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a b s t r a c t 

Interactive fashion search is gaining more and more interest thanks to the rapid diffusion of online re- 

tailers. It allows users to browse fashion items and perform attribute manipulations, modifying parts or 

details of given garments. To successfully model and analyze garments at such a fine-grained level, it is 

necessary to obtain attribute-wise representations, separating information relative to different character- 

istics. In this work we propose an attribute disentanglement method based on attribute classifiers and 

the usage of gradient reversal layers. This combination allows us to learn attribute-specific features, re- 

moving unwanted details from each representation. We test the effectiveness of our learned features in 

a fashion attribute manipulation task, obtaining state of the art results. Furthermore, to favor training 

stability we present a novel loss balancing approach, preventing reversed losses to diverge during the 

optimization process. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In the field of fashion image analysis, the ability to effectively 

anipulate and optimize the features extracted from garment im- 

ges is crucial for the development of accurate and robust models. 

n particular, attribute manipulation finds large application for on- 

ine retailers since users can add, remove or transform visual traits 

f a garment to match a desired style. Being able to decompose 

nd describe an image using a set of attributes also helps in ana- 

yzing the images, recognizing patterns and styles at a fine grained 

evel. 

Closely related to attribute manipulation is the concept of at- 

ribute disentanglement, which focuses on separating the under- 

ying factors of variation in a dataset. In the context of fashion 

mages, this means identifying and isolating the latent features 

hat represent different fashion attributes such as color, texture 

nd pattern. The problem of attribute disentanglement in fash- 

on images is particularly challenging due to the high variability 

nd complexity of garments. For example, the same color can ap- 
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ear in different shades and hues, and the same pattern can be 

epresented in different scales and orientations. Additionally, fash- 

on images often contain multiple attributes that are correlated 

nd intertwined, making it difficult to separate them. To address 

his problem, several approaches have been proposed in the liter- 

ture [1–3] , using specifically tailored architectures like Generative 

dversarial Networks (GANs) [4,5] or Memory Augmented Neural 

etworks (MANNs) [2,3,6] . 

In this paper, we propose a novel approach based on gradient 

eversal to disentangle the attribute feature space in fashion im- 

ges. Our method is based on training multiple classifiers to pre- 

ict the value of each attribute, such as color, texture, and pattern. 

hanks to a gradient reversal layer, the optimization of the classi- 

ers leads to feature representations that are specifically geared to- 

ards particular attributes while ignoring the others. The rationale 

ehind this approach is the following. Training attribute-specific 

lassifiers has been shown to provide attribute disentanglement 

o a certain extent [2] . In this scenario, the same input image is 

rojected into multiple latent spaces with a multi-branch architec- 

ure and attribute-specific classifiers ensure that each latent space 

s organized well to discriminate the correspondent attribute val- 

es. However, in this setting, there is no guarantee that a given at- 

ribute feature does not capture aspects relative to other attributes 

e.g., the color latent space might still encode information about 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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hape), negatively affecting downstream applications. We build on 

his idea, but instead of simply learning to classify the value of a 

pecific attribute, we also ensure that the model removes all pos- 

ible information regarding other attributes. To reach this purpose, 

e feed each feature from the branched architecture to all the at- 

ribute classifiers, yet only one is optimized to correctly classify the 

ttribute values and the others push the backbone to remove un- 

anted features thanks to the usage of gradient reversal. In fact, 

eversing the gradient favors weight updates that work against a 

orrect classification for unwanted attributes, thus shaping the la- 

ent space accordingly. Experimental validation demonstrates the 

ffectiveness of the proposed approach, obtaining state of the art 

esults on attribute manipulation tasks. 

To summarize, the main contributions of this paper are: 

• We present a multi-attribute disentanglement strategy based 

on gradient reversal. Our approach makes use of attribute- 

specific classifiers combined with gradient reversal layers to 

learn disentangled representations. 
• To address the challenges of training a model with gradient re- 

versal, we propose a loss balancing method that favors training 

convergence. 
• We integrate our extractor of disentangled features into an at- 

tribute manipulation framework, obtaining state of the art re- 

sults on the challenging dataset Shopping100k [7] . 

