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Abstract
In this manuscript, we study a model of human capital accumulation during the spread
of disease following an agent-based approach, where agents behave maximising their
intertemporal utility. We assume that the agent interaction is of mean field type, yield-
ing a mean field game description of the problem. We discuss how the analysis of a
model including both the mechanism of change of species from one epidemiological
state to the other and an optimisation problem for each agent leads to an aggregate
behaviour that is not easy to describe, and that sometimes exhibits structural issues.
Therefore we eventually propose and study numerically a SEIRD model in which the
rate of infection depends on the distribution of the population, given exogenously as
the solution to the mean field game system arising as the macroscopic description of
the discrete multi-agent economic model for the accumulation of human capital. Such
a model arises in fact as a simplified but tractable version of the initial one.
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1 Introduction

Typical models in epidemiology, as well as in economics, describe the time evolution
of variables as the number (absolute or relative) of susceptible and infectious persons.
In the last 20 years, there has been an increasing interest in spatial extensions of such
models, in which the evolution of variables occurs not only in time but also across
space. This is a major feature in the so-called economic geography literature, and in
general in any model in which the dynamics is not supposed to be uniform across
space. Particularly suitable for spatial extensions are interaction models, namely those
in which the dynamics mechanism originates from some sort of interaction between
agents and the intensity and effectiveness (or even the form) of such interaction depend
on the relative or absolute position of the agents. The interest of these spatial models is
twofold, as they can bring insight into the effects of the spatial distribution of agents on
the evolution of variables or, the other way around, on the consequences of interaction
on the movement of people across space.

The SIR epidemiological model is particularly meaningful under this viewpoint:
in its classical formulation (Kermack and McKendrick 1927) the dynamics of the
variables S and I are governed by the incidence of the disease, that is the product
of the probability that contact with infectious individual results in contagion with the
average number of susceptible individuals any infectious individual gets in contact
with. Clearly, this average number is quite a rough estimate of the actual number of
contacts people have, which may well be different in different places, due for example
to differences in the spatial density of people.

In the epidemics literature there has been some work in the last years (Guo et al.
2020; Paeng and Lee 2017; Takács and Hadjimichael 2022) about extending SIS
and SIR models with spatial components, before the pandemic began; this type of
investigation have been pushed further more recently with the spread of COVID-19
(Colombo et al. 2020; Sy et al. 2021;Wong andLi 2020) since geographical differences
in the pandemic evolution (both at large and small spatial scales) suggest that epidemic
dynamical models should take into account—at least in some phases of the spread of
the disease—the distribution of people and of significant economic variables across
space. This can be done in several ways, depending on the mechanism and analysis
one is interested in and on the pandemic phase one is observing.

The spatial density of people represents a significant factor in the dynamics of
diseases; indeed many measures that regulators have taken to oppose the diffusion of
the pandemics can be seen as density-dependent (e.g. the requirement to wear masks
in crowded places; even lockdown can be seen as a way to drastically reduce large
peaks in the spatial density of people).

The attempt to incorporate spatial features into SIR-type models poses two issues:
on the epidemiological and economic side, to understand what type of space-
dependency might be appropriate; on the mathematical side, passing from an ODE
description to a PDE description, to have a tractable model, at least numerically. A
strand of the literature considers the spacemovement of people as time flows by adding
diffusion terms—typically Laplacian or nonlocal diffusion terms—in the equations of
SIR-type modes, thus studying a system of PDEs. We refer e.g. to Faragó and Róbert
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(2018), Li and Yang (2014), Reluga (2004), and further references in the introductions
of Paeng and Lee (2017), Takács and Hadjimichael (2022).
Part of the literature focuses on the way the transition rate depends on the space-time
distribution of people. For example in Paeng and Lee (2017) the density is constant
in time but space dependent and arises in the standard true mass incidence function
replacing the total number of individuals while in Hu et al. (2013) the density is
constant and appears also in the transmission rate with a nonlinear dependence. In
both the above-mentioned papers, the density is exogenous.

In the present paper, we are interested in exploiting the dependence on spatial
distribution in the incidence of the disease. We choose SEIRD dynamics to model
the epidemics, where the population is divided into the classes: susceptible, exposed,
infectious, removed, dead. Especially after the COVID-19, diverse epidemiological
models with additional compartments, such as vaccinated, hospitalised, isolated at
home, or age-structured models have been proposed (see e.g. Tembine 2020 for a
mean field game perspective on COVID-19 that considers many of these aspects and
Fabbri et al. (2021) and its references for age-structured models). Our approach could
be adapted to such epidemiological models with no major difficulties (but with more
consistent modifications in the case of age-structured models with age as a variable).
We decided to focus on the SEIRD model since at the same time it captures the main
feature of COVID-19 and it stays simple enough to focus on the main interest of the
present paper, that is, the dependence on the spatial distribution of people.

The main novelty consists in how we choose the spatial distribution of agents. The
model we propose consider simultaneously the space–time evolution of the epidemics
and of a key economic variable, human capital. The description of the evolution of
human capital is of crucial importance in economics and has attracted more and more
interest nowadays, see Boucekkine et al. (2008) for a review of human capital accu-
mulation models on an epidemic setting, or Bleakley (2010) where some empirical
evidence is proposed. In particular, in the model we consider for the space–time evo-
lution of human capital, the dynamics of an individual’s human capital are affected
by the human capital of nearby individuals through a spatial interaction term, that is,
we account for spatial spillover on accumulation of human capital. Individuals con-
trol their position in space to maximise their gain from such spillover, considering at
the same time that moving towards areas with high human capital is a costly action.
Assuming that no individual has an overwhelming influence on the systemwith respect
to others, optimisation of each individual’s position gives rise to a symmetric game
among economic agents (the individuals).

When the number of agents is large the aggregate dynamics are typically described
by a Mean Field Game (MFG hereinafter) system, arising heuristically as the limit
as the number of agents tends to infinity. The typical MFG system consists of two
partial differential equations: a Hamilton–Jacobi–Bellman (HJB hereinafter) equation
describing the optimal control problem of the agents, and a Fokker-Planck (FP here-
inafter) equation, describing the distribution of the population with respect to space
and human capital.
An important motivation for theMFG approach we choose for our economy lies in the
fact that a solution to the MFG system is expected to provide a good approximation of
Nash equilibria for the discrete multi-agent model when the number of agents is large.
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Moreover, it allows for substantial computational simplifications. In fact, it is well
known that solving N coupled optimisation problems, or analogously an optimisation
problem of dimension N becomes unviable from the numerical point of view as soon
as N gets moderately large (N = 10 is already beyond reach in the general case). On
the contrary the problem with the mean field limit reduces to a system of two coupled
partial differential equations that can be handled in a simpler way.

For a complete presentation of such a model—without reference to epidemics—
and in particular of the mathematical framework, we refer to the forthcoming paper
(Ghilli et al. 2023), where the MFGmodel is studied analytically and numerically; the
details of the model are discussed below in Sect. 2.2.

In the present paper, we link such MFG dynamics for the human capital with
epidemic dynamics, contributing to the literature linking economic and epidemic vari-
ables. Gersovitz andHammer (2004) proposed one of the first significant contributions
to the Epi-Econ literature. In recent years the COVID-19 pandemic incentivized the
flourishing of this field of research. While most studies deal with strategies to control
epidemics from the point of view of a social planner (Acemoglu et al. 2021; Aspri
et al. 2021; Calvia et al. 2023; Eichenbaum et al. 2021; La Torre et al. 2023; Dobson et
al. 2023), only a minor part investigate the trade-off between epidemic and economic
losses from the perspective of forward-looking interacting agents, see for example
(Fabbri et al. 2023). Our contribution fall under this last category.

