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A sharp tension exists about the nature of human language between two opposite

parties: those who believe that statistical surface distributions, in particular using

measures like surprisal, provide a better understanding of language processing,

vs. those who believe that discrete hierarchical structures implementing linguistic

information such as syntactic ones are a better tool. In this paper, we show that

this dichotomy is a false one. Relying on the fact that statistical measures can

be defined on the basis of either structural or non-structural models, we provide

empirical evidence that only models of surprisal that reflect syntactic structure are

able to account for language regularities.

One-sentence summary: Language processing does not only rely on

some statistical surface distributions, but it needs to be integrated with

syntactic information.
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A sharp tension exists about the nature of human language between two opposite parties:

those who believe that statistical surface distributions, in particular characterized using

measure like surprisal, provide a better understanding of language processing, vs. those who

believe that discrete recursive hierarchical structures implementing linguistic information

are a better tool, more specifically, syntactic structures, the core and unique characteristic of

human language (Friederici, 2017). In this paper, we show that this dichotomy is a false one.

Relying on the fact that statistical measures can be defined on the basis of either structural

or non-structural models, we provide empirical evidence that only models of surprisal that

reflect syntactic structure are able to account for language regularities. More specifically, our

goal is to show that the only kind of surprisal measure that is well correlated with behavioral

or brain measures is one which takes into account syntactic structure. We do so by showing

that the syntactic surprisal is the only surprisal measure able to distinguish our stimuli in

the same way a human listener would do. Crucially, here all confounding factors, including

acoustic information, will be factored out distinguishing our study from previous in the field,

such as in Frank et al. (2015), Brennan and Hale (2019), Shain et al. (2020).

1. On four di�erent models of surprisal

It is a truism that during language processing the brain computes expectations about

what material is likely to arise in a given context. The natural next step from this observation
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and one that characterizes much work in psycholinguistics is to

formulate a hypothesis about the differences in processing load:

in general, the less expected a piece of linguistic material is, the

more difficult its processing (Taylor, 1953; Goldman-Eisler, 1958).

Expectation can be quantified in terms of the information theoretic

notion of Surprisal (Attneave, 1959), where the surprisal of a word

w in context wc is defined as:

Surprisal (w|wc) = − log p (w|wc) (1)

If a word is highly unlikely in a context, its surprisal will be very

high. In contrast, if the word’s is highly likely, its surprisal will

approach 0.

Surprisal serves as a very useful linking hypothesis between

patterns of behavior and brain response on the one hand and a

single numerical quantity, namely the probability of a form. And

because surprisal does not make explicit reference to linguistic

structure, surprisal is often thought to provide an alternative

perspective on language processing that avoids the necessity to posit

such structure. This view is incorrect, however. Surprisal depends

crucially on a particular characterization of a word’s probability.

Such a characterization, a probability model, may or may not make

reference to linguistic structure. In this section, we will describe two

dimensions along which language probability models can vary, and

then use these dimensions to characterize four distinct probability

models. Each of these models can be used as the input to the

surprisal equation given above, so that different values of surprisal

can result depending on the assumptions behind the probability

model (see Figure 1).

1.1. Dimension 1: sequences vs.
hierarchical structure

Our first dimension concerns the structure that is assumed in

the generation of language. The simplest conception views language

as a concatenative system. In this view, a sentence is simply a

sequence of words generated one after another in a linear fashion.

To account for which sentences are well-formed and which are

not, constraints are imposed on adjacent elements, or bigrams. For

example, in the context preceded by word “the”, a linear model of

English will permit words like “cat” or “magazine” to occur, but not

“of”. To make a probability language model, we can simply assign

a probability to a word w in a given context defined by the previous

word wc, so that the probabilities for all of the words sum to 1

for each context. Given a sufficiently large corpus, we can estimate

these probabilities by taking the ratio of the number of occurrences

of the context and of the context-word bigram:

p (w|wc) =
count (wc, w)

count (wc)
(2)

This model can be extended to an n-gram model, where the length

of the context is increased to include more material: in an n-gram

model, the conditioning context will include n-1 words. A 3-gram

model could thus assign a higher probability to “magazine” than

“cat” in the context “read the” while doing the reverse in the context

“fed the”. A bigram model could not assign distinct probabilities

in the two contexts, since the single adjacent word, namely “the”,

is identical in both. For this reason, an n-gram model gives a

more refined assessment of likelihood as the value of n grows.

