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Abstract
We consider a spin network resembling an α-helix structure and study quantum infor-
mation transfer over this bio-inspired network. The model we use is the Davydov
model in its elementary version without a phononic environment. We investigate ana-
lytically and numerically the perfect state transfer (PST) in such a network which
provides an upper bound on the probability of quantum states transfer from one node
to another. We study PST for different boundary conditions on the network and show
it is reachable between certain nodes and with suitable spin–spin couplings.

Keywords Spin network · Perfect state transfer · Bio-inspired structure

1 Introduction

In extensive networking quantum information processing, reliable communication rep-
resents one of the most prominent challenges to overcome [1]. From this perspective,
the problem of high-fidelity quantum state/information transfer and quantum network
engineering have been largely studied either theoretically [2] or experimentally [3].
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In addition to being an essential building block for the progress of quantum infor-
mation technologies applications [4–6], such as quantum cryptography, quantum
computation and teleportation, the investigation of optimal state transfer represents
also a valuable tool for the investigation of the fundamental physics [7, 8]. A network of
spins [9] interacting by an appropriate Hamiltonian, such as the XY or the Heisenberg
one [10], is a paradigm for the realization of long-distance communication devices.
Here, the information encoded in the excitations of the network of spins can be shared
between the parties, provided that one has quantum state transfer with high fidelity. In
these cases, quantum information high-fidelity transfer origins from suitable quantum
interference effects induced from the network dynamics [11].

Nowadays, experimentalists are faced with the problem of synthesizing spin net-
works reliable to perform high-performance state transfer. For instance, in a possible
scheme, qubits should be stored in quantum chips whose dimensions are compara-
ble to one of the classical devices, and which are confined into hosting-equipments,
at near absolute-zero temperature, to maintain quantum coherence. Furthermore, the
engineering of a chain of qubits is challenging. A possible setup considers trapping
the (two-level) atoms in a cavity. In this case, an external classical field confines the
atoms in the minima of a profound optical-lattice potential, whereas the atoms interact
via cavity-induced atom-atom interactions [12].

Recent advances in quantumscience have pioneered theway towards the description
of biological realm phenomena in the framework of quantum mechanics. Indeed,
quantum mechanics suitably describes properties of systems at nanoscale or lower,
and many life processes, such as photosynthesis, vision, and respiration [13], take
place at these scales. For instance, it has been proposed that the nuclear spins of
phosphorus atoms could act as qubits in the brain which would enable it to function
like a quantum computer [14]. Also, new evidences suggest that quantum effects help
plants to turn sunlight into fuel [15]. There are strong witnesses that the migratory
birds have a sort of quantum compass which helps them to exploit the earth’s magnetic
fields for navigation [16]. Furthermore, examining the quantummechanics’ role in the
matter and energy of living microorganisms could pave the way for our understanding
of the origin of life.

Remarkably, most processes in which the quantum nature emerges involve energy
transfer to the living matter. Furthermore, there are considerable shreds of evidence
that, the light-initiated reactions in living organisms, even at ambient conditions, dis-
playquantumcoherent behavior [17]. In the simplest scenario, enhancement in electron
transport is driven by quantum coherent processes where electronic excitations with a
well-defined phase relationship at the molecular scale take place. In this regard, there
are no better candidates than electrons for energy transfer, to understand the relevant
quantum effects in living matter. Many works have been devoted to studying energy
and information transmission efficiency in living organizations, such as in photosyn-
thetic processes, in the framework of the quantum information processing [18–20].
Several possible theoretical frameworks have been proposed to understand the nature
of exciton propagation on a lattice [21, 22], where the electron distribution belongs to
this class of phenomena. In a seminal work, Davydov proposed that the mechanism for
energy storage and transport in biomolecules could be considered soliton formation
and propagation. In this scenario, the self-localization of quantum units of peptide
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vibrational energy might be the result of interactions with lattice phonons [23, 24].
Especially, he suggested thismechanism in protein α-helix which is composed of three
channels of one-dimensional spring chain coupled with each other.

Motivated by these considerations, in the present work we aim to investigate the
quantum state transfer in a bio-inspired network of qubits. In particular, we consider
an α-helix structure. The latter looks like a two-dimensional spin network with the
pair (n, α) denoting the n-th molecule along a chain and α-th particular channel. In
this model, the whole Hamiltonian is composed of three parts: the exciton energy
operator, phonon energy operator, and exciton–phonon interaction operator. Usually,
Davydov’s phonon is a large acoustic polaron at low temperatures. Therefore, only the
exciton part gives rise to a suitable candidate for the spin network. Given the fact that
the propagation of quantum information over a network of spins is of great importance,
we focus here only on the exciton part of Davydov’s model. This in turn gives rise
to four configurations based on the boundary conditions (open and closed) on both n
and α. We illustrate in detail that only in one boundary condition analytical results
for information transfer fidelity are obtainable. Anyway, we numerically show perfect
state transfer also for other boundary conditions, but with closed boundaries for n and
α.