A realistic model one could consider is one in which individuals tend to increase
their level of human capital by being close to other individuals and at the same time
maintain social distancing, in order to minimise the probability of getting infected. In
such a model the space-time distribution of individuals would be endogenously deter-
mined by their optimal choices. The corresponding optimisation problem is however
too difficult to solve, and it is not even clear how one should formulate the prob-
lem at the MFG level. The major technical difficulties in this direction arise in two
ways. First, each class of the SEIRD model has different goals with respect to keep-
ing social distancing; for example, a susceptible individual may want to keep some
distance from a generic individual unless she has recovered. Second, from the single-
individual point of view, one should account both for the optimisation of an agent’s
position and for her possible change of epidemic class at random times; this is conve-
niently modelled through piecewise-deterministic stochastic processes that jump from
a class to the next at random times whose intensity depends on the interaction. To the
best of our knowledge, the only available attempts to consider such features in the
epidemic modelling literature are Doncel et al. (2020), Olmez et al. (2021), Petrakova
and Krivorotko (2022), where, however, the optimisation problem is the same for all
classes, thus avoiding the first technical difficulty mentioned above. We also mention
(Bertucci 2020), where MFGs with changes of states are studied in a different con-
text. We underline that these issues are related to the optimisation problem only: the
appearance of random jumps is not a problem by itself if one wants to understand
the aggregate dynamics in the setting of mean field limits. These have been broadly
studied, especially in the case of biological applications, see e.g. (Catellier et al. 2021;
Oelschläger 1989), where however no optimisation is involved. Nonetheless, a proper
understanding of how to derive the aggregate MFG dynamic for jump processes in the
controlled case we propose is still beyond reach for the current knowledge on MFGs,
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even though the theory of optimal control of jump process has been already developed
by many extents, see e.g. (Calvia 2018, 2020) and references therein. We also remark
that interacting systems with spatial interaction but without control are also math-
ematically well understood, see for example (Flandoli et al. 2019; Zanco 2020) and
references therein. One way of simplifying the model described above is to neglect the
transition between epidemiological states. In this way, one would obtain a MFG sys-
tem for each compartment in our epidemiological model. MFGs with different classes
(often called species in similar models)—but where no transitions between classes
are allowed— have been proposed for example in Achdou et al. (2017), Bensoussan
et al. (2018), Cirant (2015), Feleqi (2013). However, we believe that ruling out the
transition between classes is a too restrictive assumption. Therefore we formulate a
MFG model where we incorporate transitions but we assume that there is no distinc-
tion among classes in the optimisation goals. The macroscopic evolution in this case
is described by one MFG system and one differential equation for each compartment.
Moreover we suppose that the infection rate depends on the space-time distribution of
the agents. In this model it is easily seen that the space-time distribution must satisfy
a structural condition, namely to be independent of time. For this reason, we choose
for our model the space marginal of the stationary solution to the FP equation in the
MFG system. This actually means that to have a model that is sufficiently simple to
be tractable, at least numerically, the distribution has to be exogenous. From the mod-
elling point of view, considering a stationary distribution can be seen as corresponding
to the assumption that the mechanism that links the evolution of human capital with
the individuals’ positions has run for a long time and has stabilised. Incorporating such
stationary solution exogenously in our SEIRD model corresponds then to assume that
the dynamics of the epidemic have a negligible effect on the distribution of people;
this may be seen as the two distinct dynamics, the one described by the MFG system
and the one described by the SEIRD model, happening on different time-scales, with
a much shorter time-scale for the epidemic dynamic. Considering the space marginal
of the stationary solution to the MFG system means that we cannot take into account
the influence of the time-evolution in the accumulation of human capital on the epi-
demic dynamics. To our knowledge, there is little amount of study or evidence in the
literature of the influence of such variables on the incidence term in epidemiological
models, see Berkessel et al. (2021), Goenka and Liu (2020). On the contrary, some
authors have been focusing on the effect of the evolution of epidemics on the level of
human capital (Bleakley 2010; Deng et al. 2021); this phenomenon is inevitably ruled
out by the simplifications we have to perform.
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At the end of these simplifying steps, we obtain the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t S(t, x) = −β
(
(S + E + I + R)(t, x)

) S(t, x)

(S + E + I + R)(t, x)

∫

Kχ (x, y)I (t, y)dy ,

∂t E(t, x) = β
(
(S + E + I + R)(t, x)

) S(t, x)

(S + E + I + R)(t, x)

∫

Kχ (x, y)I (t, y)dy − θE(t, x) ,

∂t I (t, x) = θE(t, x) − λI (t, x) − δ I (t, x) ,

∂t R(t, x) = λI (t, x) ,

∂t D(t, x) = δ I (t, x) ,

ρV (x, h) = 1
2χ2h2∂2hhV (x, h) + 1

2 ε2∂2xx V (x, h)

+H0(∂x V (x, h)) + H1
(
x, h, μ(x, h), ∂hV (x, h)

)
,

1
2σ 2∂2hh(h2μ(x, h)) + 1

2 ε2∂2xxμ(x, h) = ∂x
(
∂pH0(∂x V (x, h))μ(x, h)

)

+∂h
(
∂pH1(x, h, μ(x, h)), ∂hV (x, h)μ(x, h)

)
,

S(t, x) + E(t, x) + I (t, x) + R(t, x) + D(t, x) =
∫

μ(x, h)dh .

(1)

Here t denotes time, x denotes space and h denotes human capital. System (1) is
made of an epidemic dynamics part (the first five equations), an economic optimisation
part (the following two equations) and a compatibility condition (the last equation).
Details are discussed in Sect. 2 and its subsections. We divide the population into five
non-intersecting classes, namely

• the class of susceptible individuals, i.e. those that are currently not infected and
can be infected;

• the class of exposed individuals, i.e. those that have got the infection but are not
infectious yet, meaning they cannot propagate;

• the class of infectious individuals, i.e. those that can spread the disease;
• the class of recovered individuals, i.e. those who healed and are thus immune to
the disease;

• the class of dead individuals, where death is due only to the disease and not to
other causes.

The fraction of the total population that belongs to each class, as a function of time
and space, is denoted by S, E, I , R, D, respectively. With respect to the classical
SIR dynamic, there are two additional classes: E (exposed individuals) and D (dead
individuals). The presence of class E implies that there is a latency period, typical
of many infectious diseases, during which individuals have been infected but are not
yet infectious. We focus on modelling just deaths due to the infection and we do not
consider either births or death due to other causes than the infection. Moreover, we do
not assumediffusionof individuals, as it seemsunfit to this typeofmodel at large spatial
scales, see also the discussion in the introduction of Paeng andLee (2017). On the other
hand, we assume that the infection propagates in space, that is, a susceptible individual
can be infected by an infectious individual provided they are close enough. This
propagation effect is modelled through a convolution in the space variable (the integral
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term in the first two equations of (1)), where the support of the convolution kernel
quantifies the threshold for possible contagion to occur. For analogous approaches,
we refer to Colombo et al. (2020), Takács and Hadjimichael (2022) and references
therein. We remark that differently from Colombo et al. (2020) we do not consider
age dependence, focusing only on space dependence. As mentioned above, the way
the transition rate depends on the distribution is inspired by Hu et al. (2013).