. Related works 

With the growth of online shopping, retailers and social net- 

orks have gathered large collections of fashion images, that are 

sed on a daily basis by customers to browse and purchase items. 

or this reason, there is a strong interest in recognizing and mod- 

ling fashion items and their attributes automatically [2,3,6,8,9] for 

ifferent kinds of tasks [10–12] . In this work we focus on un- 

erstanding how a garment can be characterized as a composi- 

ion of parts, i.e. a collection of attributes that can describe the 

tem. Detecting and describing such attributes has been a hot re- 

earch topic [8,9,13] . For instance, Chen et al. [8] proposed an au- 

omatic framework to generate a list of attributes, whereas Ab- 

ulnabi et al. [13] devised a multi-task approach for multi-attribute 

lassification. Attributes have also been modeled jointly with ad- 

itional media. In [9] , the authors automatically infer attributes 

ased on fashion images and their web-based description. Liu et al. 

14] instead modeled attributes with image landmarks introducing 

 model dubbed FashionNet. 

Of particular interest are methods that allow to interact with 

 database of garment images. The interaction can take place by 

earching items with certain attributes, possibly allowing specific 

anipulations to alter their values in a desired way. WhittleSearch 

15] is an early search engine that allowed an interactive search 

sing relative attributes such as “more elegant” or “less colorful”. 

his engine however required several iterations to change from 

ne attribute to another. Such a concept has been also explored 

n [16] . More recently, some approaches have declined the prob- 

em as an image generation task exploiting Generative Adversar- 

al Networks [17] , such as GVM [4] or AMGAN [5] . These ap-

roaches however make the retrieval of real garments more chal- 

enging and dependent on the overall quality of the generated 

mages. 

To overcome this limitation, Zhao et al. [6] proposed a mem- 

ry augmented attribute manipulation network dubbed AMNET, 

hich instead of generating a new image, manipulates attributes 

n a disentangled latent space and directly performs retrieval. 

ther approaches have exploited memory augmented networks to 

tore prototypes of disentangled features [2,3,18,19] . In [3] the au- 

hors use a contrastive learning approach to separate color and 
204 
hape attributes and the memory stores different modalities to 

ombine such features to compose an outfit. Variations of such 

ethod have been proposed in [20–22] including additional meta- 

ata related to style and suitability for social events. Differently 

rom these approaches, which are able to disentangle only style 

nd color, we propose a disentangling method for arbitrarily large 

et of attributes. More recently, Hou et al. [2] proposed ADDE, a 

odel based on the combination of attribute classifiers to disen- 

angle features and a memory of prototypes to perform manip- 

lations. Our work is closely related to [2] , from which we bor- 

ow part of the architecture, namely the memory structure. Differ- 

ntly from Hou et al. [2] , however, we introduce a new training 

trategy based on gradient reversal [23] to favor attribute disen- 

anglement. We show how our method outperforms prior work 

nd is able to obtain better separated features and thus better 

ttribute manipulations. Gradient reversal [23] is a training tech- 

ique that exploits a special layer (the Gradient Reversal Layer, 

RL) that acts as an identity during the forward pass of the net- 

ork and inverts the sign of the gradient during backpropaga- 

ion. This technique has been introduced for domain adaptation 

asks, using a domain classifier which, under the influence of the 

RL, is trained to remove domain information from the feature 

pace. A few approaches have recently used gradient reversal to 

chieve feature disentanglement in different domains such as au- 

io [24] or face recognition [25] . These methods however use the 

RL as a sort of binary discriminator, similarly to Ganin and Lem- 

itsky [23] . Instead, we exploit the GRL to perform multi-attribute 

isentanglement using a set of attribute-wise classifiers and we 

ntroduce a novel weighing strategy to avoid divergence during 

raining. 

