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Abstract— Transformers play a crucial role in power networks, 

ensuring that generated electricity is delivered to consumers at 

the safest voltage level, reducing losses, and enabling metering 

and grounding. The insulation system is critical for ensuring 

that the function of the power transformer is carried out safely, 

at the expense of its gradual deterioration over time. Most 

conventional oil ageing detection methods are offline and, as a 

result, are best suited for scheduled maintenance practices 

which cause risk to life, sample contamination, loss of man-hour, 

and risk of missing critical incipient ageing responses outside the 

maintenance cycle window. Oil quality index (OQIN) data sets 

were bootstrapped to develop robust machine learning models 

for online ageing classification (class A to class G). Correlation 

models from existing mineral oil dataset was develop to predict 

the refractive index (RI), breakdown voltage value (BDV), 

dielectric dissipation factor (DDF), dissolved decayed products 

(DDP), total acid number (TAN), interfacial tension (IFT), and 

oil quality index (OQIN) using the optical fibre sensor 

transduced output voltage (OFSTOV) of intensity modulated 

optical fibre. The existing mineral oil dataset also validates the 

developed OQIN machine learning model. The high correlative 

models presented in this paper have the potential to enable the 

transition from traditional offline scheduled maintenance 

ageing detection methods to online/IoT-based prescriptive 

ageing detection solutions. This paper also lays the groundwork 

for revolutionising in-situ transformer oil ageing detection to 

include digital-twinning capability, thereby improving 

reliability, reducing risks, and reducing operational costs.   

Keywords— Ageing, Bootstrap, Fibre Optic Sensor, High Voltage, 

Machine Learning, Online, Transformer Oil 

I. INTRODUCTION  

 Electricity is produced for the sole purpose of satisfying 
the needs of consumers, who can be found in settings as 
diverse as homes and factories. Transformers are typically the 
devices used to supply consumers with the required voltage. 
Transformers are expensive but necessary components 
without which high voltage (HV) stations cannot function 
properly. Their mean time to repair (MTTR) is significantly 

longer, and their maintenance costs are exorbitant. Having to 
completely shut down a power plant due to a faulty 
transformer would have devastating effects on the economy. 
Additionally, there is a chance that lives will be lost, 
substation equipment will be damaged, and there will be 
negative environmental effects [1]. 
 Similar to the majority of HV materials, transformer oil 
ages with use [2, 3]. Insulation ageing is the gradual, 
irreversible deterioration of the physicochemical properties of 
an insulator in service due to electrical, thermal, and 
environmental stresses. During operation, transformer oil 
degrades based on the transformer's loading condition and 
thermal stress [4, 5]. The thermal stress originates from either 
the copper or iron core losses of the windings. This causes the 
formation of partial discharges and transformer oil ageing by-
products (ABPs) such as moisture-dissolved gases (carbon 
dioxide, methane, ethane, ethylene, acetylene, propane, 
propylene, methanol, and ethanol), acids, and sludge [4, 6-9]. 
Partial discharges are precursors to insulation failure [10] with 
a cyclical cause-and-effect relationship [11]. Other partial 
discharge sources include pressboard voids, moving bubbles, 
and winding surface discharge [12]. In addition, ageing has a 
significant impact on the chemical and electrical properties of 
transformer oil, including dielectric strength (decrease), 
dielectric dissipation factor, DDF (increase), flashpoint 
(decrease), and colour (darkening) [4, 13, 14]. 

The methods for detecting transformer oil ageing is 
categorised as either intrusive or non-intrusive, destructive, or 
non-destructive, and offline or online. Contrary to non-
intrusive methods, intrusive detection techniques involve 
direct contact with transformer oil. In contrast to non-
destructive methods, destructive methods alter (in the short or 
long term) the measured transformer oil's properties. The 
online detection method involves live age detection of the 
transformer oil while it is operating, in contrast to offline age 
detection, which requires sample collection for laboratory 
analysis. Conventional methods for determining the level of 
transformer oil degradation involve offline chemical/optical 
analysis. These techniques are ideal for preventive 
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maintenance strategies in which samples are collected at 
varying intervals to determine the extent of deterioration. 
Nonetheless, these procedures incur losses in person-hours, 
life, and the possibility of missing key incipient problems, 
which can have negative repercussions prior to the next 
inspection cycle. In addition, the collection and transportation 
processes may have an impact on the quality of the collected 
transformer oil. 
 

II. CLASSIFICATION OF SERVICE-AGED 

INSULATING OIL 

 
The Myers Index Number or Oil Quality Index (OQIN) 

provides a metric for transformer oil classification into seven 
(7) categories summarised in Table 1. Table 1 provides 
suitable bases for prescriptive maintenance assessment. The 
OQIN value is the quotient of the IFT value and the NN value. 
The OQIN index can be used for offline and online oil 
classification. Table 1 takes its reference from IEEE C57.637 
[15], BS EN 62961:2018 [16], and BS EN 62021-2:2014 [17]. 
Some of the limits set by IEEE C57.637 [15], BS EN 
62961:2018 [16], and BS EN 62021-2:2014 [17] for fresh 
mineral oil are summarised in Table 2. 

