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Abstract— Typical industrial work activities may include a 

variety of different gestures, entailing the execution of dynamic 

and static movements. Occupational upper-limb exoskeletons can 

assist the shoulder complex in both static and dynamic gestures, 

but the required assistance level may be different according to 

the tasks. This article presents the design, development, and 

experimental evaluation of a novel kinematics-based adaptive 

assistance algorithm for a semi-passive upper-limb exoskeleton. 

The algorithm uses kinematic signals gathered by onboard 

sensors to set the assistance amplitude according to the type of 

movement being executed. Experimental activities were 

performed to assess the algorithm’s performance. Results show 

that the algorithm can effectively provide different assistance 

levels according to the type of task being executed, such as the 

minimum level for more dynamic tasks and the maximum level 

for the most static activities. Additionally, compared to working 

without the exoskeleton, the exoskeleton controlled by the 

proposed adaptive algorithm can reduce the users’ flexor 

muscular activity in both dynamic and static tasks, respectively 

by 24 ± 6% and 42 ± 2%. Similar results were reported for 
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extensor muscles, which reduced their activations by 7 ± 3%, and 

40 ± 4% in dynamic and static tasks.  

 
Index Terms— Adaptive control, upper-limb exoskeletons, 

wearable robotics, workers assistance 

 

I. INTRODUCTION 

ntensive overhead and repetitive manual works are among 

the main risk factors for developing shoulder work-related 

musculoskeletal disorders (WMSDs), such as shoulder 

impingement syndrome and rotator cuff tendinopathies [1]. To 

complement common preventive measures implemented in 

industrial settings to reduce the occurrence of WMSDs, upper-

limb exoskeletons are emerging as a promising intervention to 

reduce the biomechanical load on specific human joints [2]. 

Exoskeletons can be classified into passive and active 

systems; passive devices usually rely on elastic elements to 

store and release energy and to provide the user with 

antigravitational support, while active systems require sensors 

and control units to generate the assistive torque through 

powered actuators [3], [4]. Active systems can generate 

versatile torque profiles according to the performed task, but 

they are usually heavier and bulkier than their passive 

counterparts, hence resulting in lower usability in operational 

scenarios [5], [6]. Passive exoskeletons have been tested both 

in laboratory and field studies extensively, with results 

showing in most cases reduced muscular strain and perceived 

fatigue [7]–[12]. However, some studies showed higher 

activations of the antagonistic muscles when moving against 

the assistance (specifically while lowering the arms) [6], [13]. 

Very recently, new types of exoskeletons have been proposed, 

such as hybrid active-passive exoskeletons, combining passive 

and active solutions at different joints [14], and semi-passive 

exoskeletons, designed to adapt the passive behavior of the 

system, e.g., by automatically adapting the level of assistance 

or engaging/disengaging the actuation mechanisms through 

active clutches, according to the task, the user’s stress level, or 

other context-related factors [3].  

This paper presents a novel adaptive algorithm aimed at 

automatically setting the level of assistance, based on 

kinematic information extracted from joint angle sensors 

integrated into a semi-passive shoulder exoskeleton, named 

H-PULSE. The mechatronics of the device has been presented 

in a previous work [15]. Along with the description of the 
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algorithm, this paper presents experiments with healthy 

subjects for the evaluation of the performance of the algorithm 

and its efficacy on muscle activities across different types of 

static and dynamic work tasks.  

II. H-PULSE EXOSKELETON 

H-PULSE is a semi-passive upper-limb exoskeleton for 

workers' assistance in manual work activities [Fig. 1(a)][15]. 

It was designed by IUVO S.r.l. (Pontedera, Pisa, Italy) and the 

technology is patented [16]. The exoskeleton weighs 5 kg and 

integrates four main modules: (i) a garment as a physical 

Human-Robot Interface (pHRI), (ii) a chain of passive degrees 

of freedom (pDOFs), (iii) two actuation boxes with a spring-

loaded mechanism generating the assistive torque and a 

servomotor to set the level of the springs pre-tension, and (iv) 

the control unit.  