The rest of the paper is organized as follows: In Sect. 2 we present the model and
discuss the transfer fidelity and its properties. Section3 is devoted to the special case
of closed boundaries on both n and α, where an analytical investigation is possible.
Sections 4, 5 and 6 deal with the other possible boundary conditions by numeric
calculation. Finally, we draw our conclusion in Sect. 7.

2 Themodel

2.1 Davydovmodel

We consider a system with an α-helix structure, which is the most stable configuration
of the polypeptide [25]. Due to the existence of three hydrogen bonds between peptide
groups, the α-helix usually looks like a three-channel conformation each composed
of a chain of springs coupled with each other. The Hamiltonian describing this system
is usually referred to as Davydov’s model. Its bare form without phonons reads [26]

Ĥex =
N∑

n=1

3∑

α=1

[
E0 B̂

†
n,α B̂n,α + J

(
B̂†
n,α B̂n+1,α + B̂†

n,α B̂n−1,α

)

+L
(
B̂†
n,α B̂n,α+1 + B̂†

n,α B̂n,α−1

) ]
, (1)

where B̂n,α and B̂†
n,α (n = 1, . . . , N , α = 1, 2, 3) are the spin- 12 lowering and rais-

ing operators. The subscript n labels the molecule along a macromolecule, while the
subscript α specifies a particular channel. Furthermore, E0 is the energy of exciton
(amide-I vibration), J is the nearest neighbor dipole–dipole coupling energy along a
channel which is considered positive for an excited electron [27] and L is the near-
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est neighbor dipole–dipole coupling energy between channels. Thus, the pair (n, α)

chooses an individual amino acid. The first term can be omitted in the interaction
picture since it amounts to a conserved quantity.

This system can be interpreted in terms of a spin network. Let us consider a simple
undirected graph (that is, without loops or parallel edges) G = (V , E), in which the
vertices (nodes) V (G) = {1, . . . , 3N } are associated to the quantum spins. The edges
E(G) denote their allowed couplings.

The dimension (23N × 23N ) of the whole system’s Hilbert space H � (C2)⊗3N

makes pretty soon impracticable a numeric approach when N is increased. Nev-
ertheless, the above-mentioned conserved quantity, Q̂ = ∑N

n=1
∑3

α=1 B̂
†
n,α B̂n,α ,

allows us to restrict our attention to the invariant single-excitation subspace H1 =
span{|n〉}Nn=1

⊗{|α〉}3α=1. Here, the vector |n, α〉 = |0〉1,1|0〉1,2 . . . |1〉n,α . . . |0〉N ,3
indicates the presence of excitation in the n-th molecule and α-th channel. The 3N
single-excitation states are conveniently labelled by an integer n running from 0 to
N−1within the three channelsα = 1, 2, 3. In this newbasis, the 3N×3N Hamiltonian
(1) describing the system is represented by the matrix

Ĥex =

⎛

⎜⎜⎜⎝

C0
0 C0

1 C0
2 · · · C0

N−1
C1
0 C1

1 C1
2 · · · C1

N−1
...

. . . · · · ...

CN−1
0 CN−1

1 CN−1
2 · · · CN−1

N−1

⎞

⎟⎟⎟⎠ , (2)

in whichCn
m (withm, n = 0, · · · N−1) are 3×3matrices which depend on the bound-

ary conditions. In the next sections, we consider the possible boundary conditions in
details.

2.2 Information transfer fidelity

The Hamiltonian (2) can be written as its spectral decomposition as follow

Ĥex =
N−1∑

n=0

3∑

α=1

λα
n

∏̂α

n
, (3)

in which λα
n are the eigenvalues of the Hamiltonian with their corresponding eigen-

vector
∣∣Wα

n

〉
so that we have

∏̂α

n = ∣∣Wα
n

〉 〈
Wα

n

∣∣. Suppose the single excitation initially
resides in the i th qubit at channel p, i.e., |ψ(0)〉 = |i, p〉 with i ∈ {0, 1, · · · , N − 1}
and p ∈ {1, 2, 3}. Since [Q̂, Ĥex ] = 0, only the transitions of the form |i, p〉 ↔ | j, q〉
are allowed. Therefore, we define the quantum transition probability from state |i, p〉
into | j, q〉 as follows

pt ([i, p], [ j, q]) = |〈i, p|e−iĤext | j, q〉|2. (4)
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Using the spectral decomposition (3), the fidelity between the evolved input state and
the desired output is written as

pt ([i, p], [ j, q]) =
∣∣∣∣∣

N−1∑

n=0

3∑

α=1

〈i, p|∏α
n | j, q〉e−iλα

n t

∣∣∣∣∣

2

. (5)

