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Abstract: Tectonic, paleoenvironmental, and paleoclimatic unstable conditions preceding the onset
of the Messinian Salinity Crisis (MSC) highly affected marine life. Changes in calcareous plankton
association are overall registered in the Mediterranean. They consist of a general transition from
abundant and well-diversified planktonic associations to strictly oligotypic assemblages that precede
their total disappearance at the onset of evaporitic precipitation. In this work, an accurate quan-
titative analysis of calcareous plankton, both foraminifers and nannofossils, has been carried out
in the Torrente Vaccarizzo Section of Sicily (southern Italy). The aim is to independently define a
chronostratigraphic pattern of bioevents preceding the MSC in the absence of magnetostratigraphic
or radiometric constraints. The fluctuating abundance of the genus Orbulina fits well with the 100 ky
Eccentricity maxima, and it is successfully applied to build an astronomically calibrated age-model
for the section. On this basis, all the biohorizons have been recalibrated and discussed with regard to
the previous literature. Abundant influxes of selected species demonstrated to be of local significance
since they are highly affected by paleoenvironmental and paleoclimatic conditions. A chronological
sequence of foraminifer and nannofossil events marks the onset of the MSC with a derived age
of 5.957 My, which agrees well with previous findings from other Mediterranean sections. This
methodology and the new biostratigraphic events may be useful for future studies on pre-evaporitic
successions of the Mediterranean.

Keywords: pre-evaporitic deposits; Messinian Salinity Crisis; calcareous plankton; cyclicity

1. Introduction

Several studies have already been performed on pre-evaporitic deposits (e.g., Tripoli
Formation in Sicily, Italy) to understand the complex climatic and tectonic events that
preceded the Messinian Salinity Crisis (MSC) in the Mediterranean. According to the wider
literature available so far, the pre-evaporitic successions are linked to climatic, oceano-
graphic, and environmental variations [1] with the input of tectonic and/or diagenetic
processes [2]. Several high-resolution works indicate that these sequences are related to
orbital variations ([3] and references therein, [4]).

Deposition took place along a convergent margin within deformed basins, which
recorded a progressive deterioration of environmental conditions at the onset of Messinian
times [5–10]. Additionally, during Messinian and Plio-Pleistocene times, cyclic episodes of
anoxia led to the deposition of organic-rich deposits (sapropels; [11,12]).
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The sapropels (organic-rich layers) were likely deposited under conditions of mini-
mum precession (maximum summer insolation), reflected in the Mediterranean basin by
an increase in precipitation and runoff, which may have driven an increased stratification
of surface waters. The marls are deposited during the subsequent rise in the precession
index (reduction in summer insolation) and are reflected by a dry and cold climate, which
corresponds to an increase in evaporation. This resulted in the mixing and reoxygenation
of deep and bottom waters, reducing the preservation of organic matter [13–15]. Thus,
it explains the low record of Total Organic Carbon (TOC), high content of Total Inorganic
Carbon (TIC), and reducing conditions reflected by sulfur content >2% [7]. However, this
lithological pattern is not consistent during the late Miocene along the whole Mediterranean:
in the eastern part of the basin, sapropels are replaced by diatomites [4,16–21], while in the
western side, the alternation of sapropel/marl and diatomite layers is dominant, like in the
Sorbas section [11,22].

The present study focuses on the Torrente Vaccarizzo (TVCZ) Section from Sicily main-
land. It shows exceptional metric-decimetric to millimetric lithological cyclicity highlighted
by sapropel layers [23–25]. Detailed analysis on calcareous plankton, both foraminifers and
nannofossils, important components of the pre-evaporitic successions, is useful for bios-
tratigraphic and paleoceanographic/paleoenvironmental reconstructions [8,11,22,26–31].

However, a firm chronostratigraphic and biostratigraphic record of the Messinian
pre-evaporitic interval in the Mediterranean may be hampered by the lack of chronos-
tratigraphic data (i.e., magnetostratigraphic and radiometric dating) and/or the absence
or scarceness of biostratigraphic markers due to the deterioration of the environmental
conditions. Additionally, changes in the environmental conditions linked to local tectonics,
river runoff, current circulation, and productivity may be peculiar to each sub-basin and
therefore influence calcareous plankton assemblages. Therefore, biohorizons may retain a
local significance.

The present study explores the use of abundance variation of calcareous plankton,
recording an astrochronological cyclicity, to build an astrochronology-based age-model in
the absence of other time constraints.

2. Geological Setting and Study Area

The study area is located in central Sicily (southern Italy) within the Caltanissetta
Basin and is delimited by the villages of S. Caterina Villarmosa (west) and Villarosa (east).
The Caltanissetta Basin [23,24,32,33] is made of a series of perched sub-basins (e.g., Corvillo,
Pasquasia, etc.) developed on top of the orogenic Apenninic-Maghrebian Chain [34,35].
Here, the deformed substratum is made of Cretaceous-Oligocene Varicoloured Clays and
Numidian Flysch quartz-arenites and clays (Figure 1). Thrust-top sedimentation started
in the late Miocene with the deposition of deltaic silts, shallow-water fine sands, and
prodelta marine clays of the Terravecchia Fm. The latter are usually shaped in badlands
and at places overlaid by diatomaceous laminites of the Tripoli Fm. It consists of an al-
ternation of clayey marls, laminated diatomites, and lime mudstones, forming the cyclic
transitional deposits towards the onset of the Messinian Salinity Crisis (MSC). The suc-
cession, indeed, is followed by evaporitic deposits: gypsum, halite, and K- and Mg-salts,
precipitated in the basin depocenters and passing laterally to carbonates, Calcare di Base
Fm. (CdB) along the flanks of the basin margins [23,32–36]. The genesis of the CdB is
either evaporitic or microbialitic/bacterial related [23,37–40]. Additionally, in the literature,
the brecciated nature of the CdB is still a matter of debate. It has been interpreted as the
product of in situ karstic/dissolution [23,32,33,36,39,41,42] and/or clastic re-sedimentation
processes [38,43–46]. Despite the diverse facies, the CdB dominates the First Cycle of evap-
orites in outcrops [36] along with the gypsum, while thick halite layers and Mg- and K-salts
are mainly preserved in the subsurface. There are several extractive salt mines among the
districts of Agrigento, Caltanissetta, and Palermo (e.g., Petralia) within the Caltanissetta
Basin. During the Messinian, an Erosional Surface (MES), linked with a drastic sea-level
fall of the Mediterranean [36,38,43,47], separated the older First Cycle from the younger
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Second Cycle evaporites (“Upper Evaporites” of [48]). The latter is made of gypsum, in-
terbedded with detrital mud and gypse-arenites [33,36,49]. Evaporites are capped by the
pelagic chalks and marls of Trubi Fm. in Pliocene time, testifying to the restoration of open
marine conditions [50]. The succession passes upwards into an alternation of marls and
calcarenites of the Enna Fm., marking the Plio-Pleistocene forced regression and the final
emergence of the area [33,51–53].