The pHRI is made of a T-shaped aluminum alloy frame, 

and adjustable pelvis and shoulder belts to ensure a fast and 

easy wearing procedure, while C-shaped cuffs connect the 

user’s arms to the actuation boxes. The pHRI ensures the 

comfort of the user and the transfer of the exoskeleton’s 

weight to the pelvis. The chain of pDOFs includes five DOFs 

(two translational and three rotational), designed in such a 

way to comply with the physiological range of motion (RoM) 

of the glenohumeral joint and to transfer the counteractive 

forces generated by the active boxes to the pelvis while 

assisting the shoulder flexion/extension (sFE). Each active 

box contains a spring-based mechanism to generate the 

assistive torque around the sFE joint. The assistive torque 

profile is hard-coded in the spring-based mechanism, and it is 

designed to partially compensate for the gravitational torque 

of the human arm. A low-power tuning mechanism, made of a 

spindle drive coupled with a servomotor driven by a control 

unit, allows to automatically change the pre-tensioning of the 

springs (maximum springs displacement is 12 mm) and, 

consequently, the assistive level. In this work, two 

consecutive levels are separated by 2 mm of spring 

displacement, resulting in 7 possible assistive levels, ranging 

from about 4.5 to 6 N∙m; considering that about 1 N∙m is 

needed to compensate for the weight of the active box, the net 

torque range for the user’s arm gravity compensation is 

sufficient to provide at least the 20% of the arm gravitational 

torque of the 5 – 95% of males population, whose maximum 

shoulder torques range between about 10 to 23 N∙m [17]. 

A backpack placed in the rear part of the pHRI houses the 

electronics and batteries to operate the exoskeleton. The 

control system is made of a two-layer hierarchical 

architecture, comprising low-level and high-level control 

layers, running on a NI System-on-Module (National 

Instruments, Austin, TX, USA) [Fig. 1(b)]. The low-level 

control layer (LLCL) runs on a field-programmable gate array 

processor (Zynq-7020, Xilinx, San José, CA, USA). It is used 

for reading the joint sensors and driving the servomotors via a 

position control on the motor’s incremental encoder. About 5 

seconds are needed to vary the pre-tensioning of the spring by 

2 mm, i.e., for completing a one-level change of assistance. 

The high-level control layer (HLCL) runs on a dual-core real-

time ARM controller and runs the kinematics-based adaptive 

assistive algorithm that sets the desired assistive level.  

III. KINEMATICS-BASED ADAPTIVE ALGORITHM 

A. Hypotheses and Goal 

The objective of the presented algorithm is to provide the 

H-PULSE with the capability to adaptively set an appropriate 

level of assistance based on the observed movement 

kinematics, without requiring a priori knowledge or real-time 

classification of the task. 

To design the adaptive algorithm, two main considerations 

were made. First, movement kinematics can be seen as the 

combined contribution of low- and high-frequency 

components, namely as the combination of static and dynamic 

movements. Second, we assumed that the exoskeleton 

assistance should increase with the degree of the static nature 

of the movement, to support the force exerted by the arm 

flexors and abductors that mainly contribute to keeping the 

arms raised, by counterbalancing the arms’ gravitational 

torque at the glenohumeral joint; also, we considered that the 

assistance level should decrease as the dynamic characteristics 

of the movement increase, to support the eccentric work done 

by the flexor muscles during arms extension and at the same 

time preventing the action of the antagonistic (extensor) 

muscles against the device assistance [13], [18], [19]. 

 
Fig. 1  (a) The H-PULSE exoskeleton. Blue lines indicate main exoskeleton’s modules; orange lines indicate locations of the pDOFs. (b) Block diagram 

of the two-layer control architecture of the H-PULSE, made of high-level control layer (HLCL) and low-level-control layer (LLCL). 
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B. Kinematics-based Adaptive Algorithm 

The proposed kinematics-based adaptive algorithm is 

composed of four main steps [Fig. 2(a)]: i) input signal 

windowing, ii) features extraction, iii) features mapping 

through membership functions, and iv) output computation. 

Input signal windowing. In this step, the sFE angle (𝜃) and 

velocity (�̇�, computed by real-time differentiation of 𝜃 

through the 2nd-order central method) are collected into a 6-

seconds non-overlapping virtual buffer. The length of the 

buffer was chosen slightly greater than the time needed to 

make a single assistance level change (i.e., 5 seconds). 

Features extraction. Four features are extracted from the 

signals collected in the buffer every 6 seconds. From the sFE 

angle vector (𝜃𝑘) the algorithm extracts: the mean angle (𝛾𝑘), 

the angle standard deviation (𝜎𝑘), and the maximum 

displacement from the mean (𝛿𝑘) computed as in Eq. (1): 

𝛿𝑘 = 𝑚𝑎𝑥(𝜃𝑘) −  𝛾𝑘  (1) 

where 𝜃𝑘 can range between 0 and 180 deg. 

The sFE velocity vector �̇�𝑘 is used to compute the 

normalized maximum velocity, according to Eq. (2): 

𝜈𝑘 = 𝑚𝑎𝑥(|�̇�𝑘|) 𝜔⁄  (2) 

where 𝜔 = 360 deg/s is the maximum joint angle velocity, 

empirically defined for this application. 