It is our belief that the models we discuss herein can be also effectively applied
to the description of other diseases as well as other economic variables, modifying
parameters and related properties of the models accordingly.

Finally we stress that we only provide a numerical solution to the stationary MFG
system that arises in the model we consider; a rigorous proof of the existence of a
stationary solution to the MFG system is not available and provides a mathematical
challenge for the following reasons. The typical assumptions under which existence
and uniqueness have been proved so far are separability of theHamiltonianwith respect
to the distribution of the agents and the gradient of the value function andmonotonicity
of the coupling. In our case the Hamiltonian is not separable and consequently there
is not a straightforward way of defining monotonocity with respect to the distribution.
We refer to the end of paragraph 2.2.2 for a review of the available literature and a
more detailed explanation of the underlying difficulties.
The remainder of the paper is organised as follows: in Sect. 2we give somemotivations
to the model we consider and we present the joint human capital-epidemiological
model used in the rest of the paper. In particular, in Sect. 2.1 the epidemiological
component is presented, while in Sect. 2.2 we present the MFG component of the
model related to human capital accumulation. Finally, in Sect. 3 numerical results are
presented.

2 The hybrid MFG-SEIRDmodel

In this section we argue about the model we propose; in particular, we explain how the
actual model we consider arises from a class of reasonablemodels due tomathematical
and modellistic considerations.

We write here the equations we solve, and then we begin to discuss the meaning of
each term as well as motivations and details.

The SEIRD model we propose takes the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t S(t, x)=−β
(
μ(x) − D(t, x)

) S(t, x)

μ(x) − D(t, x)

∫

Kχ (x, y)I (t, y)dy ,

∂t E(t, x)=β
(
μ(x)−D(t, x)

) S(t, x)

μ(x)−D(t, x)

∫

Kχ (x, y)I (t, y)dy−θE(t, x) ,

∂t I (t, x)=θE(t, x) − λI (t, x) − δ I (t, x) ,

∂t R(t, x)=λI (t, x) ,

∂t D(t, x)=δ I (t, x) ,

(2)

123



D. Ghilli et al.

where μ(x) = (S+ E + I + R+ D)(t, x) is the x-marginal of the second component
of the stationary solution (V , ν) to the MFG system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρV (t, x, h) = 1
2σ 2h2∂2hhV (t, x, h) + 1

2 ε2∂2xx V (t, x, h)

+H1
(
x, h, ν(t, h, x), ∂hV (t, x, h)

) + H0(∂x V (t, x, h)) ,

∂tν(t, x, h) = 1
2 ε2∂2xxν(t, x, h) − ∂x

(
∂pH0(∂x V (t, x, h))ν(t, x, h)

)

+ 1
2σ 2∂2hh(h

2ν(t, x, h)) − ∂h
(
∂pH1(x, h, ν(t, x, h)), ∂hV (t, x, h)ν(t, x, h)

)
.

(3)

System (2) is described in Sect. 2.1 below. System (3) instead describes the economic
dynamics; the details of the discrete multi-agent system it approximates, together with
the precise definitions of the Hamiltonians H0 and H1, are given in Sect. 2.2. Here
we discuss the link between the epidemics and the economic dynamics and the con-
siderations that lead us to consider stationary solutions to the MFG system. We begin
with a situation in which each agent behaves optimally in the sense of intertemporal
utilitymaximisation, that is, each agent is assumed to be forward looking. Each agent’s
utility depends not only on the characteristic of the agent itself but also on the config-
uration of the system as a whole, i.e. it depends on the position, endowment of human
capital and epidemic state of all other agents. On the economic side, the model we
consider aims at describing the space–time evolution of the human capital of agents
(h(t) denotes the amount of human capital at time t in the following). Agents control
their investment in education f (t): this means that at each time t an agent chooses
to invest f (t)h(t) into the production of new human capital due to interaction and
(1 − f (t))h(t) in the maximisation of the current utility. The model includes a form
of spatial interaction, in the sense that agents tend to maximise their level of human
capital by being close in space to other agents with a higher level of h. This constitutes
a form of positive spatial spillover with regard to human capital. Moreover, agents
control their velocity v(t) (direction and length of their space movement at time t)
with the aim of maximising their gain from such spillover and meanwhile taking into
account the cost of moving towards areas with high human capital. We consider Nash
equilibria as aggregate optima for the system of agents when the number of agents is
large. At the same time, depending on their current epidemiological state, agents try
to maintain social distancing to minimise the probability of becoming infected, which
would increase their probability of dying. These two mechanisms induce a compet-
ing effect between the tendency to agglomerate and the necessity of keeping spatial
distance. Moreover, the epidemiological state of each agent can change, according to
the state of neighbouring agents,e.g. susceptibles have a certain probability of getting
infected if they are spatially close to other infected individuals. From the point of view
of the control problem, this corresponds to considering different utilities depending
on the epidemiological state of the agents.

The situation just describedwould be themost accurate formulation for the problem
we are considering; it would be mathematically given in terms of a MFG system that
includes the possible switch between epidemiological states. However, it turns out
that studying, even numerically, a model that introduces such a switch inside the
formalism of MFG systems where the control acts on a state variable different than
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the epidemiological state, poses a phenomenal mathematical challenge, which to the
best of our knowledge has not been solved yet by the mathematical community. Even
formulating any such MFG system seems currently out of reach.

Since the transition mechanism from one epidemiological state to the other is the
primary driver of the epidemic dynamics we surely do not want to neglect it. Therefore
we are compelled to simplify our original assumptions as much as to include the
minimum reasonable requirements that make the model adequate for the case of study
we have in mind. Those are (i) human capital accumulation in the form of endogenous
saving and optimisation over space embedding spatial spillovers as a feature; (ii)
transition between epidemiological states depending on the spatial configuration of
agents. Thus wemay consider a system of agents where each of them is maximising an
objective function that does not depend on her epidemiological state, i.e. the objective
function is common to all the states, but agents switch states depending on their
neighbours.

This has two main consequences. On the one hand, assuming that the objective
function does not depend on the epidemiological state means that, at the level of
the continuum aggregate dynamics, we get a single MFG system, namely (3); it is
composed of a Hamilton–Jacobi–Bellmann equation which intuitively describes the
value function V of the optimisation problem given a distribution ν of people (in
time, space and human capital), and of a Fokker-Planck equation which describes the
distribution ν given an optimisation strategy V .
On the other hand, the link between (2) and (3) realises not only in the dependence of
the infection dynamics on μ(t, x) (the space-marginal of ν) but also in the necessary
equality

μ(t, x) = S(t, x) + E(t, x) + I (t, x) + R(t, x) + D(t, x).

At the same time, the fact that agents belong to only one of the classes
for every given time t implies that the distributions of the variables
S(t, x), E(t, x), I (t, x), R(t, x), D(t, x) should balance each other so that the total
amount of mass in the system is preserved, i.e

0 = ∂t S(t, x) + ∂t E(t, x) + ∂t I (t, x) + ∂t R(t, x) + ∂t D(t, x) = ∂tμ(t, x).

