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Abstract: The estimation of the infestation level in a field and the consequent determination of the
economic threshold is a basic requisite to rationalize post-emergence weeding. In this study, a simple
and inexpensive procedure to determine the economic threshold based on weed cover is proposed.
By using high-resolution RGB images captured by a low-cost drone, a free downloadable app for
image processing and common spreadsheet software to perform the model parametrization, two
different methods have been tested. The first method was based on the joint estimation of the two
parameters involved in weed cover calculation, whereas the second method required the availability
of further images for the separate estimation of the first parameter. The reliability of the two methods
has been evaluated through the comparison with observed data and the goodness of fit in parameter
calibration has been verified by calculating appropriate quality indices. The results showed an
acceptable estimation of the weed cover value for the second method with respect to observed data
(0.24 vs. 0.17 m2 and 0.17 vs. 0.14 m2, by processing images captured at 10 and 20 m, respectively),
whereas the estimations obtained with the first method were disappointing (0.35 vs. 0.17 m2 and 0.33
vs. 0.14 m2, by processing images captured at 10 and 20 m, respectively).

Keywords: maize green cover; weed green cover; yield loss model; remote sensing; image segmentation

1. Introduction

Never before has the use of pesticides, and especially herbicides, been at the centre
of a global debate that has involved multifaceted issues making this matter increasingly
complex [1,2]. Although the evidence of the negative effects on health and the environment
caused by the use of herbicides has been underlined by many authors [3,4], we have
recorded a significant increase in applied quantities over the last decades [5,6], confirming,
for the time being, the reliance of agriculture on their use. Despite the increasing availability
of herbicides that can be used at low doses and the efforts made by the EU to regulate this
matter [7], in 2020, almost 346,000 tonnes of herbicides were sold in Europe [8].

Many recent research activities have been devoted to reducing herbicide consumption in
order to support the transition from conventional to agroecological cropping systems [9,10].
According to [11], the first step in this process is to reduce the external-farm input use by
making their use more efficient. For the last six decades, integrated pest management (IPM)
has been the main response provided by researchers to improve crop protection strategies,
and although its adoption has not proved to be as effective as hoped [12], the evaluation of
weed infestation levels and the establishment of the action threshold is one of the pillars of
integrated weed management (IWM) [13,14]. Nevertheless, the weed control threshold has
been questioned as a problem-solving concept.

The reasons are numerous [15,16]: (i) the costs and difficulties of determining the
real incidence of weed presence in relation to their random distribution in fields; (ii) the
unreliability of models used to estimate yield losses because of their inability to consider the
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different competition level attributable to each weed species and the effects of other factors
influencing crop production (e.g., weather conditions, soil nature, farming practices); and
(iii) the need to consider the long-term effects caused by the weed capability to produce a
large number of seeds which make weed control very difficult in the next years.

To overcome these problems, many different types of weed control thresholds have
been proposed. The economic threshold is the most known and is defined as the weed
development that can cause a crop yield loss whose value equals the cost of weeding, but
other types of thresholds have been developed in relation to damage, period, action and
long-term effects [17,18].

Regardless of the type, the functionality of the threshold concept depends on two
features: (i) the parameter chosen as a proxy to evaluate the competition level exerted by the
weed population, and (ii) how closely this parameter is correlated to the consequent crop
yield loss. In the past decades, empirical models have been developed to predict yield losses
starting from weed density values measured in the early post-emergence stages [19,20], but
their efficacy was limited since neither the emergence time nor the different competitive
capacities of weeds were considered [21].

Various authors [22,23] proposed new methods based on the measure of leaf area,
rather than density, to evaluate effective weed development. Although these models were
found to have a better predictive capability [24], their practical use has been hindered
by the lack of fast and viable methods for leaf area data collection [25]. Recently, more
sophisticated algorithms have been proposed to estimate crop yield loss by considering the
duration of weed competition and the stochastic effect of weather conditions [1], but all of
these attempts to support weed management decisions showed serious limitations in field
applications [26].