Features mapping. Once the features are extracted, they 

are mapped through membership functions into static and 

dynamic indices (𝑥) and weights (𝑤) (Table I). 

 
Fig. 2  (a) Block diagram of the kinematics-based adaptive assistance algorithm running on the high-level control layer of the H-PULSE exoskeleton. (b) 

Algorithm’s output, indices, and weights computed from an exemplary dataset including a sequence of static and dynamic movements, performed at 

different shoulder elevation angle and velocity. 

 

TABLE I Features mapping to compute algorithm’s indices and weights. 

Feature Index/weight 

𝜎𝑘 𝑥𝑠𝑡𝑎𝑡𝑘 =

{
 
 

 
 6,                                        𝜎𝑘 ≤ 𝜎𝑚

0,                                        𝜎𝑘 ≥ 𝜎𝑀

6
(𝜎𝑘

𝑀 − 𝜎𝑘)

(𝜎𝑘
𝑀 − 𝜎𝑘

𝑚)
,     𝜎𝑚 < 𝜎𝑘 < 𝜎𝑀

 

𝛾𝑘 𝑤𝑠𝑡𝑎𝑡𝑘 = {

0,                                                        (𝛾𝑘 ≤ 𝛾𝑚) ∧ (𝛾𝑘 ≥ 𝛾𝑀) 

1,                                                                      𝛾𝑠𝑎𝑡
𝑚 ≤ 𝛾𝑘 ≤ 𝛾𝑠𝑎𝑡

𝑀

𝑎𝛾𝑘
2 + 𝑏𝛾𝑘 + 𝑐,   (𝛾

𝑚 < 𝛾𝑘 < 𝛾𝑠𝑎𝑡
𝑚 ) ∧ (𝛾𝑠𝑎𝑡

𝑀 < 𝛾𝑘 < 𝛾𝑀) 

 

𝛿𝑘 𝑤𝑑𝑦𝑛𝑘 =
{
𝛿𝑘 ,                  𝛿𝑘 ≤ 𝛿𝑚𝑎𝑥  
1,                   𝛿𝑘 > 𝛿𝑚𝑎𝑥  

 

𝜈𝑘 𝑥𝑑𝑦𝑛𝑘 =
{
𝜈𝑘 ,          𝜈𝑘 ≤ 𝜈𝑀  

6,            𝜈𝑘 > 𝜈𝑀  
 

𝜎𝑚 = 10 𝑑𝑒𝑔, 𝜎𝑀 = 50 𝑑𝑒𝑔, 𝛾𝑚 = 30 𝑑𝑒𝑔, 𝛾𝑀 = 150 𝑑𝑒𝑔, 
𝛾𝑠𝑎𝑡
𝑚 = 80 𝑑𝑒𝑔, 𝛾𝑠𝑎𝑡

𝑀 = 100 𝑑𝑒𝑔, 𝛿𝑀 = 90 𝑑𝑒𝑔, 𝜈𝑀 = 1 are 

threshold values. a, b, c are parabola parameters. 
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The static index (𝑥𝑠𝑡𝑎𝑡𝑘) is modelled as an inversely linear 

function of 𝜎𝑘 for 10 ≤ 𝜎𝑘 ≤ 50 deg; instead, the dynamic 

index (𝑥𝑑𝑦𝑛𝑘) is modelled as a linear function of 𝜈𝑘 for 0 ≤ 𝜈𝑘 

≤ 1. Both indices can range continuously between 0 and 6, 

representing the range of assistance levels.  

The static weight (𝑤𝑠𝑡𝑎𝑡𝑘) is modelled as a modified 

parabolic function of 𝛾𝑘, centered around 90 deg, resembling 

the gravity torque on the sFE joint; this function is null for 𝛾𝑘 

≤ 30 deg and 𝛾𝑘 ≥ 150 deg, and maximum for 80 ≤ 𝛾𝑘 ≤ 100 

deg. The dynamic weight (𝑤𝑑𝑦𝑛𝑘) is modelled as a linear 

function of 𝛿𝑘 for 0 ≤ 𝛿𝑘 ≤ 90 deg. Both weights can range 

continuously between 0 and 1.  

Threshold values used to compute indices and weights were 

chosen empirically by looking at pilot data. 