This readily brings us to a contradiction, since it implies that the distributionμ(t, x) of
all the agents, independently of the class they belong to, should be stationary in time, as
opposed to our initial assumptions. From the stationarity of the spacemarginalμ(t, x)
one cannot readily derive that of ν(t, x, h). In fact, there is indeed the possibility to
construct solutions which are not changing over time along x , but only along h, For
example by a symmetry argument, one can show that a uniform in x initial condition
will remain uniform over time (in absence of non-uniform exogenous factors), thus
having dynamics only on the h component. However, we will not consider these
pathological cases, since they are ignoring the presence of space altogether, therefore
reducing the MFG to a much easier problem and the SEIRD dynamics to a classical
ODE problem.
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Motivated by the above considerations, we assume that the distribution of people
in space is given via a density function which is exogenous and does not change with
time but influences the incidence of the disease; we thus use the x-marginal of the
stationary solution to the second equation in the MFG system (3) as the distribution
of people. Our model is clearly not suitable for describing any phase of the epidemic
evolution, and this is even more true for the COVID-19 pandemic where measures
such as lockdowns or total absence thereof significantly impact the time-evolution of
the epidemic situation. Indeed we take population density in space as exogenous and
given a priori; this means that we do not consider the movement of people in time nor
the feedback effect of the epidemic dynamics on the population density. Therefore our
model describes an epidemic phase in which the population density can be considered
stationary in space-time; this corresponds for example to an initial stage of the spread
of the disease, when regulators have not yet taken measures to prevent the propagation
of the infection thus the population distribution is not affected by the dynamics of the
epidemics, as well as a further stage in which movement-restricting measures have
been lifted. In both cases, the underlying idea that justifies considering some stationary
distribution in space is that the mechanism that regulates people’s movement in the
absence of an epidemic emergency has a time scale that is significantly longer than
the time scale of the pandemic period we observe.

As the spatial distribution is a fortiori exogenous, one could consider various dis-
tributions. There are of course many possibilities; the uniform distribution is surely
the easiest choice but is not interesting in this regard as it would correspond to no
differences across space, thus making the spatial extension of the model vanish in
practice. Of course, one could in principle test any distribution, but we are interested
in using a distribution that has a solid economic justification.
A more realistic approach would consider non-stationary solutions of such MFG,
leading to μ depending also on time; this is however not consistent with what was
argued above. Another possibility would be to directly couple the mean-field game
dynamics with our SEIRD dynamics, following the literature that discusses changes
in the human capital distribution due to the dynamics of the epidemic; as already
hinted above, we underline that studying this scenario is currently out of reach, both
analytically and numerically.

2.1 The SEIRD dynamics

In the following, we introduce the SEIRD dynamic for the evolution of the epidemic,
where the rate of transmission depends on the distribution of the total population.
The space domain here is S1, the 1-dimensional torus. As it is often more convenient
to consider the time evolution of positions as they belong to R (for example with
stochastic calculus), we will solve the agent-based models below inR and then project
the solutions on the torus: for every x ∈ Rwe consider the quantity x (mod 1) ∈ [0, 1)
(that is the fractional part of x); positions in [0, 1) are in one-to-one correspondence
with positions in S1.
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To measure distances consistently on the torus we define, for every x, y ∈ [0, 1), the
distance

dS1(x, y) := min {(x − y) (mod 1), (y − x) (mod 1)} ;

this clearly corresponds to the arc-length distance on S
1 assuming that S1 has total

length 1.
The population has constant size and is spatially distributed on S

1 according to a
density μ(x).
In our model we allow for a latency period between the time at which an individual
gets infected and the time at which it can infect others; we do not consider births
and deaths for ordinary causes, focusing only on the deaths caused by the infection.
This implies that in the epidemic phase described by our model, the number of deaths
not ascribable to the infection is negligible with respect to the number of deaths in
the population due to the infection. We also assume that all newborn individuals can
contract the disease and that all recovered individuals are immune.
The main novelty we propose is the space-dependent way in which we model the
incidence of the disease. In the classical SIR-type models the form of the incidence
is heuristically motivated as follows: if the population has size N , in a unit of time
a single infectious individual is on average in contact with C = cN individuals, for
some proportionality constant c > 0; among those individuals, S/N are susceptible,
thus leading to cS contacts with susceptible individuals in one unit of time. Since
transmission of the disease is not certain, only pcS contacts produce new infectious,
with p ∈ (0, 1). This must be multiplied by the number of infectious, leading to
the incidence being pcSI , usually written as βSI . Since we take into account the
distribution of individuals in space, this has to be modified accordingly: at the simplest
level this implies substituting N withμ(x), that is the number of people in the position
x of the infectious individual; this would lead again to the incidence having the form
βSI . However there is evidence in the literature (see for example Hu et al. 2013;
Liu and Stechlinski 2012; Hethcote 2000) that it is often not accurate to assume the
average number of contacts C of an infectious individual be linear in N ; if we assume
that it is not, then the above argument yields for the incidence term the form

β(μ(x))
S(t, x)

μ(x)
I (t, x) . (4)

Since the spatial structure of our model is continuous, with an incidence of the form
(4) one would have a contagion effect only with individuals that are exactly at the same
location at the same time. This is clearly not realistic, as the spread of the infection
from an infectious individual occurs in some small area around her, with people being
closer having a higher probability of contracting the infection from the contagious
individual, and people sufficiently far away having zero probability thereof. To model
this feature we take the convolution in space of the variable I with a smooth compactly
supported symmetric kernel K ; therefore the incidence at time t and location x depends
not only on the number of infectious individuals at the same time and location, but
also on the number of infectious individuals around location x , with a maximal range
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of infection that is given by one-half time the width of the support of K , and with
infection strength that is maximal at location x and decreases as one moves farther
away from x . So, we propose the following form of incidence:

β(μ(x))
S(t, x)

μ(x)

∫

S1
Kχ (x, y)I (t, y)dy (5)

where β : R → R is an increasing function such that β(0) = 0 and Kχ (x, y) =
1
χ
K̃

(
1
χ
dS1(x, y)

)
for χ > 0 and K̃ : [0, 1/2] → R a smooth function such that

K (x) = 0 for every x ∈ [1/2 − ε, 1/2], for some ε ∈ (
0, 1

2

)
. In this way, K̃ can be

identified with a function on S
1 whose support is a strict compact subset of S1. For

analogous approaches, we refer to Colombo et al. (2020), Takács and Hadjimichael
(2022).

Denoting by λ the recovery rate of infectious individuals, by 1
θ
the latency period

of the infection (i.e. the amount of time that passes between contracting the disease
and becoming infectious, thus contributing to the spread of the disease), and by δ the
death rate, our space-time dynamical model thus can be written as (2), that we rewrite
for convenience:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t S(t, x) = −β
(
μ(x) − D(t, x)

) S(t, x)

μ(x) − D(t, x)

∫




Kχ (x, y)I (t, y)dy ,

∂t E(t, x) = β
(
μ(x) − D(t, x)

) S(t, x)

μ(x) − D(t, x)

∫




Kχ (x, y)I (t, y)dy − θE(t, x) ,

∂t I (t, x) = θE(t, x) − λI (t, x) − δ I (t, x) ,

∂t R(t, x) = λI (t, x) ,

∂t D(t, x) = δ I (t, x) ,

(2)

together with suitable initial conditions. Comparing to (5), in the incidence function
we subtracted from μ(x) the proportion D(t, x) of dead individuals since we expect
deaths to have no influence in the incidence term.