Nowadays, the development of unmanned aerial vehicle (UAV) technology can repre-
sent new powerful opportunities to overcome the abovementioned limits and to analyse
the whole field area [9,10]. Many UAV applications have been used to capture field images
that, when properly processed, can provide precious information about crop well-being.
Moreover, the availability of UAVs able to carry increasing payloads allowed users to
broaden the range of possible sensors (thermal, visible, multispectral and hyperspectral
cameras) and to select the best solution to investigate all possible stressful conditions due to
biotic (diseases, pests and weeds) and abiotic (drought, nutritional deficiencies and extreme
temperatures) causes [27].

Coupled with UAV technology, sophisticated image data analysis tools have been
developed. There is a lot of software available that has proved to be reliable in estimating
green canopy cover from aerial images of fields [28], however, their use has been mainly
devoted to monitoring crop behaviour (health, growth and productivity) [29], rather than
to estimate weed development. The reason for this is that these techniques have not yet
reached a proper level to make their use viable in usual farming practices because of the
difficulties in separating weed from crop cover and even more in discriminating between
different weed species [30].

For this purpose, object-based image analysis (OBIA) techniques, based on the integra-
tion of radiometric (reflectance), visual (texture, contrast, and shape) and spatial (position
and height in the field) information, have been proposed to improve the discriminatory
power [31,32]. Unavoidably, these techniques are more expensive [33], with an estimated
additional cost of $28 ha−1, and demanding in terms of know-how required. Costs and
complexity can often discourage farmers who are forced to choose more traditional and
error-prone scouting techniques to determine their economic threshold of intervention.

This work aims to propose a simple method to estimate weed economic threshold
which can overcome these constraints and facilitate farmers’ access to these technologies.
For this, we used high-resolution RGB images captured by a low-cost drone, a free down-
loadable app for image processing and a common spreadsheet software to perform the
model parametrization. Moreover, a real application of the method is provided to eval-
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uate the limits and benefits of the entire procedure and to point out the most promising
implications for future developments in this research field.

2. Materials and Methods
2.1. The Rationale

The proposed method is organized in four successive steps: (i) capturing aerial images
of fields; (ii) estimation of weed cover; (iii) applying a model for the quantification of crop
yield losses; and iv) determination of the economic threshold.

To capture aerial images, a small UAV equipped with an RGB camera is enough.
According to Italian law, a UAV lighter than 1.5 kg can be flown without a license outside
of sensitive areas (e.g., inhabited areas, roads, airports, etc.). The flight height can vary in
relation to the resolution of the camera sensor, but anyway, the ground size of pixels should
not be larger than 15–20 mm.

After having photogrammetrically orthorectified and mosaicked the images, they are
analysed to quantify the total green cover (TGC). For this purpose, we propose the use of
Canopeo, a free app developed in Matlab programming language and created by Oklahoma
State University [34]. Canopeo can provide (as a percentage of the original image area) the
TGC, which is the sum of the weed green cover (WGC) plus the crop green cover (CGC).

The CGC and WGC can be estimated by using a linear least-squares fitting of the
equation expressing the TGC as the sum of products of the number of weeds or crop plants
by the respective average cover value of a single weed or crop plant.

The estimation of the crop yield loss was carried out using a model based on WGC
values, and therefore, by knowing the selling price of the crop and the weeding costs (e.g.,
herbicide, spraying and worker), we can calculate the economic threshold value (i.e., the
value of the WGC beyond which the loss of earnings due to the lower yield exceeds the
costs of weeding).

2.2. Trial Setup and Data Collection

The experimentation was carried out in June–September 2019 at the Agro-Environmental
Research Centre “E. Avanzi” of the University of Pisa, located in Central Italy (43.68 lat.
N, 10.34 long. E), on two contiguous fields of approximately 4000 m2 of surface, and
cultivated with silage maize. The farming practices used were those usually adopted by
local farmers [35]. The soil (Typic Xerofluvent, USDA classification) was clay-loam (clay
29%, silt 38%, sand 33%, USDA method) and the main chemical characteristics in the
0.00–0.30 m layer were the following: pH 8.1, organic matter 2.2% (w/w) (Walkley–Black
method), total nitrogen 1.39 (mg kg−1) (Kjeldhal method), assimilable phosphorus 4.0 ppm
(Olsen method), and cation exchange capacity 18 meq 100 g−1 (Bascom method). Climatic
conditions are representative of Mediterranean coastal areas, with about 900 mm of annual
rainfall and a 15 ◦C mean temperature.