 

     Table 1: Modified Oil Quality Index  [18, 19] 
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Table 2: Standard Specification for IFT and Acidity  

 

 

III. BOOTSTRAPPED OQIN, MODEL DATA SOURCES, AND 

PREDICTION FLOW 

A. Bootstrapped OQIN Datasets 

 

The statistical technique known as bootstrapping entails 

repeatedly sampling a data set with random replacements. It 

is an approach that works especially well when there are 

insufficient data to train machine learning models 

adequately.The modified OQIN datasets were bootstrapped 

to create 4200 × 4 multiclass datasets for OQIN classification 

machine learning model. The predictor variables include 

neutralization number (NN), interfacial tension (IFT), and the 

oil quality number (OQIN); the target variable was the class. 

The classes include all OQIN classifications (Class A, Class 

B, Class C, Class D, Class E, Class F, and Class G).   

 

     MATLAB was used to develop the machine learning 

model using five (5) fold cross validation to protect against 

overfitting. The test data is a 7 × 5 dataset from existing 

laboratory experiment [20] consisting of five (5) different age 

classes. K-Nearest Neighbour (KNN), Bagged-Tree 

Ensemble, Neural Network (NN), and Support Vector 

Machine (SVM) returned 100% result for all performance 

metrics, using training and test data.  

              

Figure 1: Confusion Matrix of Trained Dataset 

 

 

Figure 2: Confusion Matrix of Test Dataset 

 

S/N Class Metric Range 

1. Good Oil/Class A  NN        0.00 to 0.03    
IFT        45 to 30 

OQIN    1500 to 1000  

2. Proposition A 
Oil/Class B 

NN        0.05 to 0.10     
IFT       29.9 to 27.1 

OQIN   600 to 271    

3. Marginal 

Oil/Class C 

NN        0.11 to 0.15    

IFT        27 to 24 

OQIN    245 to 160    

4. Bad Oil/Class D NN         0.16 to 0.40     

IFT         23.9 to 18 
OQIN     150 to 45    

5. Very Bad 

Oil/Class E 
(suitable for 

reconditioning) 

NN         0.41 to 0.65     

IFT         17.9 to 14 
OQIN     44 to 22    

6. Extremely Bad 

Oil/Class F 
(suitable for 

reclaiming) 

NN          0.66 to 1.50     

IFT          13.9 to 9 
OQIN      21 to 6 

 

7. 

Oil in Disastrous 
Condition/Class G  

NN           1.51 or more     
OQIN       Below 6 

IFT in mN/m; NN in mg KOH/g of oil 

S/N Standard Property Specification 

1. BS EN 62021-3 Acidity >0.014mgKOH/g 

2. BS EN 62961 Interfacial 
Tension 

>20mN/m 

3. IEEE C57.637 Acidity 0.05mgKOH/g 

4. IEEE C57.637 Interfacial 
Tension 

35mN/m 



Table 3: Bagged Tree Ensemble Metric (Train) 

 

 

 

Table 4: Bagged Tree Ensemble Metric (Test) 

 

 

 

 

B. Model Data Sources 

 

     To simulate an online ageing detection system, existing  
 datasets [20-22] from offline characterisation techniques 
were extracted, plotted, and fitted using MATLAB. These 
results are summarised in Table 5. Figure 3 to Figure 9 show 
the data points and their respective fitted curves.  

Figure 3: Plot of TAN against IFT [20-22] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Plot of OFSTOV against BDV [20-22] 

 

 

Figure 5: Plot of DDF against IFT [20-22] 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Plot of BDV against TAN [20-22] 

 

 

 

 

S/N 

 

Classes 

Metric Score 

Acc Pre Sn Sp F-Score 

1. Class A 1 1 1 1 1 

2. Class B 1 1 1 1 1 

3. Class C 1 1 1 1 1 

4. Class D 1 1 1 1 1 

5. Class E 1 1 1 1 1 

6. Class F 1 1 1 1 1 

7. Class G 1 1 1 1 1 

Macro Average 1 1 1 1 1 

Acc: Accuracy; Pre: Precision; Sn: Sensitivity; Sp: Specificity 

 
S/N 

 
Classes 

Metric Score 

Acc Pre Sn Sp F-Score 

1. Class A 1 1 1 1 1 

2. Class C 1 1 1 1 1 

3. Class D 1 1 1 1 1 

4. Class E 1 1 1 1 1 

5. Class F 1 1 1 1 1 

Macro Average 1 1 1 1 1 

Acc: Accuracy; Pre: Precision; Sn: Sensitivity; Sp: Specificity 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Plot of DDP against IFT [20-22] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Plot of Turbidity against IFT [20-22] 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Plot of OFSTOV against RI [20-22] 