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 3 of 23 
 

 

First Cycle of evaporites in outcrops [36] along with the gypsum, while thick halite layers 
and Mg- and K-salts are mainly preserved in the subsurface. There are several extractive 
salt mines among the districts of Agrigento, Caltanissetta, and Palermo (e.g., Petralia) 
within the Caltanissetta Basin. During the Messinian, an Erosional Surface (MES), linked 
with a drastic sea-level fall of the Mediterranean [36,38,43,47], separated the older First 
Cycle from the younger Second Cycle evaporites (“Upper Evaporites” of [48]). The latter 
is made of gypsum, interbedded with detrital mud and gypse-arenites [33,36,49]. 
Evaporites are capped by the pelagic chalks and marls of Trubi Fm. in Pliocene time, 
testifying to the restoration of open marine conditions [50]. The succession passes 
upwards into an alternation of marls and calcarenites of the Enna Fm., marking the Plio-
Pleistocene forced regression and the final emergence of the area [33,51–53]. 

 
Figure 1. (a) Location of Sicily and main structural domains: Apenninic-Maghrebian Chain, Gela-
Catania Foredeep, and Hyblean Foreland. (b) Simplified geological map of the central Sicily 
Caltanissetta Basin with section location (red star). After [7,36,54]. 

The overall sedimentary succession is highly affected by thrusts and folds, with 
thrust anticlines on the hanging wall (basin margins) and footwall synclines (deep basins). 
Here, we focus on the Tripoli Fm. cropping out along Torrente Vaccarizzo, close to 
Villarosa village (EN). The section is located on the northwestern limb of the Mucciarello 
anticline, plunging north-eastward. 

3. The Stratigraphy of the TVCZ Section 
According to the available literature, the thickness of the Tripoli Fm. varies from tens 

of meters, in the depocenter of some perched basins (e.g., Gaspa, Pasquasia), to almost 
zero, in the marginal high-standing areas (e.g., Sambuco). Four are the main lithologies 
that generally alternate within the Tripoli succession [23]: (i) clays and marls; (ii) 
carbonaceous beds; (iii) diatomaceous laminites; (iv) lime mudstones.  

The study area lies along the southern bank of the Vaccarizzo Stream. Here, a 27-
meter-thick measured section of Tripoli Fm. crops out, and it is overlain by more than 30 
meters of CdB beds. The strata show an average strike and dip of N 215°/50° along the 
northwestern flank of the Mucciarello Anticline [36], which plunges northeastward.  

The developed stratigraphic log (Figure 2) can be divided into four different sectors: 
(i) In the first 6.5 meters, dark grey to grey silts are dominant and related to the topmost 

part of the Terravecchia Fm. Their maximum thickness is about 2 m. In particular, the 
bottom part (0–4 m) is characterized by the alternation of black clays (sapropels), silts, 

Figure 1. (a) Location of Sicily and main structural domains: Apenninic-Maghrebian Chain, Gela-
Catania Foredeep, and Hyblean Foreland. (b) Simplified geological map of the central Sicily Caltanis-
setta Basin with section location (red star). After [7,36,54].

The overall sedimentary succession is highly affected by thrusts and folds, with thrust
anticlines on the hanging wall (basin margins) and footwall synclines (deep basins). Here,
we focus on the Tripoli Fm. cropping out along Torrente Vaccarizzo, close to Villarosa
village (EN). The section is located on the northwestern limb of the Mucciarello anticline,
plunging north-eastward.

3. The Stratigraphy of the TVCZ Section

According to the available literature, the thickness of the Tripoli Fm. varies from tens
of meters, in the depocenter of some perched basins (e.g., Gaspa, Pasquasia), to almost
zero, in the marginal high-standing areas (e.g., Sambuco). Four are the main lithologies that
generally alternate within the Tripoli succession [23]: (i) clays and marls; (ii) carbonaceous
beds; (iii) diatomaceous laminites; (iv) lime mudstones.

The study area lies along the southern bank of the Vaccarizzo Stream. Here, a 27-meter-
thick measured section of Tripoli Fm. crops out, and it is overlain by more than 30 meters of
CdB beds. The strata show an average strike and dip of N 215◦/50◦ along the northwestern
flank of the Mucciarello Anticline [36], which plunges north-eastward.

The developed stratigraphic log (Figure 2) can be divided into four different sectors:

(i) In the first 6.5 m, dark grey to grey silts are dominant and related to the topmost
part of the Terravecchia Fm. Their maximum thickness is about 2 m. In particular,
the bottom part (0–4 m) is characterized by the alternation of black clays (sapropels),
silts, and marls, which gradually pass upwards into silts. The latter are followed by
a 25 cm layer of lime mudstone.

(ii) From 8 to 19 m, the succession is dominated by the alternation of sapropels and
marls. From 13 m upwards, three layers of laminated diatomites, of about 30 cm each,
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precede the deposition of a 20 cm thick gypsum bed that marks the first evaporitic
bed of the section. On top of it, the succession shows a 1.4 m thick sapropel overlain
by 60 cm of marls.