Eight plots of 4 m2 (2.0 m × 2.0 m) were set up, each containing four rows of maize
plants (Figure 1).
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At the 4–5 leaf stage, the number of plants of maize (NM) and weeds (NW) was
counted on each plot. Afterwards, half of the plots were weeded (weeded plots = WP)
by using 0.5 l ha−1 of Aric 480 L.S. (41% Dicamba) and 1.5 l ha−1 of Nifuron (4.18%
Nicosolfuron), whereas no intervention was carried out on the remaining four plots (control
plots = CP). At harvest time, the aboveground biomass of all maize plants was collected
from each plot (WP and CP) and weighed after oven drying at 60 ◦C until constant weight.
On the other four plots of 4 m2 (2.0 m × 2.0 m), the number of maize plants was counted
and all weeds were removed manually before the UAV flight (pulling weed plots = PWP)
in order to estimate more easily the average cover value of a single maize plant.

The UAV flight was made on the 25th of June over the entire surface of both fields,
just before the weed and crop scouting. We used the drone “Agri-Efesto”, made avail-
able by Sigma Ingegneria and the Precision Agriculture group of the CNR-IBIMET of
Florence. The drone was a modified multi-rotor Mikrokopter (HiSystems GmbH, Moomer-
land, Germany) with six MK3538 and APC propellers 12 × 3.8 inches. Autonomous fight
through a predefined route was set using the onboard navigation system based on a GPS
receiver (U-blox LEA6S) connected to a navigation board (Navy-Ctrl 2.0) and a small Micro-
electromechanical System (MEMS)-based IMU (Inertial Measurement Unit) (Mikrokopter
Flight Controller ME V2.1). A universal camera mount equipped with three servomotors
permitted accurate image acquisition through the compensation for tilt and rolling effects.
The Agri-Efesto was equipped with a Sony Cyber-shot DSC-QX100 RGB camera (Sony
Corporation, Tokyo, Japan), which mounts a 20.2-megapixel CMOS Exmor R sensor and a
Carl Zeiss Vario-Sonnar T lens.

The UAV flight was made at 10 and 20 m in height, with a ground-size pixel equal to
3.5 mm and 7.1 mm, respectively, maintaining an overlap of 70% between the individual
frames.

2.3. Image Processing

The RGB images of experimental plots acquired from the UAV were orthorectified and
mosaicked using Agisoft Photoscan Professional Edition 1.1.6 (Agisoft LLC, St. Petersburg,
Russia).

The orthomosaic was processed with Canopeo, which analyses images by using colour
values in the red (R), green (G) and blue (B) system and classifies all pixels according to
three selection parameters: R/G, B/G and the green excess index (GEI = 2G-R-B) [36–39].
The starting image was turned into a binary image depending on whether the pixels met
the selection criteria or not (R/G < 0.95, B/G < 0.95, and GEI > 20, default values). In this
way, we obtained the total green cover for the WP and CP (Ca-TGCWP+CP).

In order to estimate the values of MGC and WGC for the WP and CP, we tested two
different methods. In the first method (M1), we expressed the Ca-TGCWP+CP as the sum
of MGCWP+CP and WGCWP+CP (1) and they, in turn, are expressed as the product of the
number of maize/weed plants by the average cover of a single plant of maize/weed (2)
and (3) (Figure 2).

Ca − TGCWP+CP = MGCWP+CP + WCGWP+CP (1)

MGCWP+CP = NMWP+CP × AMWP+CP (2)

WGCWP+CP = NWWP+CP × AWWP+CP (3)

Ca − TGCWP+CP = NMWP+CP × AMWP+CP + NWWP+CP × AWWP+CP (4)

where Ca-TGCWP+CP were the values obtained by processing the UAV images with Canopeo,
NMWP+CP = the number of maize plants counted in the WP and CP, AMWP+CP = the average
cover of a single maize plant, NWWP+CP = the number of weed plants counted in the WP
and CP, and AWWP+CP = the average cover of a single weed plant.
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method 2).