However, because the number of conditioning contexts expands

exponentially with the length of the context, it becomes increasingly

difficult to accurately estimate the values of the probabilitymodel. A

variety of methods have been proposed to integrate the information

from longer contexts with information in shorter contexts. We use

such a composite model for our model of N-gram surprisal.

Chomsky (1957) famously argued that linear models, were

inadequate models of natural language, as they are incapable of

capturing unbounded dependencies. To illustrate, consider the

likelihood of the word “is” or “are” in context “The book/books that

I was telling you about last week during our visit to the zoo”. This

will depend on the whether the word “book” or “books” appears in

the context. Because the distance between this contextual word and

the predicted verb can grow without bound, no specific value of n

will yield an n-gram model that can correctly assign probability in

such cases.

Chomsky’s suggested alternative generates language using a

hierarchically organized process. In this way, linearly distant

elements can be structural close. One simple model for this involves

context-free grammars (CFG), a set of rules that specify how a unit

in a sentence tree can be expanded:

S→ NP VP

NP→ Det N

VP→ V NP | V

Det→ the | a

N→ book | books

V→ read | reads

Where S is the sentence, NP is a noun phrase, VP is a verb phrase,

Det is a determiner, N is a noun and V is a verb.

Generating a sentence with such a grammar starts at the

start symbol S. A rule whose lefthand side matches this symbol

is then selected to expand the symbol. Each element of this

expansion is in turn expanded with an appropriately matching

rule, until the only remaining unexpanded symbols are words.

The result of this CFG derivation is a tree-structured object T,

whose periphery consists of the words of the sentence that is

generated, called the yield of T. A CFG can be used as the basis

of a probability model by assigning probability distributions for

the possible expansions of each symbol (i.e., a value between 0

and 1 is assigned to each rule, with the values for the rules that

share the same lefthand side summing to 1). In such a probabilistic

CFG (PCFG), derivations proceed as with CFGs, but the choice

of expansions is determined by the probabilities. In PCFGs, the

probability of a tree structure is the product of the probabilities

of each of the expansions. Because a sequence of words S might

be generated by different trees, the probability of S is the sum

of the probabilities of all of the trees T with yield S. Hale (2001)

shows how to use PCFGs to calculate the surprisal for a word

given a context: we take the summed probability of all trees whose

yield begins with the context-word (i.e., the prefix probability

for context-word) divided by the summed probability of all trees

whose yield begins with the context (i.e., the prefix probability

for context).
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FIGURE 1

Models of surprisal. The two dimensions of language models (linear vs. hierarchical structure and word vs. category prediction). A choice in each

dimension yields a distinct model of language, from which we can extract probability values.

PCFGs of this form suffer from being unable encode

dependencies between lexical items: the choice of the verb in

a VP is made independently of the choice of the noun in the

verb’s NP object. A body of work in the literature in natural

language processing has addressed this shortcoming by adding

’lexicalization’ to a PCFG, and this is the approach we adopt,

following (Roark et al., 2009).

1.2. Dimension 2: word vs. category
prediction

As already noted, n-gram models with longer contexts suffer

from an estimation problem: it is impossible to get accurate

estimates of the likelihood of relatively infrequent words in contexts

that are defined by sequences of, say, 5 words. We can avoid

this problem by incorporating another aspect of abstract linguistic

structure: the categorization of words in part-of-speech (POS)

classes. We can define a POS n-gram model as one where both

the context (and the predicted element are POS (e.g., noun, verb,

determiner, etc.,). To compute the surprisal of a word w, then,

equation (Attneave, 1959) becomes:

pPOS (w|wc) =
count (cc, c)

count (cc )
) (3)

where cc is the POS of the context, and c is the POS of the

target word.