Output computation. The output of the algorithm (𝐴𝑘+1), 

computed at the 𝑘-𝑡ℎ window, is defined according to Eq. (3): 

𝐴𝑘+1 = 𝐴𝑠𝑡𝑎𝑡𝑘(𝛾𝑘, 𝜎𝑘) − 𝐴𝑑𝑦𝑛𝑘(𝛿𝑘, 𝜈𝑘) (3) 

where 𝐴𝑠𝑡𝑎𝑡𝑘(𝛾𝑘, 𝜎𝑘) = 𝑤𝑠𝑡𝑎𝑡𝑘(𝛾𝑘) ∙ 𝑥𝑠𝑡𝑎𝑡𝑘(𝜎𝑘) and 

𝐴𝑑𝑦𝑛𝑘(𝛿𝑘, 𝜈𝑘) = 𝑤𝑑𝑦𝑛𝑘(𝛿𝑘) ∙ 𝑥𝑑𝑦𝑛𝑘(𝜈𝑘) are the static and 

dynamic contributions to 𝐴𝑘+1, respectively.  

Finally, 𝐴𝑘+1 value is quantized to generate a discrete 

assistance level (𝐴𝑞+1). The corresponding spindle drive 

position is then commanded to the LLCL. An example of the 

algorithm’s output, indices, and weights during an exemplary 

trial is shown in Fig. 2(b). 

IV. EXPERIMENTAL EVALUATION 

Two experimental sessions were carried out to (i) 

characterize the algorithm’s output and (ii) verify the 

effectiveness of the proposed assistive strategy on muscle 

activity. 

A. Participants 

Two separate groups of subjects volunteered to participate 

in sessions #1 and #2: 10 subjects were recruited for Session 

#1 (10 males, age: 27.7 ± 3.5 years, height: 180.7 ± 6.9 cm, 

weight: 73.7 ± 10.7 kg), while 6 subjects were recruited for 

Session #2 (6 males, age: 29.1 ± 4.1 years, height: 178 ± 5.4 

cm, weight: 70.8 ± 6.4 kg). The study was carried out at the 

premises of The BioRobotics Institute of Scuola Superiore 

Sant’Anna (Italy). The procedures were approved by the 

Institutional Review Board (approval n. 2/2019), and 

experimental activities were conducted following the 

principles stated in the Declaration of Helsinki. All 

participants signed written informed consent. 

B. Experimental Setup 

The setup consisted of a vertical stand with adjustable-

height shelves for simulating different activities. The setup 

also included a screen to give instructions to the subjects and 

pace their movements. The setup and the tools used in the 

experimental tasks are shown in Fig. 3(a) and Fig. 3(b). 

Six manual work tasks were simulated, with different levels 

of static and dynamic components [Fig. 3(c)]. Task A and 

Task B were defined as box-handling tasks: subjects were 

asked to move a 1-kg box from a shelf positioned at the 

subject’s waist height to a shelf placed at head level, at two 

speeds, namely fast speed for Task A, and slow speed for Task 

B. Task C and Task D represent dynamic tasks at high 

shoulder angle. Task C was defined as a full RoM 

lifting/lowering task and consisted in lifting the box from a 

shelf at the subject’s waist height to the overhead shelf and 

vice versa at self-selected speed. In Task D, defined as 

overhead wall painting, subjects were asked to simulate 

painting a vertical surface placed overhead using a roller 

brush. Task E and Task F represent static tasks at high 

shoulder angles. In Task E, defined as overhead cable 

 
Fig. 3  (a) Experimental setup. (b) Tools used in the experimental tasks. (c) Experimental tasks. Task A to F were tested during Session #1, while Tasks B, 

D, and F were also tested in Session #2. (d) Schematic representation of EMG electrodes placement. 
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fastening, subjects were asked to continuously tighten and 

loosen a cable tie around the dedicated support. Task F was 

defined as overhead screwing and consisted of continuous 

fastening/unfastening of a screw inserted in the metal plate 

placed overhead; to perform it, subjects were requested to 

keep 90 deg of shoulder and elbow joints flexion. 

C. Session #1: Algorithm’s Output Characterization 

This session aimed at characterizing the output of the 

algorithm across the six tasks. 

Upon arrival, participants received information about the 

study and signed the informed consent. Then, subjects wore 

the exoskeleton helped by one experimenter.  

Each subject tested six dyads. Each dyad consisted of two 

consecutive 90-seconds tasks, picked by a pseudo-random 

algorithm so that, overall, each task was repeated twenty 

times. Before starting each dyad, subjects were asked to stand 

still in front of the setup structure, while keeping their arms 

lying parallel to the body. The experimenter verbally 

instructed the subjects on when to start, change, and stop the 

tasks. A visual cue, shown through the computer screen 

placed in front of the subject, was also used for this purpose. 