At this point, we used a linear least-squares fitting (n = 8) to find the best values for
the AMWP+CP (AM) and for the AWWP+CP (AW) able to approximate Equation (4), and to
solve Equations (5) and (6):

M1 −MGCWP+CP = NMWP+CP × AM (5)

M1 −WGCWP+CP = NWWP+CP × AW (6)

In the second method (M2), we estimated the value of AM (AM*) by using the images
captured of the PWP. We assumed that the development of the maize plants was very
similar within the experimental fields (sown all on the same day), therefore, we can
estimate the value of AM by dividing the Ca-TGC data measured with Canopeo on the
PWP (Ca-TGCPWP) by the corresponding number of maize plants NMPWP (7). Indeed, the
Ca-TGCPWP corresponded to the Ca-MGCPWP values since, in the PWP, all weeds had been
removed manually. Afterwards, we calculated the average of the AM* values obtained for
each PWP (AM*) (8).

AM* = Ca − TGCPWP/NMPWP (7)

AM∗ = average of AM ∗ (1, . . . 4) (8)

We replaced the AM with the AM* in (4) to obtain a new equation to express the
TGCWP+CP (9).

Ca-TGCWP+CP = NMWP+CP ×AM ∗+NWWP+CP × AW∗WP+CP (9)
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We approximated the value of AW* in Equation (9) by means of linear least-squares
fitting (n = 8) and, therefore, we estimated the value of weed green cover according to the
M2 (M2-WGCWP+CP) by using Equation (10).

M2 −WGCWP+CP = NWWP+CP × AW* (10)

For both methods, the estimates of AM and AW and AW* were performed using
Microsoft Excel Solver according to the trial-and-error approach [40].

2.4. Determination of the Economic Threshold (ET)

The relationship between the WGC and the Relative Yield Loss (RYL) of maize was
computed according to [21] who adapted the two-parameter regression model proposed
by [41] to obtain the Equations (11) and (12), which relate RYL (expressed as a ratio to the
maximum yield) and WGC (expressed as a ratio to the total area):

RYL =
q×WGC

1 + (q/m− 1) WGC
(11)

WGC =
RYL

q− (q/m− 1) RYL
(12)

where q is the damage coefficient attributed to the weed population and m represents the
maximum yield loss that occurred when the weed cover reaches the highest possible value
(WGC = 1).

The values of q and m chosen for the calculation of Equation (11) were q = 2.5 and
m = 0.70 (RYL = 2.5 WGC/1 + 2.57 WGC, curve 1 = C1). The values of q and m are consistent
with the literature [21] and were calibrated by considering the site-specific conditions of
the experimentation. The estimated values of RYL were calculated by substituting, in C1,
the values of WGC obtained with the two methods (M1-WGCWP+CP and M2-WGCWP+CP).

We calculated the other two curves from Equation (11): curve 2 (C2) with q = 3.7 and
m = 0.39, obtained by fitting the two parameters by using the data from the M2-WGCCP at
10 m, and curve 3 (C3) with q = 6.2 and m = 0.32 obtained by fitting the two parameters
using the data from Er-WGCCP at 10 m. These two curves were used only to make a
comparison with the economic threshold values obtained by using C1.

The costs of weeding were estimated by summing the current price of herbicides used
(49.00 € ha−1) and the rate of local contractors for spraying (66.00 € ha−1). Earnings were
based on the local price of silage maize (at 33% of moisture) recorded at the time of the
experimental period.

2.5. Reliability of the Proposed Methods

To evaluate the consistency of the proposed method in estimating the different green
cover types (TGC, CGC and WGC), we processed the same images captured by UAV using
Erdas Imagine software by Hexagon AB, which can classify images by supporting both
supervised or unsupervised procedures [42].

Firstly, we used Erdas to turn the original images into binary images (green and non-
green cover) by using an unsupervised procedure based on parameter settings similar to
that used for Canopeo. The obtained values (Er-TGCWP+CP) were compared to those from
Canopeo by using the t-test for paired samples and the Pearson correlation coefficient (r).