This is what we use for our model of POS surprisal.

With a small set of POS labels, the probability values for longer

n-grams can be accurately estimated. Note though that POS n-

gram model is insensitive to the meaning of individual words,

so it will be unable to distinguish the probability of “cat” and

“magazine” occurring in any context, as they are both nouns, but

could distinguish their likelihood from that of prepositions like “of”

or adjectives like “furry”. As a result, this model’s predictions for

surprisal will differ from those of a word-based surprisal model.

Roark et al. (2009) propose a method for separating between

word vs. category prediction in the context of a hierarchy-sensitive

probability models. Specifically, for the category predictions, the

prefix probability of the context-word sequence omits from the

probability of the generation of the word. Following Roark et al.,

we call the resulting surprisal predictions Syntactic Surprisal. For
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word predictions, on the other hand, the context includes not only

that contributed by the preceding words, but also the structure up

to, but not including, the generation of the word. Again following

Roark et al. (2009), we call the surprisal values computed in this way

Lexical Surprisal.

2. Challenging data

In order to test different types of surprisal models a new set of

stimuli has been designed building on Artoni et al. (2020). In that

work the neural decoding of linguistic structures from the brain was

found in carefully controlled data, where confounding factors such

as acoustic information were factored out distinguishing this work

from previous in the field such as in Frank et al. (2015), Brennan

and Hale (2019), Shain et al. (2020). Specifically, their stimuli

involved pairs of sentences sharing strings of two words with

exactly the same acoustics (homophonous phrase, hence HP) but

with completely different syntax. This strategy was made possible

by relying on the properties of the Italian language. HPs could

be either a Noun Phrase (NP) or a Verb Phrase (VP), depending

on the syntactic structure that is involved. More specifically, HPs

contained two words, such as la porta [la’pOrta]: a first monosyllabic

word (e.g., la) which could be interpreted either as a definite

article (Eng. “thefem.sing”) or an object clitic pronoun (Eng. “her”); a

second polysyllabic word (e.g., porta) which could be interpreted

either as a noun (Eng. “door”), or a verb (Eng. “brings”). The

whole HP could be interpreted either as a NP (“the door”) in

Pulisce la porta con l’acqua (s/he cleans the door with water) or

as a VP (“brings her”) in Domani la porta a casa (tomorrow s/he

brings her home) depending on the syntactic context within the

sentence where they were pronounced. Crucially, there is a major

syntactic difference between NPs and VPs even though they are

pronounced in exactly the same way: in NPs the article is base

generated on the left; in VPs, instead, the clitic is base generated

on the right and it is then moved to the left, a syntactic operation

called “cliticization” (Moro, 2016). Indeed, in Artoni et al. (2020)

two different electrophysiological correlates have been found in

multiple cortical areas in both hemispheres, including language

areas, factoring sound out, for NPs and VPs. However, a potential

problem remained as to how surprisal could interfere with the

measure of syntactic information. In fact, the linguistic material

preceding HPs was different in the NPs vs. VPs interpretation,

such as in Pulisce la porta (s/he cleans the door) vs. Domani la

porta (tomorrow s/he brings). These stimuli have been revised and

refined: three novel experimental conditions have been generated

by modulating the syntactic context preceding HPs, as followes:

(i) unpredictable HPs (UNPRED): the syntactic context

preceding HPs allows both NPs and VPs since it is an adverb.

Therefore, the syntactic types of HPs are not predictable at the

beginning of the sentence, but only after the HPs: if HPs are

followed by verbs (such as in Forse la porta è aperta, “Maybe

the door is open”) they realize NPs, otherwise they realize

VPs (Forse la porta a casa, “Maybe s/he brings it at home”).