In this session, the exoskeleton output the minimum level 

of assistance, and sFE angular data was collected for offline 

analysis. This session lasted about 30 minutes. 

D. Session #2: Effectiveness Assessment 

This session aimed at evaluating the effectiveness of the 

adaptive algorithm compared to fixed assistance. The 

effectiveness was quantified by electromyographic 

measurements on three tasks, namely tasks B, D, and F, 

representing tasks with different levels of dynamic and static 

contributions. 

EMG signals were collected using pre-gelled bipolar 

Ag/AgCl surface electrodes (Pirrone & Co., Milan, Italy) and 

acquired by means of the BTS FREEEMG 1000 (BTS 

Bioengineering, Milan, Italy). EMG signals were sampled at 1 

kHz and stored locally on a laptop for offline analysis. 

Upon arrival, participants received information about the 

study and signed the informed consent. Then, surface EMG 

electrodes were unilaterally applied on right-side muscles 

according to SENIAM guidelines [20] over the Anterior 

Deltoid (AD), Medial Deltoid (MD), Posterior Deltoid (PD), 

Upper Trapezius (UT), Triceps Brachii (TB), and Latissimus 

Dorsi (LD) [Fig. 3(d)]. 

Before starting the experiment, subjects wore the 

exoskeleton helped by one experimenter. A 15-minute warm-

up phase allowed participants to familiarize themselves with 

the experimental tasks and the exoskeleton. In this phase, 

subjects performed several screwing/unscrewing, box 

handling, and painting actions while wearing the exoskeleton. 

Once the warm-up phase was completed, subjects were 

asked to perform each task in three conditions, namely 

without wearing the exoskeleton (NO EXO condition), 

wearing the exoskeleton set to output a fixed level of 

assistance to compensate for about 50% of the gravitational 

torque on the arm (EXO-Fixed condition), and wearing the 

exoskeleton set to output adaptive assistance (EXO-Adaptive 

condition), for a total of nine experimental trials. Before each 

trial, subjects were asked to stand still in front of the setup 

with the arms lying parallel to the body, and then begin the 

execution of the task following the verbal instructions given 

by the experimenter. Each trial lasted 2 minutes. In this 

session, to allow intra- and inter-subjects comparison, 

movements of Task B were paced at 20 actions/min by a 

visual cue displayed on a computer screen in front of the 

subject, while movements of Task D were paced through a 

metronome at 40 actions/min. Subjects were instructed to rest 

between consecutive trials. 

The order of the experimental conditions was randomized 

to avoid order effects. Within each tested condition, the order 

of tasks was randomized and kept identical for all three 

conditions. This session lasted about 2 hours. 

E. Data Analysis 

Data analysis was performed using custom MATLAB 

R2019b (The MathWorks, Natick, MA, USA) routines. 

Session #1. Recorded sFE angles were used to offline 

compute the output of the adaptive algorithm. For each trial, 

for each repetition of the movement, the median value of the 

algorithm’s output (𝐴𝑘+1) was computed; then, the median 

value and interquartile range were obtained for each task.  

Session #2. EMG signals were processed offline to 

compute the linear envelope (𝐸𝑀𝐺𝐸𝑛𝑣) by band-pass filtering 

(4th order Butterworth filter, cut-off frequencies: 20-400 Hz), 

notch filtering (4th order Butterworth filter, cut-off frequency: 

50 Hz), rectifying, and low-pass filtering (zero-lag 100-ms 

moving average filter), before calculating outcome metrics.  

For the box handling task at slow speed (Task B), the last 

15 actions were manually segmented into cycles by visually 

inspecting the total EMG (𝐸𝑀𝐺𝑇) signal to identify 

onset/offset of each action. 𝐸𝑀𝐺𝑇 was calculated as Eq. (4): 

𝐸𝑀𝐺𝑇(𝑡) =∑ 𝐸𝑀𝐺𝐸𝑛𝑣𝑚(𝑡)
6

𝑚=1
 (4) 

where 𝑡 is the tth sample and 𝑚 is the mth muscle. Then, 

segmented EMG signals were time normalized between 0 and 

100% (𝐸𝑀𝐺𝑛𝑜𝑟𝑚) and for each muscle the integrated EMG 

(𝐼𝐸𝑀𝐺) over each cycle was computed (5): 