An upper bound for the transition probability is derived by assuming that there exists
t such that the phase factor e−iλα

n t can be written as

e−iλα
n t = sα

n ([i, p], [ j, q])eiφ, , ∀n = 0, . . . , N − 1, and α = 1, 2, 3, (6)

where either sα
n ([i, p], [ j, q]) := Sgn(〈i, p|∏α

n | j, q〉) ∈ {−1,+1} as a sign factor
or sα

n ([i, p], [ j, q]) = 0 whenever 〈i, p|∏α
n | j, q〉 = 0 and φ is an arbitrary global

phase which must be the same for all n’s and α’s. In this case, since the global phase
φ can be absorbed in the absolute value in (5), the upper bound for the transition
probability is obtained as follows [28]

pmax([i, p], [ j, q]) =
(
N−1∑

n=0

3∑

α=1

|〈i, p|∏α
n | j, q〉|

)2

. (7)

The maximum amplitude for the transition probability pmax([i, p], [ j, q]) is 1, and
this case is referred to as Perfect State Transfer (PST), see, e.g., [29, 30]. Furthermore,
due to the exponential nature of the phase factor e−iλα

n t there must exist a sequence of
time samples tn for which PST occurs.

According to Eq. (6), there exist eigenspaces with sα
n ([i, p], [ j, q]) = 0 which

do not give any contribution in the sum (7); thus, they can be removed from the
summation. We refer to them as dark-state subspaces. Then we can limit ourselves
to the K ′ ⊆ {0, 1, . . . , N − 1} of indices n for which sα

n ([i, p], [ j, q]) �= 0. For
simplicity let us use sα

n instead of sα
n ([i, p], [ j, q]). Then we point out that for all

members of set K ′ we have sα
n = ±1 and exp

[−iπ2 (sα
n − 1)

] = ±1. Therefore, we
may write sα

n = exp
[−iπ

(
2kα

n + 1
2 (s

α
n − 1)

)]
where kα

n ∈ Z are arbitrary integers.
Using this relation and Eq. (6), we may obtain the following relation

λα
n t = 2πkα

n + π

2
(sα

n − 1) − φ), ∀n ∈ K ′ and α = 1, 2, 3. (8)

In a pairwise manner with [n, α] �= [m, β], the above attainability condition becomes

(λα
n − λβ

m)t = 2π(kα
n − kβ

m) + π

2
(sα

n − sβ
m), ∀n,m ∈ K ′ and α, β = 1, 2, 3, (9)

which is more useful as it is independent of the arbitrary phase φ. In the above rela-
tion kα

n , kβ
m ∈ Z are arbitrary integers. Noting sα

n and sα
m = ±1, we can write the

attainability constraint (9) as
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Fig. 1 The boundary conditions: a Closed on both N and α, b open on both N and α, c open on N and
closed on α, and d closed on N and open on α

(λα
n − λβ

m)t = 2π(kα
n − kβ

m), if sα
n = sβ

m,

(λα
n − λβ

m)t = 2π(kα
n − kβ

m) + π, if sα
n = −sβ

m = 1,

(λα
n − λβ

m)t = 2π(kα
n − kβ

m) − π, if sα
n = −sβ

m = −1.

(10)

Note that from above equations, we look for PST between the particular input
and output states ([i, p], [ j, q]) (through the values of sα

n and sβ
m), while the pair

([n, α], [m, β]) indicates two arbitrary nodes in the network (according to the sum-
mation in Eq. (5)). The equations (10) imply that if (9) holds for the couples
([n, α], [m, β]) and ([m, β], [r , η]), then (9) holds also for ([n, α], [r , η]), with r ∈ K ′
and α, β, η = 1, 2, 3. Furthermore, the set of equations are redundant, thus, in order
to consider just linear independent equations, we restrict ourselves to an appropriate
subset of equations (10) with ([n, α], [n, β]) where α �= β and ([n, α], [n + 1, β])
for n ∈ K ′ and α, β = 1, 2, 3. Moreover, note that the conditions (10) are sufficient
but not necessary for PST because they guarantee the attainability of the upper bound
pmax in (7), but it is not guaranteed that this is equal to 1 (i.e., that it gives PST).
We are in the position to apply the above-described tools, for studying the infor-
mation transmission in different configurations of the spin network, determined by
the possible boundary conditions. Figure1 illustrates the topologies of the different
cases investigated. The case of closed boundary conditions either along the chain and
the channels is sketched in Fig. 1a, the configuration with open boundary conditions
along the chain and the channels is illustrated in Fig. 1b, and the case of open (closed)
boundary conditions along the chain and closed (open) conditions for the channels is
described in Fig. 1c (Fig. 1d).