(iii) From 19 m to 27 m, laminites and marls of different thicknesses are alternated. Specif-
ically, the lower part (19–22 m) is dominated by a highly slumped dark grey laminite
(over 1 m thick) with interbedded gypsum layers. A 20 cm black level interrupts the
facies alternation of laminites and marls.

(iv) From 27 m to the top, tens of meters thickness of CdB beds follow. They are alternated
with thin layers of marls and sapropels. Overall, marls show a grey to dark grey color,
which becomes greenish towards the CdB beds.
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The section shows several black, organic-rich intervals that have been the object of
a previous study and revealed a change from oxic/dysoxic to dysoxic/anoxic conditions
towards the younger part of the section characterized by specific biomarkers (i.e., squalene
produced by marine hypersaline organisms [7]). Previous works have already pointed out
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a connection between lithological and astronomical cycles [5,6,23,25,33,55,56]. Therefore,
this section seems to be promising to explore also the biological events preceding the onset
of the MSC in response to climatic/environmental changes.

4. Materials and Methods
4.1. Sampling Strategy

A total of 69 samples within the 29.4 m succession have been sampled during different
field-work campaigns. For this reason, the original denomination of samples was renamed
according to Table S1 in Supplementary Materials.

Sampling spacing varies between 20 and 50 cm and integrates a previously scattered
sampling aimed at organic geochemistry analysis made by [7]. Two samples (960 cm and
2250 cm) for paleomagnetic analysis have also been collected. A first screening permit-
ted the distinguishment of barren samples from oligotypical to diversified assemblages,
as reported in Table S1 in Supplementary Materials.

4.2. Quantitative Analysis: Calcareous Nannofossils

For the study of calcareous nannofossils, a total of 69 smear slides, prepared according
to standard methodology (e.g., [57]), were analyzed using a polarizing light microscope at
1000× magnification. A total of at least 300 specimens larger than 3 µm were counted in
random fields of view. Specimens < 3 µm in size were not considered.

For species with low abundances, we extended the counting to 1 mm2 of the slide, cor-
responding to about 100 fields of view. The frequency of Discoaster and Helicosphaera species
was calculated within at least 30 specimens belonging to the Discoaster and Helicosphaera
genera.

Results are thus presented as (i) percentages within the total assemblage; (ii) per-
centages within the Discoaster and Helicosphaera genera; (iii) the number of specimens
per mm2.

Nannofossils in the studied samples show preservation from moderate to good. Occa-
sional overgrowths are present on some specimens of the Discoaster genus, but this feature
never prevents their identification at the species level. Reworking may be significant on
some levels. Few samples (TVCZ 24, 36, 42, and 46) yield scarce or oligotypical nannofossil
assemblages. Barren samples are listed in Table S1 (Supplementary Materials).

For this study, we adopted the calcareous nannofossil biostratigraphic scheme for the
Mediterranean area of Di Stefano et al. [58].

4.3. Quantitative Analysis: Planktonic Foraminifers

For the analysis of the planktonic foraminifers, 63 samples along the whole section
(Table S1 in Supplementary Materials) were firstly dried and weighted and then washed
through a 63 µm sieve. However, only the fraction greater than 125 µm was considered
for quantitative analysis. From this, about 300 specimens of planktonic foraminifers were
picked and counted in sample splits. The quantitative distribution pattern of selected plank-
tonic foraminifers categories, having biostratigraphic and/or paleoclimatic significance,
has been recorded. The planktonic foraminifer biostratigraphic scheme, the range chart,
and the chronology of planktonic foraminifer biohorizons, adopted in the present work,
are from [59].

Planktonic species were grouped into the following categories: (1) neogloboquadrinids:
including Neogloboquadrina acostaensis (Blow) and N. humerosa (Takaianagi and Saito);
(2) Orbulina spp.; (3) Turborotalita multiloba (Romeo); (4) Turborotalita quinqueloba (Nat-
land); (5) Globorotalia scitula (Brady); (6) globigerinids: including Globigerina spp. and
Globigerinoides spp.; (7) Globigerinita spp.: including G. glutinata (Egger), and G. uvula
(Ehrenberg). Raw data of microfossils were transformed into percentages over the total
abundance. The counted specimens of N. acostaensis have been separated on the basis of
their coiling direction and plotted as ratios of dx/and sx/total number of N. acostaensis.
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5. Calcareous Plankton Biostratigraphy Preceding MSC

The pre-evaporitic interval has been widely studied from the western to central and
eastern Mediterranean, ranging from Spain through Apennines, Sicily, and Greece [5,6,
27,38,60–68]. Thus, a biostratigraphic scheme based on calcareous plankton bioevents
is well-established so far for the Messinian time in the Mediterranean area. It has been
calibrated by integrating classical quantitative biostratigraphy with magnetostratigraphy
and cyclostratigraphy, giving rise to a detailed bio-chronological framework of the interval
preceding the MSC (Table 1).

Table 1. Messinian biostratigraphic horizons from Mediterranean sections and inferred ages according
to the available literature. (*) = Tie point used for the age-model. FCO = First Common Occurrence;
FAI = First Abundance Influx.
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Sphenolithus +

Helicophaera peak I =
“MSC onset event”

TVCZ-49 (*)5.99
[68]

5.97
[63]

5.99
[64]

5.98
[66,67]

D. Last influx T. multiloba TVCZ-36 6.07
[11,59]

6.07
[17,18,59]

C.

N. acostaensis sx/dx coil.
change TVCZ-17 6.36

[11]

6.337 [5]
6.35 [6]
6.34 [56]

6.342
[64]

Neogloboquadrinids
sx/dx coil. change

6.37
[69]

FCO N. acostaensis dx 6.44
[17,18]

B.

Influx H. selli TVCZ-14 6.49
[27]

FCO H. selli 6.50
[65]

6.96
[63]

6.53
[64]

FCO cf. H. selli 6.48
[62]

A.(*)

“FAI T. multiloba” TVCZ-14 (*)6.412
[11]

FCO T. multiloba
6.40 [6]

6.41 [17,18]
6.415 [56]

6.415
[70]

6.415
[31]

However, the already documented evolution of the calcareous plankton towards
low diversity and oligotypic assemblages until their complete disappearance is still of
great interest.