To discriminate between the two types of green cover, we could not use an unsuper-
vised procedure based on a signature set since the spectral patterns of maize and weed are
very similar to each other. Therefore, we started again from the original images (Figure 3a)
where we masked the pixels belonging to maize manually by zooming in and out until
the attribution was certain (Figure 3b). Afterwards, we classified the rest of the image by
applying the signature set used for the TGC determination so as to obtain the weed green
cover (Er-WGCWP+CP) (Figure 3c). The reverse procedure was followed for the maize green
cover calculation (Er-MGCWP+CP).
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𝑛
𝑖=1   0 
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3. Results 
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Figure 3. The Erdas method: (a) orthorectified RGB image of a control plot, (b) the binary image
of the control plot where the maize was manually masked, (c) the result of the classification of the
masked image using the weed signature set.

The comparison between the estimates obtained by using the two proposed methods
(M1 and M2) and the results of the image processing by Erdas was reliable, even in this
case, with the t-test for paired samples and the Pearson correlation coefficient (r).

The goodness of fit used to calibrate the parameters of the two estimation methods
(AM and AW for M1 and AW* for M2) was evaluated by comparing the obtained values of
the MGC and WGC (predicted data) with the Er-MGCWP+CP and Er-WGCWP+CP (observed
data) (n = 8). In the case of RYL, we used the values obtained from Equation (12) as the
predicted data, and the values of RYL were calculated by subtracting the yield of each CP
as observed data (n = 4) from the maximum maize yields (assumed equal to the average of
yields of the WP).

The model quality indices used are reported in Table 1, e.g., RMSE (Root Mean Square
Error), RMSE/Ō (where Ō is the average of the observed data), MAE (Mean Absolute
Error), EF (Modelling Efficiency), and CRM (Coefficient of Residual Mass) [43].

Table 1. The indices used to evaluate the goodness of fit (Pi = estimated values, Oi = observed values,
Ō = the average of observed data, and n = number of the observations).

Quality Indices Formula Optimum

Root Mean Square Error
RMSE = [∑n

i=1(Pi −Oi )/n]0,5 0

RMSE/Ō = [∑n
i=1(Pi −Oi )/n]0,5 ∗ 100/Ō 0

Mean Absolute Error MAE = ∑n
i=1|Pi −Oi| 0

Modelling Efficiency
EF = (∑n

i=1 (Oi− Ō)2 −∑n
i=1

(Pi −Oi)
2/∑n

i=1 (Oi−Ō )
1

Coefficient Residual Mass CRM = (∑n
i=1 Oi −∑n

i=1 Pi)/ ∑n
i=1 Oi 0

3. Results

The results of the TGC measured with Canopeo were very close to those obtained with
Erdas (Table 2). The results from the two software methods were not statistically different,
neither at 10 m (p = 0.619), nor 20 m (p = 0.108), and the deviation measured ranged, in
absolute value terms, from 3 to 12%. The Pearson correlation coefficient was very high in
both cases (r = 0.87 and 0.90 for 10 and 20 m, respectively, p < 0.01).
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Table 2. Total green cover in weeded and control plots (WP and CP) was obtained using Canopeo (Ca-
TGCWP+CP) and Erdas (Er-TGCWP+CP). Student t-test, p-value and Pearson correlation coefficient (r).

Flight Height
(m)

Ca-TGCWP+CP
(m2)

Er-TGCWP+CP
(m2) Stat t p r

10 0.95 0.92 0.520 0.619 0.87 **

20 1.05 1.19 −1.844 0.108 0.90 **
(** = p < 0.01).

In Table 3, the values of the M1-MGCWP+CP and M1-WCGWP+CP are compared with
those obtained from Erdas for the same plots. The estimated values were significantly
different from Er-MGCWP+CP and Er-WGCWP+CP at both 10 and 20 m. In particular, M1-
MGCWP+CP underestimated the values of Erdas by 0.15 m2 (−20%) and 0.32 m2 (−30%), at
10 and 20 m, respectively. Moreover, the correlation levels between estimated and measured
values were very low at 10 m (r = 0.36) or nonexistent at 20 m (r = 0.06). Conversely, we
observed a better correlation between the M1-WGCWP+CP and the Er-WGCWP+CP, even if
the two quantities remain statistically different from each other for both the flight heights,
the deviation was still larger (+106 and +136%, for 10 and 20 m, respectively), than that
observed for the maize. Instead, the resulting values of r were very high (significant for
p < 0.01), equal to 0.94 and 0.91 for 10 and 20 m, respectively.