3 Closed boundary on both N and˛

In this section, we consider the case of closed boundary conditions on both n andα (see
Fig. 1a). Restricted to the single excitation subspace, the Hamiltonian of the system
becomes a block circulant matrix with circulant blocks (which are also symmetric
blocks). In fact, Ĥex is a 3N ×3N block circulant matrix with 3×3 circulant matrices
C0
0,C

0
1, . . . ,C

0
N−1, where

C0
0 =

⎛

⎝
0 L L
L 0 L
L L 0

⎞

⎠ ; C0
1 = C0

N−1 =
⎛

⎝
J 0 0
0 J 0
0 0 J

⎞

⎠ (11)
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and C0
2 = C0

3 = · · · = C0
N−2 = 0. Then the Hamiltonian Ĥex has the matrix form

Ĥex =

⎛

⎜⎜⎜⎜⎜⎜⎝

C0
0 C0

1 0 · · · C0
N−1

C0
N−1 C0

0 C0
1 0

0 C0
N−1

. . .
. . .

...
...

. . . C0
1

C0
1 0 · · · C0

N−1 C0
0

⎞

⎟⎟⎟⎟⎟⎟⎠
. (12)

The eigenvalues of Ĥex are [31]

λα
n = 2J cos

(
2πn

N

)
− 2eiαπ L cos

(π

3
(α − 1)

)
, (13)

inwhichλα
n is theαth diagonal element of the nth 3×3 block for n = 0, 1, 2, . . . , N−1

and α = 1, 2, 3. Moreover, the normalized eigenvectors of Ĥex are found to be [31]

Wα
n = 1√

3N

(
ρ−1
n Vα, Vα, ρnVα, ρ2

nVα, . . . , ρN−2
n Vα

)T
(14)

where ρn = ei2πn/N is the N -th Root of Unity for n = 0, 1, . . . , N − 1 and Vα is
defined as

V1 =
(
1, 1, 1

)T
, V2 =

(
e− 2iπ

3 , 1, e
2iπ
3

)T
, V3 =

(
e
2iπ
3 , 1, e− 2iπ

3

)T
. (15)

3.1 Eigendecomposition of the Hamiltonian

We first point out that according to (13), the eigenvalues corresponding to α = 2
and α = 3 are equal, i.e., λ2n = λ3n . This allows us to discuss the problem with the
eigendecomposiotion of the Hamiltonian for only two cases corresponding to α = 1
and α = 2 (or 3).
We begin by considering the case α = 1:

• If N is even, but not divisible by 4, we have λ1n = λ1N−n = −λ1N/2−n =
−λ1N/2+n �= 0, which means there are N

2 − 1 distinct pairs of double eigen-

values and two single eigenvalues ±2J + 2L for n = 0 and n = N
2 giving totally

Ñ = N
2 + 1 pairwise distinct eigenvalues:

{
−2J + 2L, λ1n, 2J + 2L : n = 1, 2, . . . ,

N

2
− 1

}
. (16)

In this case, if N is divisible by 4, there is also a double eigenvalues at 0 for n = N
4

and 3N
4 giving totally Ñ = N

2 + 2 pairwise distinct eigenvalues.
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• If N is odd, λ1n = λ1N−n �= 0 and there are (N − 1)/2 distinct pairs of double

eigenvalues and a single eigenvalue 2J + 2L at n = 0 which is totally Ñ =
(N + 1)/2 distinct eigenvalues:

{
λ1n, 2J + 2L : n = 1, 2, . . . ,

N − 1

2

}
. (17)

On the other hand, considering the cases α = 2 (or α = 3), we have:

• If N is even, but not divisible by 4, we have λα
n = λα

N−n = −λα
N/2−n =

−λα
N/2+n �= 0 and so N

2 − 1 distinct pairs of the double eigenvalues and two

single eigenvalues ±2J − L giving totally Ñ = N
2 + 1 pairwise distinct eigenval-

ues:

{
−2J − L, λα

n , 2J − L : α = 2 (or 3) and n = 1, 2, . . . ,
N

2
− 1

}
.(18)

If N is divisible by 4, a double eigenvalue at 0 for n = N
4 and 3N

4 giving totally
Ñ = N

2 + 2 pairwise distinct eigenvalues.
• If N is odd,λα

n = λα
N−n �= 0,wehave (N−1)/2distinct pairs of double eigenvalues

and a single eigenvalue 2J − L at n = 0 which is totally Ñ = (N + 1)/2 distinct
eigenvalues:

{
λα
n , 2J − L : α = 2 (or 3) and n = 1, 2, . . . ,

N − 1

2

}
(19)