In Sicily, noteworthy successions documenting the conditions preceding the MSC
are represented by the Falconara, Gibliscemi, Capodarso, Serra Pirciata, and Marianopoli
Sections (Reference on Table 1). Reference sections fall within foraminifers Biozones MMi
13c and MMi 13d of [59] and nannofossil Biozone MNM11d of Di Stefano et al. [58].
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Selected calcareous plankton bioevents have been recorded in the TVCZ Section as
well and are discussed in detail in the following sections.

5.1. Calcareous Nannofossils in the TVCZ Section

The results of the quantitative analysis of calcareous nannofossils in the TVCZ Section
are shown in Figure 3, which illustrates the frequencies of the main components within the
total assemblage (average percentages > 1%, Supplementary Materials Tables S2 and S3)
and in Figure 4, where the frequencies of ceratholiths and discoasters are presented.
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Reticulofenestra medium-sized (3–7 µm) is the most abundant taxon, representing,
in some cases, over 50% of the total assemblage (Figure 3). This category also includes
Reticulofenestra rotaria, which was recorded in few samples with very low frequencies. Other
relevant components are the helicoliths, mainly represented by Helicosphaera carteri and
by H. sellii, which show a discontinuous sporadic presence and an abundance peak in the
lower part of the section (“a” in Figure 3). Sphenolithus spp. (S. abies + S. neoabies), well
represented along the whole section, shows a remarkable rhythmic pattern as well as the
Calcidiscus genus (C. leptoporus + C. macintyrei) (Figure 3).

Similar behavior is shown by Geminilithella rotula and Rhabdosphaera spp. (mainly
represented by R. clavigera; Figure 3); Pontosphaera spp. is present in the central part of the
succession with maximum frequencies of 20%, and Syracosphaera spp. in the lowermost
part with frequencies lower than 10% (Figure 3).

Coccolithus pelagicus is present along the section and shows a fluctuating trend, gener-
ally with low abundance (Figure 3).
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Figure 4. Quantitative and semiquantitative distribution patterns of Discoaster and ceratholiths,
according to the counting methods described within Section 4.2. The grey area indicates the interval
of barren samples. Arrows with letters indicate bioevents discussed in the text (a = D. tamalis Influx;
b = H. sellii Influx; c = D. quinqueramus Influx).

Discoaster specimens are common in the lower part of the succession and almost
absent from 12 m upward. Their distribution pattern is characterized by wide and rapid
fluctuations ranging from very high percentages (in the central part of the section) to zero.
Within the Discoaster genus, D. variabilis and D. brouweri are the most common. Discoaster
pentaradiatus and D. asymmetricus are discontinuously present in low percentages. Discoaster
quinqueramus and D. tamalis depict two peaks in the basal part of the section (Figure 4).

Ceratholiths are important components of the nannofossil assemblages in the Messinian
time interval. In the TVCZ Section, they are represented by Amaurolithus primus, A. delicatus,
and Nickilithus amplificus. These taxa are present from the base of the section and are
characterized by a fluctuating trend.

The remarkably highly fluctuating presence of Lithostromation perdurum is noteworthy
and already documented within an equivalent stratigraphic interval in the Sorbas Basin [12].

According to our results, the TVCZ section should be younger than the first occurrence
of Nicklithus amplificus (thus falling within Zone MNN11c of Di Stefano et al. [58]), which
is considered a sufficiently reliable event in the Messinian, with an attributed age of
6.69 My [62].

Helicosphaera carteri has been a main component of the helicoliths assemblages since
the Early Miocene—e.g., [58,71,72]. On the contrary, the presence of Helicosphaera sellii
is traditionally assigned to the early Pliocene. Nevertheless, the sporadic occurrence
of this species in the Messinian is well documented in several Mediterranean sections—
e.g., [27,62,65,73]. In the TVCZ section, the H. sellii abundance peak detected at about 5 m
(sample TVCZ-14; “a” in Figure 3) is well comparable with the H. sellii influx described by
Iaccarino et al. [65] with an attributed age of 6.50 My.
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In the uppermost part of the section, an abundance peak of Sphenolithus spp. (“a”
within the dashed rectangle in Figure 3) is slightly followed by G. rotula and H. carteri
spikes. This precise sequence of abundance peaks was previously reported in different
Messinian sections (“MSC onset bioevent”) [29,68]. The ages attributed to the base of this
event are reported in Table 1.

The presence of Discoaster quinqueramus in Mediterranean sections was widely debated—
e.g., [62]. Nevertheless, our findings testify that “true” D. quinqueramus occurs in the TVCZ
Section as previously documented—e.g., [27,65,74]. In the specific, an abundance spike
of the species is observable within sample TCVZ-16 (“c” in Figure 4). Discoaster tamalis
has been a significant component of Discoaster assemblages since the late Zanclean. Never-
theless, the sporadic presence of the species is also documented in some Mediterranean
sections since the Messinian time interval—e.g., [27,65]. Yet, the presence of D. tamalis in
the lowermost part of the section (sample TVCZ-2; “a” in Figure 4) is not comparable with
the similar event described by Iaccarino et al. [65] and Di Stefano et al. [27] (“D. tamalis
Influx”) occurring below the first occurrence of N. amplificus and dated 6.9–6.79 My [65].

The interval between samples TVCZ-54 and TVCZ-64 does not contain calcareous
nannofossils. Yet, few samples (TVCZ-65, TVCZ-69) from the clay horizons between
CdB strata yield scarce, oligotypic assemblages mainly composed of specimens from the
Sphenolithus and Helicosphaera genera.

5.2. Planktonic Foraminifers in the TVCZ Section

The preservation of the planktonic foraminifers assemblages is variable in the TVCZ
Section. From the bottom of the section up to 320 cm, within the silts and marly silts,
the plankton community is abundant and moderately to well preserved (Supplementary
Materials Table S4). From 320 cm up to 1555 cm, within silts and grey-black shales, di-
atomitic laminites, and lime mudstones, preservation becomes moderate to poor, and
planktonic association is generally common. The distribution of planktonic foraminifers
is almost continuous up to 1650 cm, except for three barren intervals in the lower-middle
part of the section, located respectively from bottom to top, at 685 cm, 1290–1365 cm, and
1470 cm. From 1650 cm upward, the samples are barren of planktonic foraminifers but
contain only a few species of benthic foraminifers, such as Bulimina echinata, B. aculeata,
Bolivina dilatata, and Uvigerina spp.