For every x ∈ S
1 we have

S(t, x) + I (t, x) + E(t, x) + R(t, x) + D(t, x) = μ(x) , (6)

while (2) implies

∂t (S(t, x) + E(t, x) + I (t, x) + R(t, x) + D(t, x)) = 0 ,

confirming that the total population remains constant. In this setting, contrary to some
of the cited papers in the introduction, there is no movement of people due to the
epidemic mechanism.

In our numerical analysis, we will consider two main cases: β in (5) constant in
μ(x), analysed in Paeng and Lee (2017) or β having a nonlinear dependence in μ(x)
as proposed in Hu et al. (2013). The case β constant in μ(x) coincides with the true
mass action or proportioned mixing incidence where μ(x) replaces the total number
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of individual N . This case can be heuristically derived from a constant contact rate not
depending on the size of the population. Hence the per-link contact rate C

μ(x) decreases
with larger density. However, due to (6) an increase in μ(x) does not necessarily
implies an increase in the number of susceptible individuals. In the present paper we
consider the case where β explicitly depends on μ(x) as in (5) and in particular shows
a nonlinear dependence as argued in Hu et al. (2013), since empirical data of human
and wildlife diseases indicate that a nonlinear function may work better at modelling
transmission rates when looking at the full spectrum of densities. However, the case
where β is constant is also allowed in our framework, since as argued in Liu and
Stechlinski (2012), Hethcote (2000) it seems more consistent with the known result
that daily contact patterns are independent of community size.

For simplicity, we normalise here the total population to 1. This implies that μ is a
probability density, so that

∫

S1
μ(x)dx = 1 ,

if, in a population of size N distributed in space according to μ(x), one wants to write
the dynamics for the actual numbers S(N ) = NS, E (N ) = NE, I (N ) = N I , R(N ) =
N R, D(N ) = ND of individuals in each class one finds, for example in the first
equation of (2),

∂t S
(N )(t, x) = −β(N )

(
μ(N )(x) − D(N )(t, x)

) S(N )(t, x)

μ

(N )

(x)

−D(N )(t, x)
∫

S1
Kχ (x, y)I (N )(t, y)dy,

where μ(N )(x) = Nμ(x) and β(N )(z) = β
( z
N

)
. The other equations in (2) can be

derived similarly.
The change of variables gets slightly more complicated if we allow for demography,
i.e. rates of births and deaths not due to the disease. We choose not to consider this
extension here to simplify our exposition and presentation of numerical results.

2.2 TheMean Field Gamemodel for the economy

The MFG whose stationary solution provides the exogenous spatial distribution for
our epidemiological model is

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρV (t, x, h) = 1
2σ 2h2∂2hhV (t, x, h) + 1

2 ε2∂2xx V (t, x, h)

+H1
(
x, h, ν(t, h, x), ∂hV (t, x, h)

) + H0(∂x V (t, x, h)) ,

∂tν(t, x, h) = 1
2 ε2∂2xxν(t, x, h) − ∂x

(
∂pH0(∂x V (t, x, h))ν(t, x, h)

)

+ 1
2σ 2∂2hh(h

2ν(t, x, h)) − ∂h
(
∂pH1(x, h, ν(t, x, h)), ∂hV (t, x, h)ν(t, x, h)

)
.

(3)
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where t denotes time, x position in S
1 and h human capital. Even though several

approaches are possible when measuring human capital in practice, in this paper we
only focus on the theoretical side of the problem.To explain themeaningof all the terms
appearing in (3) we need to discuss how one obtains such a system of PDEs. Indeed it
arises as a continuummacroscopic description of a discrete (microscopic) multi-agent
systemwhose features we outlined in the introduction: in such a system agents interact
through their human capital and decide how to move in space and how to invest their
current human capital in order to maximise a given utility function. The influence
of nearby individuals on the dynamics of human capital constitutes an instance of
spatial spillover on the accumulation and consumption of human capital. The system
of PDEs encodes the balance between the effects on optimisation of a distribution
ν(x, h) (described by the first equation in (3) which is a Hamilton–Jacobi–Bellman
equation) and the effects on ν of adopting a strategy V (described by the second
equation, a Fokker-Planck equation that is non-local due to taking interactions into
account).
The MFG system is symmetric, in the sense that it arises from a model in which both
the interaction function and the utility function are the same for each agent, and agents
are thus exchangeable (see Sect. 2.2.1 below). Interaction is weak, meaning that no
agent has a strong influence on the other agents’ choices but the overall distribution
has an impact on the optimisation problem of each agent. This effect is encoded by
a spatial interaction term consisting of a weighted average of the human capital of
nearby agents.
Heuristically, theMFGsystem is linked to themulti-agent systemnot only as a discrete-
to-continuum approximation of the dynamics, but also in that solutions to the mean-
field game are approximate Nash equilibria for the model with a finite (but large)
number of agents; this feature has been rigorously proved only in simple cases (much
simpler than the one we deal with herein) but is now widely accepted in economics
and mathematical modelling the idea that MFGs are the correct tool to study situations
as the one we are describing here, see for example Achdou et al. (2014).

Well-posedness of the mean-field game and the numerics developed to find a sta-
tionary solution are discussed in Ghilli et al. (2023); here we briefly describe the
optimisation problem for the system of finitely many interacting agents, we link it
formally to the mean-field game and comment on the numerical methods used to find
μ.

2.2.1 The discrete multi-agent model

In what follows we denote by P2 the space of Borel probability measures on S
1 ×

R+ with finite second moment. Throughout this paper one can always assume that
probability measures are absolutely continuous with respect to the Lebesgue measure
on [0, 1] × R+, implying that they have a density.

We consider a finite number N ∈ N of agents, indexed by j = 1, . . . , N ,
whose positions and human capitals at time t ≥ 0 are denoted respectively by x j (t)
(mod 1) ∈ S

1 and h j (t) ∈ R+, j = 1, . . . , N .
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Each agent has control over her own position, choosing the control process v j (t)
in the equation

{
dx j (t) = v j (t)dt + εdZ j (t) for t ≥ 0,

x j (0) = x j,0,
(7)

where

(i) ε > 0 is the noise intensity,
(ii) Z j is a standard 1-dimensional Brownian motion and
(iii) x j,0 are random variables taking values in S

1, independent and identically dis-
tributed with some distribution μ1

0, that we assume to be absolutely continuous
and to have a finite second moment.

The spatial dynamics of the agents affect their human capital, which evolves according
to the equation

{
dh j (t) = f j (t)h j (t)α h̄− j (t)χ − ζh j (t)dt + σh j (t)dWj (t) for t ≥ 0,

h j (0) = h j,0,
(8)

where

(i) α, χ ∈ (0, 1) are constants such that α +χ < 1. This assumption means that we
treat the case of decreasing returns to scale;

(ii) f j (t) ∈ [0, 1] is the “investment in education” and can be chosen by the agent; the
motivation for introducing f is that part of the agent’s human capital, namely
f j (t)h j (t)α , is used to increase the human capital itself (here h j (t)α is the
“personal income”), while the remaining part (1− f (t))h j (t) is used to produce
final goods (see (10) below).