Now we are in a position to construct the eigendecomposition of the Hamiltonian.
To this end, we first define for the both even and odd N , the eigenprojection on
the corresponding double eigenvalue λα

n = λα
N−n to be as

∏α
n := |Wα

n 〉〈Wα
n | +

|Wα
N−n〉〈Wα

N−n|. Also, we consider the eigenprojection of the eigenvalue at n = 0
as

∏α
0 := |Wα

0 〉〈Wα
0 |. Finally, if N is even, the eigenprojection of the eigenvalue at

n = N/2 is
∏α

N/2 := |Wα
N/2〉〈Wα

N/2| and further, if N is divisible by 4, then we define
also

∏α
N/4 := |Wα

N/4〉〈Wα
N/4| + |Wα

3N/4〉〈Wα
3N/4| for the corresponding eigenvalues

at n = N/4 and n = 3N/4. With this notation, the spectral decomposition (3) for the
Hamiltonian (12) will be

Ĥex =
Ñ−1∑

n=0

3∑

α=1

λα
n
∏α

n . (20)

Then as mentioned above in Sect. (2.2), to avoid having redundant equations of (10)
we limit ourselves only to the linear independent equations for ([n, 1], [n, 2]) where
n ∈ K ′ = {0, 1, . . . , Ñ−1} and ([n, α], [n+1, β])where n ∈ K ′ = {0, 1, . . . , Ñ−2}
and α, β = 1, 2 (or 3).
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3.2 Dark states

In order to find the dark states of our 3N -qubit system, we should study when
sα
n ([i, p], [ j, q]) = 0. According to the Sect. 3.1, we point out that for n = 0, we have

〈i, p|
1
0| j, q〉 = 1/3N �= 0,

〈i, p|
2
0| j, q〉 = e2i(p−q)π/3/3N �= 0,

〈i, p|
3
0| j, q〉 = e2i(q−p)π/3/3N �= 0.

(21)

This means there is no dark state with respect to n = 0 (with multiplicity of 1) for
any value of α. Also, for an even N , there is the eigenvalue with multiplicity of 1 with
respect to n = N/2. It is straightforward to illustrate the following relation for the
case n = N/2:

〈i, p|
1
N/2| j, q〉 = (−1)(i− j)/3N �= 0,

〈i, p|
2
N/2| j, q〉 = (−1)(i− j)e2i(p−q)π/3/3N �= 0,

〈i, p|
3
N/2| j, q〉 = (−1)(i− j)e2i(q−p)π/3/3N �= 0.

(22)

Therefore, there is no dark state associated with n = N/2 for an even N . Furthermore,
for the eigenvalues with multiplicity 2 (i.e., λα

n = λα
N−n with α = 1, 2, 3) we have

〈i, p|
1
n + 
1

N−n| j, q〉 = 2 cos (2πn( j − i)/N ) /3N ,

〈i, p|
2
n + 
2

N−n| j, q〉 = 2 cos (2πn( j − i)/N ) e2i(p−q)π/3/3N ,

〈i, p|
3
n + 
3

N−n| j, q〉 = 2 cos (2πn( j − i)/N ) e2i(q−p)π/3/3N ,

(23)

for n = 1, . . . , (N − 3)/2�. According to the relations (23), it is obvious that for all
values of α, there are dark states if cos (2πn( j − i)/N ) = 0, i.e., when 4n( j − i)/N
is an odd integer. Thus, we can say that the divisibility of N by 4 is a necessary but
not sufficient condition to have dark states due to the term ( j − i) relevant to the input
and output states.

Our calculations show that pmax ([i, p], [ j, q]) in (7) is always 1 ( independent
on input and output qubits) due to the fact that the analytical eigenvectors of the
Hamiltonian (12) are the Kronecker product of two Fourier matrices (14) where each
element of the eigenvectors has the same structure as eiφ/

√
3N .

In what follows we use the rescaled time τ = Lt and the dimensionless parameter
γ = J/L in our all analytical and numerical computations.

Example: Now we aim to analytically explore the attainability conditions (10) of
pτ ([i, p], [ j, q]) for N = 8 qubits with the channels α = 1, 2 and 3. According to
Sect. 3.1, there are 6 pairwise distinct eigenvalues, i.e., Ñ = 6. Choosing the suitable
subsetS ⊆ K ′×K ′ where K ′ = {0, 1, . . . , 5}, the attainability condition (9) becomes

(λα
n − λβ

m)τ = τ
(

− 4γ sin(
π

N
(n + m)) sin(

π

N
(n − m))
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−2
(
eiαπ cos

(π

3
(α − 1)

)
− eiβπ cos

(π

3
(β − 1)

)) )
;

∀n,m ∈ K ′ = {0, 1, . . . , 5}; and α, β ∈ {1, 2}. (24)

Now in order to have linear independent equations, we consider several specific cases:

• We first restrict ourselves to the subset ([n, α], [n + 1, β]) where n ∈ K ′ =
{0, 1, . . . , Ñ − 2} and α = β ∈ {1, 2}. From (24) we obtain

(λα
n −λα

n+1)τ = −4γ sin
( π

N
(2n + 1)

)
sin

( π

N

)
τ,

∀n ∈ K ′ = {0, 1, 2, 3, 4}; and α ∈ {1, 2}. (25)

Then from the attainability condition (10), we derive

(λα
0 − λα

1 )τ = (2 − √
2)γ τ = 2π(kα

0 − kα
1 ), sα

0 = sα
1 ,

(λα
0 − λα

1 )τ = (2 − √
2)γ τ = 2π(kα

0 − kα
1 ) + π, sα

0 = −sα
1 = 1,

(λα
0 − λα

1 )τ = (2 − √
2)γ τ = 2π(kα

0 − kα
1 ) − π, sα

0 = −sα
1 = −1,

(26)

and also

(λα
1 − λα

2 )τ = √
2γ τ = 2π(kα

1 − kα
2 ), sα

1 = sα
2 ,

(λα
1 − λα

2 )τ = √
2γ τ = 2π(kα

1 − kα
2 ) + π, sα

1 = −sα
2 = 1,

(λα
1 − λα

2 )τ = √
2γ τ = 2π(kα

1 − kα
2 ) − π, sα

1 = −sα
2 = −1,

(27)

Besides, (λα
0 − λα

1 ) = (λα
3 − λα

4 ) = (λα
4 − λα

5 ) and (λα
1 − λα

2 ) = (λα
2 − λα

3 ).
• Secondly, we consider the restricted subset ([n, α], [n + 1, β]) where n ∈ K ′ =

{0, 1, . . . , Ñ − 2} while α �= β ∈ {1, 2}. Then, from equation (24) we have

(λα
n − λ

β
n+1)τ = τ

(
− 4γ sin

( π

N
(2n + 1)

)
sin

( π

N

)

−2
(
eiαπ cos

(π

3
(α − 1)

)
− eiβπ cos

(π

3
(β − 1)

)) )

∀n ∈ K ′ = {0, 1, 2, 3, 4}; and α �= β ∈ {1, 2}. (28)

Then the condition (10) implies

(λα
0 − λ

β
1 )τ = ((2 − √

2)γ + 3)τ = 2π(kα
0 − kβ

1 ), sα
0 = sβ

1 ,

(λα
0 − λ

β
1 )τ = ((2 − √

2)γ + 3)τ = 2π(kα
0 − kβ

1 ) + π, sα
0 = −sβ

1 = 1,

(λα
0 − λ

β
1 )τ = ((2 − √

2)γ + 3)τ = 2π(kα
0 − kβ

1 ) − π, sα
0 = −sβ

1 = −1,
(29)
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and also

(λα
1 − λ

β
2 )τ = (

√
2γ + 3)τ = 2π(kα

1 − kβ
2 ), sα

1 = sβ
2 ,

(λα
1 − λ

β
2 )τ = (

√
2γ + 3)τ = 2π(kα

1 − kβ
2 ) + π, sα

1 = −sβ
2 = 1,

(λα
1 − λ

β
2 )τ = (

√
2γ + 3)τ = 2π(kα

1 − kβ
2 ) − π, sα

1 = −sβ
2 = −1.

(30)

Moreover, (λα
0 − λ

β
1 ) = (λα

3 − λ
β
4 ) = (λα

4 − λ
β

5 ) and (λα
1 − λ

β
2 ) = (λα

2 − λ
β
3 ).

• Finally,we choose the subset ([n, α], [n, α+1])where n ∈ K ′ = {0, 1, . . . , Ñ−1}
and α = 1 to find other linear independent equations of (24) given by

(λα
n − λα+1

n )τ = −2τ
(
eiαπ cos

(π

3
(α − 1)

)
− eiβπ cos

(π

3
(α)

))
,

∀n ∈ K ′ = {0, 1, . . . , 5}; and α = 1. (31)

Based on this choice, from the attainability condition (10) we obtain

(λ1n − λ2n)τ = 3τ = 2π(k1n − k2n), s1n = s2n ,

(λ1n − λ2n)τ = 3τ = 2π(k1n − k2n) + π, s1n = −s2n = 1,

(λ1n − λ2n)τ = 3τ = 2π(k1n − k2n) − π, s1n = −s2n = −1.