Table 3. Maize green cover and weed green cover on weeded and control plots (WP and CP)
obtained using method 1 (M1-MGCWP+CP and M1-WGCWP+CP) and Erdas (Er-MGCWP+CP and
Er-WGCWP+CP). Student t-test, p-value and Pearson correlation coefficient (r).

Flight Height
(m)

M1-MGCWP+CP
(m2)

Er-MGCWP+CP
(m2) Stat t p r

10 0.60 0.75 −5.660 0.001 0.36 ns

20 0.73 1.05 −3.486 0.010 0.06 ns

Flight Height
(m)

M1-WGCWP+CP
(m2)

Er-WGCWP+CP
(m2) Stat t p r

10 0.35 0.17 4.777 0.002 0.94 **

20 0.33 0.14 5.296 0.001 0.91 **
(ns = not significant, ** = p < 0.01).

Moving on to M2 (Table 4), the values of the M2-MGCWP+CP results were statically
equivalent to those from Erdas at both 10 (p = 0.71) and 20 m (p = 0.28), whereas the
Pearson correlation coefficient results were not significant. The values of r were the same
calculated for M1-MGCWP+CP since they were obtained as the product of NMWP+CP by a
constant value (AM for M1 and AM* for M2). In addition, the resulting differences between
M2-WGCWP+CP and Er-WGCWP+CP were further reduced. At 10 m, the deviation was
equal to +0.01 m2 (+1%) and −0.11 m2 (−10%) for 10 and 20 m, respectively. These values
implied statistical significance for the former (p = 0.013), but not for the latter (p = 0.135).
The values of r were, in both cases, high (r > 0.90) and significant at (p < 0.01) (the values of
r, were, even in this case, equal to those calculated for M2-WGCWP+CP for the same reason
reported above).
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Table 4. Maize green cover and weed green cover in weeded and control plots (WP and CP) obtained
using method 1 (M2-MGCWP+CP and M2-WGCWP+CP) and Erdas (Er-MGCWP+CP and Er-WGCWP+CP)
(Student t-test).

Flight Height
(m)

M2-MGCWP+CP
(m2)

Er-MGCWP+CP
(m2) Stat t p r

10 0.76 0.75 0.386 0.711 0.36 ns

20 0.94 1.05 −1.172 0.280 0.06 ns

Flight Height
(m)

M2-WGCWP+CP
(m2)

Er-WGCWP+CP
(m2) Stat t p r

10 0.24 0.17 3.311 0.013 0.94 **

20 0.17 0.14 1.689 0.135 0.91 **
(ns = not significant, ** = p < 0.01).

The indices used to evaluate the goodness of fit confirmed the previous results. The val-
ues of M1 (Table 5) calculated at 10 m were disappointing both for the MGC (MAE = 1.22 m2,
EF =−3.85) and for the WCG (RMSE/ Ō = 119%, MAE = 1.43 m2, CRM =−1.04, EF = −1.07).
At 20 m, almost all indices of M1 worsened, especially those related to the WCG (RMSE/
Ō = 158%, MAE = 1.53 m2, CRM = −1.41, EF = −1.28). The indices calculated for RYL at
10 m were not much better (RMSE/Ō = 40%, EF = −0.40, CRM = −0.27) but, in this case,
the fitting improved when passing at 20 m (RMSE/Ō = 35%, EF = −0.05, CRM = −0.20).

Table 5. Modelling quality indices (RMSE, RMSE/Ō, MAE, EF and CRM for more details see Table 1)
used to evaluate the goodness of fit for method 1 (M1) at 10 and 20 m of flight height in estimating
the maize green cover (MGC), the weed green cover (WGC) and relative yield loss (RYL).