(iii) ζ > 0 is the depreciation rate of human capital;
(iv) σ > 0 is the intensity of the noise, which is here chosen as a multiplicative noise

to ensure the positivity of the solutions;
(v) Wj is a standard 1-dimensional Brownian motion;
(vi) h j,0 are random variables taking values in R+, independent and identically dis-

tributed with some distribution μ2
0, that we assume to be absolutely continuous

and to have finite second moment;
(vii) h̄− j (t) is an average depending on x j (t):

h̄− j (t) :=
∑

k �= j η
(
dS1

(
xk(t) − x j (t)

))
hk(t)

∑
k �= j η

(
dS1

(
xk(t) − x j (t)

)) , (9)

where the function η encodes the interaction between agents and is given by

η : [0, 1/2] → R+

η(x) = 1 if x ≤ ε1, η(x) = 0 if
1

2
− ε2 ≤ x ≤ 1

2
,
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where 0 < ε1 < 1
2 ,

1
2 − ε2 > ε1, and η(x) is continuous and affine between ε1 and

1
2 − ε2; in this way η is Lipschitz continuous on its domain [0, 1/2].

The function η should be thought of as a smooth version of the indicator function
of a right-neighbourhood of 0; indeed η

(
dS1 (x − y)

)
equals 1 whenever x and y are

closer than ε1, and equals 0 when x and y are far from each other. Therefore the
interaction term h̄ j should be understood as follows: at each time t , agent j’s human
capital benefits mostly from that of all other agents that at time t are located within ε1
from her. The value of human capital coming from this interaction term is divided by
the number of agents that are located within ε1 from her; this mean-field-type scaling
is necessary to ensure that the interaction term does not blow up when the number of
agents increases.

All initial conditions x j,0 and h j,0 and the Brownianmotions Z j andWj are defined
on some common probability space (
,F ,P). All theBrownianmotions are supposed
to be independent.

Both the equations for x j and h j depend on controls (respectively v j (·) and f j (·));
for each j , the aim of agent j is to choose such controls as to maximise the gain
functional

J j
(
x0, j , h0, j ; v j (·), f j (·)

) :=
E

[∫ +∞

0
e−ρt

(
u

(
[(1 − f (t))h j (t)

α]1−γ h̄− j (t)
γ A

(
x j (t)

))

−a(v j (t))
)
dt

]
, (10)

whereEdenotes expectationwith respect toP. The parameters and functions appearing
in the definition of J j are:

(i) ρ > 0 is the discount factor;
(ii) u is the utility function, which takes the constant relative risk aversion form

u(z) = z1−p

1 − p
(11)

for some p ∈ (0, 1).
(iii) −a(v(t)) represents the cost for the energy employed in the displacement;
(iv) [(1− f (t))h j (t)α]1−γ represents the final goods produced thanks to the human

capital;
(v) h̄ j (t)γ is the spatial spillover on consumption;
(vi) A(x) represents the local amenities, that is, location-dependent features that may

make agents want to move also independently of interactions in human capital;
here we choose A(x) = 1

2 sin
(
2π

(
x − 1

4

)) + 1.

Each agent’s choice of controls determines the general dynamics of all agents,
because of the interaction term h̄− j .
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2.2.2 The Mean-Field Game system

The multi-agent system described above is symmetric, in the sense that agents are
indistinguishable in their contribution to each other’s human capital and they are all
maximising the same game functional; thus it is reasonable to look for Nash equilibria
of the system. Nash equilibria are however impossible to compute exactly for a system
with a large number of agents. Therefore a standard way to investigate equilibria is to
take the limit as the number of agents goes to infinity and to study the limiting system.
A solution to such limiting system will then approximate a Nash equilibrium for the
original multi-agent system when the number N of agents is sufficiently large. The
limiting system is a mean-field game, that is, it is made of an HJB equation coupled
with a FP equation; in our model, the presence of the interaction term h̄− j both in the
dynamics and in the gain functional makes the MFG fully coupled.

Towrite down theMFG it is convenient to introduce the function F : S1×P2 → R+
defined as

F(x, ω) =
∫

S1×R+ η
(
dS1(x, y)

)
kω (dy, dk)

∫

S1×R+ η
(
dS1(x, y)

)
ω (dy, dk)

; (12)

in this way the interaction term h̄− j (t) takes the form

h̄− j (t) = F
(
x j (t), S(t)

)

where S(t) is the empirical measure of the system, defined as the sum of Dirac deltas

S(t) = 1

N

N∑

j=1

δ(x j (t),h j (t)) .

We now define the Hamiltonians of the two coupled control problems in the multi-
agent system, one for the control v and the other for the control s. H0 is defined
as

H0 : R → R

H0(p) = sup
v∈K

{−a(v) + vp} ;

H1 instead is defined as

H1 : R+ × S
1 × R+ × P2 × R → R

H1(t, x, h, ω, q) =
sup

f ∈[0,1]

{
( f hαF(x, ω)χ − ζh)q + u

(
A(x)[(1 − f )hα]1−γ F(x, ω)γ

)}
,
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We thus eventually get to the anticipatedMFG system associated to the optimal control
problem (10),

⎧
⎨

⎩

ρV = H1
(
x, h, ν, ∂hV

) + 1
2σ 2h2∂2hhV + 1

2 ε2∂2xx V + H0(∂x V ) ,

∂tν = 1
2σ 2∂2hh(h2ν) + 1

2 ε2∂2xxν − ∂x
(
∂pH0(∂x V )ν

) − ∂h
(
∂pH1(x, h, ν, ∂hV )ν

)
,

(13)

whose solution is a couple (V , ν) of functions of the three variables t > 0, x ∈ S
1 and

h > 0 such that for every t > 0 ν(t, ·, ·) is a probability density on S
1 × R+. Given

ν, the function V solves the first PDE above in the classical sense, while given V the
function ν solves the second PDE above in the sense of distributions. The system is
equipped with an initial condition for ν, namely μ0(x, h), such that its marginal with
respect to x is μ1

0 and its marginal with respect to h is μ2
0. Moreover we need a set

of boundary conditions for the h-boundary {h = 0}; we impose Dirichlet boundary
conditions, namely

V (t, x, 0) = 0, ν(t, x, 0) = μ̄(t, x) for every (t, x) ∈ R+ × S
1

where for every t > 0 μ̄(t, ·) is a bounded probability density on S1 with finite second
moment; this forces the compatibility condition

μ0(x, 0) = μ̄(0, x).

For every fixed function R+ � t 	→ μ(t) ∈ P2 the first equation in (13) is the HJB
equation for the optimisation problem of a representative agent that interacts with a
continuum of agents whose locations and human capitals are distributed according to
μ; the value function for such optimisation problem is then a solution of such HJB
equation. The second equation in (13) instead describes the time evolution of the space
and human capital distribution of a continuum of agents, given a solution V of the first
equation.
We stress that the Hamiltonian H1 is not separable with respect to the distribution and
the gradient of the value function.