. Model 

.1. Problem formulation 

Let A = { a 1 , . . . , a N } be a set of predefined garment attributes of

ength N, indexed by the symbol n . Each of these attributes a n is

ssociated with a list of possible values a n = (v 1 n , v 2 n , . . . , v 
J n 
n ) , where

 n is the number of possible values for that attribute. For example 

 = { a color , a category } with 

 color = (r ed, gr een, white, black ) 

a category = (shirt, dress, trousers ) . 

n this case J color and J category are equal to 4 and 3, respectively, as 

he number of values the attribute can assume. We indicate with 

the total number of values that any attribute can assume: J = 

 

n =1 , ... ,N J n . 

Any garment image I can be described as a vector v I = 

v I 1 , v 
I 
2 , . . . , v 

I 
N ) , where the jth attribute v I 

j 
can assume any value in

 j . An attribute manipulation is defined as a retrieval task where, 

iven a query image I q described by v q = (v q 
1 
, v q 

2 
, . . . , v q 

N 
) and a

uery manipulation a k = q we want to retrieve an ordered list of 

arget images described by v t = (v t 
1 
, v t 

2 
, . . . , v t 

N 
) , where v t 

k 
= q and

he remaining attributes are left unchanged. 

.2. Attribute disentanglement with gradient reversal 

In order to obtain effective manipulations, it is necessary that 

he features of each attribute are disentangled and well separate. 

n this paper we achieve such goal using gradient reversal [23] . 

Two network architectures were designed and studied to sepa- 

ate the features using gradient reversal. The architectures are dis- 

inguished by the number of classifiers used to achieve feature dis- 

ntanglement: (i) The first configuration ( Fig. 1 ) uses N classifiers, 

ne for each attribute. (ii) The second configuration ( Fig. 2 ) uses N
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Fig. 1. Network architecture with N classifiers. Every attribute feature is classified by the respective classifier. At the same time, the remaining N-1 classifiers are trained to 

classify the other attributes under the influence of the Gradient Reversal Layer. This enforces each MLP to learn an attribute-specific latent space where data is organized 

according to a given attribute, disregarding information about the other. 

Fig. 2. Network architecture with N ∗ N classifiers. Every attribute feature is classified by N different classifiers. All the classifiers work under the influence of the Gradient 

Reversal Layer with the exception of the ones corresponding to the same attribute of the input features. This enforces each MLP to learn an attribute-specific latent space 

where data is organized according to a given attribute, disregarding information about the other. 
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ttribute classifiers plus N 

∗(N-1) additional classifiers preceded by 

 Gradient Reversal Layer (GRL). 

The two network architectures have in common the use of a 

onvolutional backbone and N different Multi-Layer Perceptrons 

MLP). Following prior work [2] , we used Alexnet [26] as back- 

one. The backbone network maps the input image into a latent 

epresentation φ. This representation is then used by the N MLPs 

o obtain separated features for each attribute. 

Now we will analyze the other elements of the two imple- 

ented architectures. The first configuration involves the use of 

 classifiers, one for each attribute, each of which, given the fea- 

ure extracted from the corresponding MLP, must classify the cor- 

esponding attribute. The n th classifier will therefore have as many 

utputs as the possible number of values J n for the correspondent 

ttribute. Referring to our previous example, the color classifier 

ill receive as input the feature extracted from the MLP dedicated 

o color and will have to predict the color among the possible val- 

es a color . 

To optimize the classifier, the cross entropy loss was used as 

bjective function, as this is a multi-label attribute classification 

roblem. The objective function of the classifier is defined as: 

 cls = −
M ∑ 

i =1 

N ∑ 

n =1 

log (p(y i,n | ̂  y i,n )) , (1) 
205 
here y i,n is the ground-truth label of image I i for attribute n , ˆ y i,n 
s the output of the model, and M is the number of examples in a 

raining batch. 