The results of the quantitative analysis of plankton foraminifers in the TVCZ Section
are shown in Figure 5, where the frequencies of the main taxa within the total assemblage
(average percentages > 1%) are plotted. Additionally, the main biohorizons with biostrati-
graphic significance are here presented, discussed, and compared with previous findings.

From the base of the section to about 450 cm, the planktonic association is quite
diversified, made of abundant globigerinids (Globigerinoides obliquus and G. quadrilobatus
group, Globigerina spp.), Orbulina spp., mainly sinistral coiling Neogloboquadrina acostaensis,
followed in abundance by Neogloboquadrina spp. (mainly N. humerosa) and Globigerinita spp.
(Figure 5). Rare specimens of the Globorotalia scitula group have also been recorded.

A remarkable event present in the TVCZ Section is the First Abundance Influx (FAI)
of T. multiloba, renamed after Sierro et al. (“First Abundant influx” T. multiloba, [11]) in
sample TVCZ-14 at 495 cm (Table 1), with a percentage of 14.7% (A in Figure 5). T. multiloba
is an endemic form of the Mediterranean and has been considered an ecophenotypic
variant of T. quinqueloba. The bioevent (named “First Abundant Influx” or “First Common
Occurrence by different authors, e.g., Table 1) has been widely used for biostratigraphic
correlations in the Mediterranean. It characterizes subzone MMi 13c [5,11,31,59,70] and is
dated at 6.4 My (Table 1) at Falconara Section (Sicily), Sorbas and Abad sections (Spain),
and Kalamaki (Ionian Sea) and Metochia (Gavdos Island, Greece). Bellanca et al. [6] and
Blanc Valleron et al. [56] reported the second and last influxes at the Falconara section,
respectively, dated at 6.28 My and 6.07 My.
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Figure 5. Quantitative distribution patterns of main groups/taxa of the planktonic foraminifers
assemblages, grouped as described in the methodology section. The grey area indicates barren
samples. (A) First Abundance Influx (FAI) of T. multiloba; (C) sx/dx coiling change in N. acostaensis.

Another remarkable biohorizon is the change from sinistral to dextral coiling of N.
acostaensis. The event is identified by the dominance of dextral coiling N. acostaensis over
the total of N. acostaensis (percentage greater than 50%). N. acostaensis sx/dx coiling change
(C in Figure 5) is recorded between TVCZ-15 (550 cm) and TVCZ-17 (640 cm) since the
latter bears a low number of specimens. The event has been reported in the literature from
different sections with ages ranging from 6.337 to 6.36 My. Authors [17,18] describe a FCO
of dextral N. acostaensis dated at 6.44 My from the Falconara/Gibliscemi Section.

Several additional influxes of T. multiloba have been recorded in the TVCZ Section in
samples TVCZ-19 (16.19%), TVCZ-26 (97.04%), TVCZ-31 (61.40%), and TVCZ-36 (61.80%),
respectively, at 670, 930, 1095, 1240 cm. The taxon occurs in poorly diversified and oligotypic
associations together with T. quinqueloba (Table 1). This points to stressed environmental
conditions preceding the Messinian Salinity Crisis [59].

An influx of sinistral N. acostaensis is recorded at TVCZ between samples TVCZ-24
(855 cm) and TVCZ-23 (795 cm).

In the TVCZ Section, up to 9 peaks in abundance of Orbulina spp. have been recorded
and will be described and commented in the next paragraph. Relative abundance fluc-
tuations of Orbulina spp. and high peaks (80–90% “orbulinites” event, [59]) have been
previously recorded in pre-evaporitic deposits.

The disappearance of planktonic foraminifers preceding the onset of the MSC is
reported in correspondence with a first gypsum layer (1650 cm, Figure 5) within sam-
ple TVCZ-46. This event is still a matter of debate and is considered either diachronous
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or synchronous throughout the Mediterranean and will be discussed in the next para-
graph [6,11,17,18,38,56,75–77].

6. Age-Models

A chronostratigraphic frame of the events preceding the MSC in the TVCZ Section
was first attempted through biostratigraphic data. Unluckily, the test on paleomagnetic
properties revealed the absence of natural remanent magnetization (NRM) in the sampled
intervals. For such reason, two bioevents, considered synchronous and widespread in the
Mediterranean (Table 2), have been then selected as Tie Points (TPs):

(1). The First abundance influx (FAI) of T. multiloba in Sample TVCZ-14 (495 cm from the
base) and dated at 6.412 My, according to Sierro et al. [11], also described as “FCO of
T. multiloba” and dated at 6.40 My [6], 6.41 My [17,18], and 6.415 My [56]. Therefore,
an age of 6.42 My [5,11,17,18,56] has been fixed as TP for the preliminary age-model.

(2). Sphenolithus + Helicosphaera peak I coincident with the base of the “MSC onset event”
(“a” within the dashed rectangle in Figure 3) in sample TVCZ-49 (1750 cm from the
base), dated at 5.99 My by Mancini et al. [68].

In the absence of further fixed TPs, the resulting age-model (Figure 6) is presented
by a straight line that defines a homogeneous sedimentation rate of 2.92 cm/ky along
the considered tract of the section. This age-model does not prove to be entirely reliable,
considering the lithological variations affecting the examined section. However, it allows
the assignment of numerical ages to the other bioevents in between (Figure 6). Their ages
are comparable with the ones reported in the literature.
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Figure 6. Preliminary age-model of the TVCZ Section based on two biostratigraphic TPs (in blue):
(A) T. multiloba FAI (in sample TVCZ-14) and (E) Sphenolithus + Helicosphaera peak I (=base of the
“MSC onset event” in sample TVCZ-49). Derived ages of the bioevents (C) (N. acostaensis sx/dx
coiling change) and (D) (Last influx T. multiloba).