As explained in the introduction of the paper and in the first paragraph of Sect. 2,
in linking the dynamics of any space-time distribution of people to the dynamics of
the epidemic we are forced to consider time-invariant distributions; we, therefore, use
as our a priori spatial distribution the x-marginal of the μ-component of a stationary
solution to (13). Such marginal is a probability density on S

1.
We underline that here we find the stationary solution numerically. To rigorously

prove existence and uniqueness of a stationary solution to theMFG system introduced
above is still a mathematical challenge, due to the following reasons. First of all
the typical assumptions under which existence and uniqueness have been proved so
far are that the Hamiltonian in the HJB equation is separable with respect to the
distribution of the agents and the gradient of the value function and there is a sort of
monotonicity of the coupling. As already stressed above in our case we do not have
separability of the Hamiltonian. Then since the standard condition of monotonicity
requires separability,we cannot apply the standard theory for existence anduniqueness.
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In the stationary case the only availableworks up to our knowledge for existence results
for non separable Hamiltonians are Gomes and Mitake (2015), Gomes et al. (2014),
Ferreira and Gomes (2018): in Gomes et al. (2014) very particular Hamiltonians are
considered which do not cover our case and in Ferreira and Gomes (2018) existence
is studied induced by monotonicity. In the time dependent case, the only available
works up to our knowledge for existence results for non separable Hamiltonians are
Cirant et al. (2020), Ambrose (2022), Gomes and Voskanyan (2015), Achdou and
Porretta (2018). We stress that in Cirant et al. (2020), Ambrose (2022), Gomes and
Voskanyan (2015) existence is proved under smallness conditions on the time horizon.
Up to our knowledge, the only available work in the time dependent case without
any restriction on the time horizon is Achdou and Porretta (2018). A particular case
worth mentioning of non separable Hamiltonians which has been studied recently is
that of congestion, see Gomes and Mitake (2015) (stationary case) and Gomes and
Voskanyan (2015), Achdou and Porretta (2018) (time dependent case). However in
Gomes and Mitake (2015) existence is proved under the main assumption that the
Hamiltonian is quadratic, whereas in Gomes and Voskanyan (2015) the authors still
domake structural assumptions such asmonotonicity on part of theHamiltonian and in
Achdou and Porretta (2018) the authors assume a growth condition on the cost function
which penalizes the motion where the distribution density is higher. The assumption
of the smallness of the time horizon in the time dependent case in the above cited
papers gives even more insight into the difficulties that one can get in studying the
stationary case, which is inherently linked to the long-time stability of solutions of the
time-dependent associated case.

2.2.3 Numerical solution to the steady state problem

In this section, we study the steady state of the system of equations (13) from a
numerical viewpoint. Therefore we consider the following problem

{
ρV = H1(x, h, μ, DhV ) + 1

2σ 2h2D2
hhV + 1

2 ε2D2
xx V + H0(DxV ) in S1 × R++

1
2σ 2∂2hh(h2μ) + 1

2 ε2∂2xxμ = ∂x
(
DpH0(DxV )μ

) + ∂h
(
DpH1(x, h, μ, DhV )μ

)
in S1 × R++

(14)

with Dirichlet boundary conditions as in the non stationary case

V (x, 0) = 0, μ(x, 0) = μ̄(x) in S1.

The problem of finding numerical solutions to MFGs is in general very challenging.
For a full discussion of the methodology applied to find numerical solutions to (14)
we refer to Ghilli et al. (2023). In this manuscript, we limit ourselves to a brief outline
of the main elements. The numerical discretization is performed by means of classical
finite difference method. However, for MFGs problem one has to pay special attention
to the way the discretization of the Hamiltonian is performed. In particular in order
to ensure consistency of the discretization scheme we adopted the Kushner-Dupuis
approach, see Achdou and Capuzzo-Dolcetta (2010) and also (Achdou et al., 2020,
Chapter 2.) for a more general summary on the topic. The choice of an appropriate
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Table 1 Parameters of system of equations (14)

Parameter Value Parameter Value

L (length of the torus) 1 α 0.5

ε1 0.3 χ 0.1

ε2 0.1 γ 0.15

Hmax 15 σ 0.7

A(x) 1
2 sin(2π(x − 1

4 )) + 1 ζ 0.15

ε 0.5 ρ 0.1

truncation of the domain R+ for the h variable is another difficult topic that one has
to take care of. Numerical simulations in fact are performed on the truncated domain
S
1 × [0, Hmax ] where the upper bound value Hmax has to be imposed artificially. In

particular, we had to adopt an iterative strategy in the choice of Hmax by computing a
sequence of solutions with increasing Hmax up until the bulk of the distribution of μ

was fully enclosed in the truncated domain. See Table 1for a full list of the parameters
used, including the threshold Hmax .

One of the key parameters characterizing the stationary solution of the MFG is
the function A(x), x ∈ S

1, describing the distribution over space of local amenities.
In fact, in the stationary case, the only source of spatial heterogeneity is encoded
in the exogenous function A(x). This is not true in general when studying the time
evolution of the system out of equilibrium, in which the initial distribution plays an
important role in determining the spatial distribution of agents at any given period of
time t . However, when studying the system at equilibrium the influence of the initial
configuration vanishes as t grows to +∞ and the only remaining factor affecting the
shape of the solutions has to be accounted to the function A. In particular, one can
see that in absence of heterogeneity, i.e. if A(x) is uniform, solutions to system of
equations (14) are translation invariant on the space variable. That is if one assumes
that (V (x, h), μ(x, h)) is a solution to the stationary problem, the same holds for(
V (x + x ′, h), μ(x + x ′, h)

)
for any x ′ ∈ S

1. On the contrary, when A(x) is not
uniform, the spatial distribution of agents is subject to a positive influx from local
exogenous amenities. In particular one can imagine that being the objective functional
(10) monotone increasing with respect to the function A, each agent will relocate
trying to obtain the best possible level (net of reallocation costs) of local amenities,
that is where A(x) is higher. Figure 1shows the equilibrium solution to (14) when the
function A has been taken to have a single maximum peak at x = 0.5. We can see
in the central panel how the bulk of the population concentrates more in those areas
corresponding to higher spatial amenities (x ≈ 0.5), as well as around an intermediate
value (h ≈ 5) along the h variable. The optimal investment rate exhibits a decreasing
behaviour with respect to the h variable, and even more reaches the value of zero in
the area of the domain corresponding to highly educated individuals living within the
central large city. We see in particular how agents distribute following the same shape
as argued in the previous lines. See moreover Table 1 for a full list of parameters,
including the function A.
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Fig. 1 Numerical equilibrium solution to system of equation (14). The left panel shows the plot of the value
function V (x, h) (blue), the one in the middle is that of the Fokker–Plank (right) and the rightmost one
shows the optimal investment (red) (colour figure online)

The case shown in Fig. 1 is precisely the case we had in mind, and that we will
also employ in the next section while discussing the spatial epidemic model (2). In
particular, we imagine that having A(x) with one single peak represents the presence
of a single and large city whose centre is located in correspondence of the maximum
of A. This idea is reinforced by the shape of μ(x, h) as shown in Fig. 1 where the bulk
of the population concentrates in the middle.

3 Numerical results on the spatial SEIRDmodel with heterogeneous
distribution

In this section, we present some qualitative results related to the SEIRD model (2)
when the spatial distribution of agents is taken as the space marginal of the stationary
distribution (14).Wewill see,with the aid of numerical simulations, how thepopulation
density plays a crucial role in the evolving of the epidemic through time.

The choice of parameters plays a key role in the evolution of epidemiological
models. From the theoretical point of view, different choices may lead to different
qualitative behaviour in the equilibrium, exhibiting a phenomenon of phase transition
for the steady state. At the same time, different sets of parameters describe also specific
characteristics of different diseases, as well as of that of the same disease in different
countries. Severalworks,manyofwhich appeared in recent years, focus on the problem
of statistically estimating those parameters from available data.