Since the lexical context preceding HPs is exactly the same for

both NPs and VPs, no differences in the surprisal value can be

detected at the HP.

(ii) Strong predictable HPs (Strong_PRED): the syntactic

context preceding HPs allows either NPs or VPs (but not both)

and, therefore, the syntactic type of HP is predictable at the

beginning of the sentence: if HPs are preceded by verbs, they

realize NPs (such as in Pulisce la porta con l’acqua, “S/he cleans

the door with water”); if HPs are preceded by nouns, they

realize VP (such as in La donna la porta domani, “A woman

brings her tomorrow”). This was the kind of stimuli exploited

in Artoni et al. (2020), where the lexical context preceding

HPs was different in NPs and VPs, allowing different surprisal

values in the two cases.

(iii) Weak predictable HPs (Weak_PRED): the syntactic context

preceding HPs allows both NPs and VPs, as in the

unpredictable HPs, thus the first word of the HP (la) could

either be an article or a clitic pronoun, but the second word

of the HP (porta) can only be analyzed as a noun (door),

as in 1st class predictable HPs, since the temporal adverb

introducing the sentence (such as ieri, “yesterday”) requires a

past tense whereas the verbal form of the HP displays a present

tense (brings) (such as Ieri la porta era aperta, “Yesterday

the door/∗brings it was open”). As in the unpredictable class,

the surprisal value is eliminated by the lexicon preceding

HPs, which is the same for both NPs and VPs (only the

morphosyntactic shape of the second HP word forces the

interpretation forward the NP).

A total of 150 trials were prepared: 60 for UNPRED-HPs, 30

UNPRED-NPs and 30 UNPRED-VPs, 60 for Strong_PRED-HPs,

30 Strong_PRED-NPs and 30 Strong_PRED-VPs, and 30 for

Weak_PRED-HPs, only Weak_PRED-NPs since there cannot be

VPs of this type.

3. Statistical analysis

We performed statistical analysis on the surprisal values

calculated using the N-gram, Lexical, POS, and Syntactic surprisal

of the 5 classes of stimuli (Strong_PRED-NP, Strong_PRED-VP,

Weak_PRED-NP, UNPRED-NP, UNPRED-VP) relative to the first

and the second word of the HPs. This analysis aimed at identifying

the statistical language model that best differentiated between

various linguistic stimuli in the same way as a human listener would

do (e.g., distinguish Strong_PRED-NP and Strong_PRED-VP but

not UNPRED-NP and UNPRED-VP).

Kruskal-Wallis tests revealed significant differences across the

surprisal values associated with all five classes for all notions of

surprisal. For the nouns and verbs, the difference was significant

only for the POS surprisal and the syntactic surprisal. We further

investigated these differences using Conover post-hoc tests with

Holm-Bonferroni correction. For the articles and clitics, only the

syntactic surprisal captured the difference across all three classes of

predictable items (p < 0.0001, Figure 2A, top row). The POS and

N-gram surprisal values of the articles were lower than those of the

clitics (p < 0.05), while the lexical surprisal values of the articles

of the Strong_PRED-NP sentences were lower than the lexical

surprisal values of the articles of weak_PRED-NP sentences and the

clitics of Strong_PRED-VP sentences. For nouns and verbs, both

the POS surprisal and the syntactic surprisal showed a difference
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FIGURE 2

Statistical analysis and decoding. (A) Boxplots of the surprisal values for the (strong and weak) predictable items for the articles/clitics (art./cl., top

row) and the nouns/verbs (N/V, bottom row). Each column represents a distinct notion of surprisal. (B) Same as (A) but for unpredictable (Unpred)

items. (C) Boxplots of the accuracies for the distinct classification tasks using di�erent sets of features. Each data point is the accuracy of 1 fold in a

10-fold cross validation procedure. The red dashed lines are the chance levels. Strong Predictable N vs. V: classification task (i). (Strong and weak)

Predictable N vs. V: classification task (ii). Unpredictable N vs. V: classification task (iii). Predictable vs. unpredictable: classification task (iv). For each

set of features both the surprisal of the article/clitic and of the noun/verb were considered. The set of features are: ngram – N-gram surprisal; lex –

Lexical surprisal; pos – POS surprisal; syn – Syntactic surprisal; tot – all of the above.