(32)

Summarizing, given that there are solutions to Eq. (10) for the above three cases,
we could attain PST. However, our numerical investigations indicate only PST hap-
pens when the in and out nodes are in the same channel diametrically opposed. This
confirms that the analytical solutions are necessary but not sufficient conditions to
have PST which to pointed already in Sect. 2.2. In other words, in this example we
should only deal with Eq. (25) in order to look for the equivalence between the ana-
lytical solutions with the numerical dynamics of the transmission probability as a
function of τ and γ . Figure2a illustrates the transmission probability pτ versus τ

when N = 8 and for two different values of γ , between two diametrically opposed
nodes in the same channel as pτ ([0, 1], [4, 1]). It is evident the possibility of PST for
both γ = 3 and γ = 5. The analytical attainability pτ ([i, p], [ j, q]) for the condi-
tion (27) as

√
2γ τ = 2π(kα

1 − kα
2 ) − π with γ = 3, τ = 12.59, 73.31, 134.03, · · ·

and kα
1 − kα

2 = 8, 49, 90, · · · shows the consistency with the numerical outcome
pτ ([0, 1], [4, 1]) = 1. The same agreement between analytical and numerical solu-
tions of pτ ([0, 1], [4, 1]) = 1 is also seen for γ = 5 where τ = 43.985, 131.955 · · ·
for kα

1 − kα
2 = 49, 148, · · · . More generally, we display the minimum values τmin at

which the probability pτ ([0, 1], [4, 1]) = 1 versus γ for N = 8 in Fig. 2b. Values
of τmin saturating the range of the figure mean that the probability never reaches 1.
Then for γ → ∞, i.e., L → 0, finite values of tmin become more frequent depicted
in Fig. 2c. Thus, this can be understood with the fact that in such a limiting case the
information is not spread over three channels, but remains confined within only one
channel.
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Fig. 2 The transmission probability pτ ([0, 1], [4, 1]) of a spin network with N = 8 nodes and closed
boundary on both N and α; a pτ versus τ for γ = 3 (solid blue line) and γ = 5 (red dashed line), b the
minimum value τmin versus γ at which pτ = 1 for the finite values of γ , and c the minimum value tmin
versus J at which pt = 1 for γ → ∞, i.e., L → 0

4 Open boundary on both N and˛

The second condition we consider is the open boundary on both N and α (see Fig. 1b).
In such a case, the Hamiltonian belongs to the symmetric block-Toeplitz tridiagonal
matrices which can be displayed as

Ĥex =

⎛

⎜⎜⎜⎜⎜⎜⎝

C0
0 C0

1 0 · · · 0
C1
0 C0

0 C0
1 0

0 C1
0

. . .
. . .

...
...

. . . C0
1

0 0 · · · C1
0 C0

0

⎞

⎟⎟⎟⎟⎟⎟⎠

with

C0
0 =

⎛

⎝
0 L 0
L 0 L
0 L 0

⎞

⎠ ; C1
0 = C0

1 =
⎛

⎝
J 0 0
0 J 0
0 0 J

⎞

⎠ . (33)
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Fig. 3 The transmission probability pτ ([0, 1], [4, 1]) of a spin network with N = 5 nodes and open
boundary on both N and α; a pτ versus τ for γ = 4 (solid blue line) and γ = 15 (red dashed line), b the
minimum value τmin versus γ at which pτ = 1 for the finite values of γ , and c the minimum value tmin
versus J at which pt = 1 for γ → ∞, i.e., L → 0

The eigenvalues of the above matrix Ĥex are [32]

λα
n = 2J cos((n + 1)π/N + 1) + 2L cos(απ/4), (34)

where α = 1, 2, 3 and n = 0, 1, . . . , N − 1.
Given the fact that in this case, it is impossible to analytically find the eigenvectors of

theHamiltonian, we are obligated to numerically study the transmission probability pτ

in (5). Note that only pτ ([0, 1], [4, 1]) and pτ ([0, 1], [4, 3]) enjoy PST and we choose
to show pτ ([0, 1], [4, 1]) to have coherency with other boundary conditions. Figure3
shows the probability of the state transmission in the same channel pτ ([0, 1], [4, 1])
with the number of sites N = 5. We see from Fig. 3a the behavior of pτ versus τ

where PST is observable for γ = 15 when τ = 26.6, 84.4, · · · , however there is no
PST for γ = 4. Figure3b displays the smallest time τmin at which PST is achieved
versus the finite values of γ . As can be seen, finite τmin are quite rare, meaning that
PST does not occur for most of the γ values. Figure3c shows that for L → 0 most of
the values of τmin become finite and actually they generically tend to decrease with J .
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5 Open boundary on N and closed boundary on˛

The third condition is the open boundary on N and closed boundary on α (see Fig. 1c)
which again is a block-Toeplitz tridiagonal matrix as in (4); however, here

C0
0 =

⎛

⎝
0 L L
L 0 L
L L 0

⎞

⎠ (35)

and C1
0 = C0

1 = J I3×3.. Then the eigenvalues will be [32]