In the present paper we don’t aim to represent a real-world scenario, since we are
still limited by the current level of mathematics and numerical capabilities, but to
bring a methodological contribution. However, in order to be as close as possible to
reality, we decided to consider the case of COVID-19 for the US, hence considering
a set of epidemiological parameters as close as possible to the scenario we have in
mind. As mentioned above, a plethora of papers are present on the topic of parameter
estimation, but we take the work (Korolev 2021) as a reference, therefore taking
(β, a, γ, δ) = (0.9, 0.25, 0.075, 0.025) (from the case σ = 1/4, γ = 1/10 inKorolev
2021). See moreover Table 2for a full list of parameters.
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Table 2 Parameters of system of
equations (2)

Parameter Value Parameter Value

θ 0.25 χ 0.04

λ 0.075 I0 0.01

δ 0.025 rI ,0 0.1

β (when constant) 0.9 β(μ) 0.9
√

μ(1+μ)√
2

Fig. 2 The function A(x) (orange) vs. the spatial distribution of agentsμ(x) (blue) obtained from the Mean
Field Game (colour figure online)

As previously mentioned in Sect. 2.2 the shape of A dictates the population distri-
bution along the space variable. In Fig. 2we clearly see this fact, by noticing the shape
of the function μ(x). We see how the spatial distribution of agents resembles the
shape of A(x). This accounts for the fact that the objective function (10) is monotone
increasing in the function A with respect to the position of agents, and reflects the
tendency of agents to concentrate more where local amenities are more present. Since
the bulk of the mass of the population concentrates around the point 0.5, in order to
better appreciate the effects of the population distribution, we take an initial configu-
ration for the SEIRD model (2) where the outbreak of the epidemic origins from the
outskirts. Hence, we set the initial condition to have a small cluster of infects centred
around the point 0.3 in the class I . Namely we set

S(0, x) = μ(x) − I01Bε(0.3,r0,I ), E(0, x) = 0,

I (0, x) = I01Bε(0.3,r0,I ), R(0, x) = 0, D(0, x) = 0, ∀x ∈ S1

where 1Bε(0,r) is a suitable mollification of the indicator function in order to have a
smooth initial condition, and the parameters I0 and rI ,0 are set to the values 0.01 and
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0.1 respectively. In particular, define

ϕ(x) =
{
exp

(
− 1

1−|x |2
)

/Cϕ if |x | < 1

0 if |x | ≥ 1
, ϕε(x) = 1

ε
ϕ

( x

ε

)
,

where Cϕ is normalisation constant introduced so that ϕ integrates to one, and define

1Bε (c,r)(x) = (1B(c,r) ∗ ϕε)(x) ∀c, r .

Notice that the parameter ε > 0 is just used as a regularization parameter for the
indicator function. Also, it can be taken arbitrarily small since the function 1Bε(0,r)(x)
is of class C∞ as soon as the parameter ε is positive, without any further assumption
on its magnitude. Of course, many different initial conditions are possible. The one
that we selected is chosen so that the initial cluster, centre in x = 0.3, is not located
in the location of maximum density, x = 0.5. Moreover, being the model defined
on the 1-dimensional torus, taking the initial cluster of infected to the farthest point
from the peak of the agent distribution would make the Euclidean distance between
the two points identical moving in either of the two possible directions (left or right).
Therefore, we selected an initial condition which tries to avoid any kind of misleading
results due to spatial symmetry.

Concerning the interaction kernel Kχ in equation (2) we recall that it describes the
fact that people may get in contact not only with those individuals located in their same
position but also from the neighbouring areas. In particular, we consider the function
K̃ as a suitable mollification of the hat function H(x), defined as

H(x) =
{
1 − |x | if |x | < 1,

0 otherwise.

Then we rescale the kernel K̃ as

1

χ
K̃

(
x

χ

)

thus keeping the total area of the kernel untouched while changing the radius at which
infections can be transmitted. This way of rescaling is fundamental in order to dis-
entangle the effects of the parameter χ , which measures the radius of interaction,
from the function β (parameter in case it is taken constant), which measures the trans-
mission rate. In all the cases that we consider we set χ = 0.04. Since our model is
defined on the periodic one-dimensional space S1 this value has no particular meaning
in absolute terms. However, one important point to remark is that the selected value
is chosen to be one order of magnitude smaller than the radius of interaction R of
the Mean Field Game system (see Table 1). This reflects the fact that information,
being, in general, an immaterial good, can travel much further (per unit of time) than
viruses or people. Hence the exchange of information that agents receive, in the form
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Fig. 3 Space–time evolution of the SEIRD model (2) with uniform population distribution μ(x) ≡ 1. The
horizontal axis represents the space variable, while time is shown vertically

Fig. 4 Space–time evolution of the SEIRDmodel (2) with spatial distributionμ(x) obtained from theMean
Field Game system (14). The horizontal axis represents the space variable, while time is shown vertically

of spatial spillovers from other individuals, can be seen at a much higher distance than
the radius of infection, therefore supporting a higher value of R with respect to χ .

We simulate the SEIRD model (2) by means of classical finite difference method.
We run the model for a time period of 100 days, and analyse the result in a space-time
plot, see Figs. 3and 4. We first start by looking at the effect that population density
has on the evolution of the pandemic. Figure 3 shows the case where the spatial
distribution of population is neglected, and a completely flat distribution is taken,
while the subsequent figure, Fig. 4, describes the same scenario but with population
density as obtained from theMean Field Game. In both cases β is constant.We see that
the infection originates around x = 0.3 and briefly spreads to neighbouring locations.
The farthest locations from where the infection outbreaks are the last ones to receive
the contagious wave of infected, around x ≈ 0.8. The final configuration approaches
the uniformity in space in terms of deaths. The value of β is kept homogeneous as
in Table 2. In Fig. 4 the infectious disease again originates around x = 0.3. We can
appreciate from the graph how the diffusion of the virus favours the locations where
the total population is higher. The final configuration shows the same behaviour. The
value of β is kept constant as in Table 2 to the value 0.9. Finally, we also consider
the case where the infection rate β is itself dependent on the density μ, see Fig. 5 .
This choice is not new and has been explored in Hu et al. (2013) taking into account
the average contact rate each individual has. The rationale behind it is the following:
the number of contacts of an average person has a direct impact on the characteristic
infectious rate of a given disease (like COVID-19 as in our case). Therefore, it is
reasonable to assume that, since the number of contacts per individual increases on
average, as a function of the population density, so does the infection rate β. Therefore,
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Fig. 5 Space–time evolution of the SEIRDmodel (2) with spatial distributionμ(x) obtained from theMean
Field Game system (14) and β depending on μ(x). The horizontal axis represents the space variable, while
time is shown vertically

we introduce the function β(μ). Following (Hu et al. 2013, p. 129) we take

β(μ) = 0.9

√
μ(1 + μ)√

2
.

The choice of the constants appearing in the functionβ(μ) has the following reasoning:
the factor

√
2 is introduced so that, in the case of a uniform distribution for μ (in our

case μ(x) ≡ 1), then the right part of the formula reduces to the factor 1. By this
choice, the factor 0.9 in front makes it so that when μ(x) ≡ 1 the value of β(μ)

coincides with the one used in the case where the distribution of agent is assumed
uniform across the space, that is β = 0.9, see Fig. 3 for numerical simulations in that
case. In Fig. 5 with respect to the scenario with constant β here we see the differences
in the evolution of infected. In particular, the spreading of the disease is much more
localised around the centre of the graph, where not only the population density is
higher, but also the infection rate increases. The opposing effect happens closer to
x = 0 (analogously x = 1 due to periodicity). See in particular panels corresponding
to classes E and I .
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