Quality
Indices

M1 at 10 m of Flight Height M1 at 20 m of Flight Height

MGC WGC RYL MGC WGC RYL

RMSE 0.20 0.17 0.07 0.21 0.40 0.06
RMSE/O 119 22 40 158 38 35

MAE 1.43 1.22 0.20 1.53 2.95 0.19
EF −1.07 −3.85 −0.40 −1.28 −1.74 −0.05

CRM −1.04 0.20 −0.27 −1.41 0.31 −0.20

Good values of indices were reached only by using M2 (Table 6), especially for the
WCG. At 10 m, the results obtained were already acceptable (RMSE = 0.08, MAE = 0.61 m2,
EF = 0.66) and they became even better at 20 m (RMSE = 0.07, MAE = 0.53 m2, EF = 0.73).
Conversely, the trend drawn by RYL was the opposite as, at 10 m, the values of the indices
were better than at 20 m (RMSE/Ō = 25 and 40%, EF = 0.48 and 0.16, CRM = 0.07 and 0.31
for 10 and 20 m, respectively).

Table 6. Modelling quality indices (RMSE, RMSE/Ō, MAE, EF and CRM for more details see Table 1)
used to evaluate the goodness of fit for method 2 (M2) at 10 and 20 m of flight height in estimating
the maize green cover (MGC), the weed green cover (WGC) and relative yield loss (RYL).

Quality
Indices

M2 at 10 m of Flight Height M2 at 20 m of Flight Height

MGC WGC RYL MGC WGC RYL

RMSE 0.08 0.07 0.04 0.07 0.27 0.05
RMSE/O 48 10 25 55 26 40

MAE 0.61 0.42 0.15 0.53 1.76 0.15
EF 0.66 0.10 0.48 0.73 −0.21 0.16

CRM −0.38 −0.01 0.07 −0.29 0.10 0.31



Appl. Sci. 2022, 12, 11935 10 of 14

The curve obtained from Equation (11) using the calibrated values of q and m (2.5 and
0.70, respectively), in order to model the relationship between WGC and RYL, is reported
in Figure 4, together with the points defined by the values of M1-WGCCP or M2-WGCCP
(as abscissa) and by the values of RYL measured in each CP (as ordinate), at both 10 and
20 m. The vertical distance of these points from the curve is a measure of the inaccuracy of
the model in estimating the RYL, starting from the values of WGC obtained using M1 and
M2. The point distribution pattern confirmed the trend observed previously, namely that
fitting with the RYL observed data improved for M1 passing from 10 to 20 m, whereas for
M2, we observed an opposite behaviour.
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Figure 4. Curve 1 (RYL = 2.5 WGC/1 + 2.57 WGC = C1) shows the relationship between weed green
cover (WGC) and relative yield loss (RYL). Red symbols = method 1 (M1), blue symbols = method 2
(M2), dots = 10 m and crosses = 20 m.

In Figure 5, the determination of the economic threshold (ET) is reported for the three
different types of curves obtained from Equation (10). The values found by using C1, C2
and C3 were, respectively, equal to 0.0024 (ET-C1), 0.0020 (ET-C2) and 0.0016 (ET-C3) of the
investigated area.
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Figure 5. Determination of the economic threshold. The dotted black line represents the cost of the
weeding (115.20 €). The blue (C1), yellow (C2) and green (C3) curves represent, respectively, the
damage curve obtained by using q = 2.5 and m = 0.70 (C1), q = 3.7 and m = 0.39 (C2) and q = 6.2 and
m = 0.32 (C3). The threshold is identified by the intersection of the line of the weeding cost with the
three curves. The points represent the observed values of WGC and RYL on the control plots (CP).

4. Discussion

The first critical point in the study of weed and crop cover is linked to the determina-
tion and the availability of “true values”. It is not easy to obtain an accurate measurement
of the plant cover because of difficulties in performing a direct measurement (e.g., by using
tools such as planimeters) and in turning the surface values into cover values.

In the end, image processing remains the more feasible method to measure plant cover,
and the possibility of manually segmenting images, which the software provides, allows
users to reach an adequate level of accuracy. Moreover, it is reasonable to assume that
any inaccuracies in image segmentation are regularly distributed and therefore they are
not able to substantially alter the results. In our study, the equivalency of the TCG values
obtained with Canopeo and Erdas provided an additional element of confirmation in the
consistency of these methods [44,45].