𝐼𝐸𝑀𝐺𝑚,𝑛 = ∫ 𝐸𝑀𝐺𝑛𝑜𝑟𝑚𝑚(𝑇) 𝑑𝑇
100

0

 (5) 

where 𝑚 is the mth muscle, 𝑛 is the nth cycle, and T is the 

Tth sample. For each subject and each muscle, the median 

percentage variation (∆𝐼𝐸𝑀𝐺) was computed according to the 

following formula (6): 

∆𝐼𝐸𝑀𝐺 = (
𝐼𝐸𝑀𝐺𝑎𝑣𝑔

𝐸𝑋𝑂 − 𝐼𝐸𝑀𝐺𝑎𝑣𝑔
𝑁𝑂 𝐸𝑋𝑂

𝐼𝐸𝑀𝐺𝑎𝑣𝑔
𝑁𝑂 𝐸𝑋𝑂

∙ 100) (6) 

where 𝐼𝐸𝑀𝐺𝑎𝑣𝑔
𝐸𝑋𝑂 is the median 𝐼𝐸𝑀𝐺 amplitude computed 

for one of the two EXO conditions (EXO-Fixed or EXO-

Adaptive) and 𝐼𝐸𝑀𝐺𝑎𝑣𝑔
𝑁𝑂 𝐸𝑋𝑂 is the median 𝐼𝐸𝑀𝐺 amplitude 

value computed for the NO EXO condition.  

For the overhead wall painting and screwing tasks (Task D 

and Task F, respectively), the root mean square (𝑅𝑀𝑆) of the 

EMG amplitude was obtained from the last 30 seconds of 

each trial.  
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For each subject, the median percentage variation between 

EXO and NO EXO conditions (∆𝑅𝑀𝑆) was calculated 

according to the following formula (7): 

∆𝑅𝑀𝑆 = (
𝑅𝑀𝑆𝑎𝑣𝑔

𝐸𝑋𝑂 − 𝑅𝑀𝑆𝑎𝑣𝑔
𝑁𝑂 𝐸𝑋𝑂

𝑅𝑀𝑆𝑎𝑣𝑔
𝑁𝑂 𝐸𝑋𝑂

∙ 100) (7) 

Where 𝑅𝑀𝑆𝑎𝑣𝑔
𝐸𝑋𝑂 is the median 𝑅𝑀𝑆 amplitude computed for 

one of the two EXO conditions (EXO-Fixed or EXO-

Adaptive) and 𝑅𝑀𝑆𝑎𝑣𝑔
𝑁𝑂 𝐸𝑋𝑂 is the median 𝑅𝑀𝑆 amplitude value 

computed for the NO EXO condition.  

For all EMG indices, aggregated results were computed as 

between-subjects medians and interquartile ranges of the 

EMG variations between the EXO and NO EXO conditions.  

F. Statistics 

In Session #2, statistical analysis was conducted to assess 

the effect of the assistive condition (NO EXO, EXO-Fixed, 

EXO-Adaptive) on EMG indices. 

Data violated the normality assumption, as verified by the 

Lilliefors test, therefore non-parametric one-way repeated-

measures analysis of variance (Friedman test) was applied to 

check for across-conditions differences. Then, the Wilcoxon 

signed-rank test was used for post-hoc paired comparisons. 

All statistical analyses were performed in MATLAB R2019b 

using a significance level  < 5%. 

V. RESULTS 

A. Session #1: Algorithm’s Output Characterization 

The average output of the algorithm is shown in Fig. 4. In 

tasks A, B, C the algorithm output the minimum assistance 

level (i.e., close to level 0), while for tasks D, E, F the output 

of the algorithm resulted close to 1, 5, and 6, respectively. 

B. Session #2: Algorithm Effectiveness 

Fig. 5 shows the results of the EMG analysis for the three 

tasks B, D, and F. 

In Task B, when using the exoskeleton, the 𝐼𝐸𝑀𝐺 of the 

AD, MD, UT, and TB muscles significantly reduced 

compared to the NO EXO condition, regardless of the 

assistive strategy (χ2(2) = 10.3, p = 0.006 for AD and MD; 

χ2(2) = 6.3, p = 0.042 for UT; χ2(2) = 9.3, p = 0.009 for TB). 

Significant differences between fixed and adaptive assistance 

were found for the MD muscle (p = 0.031).  

In Task D, all muscles exhibited reduced EMG RMS values 

when using the exoskeleton with respect to the NO EXO 

condition (χ2(2) = 10.3, p = 0.006 for AD, MD, PD; χ2(2) = 

 
Fig. 4  Algorithm’s output for the six experimental tasks, expressed as 
median values and interquartile ranges. A: box handling at fast speed; B: 

box handling at slow speed; C: full RoM lifting/lowering; D: overhead 

wall painting; E: overhead cable fastening; F: overhead screwing. 

