-processors. At the host node,
OpenCL applications link with the Hybrid OpenCL runtime,
a version of the FOXC (Fixstars OpenCL Cross Compiler)
OpenCL runtime, modified to include a network layer (though
the communication protocol used is not disclosed). The Hybrid
OpenCL runtime is able to submit request to the underlying
OpenCL x86 devices or to forward them to remote nodes.
Each remote node runs a networked bridge service on top of
a local OpenCL runtime (that may be other than FOXC, as
long as it allows to use the local CPUs as devices), to which
it relays requests coming from the host node. Hybrid OpenCL
offers to client applications a single OpenCL platform with all
the x86 devices of the involved nodes, and applications may
use any combination of those devices.

The abstraction of a global OpenCL platform combining all
compute devices (CPUs, GPUs and other accelerators) avail-
able in a set of networked nodes is also provided by the Vir-
tualCL (VCL) cluster platform [31], originally a MOSIX [32]
layer. With VCL, most OpenCL applications run unmodified,
starting in a single node, and take advantage, transparently, of
the cluster device set; applications may create OpenCL con-
texts that mix devices from different nodes, or are restricted to
intra-node devices (the default); the real location of the devices
in the cluster is hidden from applications, but environment
variables allow to tune the device allocation policies. VCL
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includes i) a front-end thread-safe wrapper library to which
OpenCL applications must link (thus requiring its source code
to be available), ii) a broker daemon for cluster resource
monitoring, reporting and allocation, that runs on the node
where the application starts, and iii) a back-end daemon, per
each cluster node with compute devices, that relays OpenCL
requests from the client applications to local vendor-specific
OpenCL libraries (with each device being exclusively locked
by one application at a time). Communication between the
cluster nodes involved standard TCP/IP sockets. VCL is still
used and maintained (but only binaries are available).

V. CONCLUSIONS

This paper introduced rOpenCL, a novel implementation of
an API-forwarding layer that allows OpenCL applications to
take advantage of OpenCL devices accessible via a TCP/IP
network. This puts the co-processor devices of virtually any
networked system (even if routing is involved) within the reach
of an OpenCL application. Moreover, the way rOpenCL was
architected and implemented allows for pre-compiled OpenCL
applications to take immediate advantage of it; this level
of transparency, achieved by the perfect integration of the
rOpenCL Driver in the OpenCL runtime, is a feature that we
believe will make rOpenCL an attractive choice for scenarios
where a distributed OpenCL layer is necessary. The stability
of the current implementation, and its usefulness for a real-
world application, were also shown by the benchmark results
presented (a subset of the benchmarks already conducted).

In the future, we will enhance rOpenCL in several areas,
including: further optimizing the network transfers, making
UDP a robust alternative for local networks, and increasing
the OpenCL 1.2 API coverage. We also intend to do tests with
more computing nodes, thus supporting more simultaneous
clients and rOpenCL services, with the goal of assessing the
scalability of the later. Finally, a comparison with previous
distributed OpenCL implementations is also planned (this
should be viable at least with clOpenCL, dOpenCL and VCL).
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