Whereas such approaches have been used before for attribute 

isentanglement [2] , optimizing only an attribute classifier loss 

oes not yield an optimal separation of the descriptors. In fact, 

he model might exploit biases that create correlations between 

ttributes such as gender and color. 

To avoid these issues, we introduced the usage of a Gradient 

eversal Layer (GRL) for attribute disentanglement. We augmented 

he network by adding gradient reversal layers between the at- 

ribute feature extractors (Alexnet + MLP) and the N-1 classifiers 

edicated to classify all the other attributes. More formally, we de- 

ne N × N pathways in the network separately connecting the N 

eatures with the N classifiers. The pathway between feature n and 

lassifier n is left unchanged, whereas pathways between feature 

j and classifier k are connected through a gradient reversal layer 

hen j � = k . 

The idea is that the classifiers, for each training batch, continue 

o classify the features extracted from the correspondent MLP, gen- 

rating the correspondent attribute value. At the same time, the 

lassifiers must also attempt to classify the features extracted from 

ll the other N-1 MLPs, which are passed through the GRL. The for- 

ard pass will not be affected by gradient reversal, whereas dur- 

ng the backward pass each classifier will propagate a signal to the 
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Fig. 3. Training scheme. Each MLP generates a different f eature and is optimized to classify the correspondent attribute with separate classifiers. At the same time each 

feature is fed to the other classifiers to classify the other attributes under the influence of the gradient reversal layer. 
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eatures of the other attributes in order to remove information that 

s not attribute-specific. Overall, during training, each MLP will re- 

eive gradient updates from N distinct sources, one for each type of 

ttribute (and thus, one for each classifier) as shown in Figs. 1 and 

 . Among these, only the gradient of the i th classifier will be used

s is to optimize the i th MLP. The remaining N-1 gradients will in

act be reversed, pushing the network to work poorly when clas- 

ifying other attributes. This procedure shares some resemblance 

ith adversarial training typical of GANs, where a “positive” and a 

negative” loss are optimized jointly towards establishing an equi- 

ibrium. Such an idea has been exploited in literature to obtain dis- 

ntangled representations both in GANs [27] and VAEs [28] . Disen- 

anglement stems from the fact that, to satisfy all losses, the net- 

ork must learn a latent space that allows an effective classifica- 

ion of the principal task (the “positive” one, i.e. the one without 

he GRL), while not allowing the other classifiers to perform their 

ask. 

The cross-entropy loss was used also for the classification of 

eatures passed through the gradient reversal layer. For simplicity 

e denote this loss as L re v , and define it as: 

 re v = −
M ∑ 

i =1 

N ∑ 

n =1 

∑ 

j∈ N\{ n } 
L (F n ( f j ) , y ) . (2) 

Here, L is the cross entropy, F n is the classifier of attribute n , 

f j is the feature of attribute j, y is the ground truth and M the

umber of samples in the batch. 

The total loss is computed as the sum of the two losses defined 

n Eqs. (1) and (2) : 

 tot = w cls L cls + w re v L re v . (3) 

he symbols w cls and w re v denote hyper-parameters weighing the 

osses. 

As explained above, the GRL during forward propagation will 

ct as an identity function. During backpropagation instead it will 

ultiply the gradient of the loss L re v to a negative scalar. At the 

ame time, the classification loss L cls is going to be minimized. 

The weights of the feature extractors θMLP n during backpropaga- 

ion will therefore be updated according to: 

∂L 

∂ θMLP n 

= 

∂L cls n 

∂θMLP n 

− λ
∂L re v n 
∂θMLP n 

. (4) 

However, all the classifiers are trained to minimize L tot . This 

eans that the loss L re v will eventually be maximized so that other 

ttributes will not be deducible from a given feature, leading to a 

etter feature disentanglement. 