Frontiers in Language Sciences 05 frontiersin.org

https://doi.org/10.3389/flang.2023.1178932
https://www.frontiersin.org/journals/language-sciences
https://www.frontiersin.org


Greco et al. 10.3389/flang.2023.1178932

between all three stimuli classes (p < 0.05, Figure 2A, bottom row).

There was no difference between the N-gram surprisal values or

lexical surprisal values of nouns and verbs. For the unpredictable

items, only the POS surprisal values were different between the

articles and clitics and between the nouns and verbs (Figure 2B).

We defined four different classification tasks: Strong_PRED

nouns vs. verbs (i), predictable (Strong_PRED and Weak_PRED)

nouns vs. verbs (ii), UNPRED nouns vs. verbs (iii), and predictable

items vs. unpredictable items (iv). For each classification task

we trained and validated (10-fold cross validation) one Support

Vector Machines (SVM) for each notion of surprisal (i.e., using

the values calculated according to the given notion of surprisal as

features), and one SVM trained on all surprisal values regardless

of the surprisal type, called tot-SVM. For classification tasks

(i), (ii), and (iv), the SVMs trained on POS surprisal, Syntactic

surprisal, and the tot-SVM reached near 100% accuracy, above

the other two classifiers (p < 0.05, Conover post-hoc with Holm-

Bonferroni correction). For classification task (iii), tot-SVM and

the POS surprisal-trained SVM reached 100% accuracy, while

Syntactic surprisal-SVM achieved slightly above-chance accuracy

(Figure 2C).

4. Discussion and conclusion

In this paper four different probability models of surprisal have

been compared by exploiting the following contrasting factors:

words vs. parts-of-speech and sequences vs. hierarchical structures.

In order to test these models three experimental conditions

have been generated by modulating the surprisal context: those

where the phrase was completely unpredictable by the contexts

(unpredictable phrases), those where the phrase was immediately

predictable by the first word of the phrase (strong predictable

phrases), and those where the phrase was predictable only after the

second word of the phrase (weak predictable phrases). Notably, all

confounding factors, including acoustic information, were factored

out distinguishing our work from previous in the field such as

in Frank et al. (2015), Brennan and Hale (2019), Shain et al.

(2020). We found that only those models combining hierarchical

structures and part-of-speech categories successfully distinguished

the three classes. On the other hand, surprisal models that only

considers sequences of both words and parts-of-speech fail to

replicate the expectation associated to the three classes. All in all,

our modeling results point to the conclusion that statistical surface

distributions are insufficient for capturing subtle distinctions in

linguistic patterns.

Conspicuously absent from our discussion of language models

are ones based on deep neural networks. Apart from their

enormous success in practical tasks in natural language processing

[e.g., as seen with the large language models (LLM) underlying

systems like ChatGPT (Floridi and Chiriatti, 2020)], such models

have also been used to model neural activity during sentence

processing via the surprisal values they provide (Goldstein et al.,

2022; Heilbron et al., 2022; Russo et al., 2022). On the surface,

it would appear that such models belong to the class of linear

lexical models (on a par with n-grams), as they do not appear

in embody any sort of linguistic abstraction. As such, their

success in modeling neural activity would provide a counter-

example to the claims in this paper. However, because of their

complexity, the factors governing the behavior of such models is

quite obscure, and indeed studies of the internal representations

of some of these models has found that they do indeed encode

linguistic abstractions, incorporating both grammatical categories

and hierarchical structure (Lin and Tan, 2019; Tenney et al., 2019;

Manning et al., 2020). Yet, because of their complexity, it is virtually

impossible to determine the precise role played by such abstractions

in the computation of word probabilities, and for this reason we

leave these models aside.