A different matter, on the other hand, concerns the discrimination between crops and
weeds, since the use of spectral information, especially if only RGB images are available,
does not provide sufficient information to distinguish one plant species from another. In the
early stages of growth, it is particularly difficult to discriminate between crops and weeds,
since both have similar reflectance characteristics [46,47]. This can be a serious barrier for
farmers who intend to adopt the economic threshold, as a rule, to manage post-emergence
weeding, since, as reported by various authors [22,48–50], the estimation of the weed cover
seems to be the best proxy to evaluate the infestation level in a field and to consequently act.

The first of the two proposed methods (M1), based on the joint estimation of the two
parameters (AM and AW) showed poor accuracy and reliability in estimating the maize
green cover (underestimated) and the weed green cover (overestimated), as also reported
by other authors who followed a similar approach [27,51]. These failures are probably due
to the high variability in the green cover of each single weed plant if compared to that of
maize plants. Only the use of a great number of images (and of the respective counts of
maize and weed plants) could allow us to better calibrate AM and AW and reduce the
inaccuracy.

The second method proposed seems to be more promising. The estimate of the AM
based on a different dataset, allowed by the high homogeneity in maize plant growth,
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and the consequent subtraction of the M2-MGCWP+CP from the Ca-TGCWP+CP reduced
the uncertainty in the estimate of the M2-WGCWP+CP, improving the fitting efficacy with
respect to both Er-WGCWP+CP (EF = 0.66 at 10 m) and RYL (EF = 0.48 at 10 m). The large
variability in cover values for weed plants was again the main reason for the discrepancy
between predicted and observed values. Image acquisition in an earlier stage of the crop
development could reduce the heterogeneity of weed cover values (since newly emerged
weeds should have less variability), but there would be the risk of neglecting all the weeds
that could emerge later.

Regarding the relationship between WGC and RYL, this changes in relation to the weed
species composition, the crop type and vigour, and the soil and climatic conditions [22,50,52].
The q and m values of Equation (10) have to be properly calibrated for site-specific conditions.
For instance, it would be useful to define the parameters q and m for the main common types
of weed community [21], even if this requires experimental activities on site.

Regarding the influence of flight height, the reduction in the ground resolution of the
processed images passing from 10 to 20 m led to a further loss in accuracy for the M1 and a
slight improvement for the M2-WGCWP+CP and a limited worsening for the M2-MGCWP+CP.
This means that the degradation of images made in the joint estimation of AM and AW are
even less accurate, whereas the increase in the Ca-TGCPWP and consequently in the M2-
MGCWP+CP estimation at 20 m had the effect of bringing M2-WGCWP+CP (underestimated
at 10 m) closer to the observed data. The improvement in the M2-WGCWP+CP estimation at
20 m did not lead to an improvement of RYL fitting, probably because of too high a value
attributed to q (the damage coefficient of the weed population).

Finally, the determination of the economic threshold using the three curves (C1, C2
and C3) did not lead to great differences. The deviation between ET-C2 and ET-C1 was
equal to −16% and the deviation between ET-C3 and ET-C1 was equal to −33%, but the
values attributed to the q and m parameters in C2 and C3 seem to hardly be justified.

From a technical point of view, the solution of using M2 at 20 m may be acceptable in
usual farming practices in relation to a remarkable reduction (about one-half) of the flight
times.

5. Conclusions

The use of simple and inexpensive methods may be a valuable aid in the penetration of
precision farming techniques, even for smaller farms. The greatest difficulties that farmers
meet in using these types of technologies are mainly concerned with the lack of tools that
are able to interpret the data acquired through remote sensing to provide clear information
for the management of farming practices.

The proposed method allows farmers to more rationally manage post-emergence weed-
ing by providing the theoretical basis to compute the economic threshold by using simple
calculation elements available on any spreadsheet software and a free downloadable app.

The critical points concern the great variability in shape and size of weed species that
make it difficult to estimate their cover, starting with their number. In addition, the manual
counting of weed plants can pose some problems due to the experience and subjectivity
of the user (for instance, the minimum size above which the plant must be counted).
Moreover, the weed emergence will scale over time and consequently, the definition of the
competition coefficient (q) can change significantly. In this regard, it should be emphasized
that the calibration of the RYL models on the site where they are to be applied represents a
fundamental requirement for their correct use.
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