Yet, the depth-age graph of Figure 6 may be used as an initial chronological frame-
work to retrieve the Milankovitch cyclicity that could derive from the distribution pattern
displayed in the TVCZ Section by Orbulina spp. (Figure 5), which seems to provide a better
response than other taxa.

In fact, Orbulina thrives in relatively warm and oligotrophic surface waters [78,79],
and is tolerant to high salinity conditions [80–82]. According to the existing literature,
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Orbulina is dominant in Mediterranean Messinian successions, thus, representing a good
proxy in stressed environments [1,17,18,56,83–85]. Furthermore, it seems to fit well with
Milankovitch cyclicity—e.g., [21,22,28]. In the specific, Orbulina seems to display a similar
pattern recorded by the genus Globigerinoides, which shows an in-phase correlation with the
Eccentricity curve: Globigerinoides maxima—carbonate minima, Eccentricity maxima [28] as
also reported from several Pliocene successions of Sicily [86]. In this paper, Globigerinoides
spp. and Globigerina spp. have been grouped and counted within globigerinids (Figure 5).
We focused instead on Orbulina spp. variation abundance, since several Authors [18,59]
report from the Mediterranean area, starting from 6.40 My, the well-known “orbulinites”
event characterized by 80–90% of Orbulina spp.

For spectral analysis, the Orbulina spp. original data from the TVCZ Section were
linearly interpolated through the software Past 4.11 [87] and equally spaced at intervals of
10 ky (Figure 7a), according to the preliminary age-model (Figure 6). The autocorrelation
test on the Orbulina spp. curve (Figure 7b) proves that it contains a periodicity after
10 points (~100 ky) that corresponds to a frequency of 0.0957 cycles/10 ky (Figure 7c).
This frequency is very similar to the high-frequency Eccentricity for the considered time
interval, which is 0.1035 cycles/10 ky (La2004 solution by Laskar et al. [88], available on
the IMCCE website—https://www.imcce.fr/ (accessed on 24 March 2023)). Moreover, the
cross-correlation test (Figure 7d) between the Orbulina spp. and the Eccentricity shows a
phase relationship between the two curves.
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Figure 7. Signal analysis of the Orbulina spp. distribution pattern in the TVCZ Section according to
the preliminary age-model illustrated in Figure 6. Orbulina spp. abundance has been plotted vs. time
and interpolated with a constant spacing of 10 ky. (a) Comparison between Eccentricity and Orbulina
spp. curves, showing that the main peaks almost coincide. (b) Autocorrelation test of Orbulina spp.
with a main peak at lag 10 (period of ~100 ky). (c) Power spectrum of Orbulina spp. and Eccentricity
with two peaks with maximum power and frequency of ~0.1 cycles/10 ky; (d) Cross-correlation test
between Orbulina spp. and Eccentricity; at lag 0, the two curves are in phase and remain in phase
every 10 points (~100 ky).

Five peaks with a frequency of ~0.1 cycles/10 ky are confidentially recognized within
the Orbulina spp. distribution pattern (Figure 8a). Thus, the ages of these Orbulina peaks
(Table 2) correspond to the Eccentricity maxima in the ~100 ky period (Figure 8b). These
can be used as TPs for the construction of the age-model illustrated in Figure 8c. Based on
this age-model, the ages of all sampled points may be re-calculated (Table 2).

https://www.imcce.fr/
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Figure 8. (a) Abundance variation curve of Orbulina spp. vs. depth. (b) Abundance variation curve
of Orbulina spp. vs. time. (c) Age-model for the TVCZ Section based on astrochronology, where
maximum amplitude peaks of Orbulina spp. were correlated with maximum amplitude peaks of
Eccentricity. Data are interpolated and spaced with a step of 10 ky. The yellow bands correlate with
the Orbulina spp. curve vs. depth and the Orbulina spp. and Eccentricity curve vs. time.
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Table 2. Derived ages for each sampled point in the TVCZ Section, according to the age-model of
Figure 8c. The yellow labels correspond to the ages of the samples where the Orbulina spp. maxima
(used as TPs) occur.
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TVCZ 53 22 1875

3.11

5957.74 TVCZ 26 45 930 6269.93
TVCZ 52 25 1855 5964.16 TVCZ 25 6B 920 2.75 6273.56
TVCZ 51 24 1820 5975.41 TVCZ 24 6 855 6297.20
TVCZ 50 21 1780 5988.27 TVCZ 23 5 795 6323.08
TVCZ 49 23 1750 5997.91 TVCZ 22 4 760 6338.18
TVCZ 48 20 1710 6010.77 TVCZ 21 3 710 6359.75
TVCZ 47 19 bis 1670 6023.63 TVCZ 20 2 685 6370.53
TVCZ 46 19 1650 6030.06 TVCZ 19 43 670 6377.00
TVCZ 45 18B 1590 6049.34 TVCZ 18 1 655 6383.47
TVCZ 44 18 bis 1555 6060.59 TVCZ 17 42 640

2.32

6389.95
TVCZ 43 18 1510 6075.06 TVCZ 16 46 600 6407.20
TVCZ 42 17 1470 6087.91 TVCZ 15 47 550 6418.01
TVCZ 41 16B 1440 6097.56 TVCZ 14 48 495 6429.90
TVCZ 40 16 1410 6107.20 TVCZ 13 49 455 6438.55
TVCZ 39 15 1365 6121.66 TVCZ 12 50 425 6445.04
TVCZ 38 14B 1320 6136.13 TVCZ 11 51 395 6451.52
TVCZ 37 14 1290 6145.77 TVCZ 10 52 375 6455.85
TVCZ 36 13 1240 6161.84 TVCZ 9 53 320 6467.74
TVCZ 35 12B 1215 6169.88 TVCZ 8 54 260 6480.71
TVCZ 34 12 1190 6177.91 TVCZ 7 55 230 6487.20
TVCZ 33 11 1130 6197.20 TVCZ 6 56 185 6496.93
TVCZ 32 10 1100 6208.11 TVCZ 5 57 150 6504.50
TVCZ 31 44 1095 6209.93 TVCZ 4 58 130 6508.82
TVCZ 30 9 1060 6222.65 TVCZ 3 59 90 6517.47
TVCZ 28 7B 995 6246.29 TVCZ 2 60 45 6527.20
TVCZ 27 7 940