 

 
Fig. 5  (a) Example of EMG profiles for the Anterior Deltoid of a representative subject. (b) EMG results are shown for Anterior Deltoid (AD), Medial 

Deltoid (MD), Posterior Deltoid (PD), Upper Trapezius (UT), Triceps Brachii (TB), and Latissimus Dorsi (LD). Bars represent percentage variations of 
the RMS and IEMG indices, with respect to NO EXO. Results are reported for box-handling, overhead wall painting, and overhead screwing tasks. The 

EXO-Fixed condition corresponded to about 5.4 Nm, while the EXO-Adaptive condition corresponded to about 4.5, 4.7, and 6 Nm for Task B, D, and F, 

respectively. Asterisks mark statistically significant differences between EXO conditions. Median percentage variations are shown over each bar. 
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9.3, p = 0.009 for UT, TB, LD). No significant differences 

between EXO conditions were found, although AD, MD, and 

PD variations were close to significance (p = 0.062). 

In Task F, all muscles showed decreased EMG RMS in 

EXO conditions compared to the NO EXO condition (χ2(2) = 

12, p = 0.003 for AD, MD, LD; χ2(2) = 10.3, p = 0.006 for 

PD, UT; χ2(2) = 9, p = 0.011 for TB). Significantly different 

values were also found in AD, MD, and LD muscles between 

the two EXO conditions (p = 0.031 for all pairwise 

comparisons). 

VI. DISCUSSION 

In this article, we presented a novel algorithm that aims to 

tune the assistance level of a spring-loaded semi-passive 

upper-limb exoskeleton according to the kinematics 

characteristics of the task. In particular, the algorithm was 

designed to output higher assistance in static tasks performed 

with arms elevated (around 90 deg), with the aim to support 

the action of the flexor and abductor muscles that are mostly 

involved in maintaining the arms posture by counterbalancing 

the arm’s gravitational load, and to output lower assistance in 

dynamic tasks, in order to limit the need for the extensor 

muscles to contract to lower the arms while still supporting 

the flexors’ eccentric work in this phase.  

As shown in the results of Session #1, the three most 

dynamic tasks (tasks A, B, and C), resulted in minimum 

assistance, whereas the algorithm generated three different 

outputs for the three overhead tasks, namely tasks D, E, and F, 

with assistance levels 1, 5 and 6, respectively. Overall, these 

outputs were in line with our initial design assumptions, with 

the maximum assistance level provided in the overhead static 

screwing task (Task F), slightly lower assistance levels in the 

cable-fastening task (Task E) due to a lower shoulder 

elevation, and even lower assistance for the wall painting task 

(Task D) due to high dynamicity of the task. These results 

were consistent for all subjects showing robustness to the 

user’s anthropometric sizes (i.e., height and weight). Also, the 

output of the algorithm was always identical for the right and 

left arms as the tasks were bimanual and symmetrical but in 

the case of asymmetric tasks, the assistance level could be 

different for the two arms. 

In Session #2, the effect of the adaptive assistance was 

evaluated against the condition in which the exoskeleton was 

not worn (NO EXO) and against the condition of a fixed level 

of assistance (EXO-Fixed). The fixed level was determined to 

compensate for about 50% of the gravitational torque on the 

shoulder, similar to the fraction typically relieved by passive 

exoskeletons [13]; in this experiment, it corresponded to 

assistance level 4 for all subjects, whereas the adaptive level 

corresponded to 0, 1, and 6 for tasks B, D, and F, respectively.  

Overall, for almost all muscles and in all tasks, the use of 

the exoskeleton reduced muscles’ physical strain compared to 

the NO EXO condition; however, the comparison of the two 

assistance strategies showed differences in the three tasks. 

In the dynamic box handling task, the EXO-Fixed condition 

led to higher reductions than the EXO-Adaptive for AD and 

MD muscles. Indeed, for agonist muscles the smaller assistive 

torque delivered according to the adaptive strategy (i.e., the 

minimum one) appeared to be less effective. This effect might 

be explained considering that agonist muscles exert the 

maximum power in the lifting phase of the movement (i.e., 

moving the box from the lower to the upper shelf), thus taking 

advantage of the higher torque, as suggested in [21]. 

Therefore, there was no significant difference between the two 

assistances when looking at antagonist muscles. This seems to 

be in contrast with other studies, where higher support levels 

lead to higher muscle effort [19], [22]. One of our goals was 

the attempt to reduce the hindrance caused by the 

exoskeleton’s springs in highly dynamic movements. 