λα
n = 2J cos ((n + 1)π/N + 1) + 2L cos (2πα/3), (36)

where α = 1, 2, 3, and n = 0, 1, . . . , N − 1. Our investigations show that PST can
be only reachable between the nodes with the longest distance in the same channel for
specific γ . Figure4 shows the transmission probability pτ [(0, 1), (3, 1)] with N = 4.
PST can be seen in Fig. 4a for γ = 9.4 when τ = 8.35, 39.75, 56.5, · · · , while it
does not occur for γ = 4. Figure4b shows the least amounts of time to wait for PST
versus finite values of γ . It is observed that PST does not occur for several values of
γ . However, Fig. 4c is an evidence of well spreading of information over only one
channel due to the finiteness and decreasing behavior of tmin versus J when L → 0,
i.e., γ → ∞.

6 Closed boundary on N and open boundary on˛

The last boundary condition to be considered is closed on N and open on α (see
Fig. 1d). This gives rise to a 3N × 3N block circulant matrix in the form (12) with
3 × 3 symmetric blocks

C0
0 =

⎛

⎝
0 L 0
L 0 L
0 L 0

⎞

⎠ ; C0
1 = C0

N−1 =
⎛

⎝
J 0 0
0 J 0
0 0 J

⎞

⎠ (37)

and C0
2 = C0

3 = · · · = C0
N−2 = 0. Our numerical investigations show no attainability

for finite values of γ between any in and out nodes. The highest transmission prob-
ability (around 0.8) is achievable between diametrically opposed nodes in the same
channel. In Fig. 5, we report pτ [(0, 1), (3, 1)] for a network with N = 6. Fig. 5a shows
pτ versus τ for two different values of γ , and Fig. 5b displays the minimum time to
wait for PST versus the coupling constant J. It can be seen that PST is rare even when
γ → ∞, i.e., L → 0. Comparing these outcomes with the ones of Sect. 3, we realize
a remarkable effect of boundary on α (when it is closed, PST is much more frequent).
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Fig. 4 The transmission probability pτ ([0, 1], [3, 1]) of a spin network with N = 4 nodes and open
boundary on N and closed boundary on α; a pτ versus τ for γ = 4 (solid blue line) and γ = 9.4 (red
dashed line), b the minimum value τmin versus γ at which pτ = 1 for the finite values of γ , and c the
minimum value tmin versus J at which pt = 1 for γ → ∞, i.e., L → 0

Fig. 5 The transmission probability pτ ([0, 1], [3, 1]) of a spin network with N = 6 nodes and closed
boundary on N and open boundary on α; a pτ versus τ for γ = 4 (solid blue line) and γ = 8.25 (red
dashed line), b the minimum value tmin versus J at which pt = 1 for γ → ∞, i.e., L → 0
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7 Conclusions

We have studied information transfer fidelity and PST between nodes in a bio-inspired
spin network of an α-helix structure of a protein using the Davydov Hamiltonian
without the phononic environment by assuming the single excitation subspace. We
have worked out the quantum state transmission probability for four different cyclic
and non-cyclic boundary conditions on both sites and channels of the α-helix network.
For only one of the boundaries, it was possible to find the analytical eigenvectors of
the Hamiltonian and thus investigate the analytical scale times where PST happens.
Numerical computations are in compliance with them. We reported numerically the
transmission probability and the possibility of PST for other boundaries which are
influenced strongly by the coupling terms in the Hamiltonian because PST needs the
coupling parameters to provide the right phasematching, admitting the perfect transfer
of both amplitude and phase of a quantum state from one node to another. In so doing,
the analytical solutions are found to be sufficient but not necessary conditions with
respect to the closed boundary on both the sites N and the channels α. In such a
case, PST happens frequently during the time when the nodes are only diametrically
opposed in the same channel; but considering only one or two of the boundaries
open leads to the PST over fewer times, i.e., open boundary on both N and α, and
open boundary on N and closed boundary on α. Finally, no attainability is observed
for the case of closed boundary on N and open boundary on α; nevertheless, the
highest transmission probability happens for the diametrical opposition of the input
and out nodes in the same channel. Further developments of this model could take into
account the effects of local or quasi-local environments [33]. Looking ahead not only
quantum information transmission, but also quantum information processing could be
investigated in a model involving electrons distribution [34].

Finally, we should notice that the present study was inspired by a biological system
that could be implemented experimentally with a molecular spin network created by
spin-labeling peptides in a synthetic polyproline (protein secondary structure) coated
on a diamond membrane [35]. In such a scheme, the qubit-qubit interaction is possi-
ble as experimentally reported and evidently seen by diluting the under-investigated
labeled peptides with only a few unlabeled ones in the spin network. It is notable that
the electron qubits are well localized because of the hard backbone of the polyproline
resisting decoherency of the phonon environment, even in low temperatures.
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