2.75

6266.29 TVCZ 1 61 10

4.63

6534.77

According to the new age-model, the spectral analysis was performed again on the
Orbulina spp. distribution pattern in the TVCZ Section, obtaining the results illustrated in
Figure 9 that can be compared with the one in Figure 7. The autocorrelation test of Orbulina
spp. (Figure 9a) is much clearer and linear than the previous one (Figure 7b), showing a
repetitiveness every 10 points. The simple periodogram of Orbulina spp. (Figure 9b) shows
a frequency peak at 0.1035 cycles/10 ky that is well aligned with that of Eccentricity, while
the two peaks were slightly misaligned according to the preliminary age-model (Figure 7c).
In addition, the cross-correlation test between Orbulina spp. and Eccentricity still shows a
good phase relationship between the two curves (Figure 9b).
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Figure 9. Signal analysis of Orbulina spp. distribution pattern in the TVCZ Section according to the
age-model of Figure 8c. (a) Autocorrelation test of Orbulina spp. clearly showing 10-lag periodicities
(~100 ky); the signal is clearer than in the autocorrelation test of Figure 7b, where time conversion
derived from the preliminary age-model of Figure 6; (b) Cross-correlation test between Orbulina spp.
and Eccentricity curves, which shows a 10 points phase relation between the two curves; (c) Simple
periodogram of Orbulina spp. distribution pattern compared to the Eccentricity one, showing that
their maximum power peaks are aligned; (d) Evolutive harmonic analysis of Orbulina spp. The
high-power frequency is lacking in the youngest part of the studied succession, where foraminifers
are absent.

Finally, the evolutive harmonic analysis (short-time Fourier Transform in Past 4.11)
on Orbulina spp. (Figure 9d) shows the already recognized significant frequency of
~0.1 cycles/10 ky but also indicates that this signal is not homogeneous along the sec-
tion. This frequency is not well visible along the youngest part of the succession since
Orbulina spp. is absent.

According to the inferred age of the considered interval (6.536–5.958 My), the low-
frequency Eccentricity signal of about 0.025 cycles/10 ky (periodicity of ~400 ky) is difficult
to detect, considering that the section interval deposited in 580 ky, thus recording only
almost 1.5 cycles.

7. Discussion

The astrochronological age-model (Figure 8c; Table 3) clearly shows the variation in
the sedimentation rate along the succession. As expected from field observations, it is
higher in the lower part (4.63 cm/ky), where terrigenous lithologies of the Terravecchia Fm.
crop out, and much lower in the upper part (from 2.32 to 3.11 cm/ky) where diatomitic
laminites and marls, assigned to the Tripoli Fm., occur.
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Table 3. Bioevents and calculated ages from preliminary and astrochronological age-models. * Ages
calculated according to the preliminary age-model (Figure 6). ** Ages calculated according to the
astrochronological age-model (Figure 8c and Table 2).

Sample (cm) Events in the TVCZ Section Age * (My) Age ** (My)

TVCZ-53 (1875) MSC onset — 5.957

TVCZ-53 (1875) Top CN_MSC_OE — 5.957

TVCZ-49 (1750) Base CN_MSC_OE 5.99 (TP) 5.997

TVCZ-46 (1650) Disappearance of planktonic foraminifers 6.024 6.030

TVCZ-36 (1240) Last local influx T. multiloba 6.165 6.161

TVCZ-31 (1095) IV local Influx T. multiloba 6.214 6.209

TVCZ-26 (930) III local Influx T. multiloba 6.271 6.269

TVCZ-24 (855) local Influx sx N. acostaensis 6.297 6.297

TVCZ-19 (670) II local Influx T. multiloba 6.360 6.377

TVCZ-17 (640) sx/dx coiling N. acostaensis 6.370 6.389

TVCZ-16 (600) Influx D. quinqueramus 6.384 6.407

TVCZ-14 (495) FAI T. multiloba 6.41 (TP) 6.429

TVCZ-14 (495) Influx H. selli 6.420 6.429

TVCZ-2 (45) II Influx D. tamalis 6.574 6.527

In addition, it is now possible to assign ages to the calcareous plankton events detected
along the section (Table 3) and to compare them with the same or similar events described
in other Mediterranean sections.

7.1. Age of Calcareous Nannofossils Bioevents in the TVCZ Section

According to the age-model reported in Figure 8c, the base of the section has an age
of 6.534 My. This datum is in good agreement with the presence of Nicklithus amplificus
from the oldest sample, as the inferred age for the First Occurrence (FO) of this species is
6.69 My [62].

The spike of Discoaster tamalis occurring in the lowermost part of the section (sample
TVCZ-2) has an age of 6.527 My; thus, it cannot correspond to the influx of the species
described by Di Stefano et al. [27] at Trave Section with an age of 6.768 My. As already
supposed on a biostratigraphic basis, it should represent a further younger influx of the
species never before detected.

On the contrary, the influx of Helicosphaera sellii occurring in sample TVCZ-14 with an
inferred age of 6.429 My, is comparable with the similar event reported in the literature in
several Mediterranean sections (Table 1).

The presence of an abundance spike of D. quinqueramus in sample TVZC-16 (6.407 My)
is noteworthy and may represent a useful tool for stratigraphic correlation.

The almost concomitant presence of abundance spikes of Sphenolithus spp., Heli-
cosphaera spp., and G. rotula defines the so-called “MSC onset event” as defined by Mancini
et al. [29,68], here redefined as CN_MSC_OE (=Calcareous Nannofossil MSC Onset Event)
(Table 3). In the TCVZ section, the base of this event corresponds to the Sphenolithus spp.
peak occurring in sample TVCZ-23 and has an age of 5.997 My, in good agreement with the
previous literature. The top of the same events falls within sample TVCZ-53 (5.957 My),
which also coincides with the deposition of the CdB and the beginning of the barren interval
and, thus, the onset of the MSC in the considered area.