However, our findings could suggest that this hindering effect 

is negligible when dynamic movements are performed in 

favor of gravity (i.e., when moving the box from the higher to 

the lower shelf). 

In the overhead wall-painting, similarly to the box handling 

case, the EXO-Fixed condition ensured a greater assistance 

level than the EXO-Adaptive one (i.e., 4 vs. 1 on average) and 

higher assistance was again associated with greater EMG 

reductions. This task is particularly interesting because the 

subjects needed to perform wide and fast movements around 

an average angle of around 90 deg. Hence, again, the greater 

assistance did not lead to side effects on the shoulder extensor 

muscles, despite the dynamic nature of the task. 

In the screwing task, regardless of the experimental 

conditions, all monitored muscles showed significantly 

smaller activations in both shoulder flexion agonists (AD, 

MD, UT) and antagonists (PD, TB, LD) with the exoskeleton. 

Coherently with our previous study [15] and other similar 

works [18], [22], a higher level of assistance led to increased 

EMG reductions while performing the static overhead task, 

especially for shoulder flexion agonists, as these muscles need 

to generate less force to maintain the posture as the 

gravitational support increases [8]. This led to a reduced co-

contraction of the antagonist muscles that are used to stabilize 

the shoulder [9]. 

Results on EMG data suggest that not all the assumptions 

made in the design phase of the algorithm were effective. 

Indeed, the adaptive assistance led to higher EMG reductions 

in the static task with respect to the fixed assistance, but the 

same behavior was not observed in the more dynamic tasks, in 

which the fixed assistance showed higher effectiveness than 

the adaptive one. In other words, in both static and dynamic 

tasks higher EMG reductions were achieved with higher 

assistance levels, and in no cases, did the assistance cause 

detrimental effects on the antagonist muscles. Notably, due to 

the limited torque range of the exoskeleton, in all conditions, 

the torque exerted by the exoskeleton was only a portion of 

the arms’ gravitational torque (between about 40 to 60%). In 

dynamic tasks, this means that in both conditions (EXO-Fixed 

and EXO-Adaptive) the net gravitational torque at the 

shoulders was always sufficient to perform extension 

movements without causing overexertion (i.e., concentric 

contraction) of the antagonist muscles. Hence, in dynamic 

tasks, high percentages of antigravitational support (close to 

or higher than the user’s arm gravitational torque) would have 

likely resulted in detrimental effects on the antagonist muscles 

[18], whereas in static tasks assistance levels close to 100% of 

the gravitational torque may have led to even further EMG 

reductions [15], [18]. Also, the small torque range could have 

limited the observation of large EMG differences between the 
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EXO conditions. The results suggest possible improvements 

to the adaptive algorithm, which in addition to considering the 

kinematic characteristics of the task, should also be tailored to 

the user’s anthropometry by including the desired percentage 

of arm’s antigravitational support in the equations. 

A. Limitations of the Study and Future Works 

While the results of electromyographic activity should be 

considered as the first proof of the efficacy of the proposed 

algorithm, the exploratory nature of the tests did not permit to 

investigate some important factors that could influence EMG 

results. Among all, the duration of the trials or the experience 

of the subjects with the technology could have a significant 

impact on the EMG reductions and further enhance the effects 

of the exoskeleton in real-use conditions. In particular, as task 

duration is directly correlated to the increase in muscle fatigue 

and muscle activation, it is possible to hypothesize that the 

assistance of the exoskeleton could delay the occurrence of 

fatigue and lead to even higher reductions in the muscle 

activation over time compared to the NO EXO condition [23], 

[24]. Also, several studies have suggested how longer 

familiarization sessions with an exoskeleton can maximize the 

effectiveness of human-robot cooperation [11], [18], [19], 

[25]. 

Also, in its current implementation, the adaptive algorithm 

is highly dependent on the features’ values computed in the 

previous time window, which can cause sudden variations in 

the 𝐴𝑘+1 value, although these abrupt changes are filtered out 

by the slow dynamics of the actuator and by the 

implementation of software controls. Additionally, the 

algorithm does not take into account external load conditions, 

thus reducing its ability to adapt to the use of working tools of 

different weights. 

Finally, due to the preliminary evaluation of the algorithm 

on inexperienced young subjects, the algorithm has not been 

assessed in terms of perceived efficacy or usefulness, which 

could be evaluated in future tests with experienced workers. 

Future works will focus on refining the algorithm and 

testing with a wider pool of subjects in more realistic 

environments, namely in real work tasks and in longer trials, 

where also the effects of fatigue might be assessed. 
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