Eventually, it is important to note that the work reported

here does not take into account brain data: the preliminary goal

chosen here, in fact, is rather to determine what properties a

statistical model of language needs to have in order to distinguish

among different types of linguistic stimuli modulating surprisal.

Nevertheless, our research does lead to a better comprehension

of brain data as well: for example, the electrophysiological data

observed in Artoni et al. (2020), as considered under the novel

perspective proposed here, show that for those brain data to be

fully understood, syntactic notions must necessarily be included in

surprisal models.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

Conceptualization and funding acquisition: AM. Methodology:

MG, AC, FA, and RF. Visualization: AC and RF. Supervision,

writing—original draft, and writing—review and editing: MG, AC,

FA, RF, andAM. All authors contributed to the article and approved

the submitted version.

Funding

Ministero dell’Università e della Ricerca (Italy) grant:

INSPECT-PROT. 2017JPMW4F_003.

Acknowledgments

The authors would like to thank Silvestro Micera and Claudia

Repetto, also involved in PRIN-INSPECT project as heads of a

different units, and Stefano Cappa for their precious suggestions.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

Frontiers in Language Sciences 06 frontiersin.org

https://doi.org/10.3389/flang.2023.1178932
https://www.frontiersin.org/journals/language-sciences
https://www.frontiersin.org


Greco et al. 10.3389/flang.2023.1178932

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/flang.2023.

1178932/full#supplementary-material

References

Artoni, F., d’Orio, P., Catricalà, E., Conca, F., Bottoni, F., Pelliccia, V., et al. (2020).
High gamma response tracks different syntactic structures in homophonous phrases.
Sci. Rep. 10, 7537. doi: 10.1038/s41598-020-64375-9

Attneave, F. (1959). Applications of Information Theory to Psychology: A Summary
of Basic Concepts, Methods and Results. New York: Rinehart andWinston.

Brennan, J. R., and Hale, J. T. (2019). Hierarchical structure guides rapid
linguistic predictions during naturalistic listening. PLoS ONE. 14, e0207741.
doi: 10.1371/journal.pone.0207741

Chomsky, N. (1957). Syntactic Structures. Washington, DC: Mouton.
doi: 10.1515/9783112316009

Floridi, L., and Chiriatti, M. (2020). GPT-3: its nature, scope, limits, and
consequences.Minds Machines 30, 681–694. doi: 10.1007/s11023-020-09548-1

Frank, S. L., Otten, L. J., Galli, G., and Vigliocco, G. (2015). The ERP response to
the amount of information conveyed by words in sentences. Brain Language 140, 1–11.
doi: 10.1016/j.bandl.2014.10.006

Friederici, A. (2017). Language in our Brain: The Origins of a Uniquely Human
Capacity. Cambridge, MA: MIT Press. doi: 10.7551/mitpress/9780262036924.001.0001

Goldman-Eisler, F. (1958). Speech production and the predictability of words in
context. Quarterly J. Exp. Psychol. 10, 96–106. doi: 10.1080/17470215808416261

Goldstein, A., Zada, Z., Buchnik, E., Schain, M., Price, A., Aubrey, B., et al. (2022).
Shared computational principles for language processing in humans and deep language
models. Nature Neurosci. 25, 369–380. doi: 10.1038/s41593-022-01026-4

Hale, J. (2001). “A probabilistic Earley parser as a psycholinguistic model” in
Proceedings of the Second Meeting of the North American Chapter of the Association
for Computational Linguistics on Language Technologies (NAACL) (Association for
Computational Linguistics), p. 10. doi: 10.3115/1073336.1073357