Subsequently, for the second configuration of our architecture, 

e took the architecture described so far to the extreme by using 
206 
 × N classifiers. For each attribute n, N separate classifiers were 

reated: one classifier must classify the features received from the 

 th MLP and the other N-1 classifiers must classify the features 

assed by the gradient reversal layer and extracted from the N-1 

LPs corresponding to the other attributes. 

The loss to be minimized is the same as that reported in Eq. (3) .

n this case, therefore, all classifiers are trained to minimize their 

espective losses, in order to learn to classify the features. The 

resence of gradient reversal, among certain classifiers and the 

LPs, means that each feature extractor is trained to maximize 

he loss L re v . But since there are also attribute classifiers without 

RL, the MLPs are also trained to minimize L cls at the same time. 

verall, the two model configurations optimize the same amount 

f losses to obtain the same outcome. The difference lies in the 

umber of trainable parameters, since the first configuration has 

shared classifiers, whereas the second one has N × N indepen- 

ent classifiers. The overall training scheme, shared by both archi- 

ectures, is shown in Fig. 3 . 

.3. On training with the gradient reversal layer 

Training a model with multiple losses is not straightfor- 

ard since weighing individual losses is cumbersome, yet cross- 

alidation can help to establish suitable parameters. On the con- 

rary, defining the λ hyper-parameter of the Gradient Reversal 

ayer is a much more sensible matter. In fact, when optimizing 

he L re v losses we are minimizing the classification error but at the 

ame time we are inverting the gradient, thus removing from the 

eature maps useful information that can be exploited for classifi- 

ation. This has the effect of pushing parts of the network to make 

 mistake. The λ parameter in the GRL regulates the strength of 

his “push” and, if not accurately tuned, will likely lead the model 

o diverge. The main issue is that the error function is bounded 

rom below (when the loss is equal to zero), but is not bounded 

rom above. Thus, when two losses push the same weights to 

chieve opposite outcomes it might be hard to find an equilib- 

ium: as soon as L cls becomes small enough, the importance of 

 re v can quickly overcome such equilibrium, making the network 

iverge. 

To avoid this issue, we introduce an adaptive reversal weight 

hat constantly keeps a balance between the actual classification 

oss and the reversal one. The main idea is to let the gradient re- 

ersal layer affect weight updates by following the direction of the 

reversed) gradient, but normalizing its magnitude. We set λ = 1 

n the GRL, thus simply reversing the gradient without affecting its 

eight, and we balance the two losses L cls and L re v with Eq. (3) ,

egulating the ratio between the importance of L and L re v with a 
cls 
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Table 1 

Attributes and example of values from Shopping100k [7] . 

Attributes Values Total 

Category Shirt, Dress, Trousers, Coat, ... 16 

Color Black, Pink, White, Green, ... 19 

Pattern Animal, Plain, Photo, Print, ... 16 

Fit Skinny, Regular, Loose, Oversize, ... 15 

Sleeve Long, Short, Sleeveless, Strapless, ... 9 

Pocket Side, Sleeve, Zip, Flap, ... 7 

Neckline Boat, Backless, Round, Square, ... 11 

Fastening Zip, Belt, Covered, Button, ... 10 

Collar High, Round, Hood, Lape, ... 17 

Fabric Denim, Canvas, Lace, Leather, ... 14 

Sport Basketball, Hiking, Swim, Tennis, ... 15 

Gender Male, Female 2 

Table 2 

Architecture details of our proposed approach. 

Component Structure 

Backbone Alexnet (Conv1 to Conv5 + Linear 1) 

MLPs φn Linear(4096, 340) + ReLU + Linear(340, 340) 

Attribute 

predictor 

Linear(340, number of attribute values) 

Attribute 

predictor 

with 

Gradient 

Reversal 

Linear(340, number of attribute values) 

i  

a

t

a

t

f
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t
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t

T
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t

1 We leave the study of gradient reversal on such architectures as future work. 
calar β: 

 re v = 

(
L cls w cls 

L re v 

)
β. (5) 

In our experiments, we set β = 0 . 1 to keep an order of magni-

ude between the effect of the standard classification loss and the 

eversal one. In this way, when the classification loss tends towards 

ero, the update due to L re v will become increasingly smaller. This 

pproach has been adopted for both of our network configurations, 

ith N or N ∗ N classifiers. 