Finally, the abundance spike of Sphenolithus spp. and Helicosphaera spp. occurring
above the barren interval (Figure 3) may be compared with the second Sphenolithus Influx
reported by Manzi et al. [63] at Fanantello, dated at 5.860 My. Yet, it is not possible to assign
an age to this bioevent, as the age-model is not available for this tract of the section.



J. Mar. Sci. Eng. 2023, 11, 915 17 of 22

7.2. Age of Foraminiferal Bioevents in the TVCZ Section

The calculated age of main events preceding the MSC from the astrochronological
age-model is discussed here with respect to previous findings from other Mediterranean
sections (Table 3).

The main events are chronologically listed as follows:
The first abundance influx (FAI) of T. multiloba (495 cm, sample TVCZ-14) dated

at 6.429 My, generally considered a reliable and synchronous event, fits quite well with
previous ages reported by other authors—ranging between 6.40 and 6.415 My.

In the TVCZ section, N. acostaensis is relatively abundant from the base; thus, its shift
from sinistral to dextral coiling (derived age 6.389 My) is in good agreement with the same
event dated at 6.373 Ma at Ain el Beida Section (Morocco) [89] and 6.36 Ma [11] at Sorbas,
as well with sx/dx coiling change in Neogloboquadrinids at M. dei Corvi—Sardella Section,
whose astronomical age is 6.37 My [69].

After the FAI, three other local influxes of T. multiloba have been recorded at 670 cm
(sample TVCZ-19, 6.377 My), 930 cm (sample TVCZ-26, 6.269 My), and 1095 cm (sample
TVCZ-31, 6.209 My). As already published by [11,56], several peaks of T. multiloba are
recorded between 6.42 My and 6.07 My.

The fourth and last local influx of T. multiloba, recorded in the TVCZ section in sample
TVCZ-36 (1240 cm) with a derived age of 6.161 My, fits well with a similar event reported
by [17,18,56] at 6.17 My. However, after this event, other abundance peaks have been
found in younger levels of the Falconara section at 6.09 My and the last one at 6.07 My [56].
Therefore, it is not excluded that younger spikes can be detected in the TVCZ section as
well, with a denser sampling resolution towards the CdB. Such influxes are characterized
by strictly oligotypic associations, mainly dominated by few genera (e.g., Turborotalita
and benthic foraminifers of the genera Bolivina and Bulimina), testifying to cold-eutrophic
waters and increase in salinity [1,31,70,76,84]. Although several authors referred to such
events for biostratigraphic correlation in the Mediterranean, it should be pointed out that
these peaks may have a local significance. Thus, each basin registers salinity variations
through time, strictly dependent on local tectonic, climatic, and hydrological changes.

The dominance of dextral N. acostaensis is briefly interrupted by a local influx (66%)
of sinistral N. acostaensis at 855 cm (Table 3). Its age has been astronomically derived
at 6.297 My and is quite different from the two already known sinistral influxes of N.
acostaensis, respectively at 6.13–6.14 My and 6.08–6.09 My [5,11,31,56,70].

The disappearance of planktonic foraminifera, due to the inhospitality of the marine
environment, at Torrente Vaccarizzo is preceded by a short barren interval between samples
TVCZ-37 and TVCZ-39 (1290–1365 cm), with astrochronological ages of 6.145 to 6.121 My.
A similar pattern was already found by Bellanca et al. [6] in the same section. Such an
event is not abrupt but rather shows a cyclic transition made of an alternation between
barren samples (TVCZ-37, TVCZ-39, and TVCZ-42) and rich association samples (TVCZ-40,
TVCZ-43, and TVCZ-44), the result of normal marine influxes within the basin. The defini-
tive disappearance of planktonic foraminifera, in sample TVCZ-46 (1650 cm) at 6.03 My,
precedes the “MSC onset bioevent” [29,68] shown by the abundance peak of Sphenolitus
spp., slightly followed by H. carteri s and G. rotula spikes. Such an age agrees well with the
same event reported by Blanc-Valleron et al. [56] from the Falconara composite section.

8. Conclusions

The main goals deriving from the present study are:

(1) The building of an astrochronology-based age-model for the Messinian pre-evaporitic
TVCZ Section. It is based on the abundance variation of Orbulina spp. (Orbulina peaks),
which proved to fit well the 100ky-Eccentricity cycles. This methodology is useful
in the absence of other chronostratigraphic constraints, such as magnetostratigraphy
and radiometric dating.

(2) Based on the astrochronological age-model, all the collected samples have been dated.
Therefore, the age of all recognized bioevents, both nannofossils and foraminifers,
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was calculated. Some well-known bioevents were confirmed to be reliable mark-
ers for biostratigraphic correlation, and new ones were detected for the first time,
improving the biostratigraphic resolution at the MSC onset. In particular, the I Sphe-
nolitus + Helicosphaera peak (here renamed CN_MSC_OE), with an inferred age of
5.997–5.957 My, represents the last plankton event preceding the CdB deposition. This
event is preceded by the disappearance of planktonic foraminifers, which is not abrupt
but records an alternation of evaporitic and normal marine phases in the basin.

(3) Many taxa show characteristic “peak-abundance distribution” reflecting stressed con-
ditions in the basin, highlighted by rapid changes in oxygen content, nutrient, salinity,
and temperature of the water mass. This trend was already described elsewhere in
the stratigraphic levels preceding the MSC.

(4) The age of the MSC onset calculated in the TVCZ section is 5.957 My, in good agree-
ment with previous literature.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jmse11050915/s1, Table S1. Samples collected for biostratigraphic
analysis in the TVCZ Section and positioned along the reconstructed log. Table S2. Quantitative
distribution patterns of calcareous nannofossils and foraminifers at TCVZ Section. Table S3. Quantita-
tive distribution patterns of calcareous nannofossils index taxa at TCVZ Section. Table S4. Planktonic
foraminifer assemblage abundances and grade of preservation.
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