Heilbron, M., Armeni, K., Schoffelen, J-. M., and Hagoort, P. F. P. (2022). A
hierarchy of linguistic predictions during natural language comprehension. Proceed.
Natl. Acad. Sci. 119, e2201968119. doi: 10.1073/pnas.2201968119

Lin, Y., and Tan, Y-. C. (2019). “Open Sesame: Getting inside BERT’s Linguistic
Knowledge,” in Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP (Association for Computational Linguistics).
doi: 10.18653/v1/W19-4825

Manning, C. D., Clark, K., and Hewitt, J. (2020). Emergent linguistic structure in
artificial neural networks trained by self-supervision. Proceed. Natl. Acad. Sci. 117, 48.
doi: 10.1073/pnas.1907367117

Moro, A. (2016). Impossible Languages. Cambridge, MA: MIT Press.
doi: 10.7551/mitpress/9780262034890.001.0001

Roark, B., Bachrach, A., Cardenas, C., and Pallier, C. (2009). “Deriving
lexical and syntactic expectation-based measures for psycholinguistic modeling
via incremental top-down parsing” in Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing: Volume 1 (EMNLP) (Association
for Computational Linguistics, 2009), p. 324–333. doi: 10.3115/1699510.16
99553

Russo, A. G., Ciarlo, A., Ponticorvo, S., Di Salle, F., Tedeschi, G., and
Esposito, F. (2022). Explaining neural activity in human listeners with deep
learning via natural language processing of narrative text. Sci. Rep. 12, 17838.
doi: 10.1038/s41598-022-21782-4

Shain, C., Blank, I. A., van Schijndel, M., Schuler, W., and Fedorenko, E.
(2020). fMRI reveals language-specific predictive coding during naturalistic sentence
comprehension. Neuropsychologia 138, 107307. doi: 10.1016/j.neuropsychologia.2019.
107307

Taylor, W. L. (1953). “Cloze procedure”: a new tool for measuring
readability. J. Quarterly 30, 415–433. doi: 10.1177/107769905303
000401

Tenney, I., Xia, P., Chen, B., Wang, A., Poliak, A., McCoy, R.T., et al. (2019)
“What do you learn from context? Probing sentenfce structure in contextualized
word representations,” in Proceedings of the International Conference on Learning
Representations. Available online at: https://openreview.net/pdf?id=SJzSgnRcKX.

Frontiers in Language Sciences 07 frontiersin.org

https://doi.org/10.3389/flang.2023.1178932
https://www.frontiersin.org/articles/10.3389/flang.2023.1178932/full#supplementary-material
https://doi.org/10.1038/s41598-020-64375-9
https://doi.org/10.1371/journal.pone.0207741
https://doi.org/10.1515/9783112316009
https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.1016/j.bandl.2014.10.006
https://doi.org/10.7551/mitpress/9780262036924.001.0001
https://doi.org/10.1080/17470215808416261
https://doi.org/10.1038/s41593-022-01026-4
https://doi.org/10.3115/1073336.1073357
https://doi.org/10.1073/pnas.2201968119
https://doi.org/10.18653/v1/W19-4825
https://doi.org/10.1073/pnas.1907367117
https://doi.org/10.7551/mitpress/9780262034890.001.0001
https://doi.org/10.3115/1699510.1699553
https://doi.org/10.1038/s41598-022-21782-4
https://doi.org/10.1016/j.neuropsychologia.2019.107307
https://doi.org/10.1177/107769905303000401
https://openreview.net/pdf?id=SJzSgnRcKX
https://www.frontiersin.org/journals/language-sciences
https://www.frontiersin.org

	False perspectives on human language: Why statistics needs linguistics
	1. On four different models of surprisal
	1.1. Dimension 1: sequences vs. hierarchical structure
	1.2. Dimension 2: word vs. category prediction

	2. Challenging data
	3. Statistical analysis
	4. Discussion and conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