 

 

 

Table 5: Correlation Models from Existing Datasets 

 

 

C. Prediction Flow 

 

     The prediction flow (Figure 10) is the framework for online 
ageing detection using an optical fibre sensor. There will be a 
correlation between the transduced output voltage of the 
optical fibre sensor and the desired ageing characteristics 
variables that are strong indicators of transformer ageing 
(example include IFT and TAN). The online instrument 
receives three (3) inputs: light (I1), power (I2), and 
transformer oil (I3). The light (I1) intensity is modulated 
based on the state-of-health of the transformer oil (I3) with the 
help of the uncladded section of the fibre-optic sensor. The 
light is powered by a constant voltage source (I2). The online 
instrument outputs a voltage (OFSTOV) that feeds into the 
high correlation model that has been developed. The verified 
and validated OQIN model receives predicted IFT and TAN 
values as input to classify the transformer oil state-of-health 
(SOH) in-situ.  

S/N Ageing 

Relationship 

Model/Coefficient 

of Determination 

Transformer 

Oil 

1. Optical Fibre Sensor 

Output- Voltage 

(OFSTOV) vs 
Refractive Index 

(RI) 

 

RI =  −0.01405 ×
 OFSTOV  +  1.497  

 

𝐑𝟐  =  𝟎. 𝟗𝟖 

 

Mineral oil 

2. Optical Fibre Sensor 

Output- Voltage 

(OFSTOV) vs 
Breakdown Voltage 

(BDV) 

 

BDV =  24.33 ×
 OFSTOV +  24.14   
 

𝐑𝟐  =  𝟎. 𝟖𝟖 

Mineral Oil 

3. Breakdown Voltage 

(BDV) vs Total Acid 

Number (TAN) 

TAN =
 0.0004604 ×
 𝐵𝐷𝑉3  −
  0.03169 ×
 𝐵𝐷𝑉2  +  0.6946 ×
 BDV −   4.583  

 

𝐑𝟐  =  𝟎. 𝟗𝟑 

Mineral Oil 

 

 

4. Total Acid Number 

(TAN) vs Interfacial 
Tension (IFT) 

 

IFT =  30.25 ×
 e−0.6544 × TAN

  

𝐑𝟐  =  𝟎. 𝟗𝟗
  
 

Mineral Oil 

5. Turbidity [NTU] vs 

Interfacial Tension 

(IFT) 
 

NTU =  3.43 ×
 105  ×
e(−0.9352 × IFT)   
 

𝐑𝟐  =  𝟎. 𝟖𝟖 

Mineral Oil 

6. Decayed Dissolved 
Products (DDP) vs 

Interfacial Tension 

(IFT) 
 

DDP =  2.008 ×
 IFT2  −  121.5 ×
 IFT +  1840  

  

𝐑𝟐  =  𝟎. 𝟗𝟗 

Mineral Oil 

7. Dielectric 
Dissipation Factor 

(DDF) vs Interfacial 

Tension (IFT) 
 

DDF =  127.2 ×
 e(−0.1257 × IFT)  

 

𝐑𝟐  =  𝟎. 𝟗𝟖 

Mineral Oil 
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Figure 10: Prediction Flow 

  

IV. ONLINE AGEING SOLUTION 

     To demonstrate online ageing capability, Figure 11 
depicts a control room dashboard that features the following 
live ageing characteristics variables of in-situ transformer oil 
(based on the high correlation models developed) from 
OFSTOV: refractive index (RI), breakdown voltage (BDV), 
total acid number (TAN), Dielectric Dissipation Factor 
(DDF), Decayed Dissolved Products (DDP), turbidity, 
OQIN, and interfacial tension (IFT). The dashboard includes 
alarm/indicators based on the OQIN classification model for 
monitoring the ageing process. The dashboard also includes 
a live-ageing plot with threshold markers for good oil (class 
A), marginal oil (Class C) and bad oil (Class D). The 
dashboard solution is adaptable to IoT devices for remote 
monitoring and analytics.  

 

V. CONCLUSION 

     This paper demonstrates the viability of switching from 
offline age detection methods (scheduled maintenance) to 
intelligent online age detection (condition-based monitoring) 
using an optical fibre sensor from existing datasets. Different 
oil types (and methods of ageing) may yield distinct 
correlation models, but the methodology is essentially 
identical. To have an instrument that accurately predicts the 
field transformer's ageing, the oil type and method of ageing 
should closely align with the transformer. This will enable 
accurate real-time monitoring of oil degradation and 
overcome the limitations of offline ageing detection methods 
already mentioned. Online detection of ageing will 
revolutionise ageing detection by enabling predictive 
maintenance and digital twinning, thereby enhancing 
reliability. 
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Figure 11: Control Room Dashboard 

 