.4. Attribute manipulation 

To perform attribute manipulation using our disentangled fea- 

ures we rely on an architecture inspired by Hou et al. [2] . A mem-

ry block M ∈ R 

N·d ×J is used, allowing to store prototype features 

f all attributes. N indicates the number of different attribute types 

resent in the dataset, J indicates the total number of attribute val- 

es, and d indicates the specific embedding size of each attribute. 

rototypes are stored for each attribute value. For example, for the 

olor attribute, there will be a prototype stored for each possi- 

le color (red, green, etc.) present in the dataset. The prototypes, 

or each attribute value, are saved in the columns of the memory 

lock, according to: 

 = 

⎡ 

⎢ ⎣ 

e 1 1 . . . e J 1 
1 

. . . 0 0 . . . 0 0 

0 . . . 0 e 1 2 . . . e J 2 
2 

0 . . . 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . 

0 . . . 0 0 . . . 0 e 1 N . . . e J N 
N 

⎤ 

⎥ ⎦ 

. (6) 

Element e 
j 
n are the embedding of the jth value for attribute n . 

ach prototype corresponds to the mean of the disentangled em- 

eddings obtained with the encoder for each image sharing the 

ame attribute value. 

To perform an attribute manipulation, we define as i = 

i 1 , i 2 , . . . , i J ) , with i ∈ {−1 , 1 , 0 } , the corresponding manipulation

ector which specifies which attributes should be added, removed 

r left unaltered. In particular, every vector can specify a single 

anipulation, i.e. all values are set to zero with the exclusion of a 

ingle +1 and −1 corresponding to the value to be added and the 

alue to be removed, respectively. Such values must correspond to 

he same attribute type (e.g., a color can be changed only into an- 

ther color and not into a shape or a style). A manipulation is then

btained by performing 

 

′ = r q + M i (7) 

here r q is the attribute disentangled feature of the query image. 

he obtained representation r ′ should be as close as possible to the 

eature of the target image r t . 

We finetune the memory block following the setting proposed 

n [2] , thus adding M to the trainable parameters. The overall 

odel architecture, including attribute manipulation is shown in 

ig. 4 . 

. Experiments 

Dataset We performed experimental validation of our approach 

n the Shopping100k dataset [7] . The dataset contains 101,021 gar- 

ent images with 12 attributes for a total of 151 unique attribute 

alues. Table 1 shows the attributes and some examples of cor- 

esponding values. Differently from prior fashion datasets which 

ere scarcely annotated with attribute labels such as [29] , each 

mage in Shopping100k has at least five attributes, providing a 

ne-grained description of the garment. Images have a dimension 

f 762 × 1100 px. 
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We used the same split as prior work [2,18] , comprising 80,586 

mages for training and 20,0 0 0 for testing. Among these, 20 0 0 im-

ges are selected as query images for the attribute manipulation 

ask. Target attributes for the manipulations are generated so that 

t least an image exists in the dataset that shares the exact at- 

ribute values. 

Network Architecture 

Following prior work, we used an AlexNet [26] as backbone 

or our model. We adopt this solution, first of all, to provide 

omparable results with other works such as [2] , which use 

he same architecture. In addition, AlexNet has a simple back- 

one where the only trainable layers are convolutional ones. This 

akes the usage of gradient reversal in our work more con- 

rollable and less inclined to yield unpredictable behaviors due 

o, for instance, skip-connections as in ResNet-like architectures. 1 

he backbone provides 4096-dimensional features, which are then 

ed to all the MLP attribute encoders. The MLPs, composed of 

wo fully connected layers separated by a ReLU activation, gen- 

rate latent features in R 

340 . Finally, such features are classi- 

ed by a fully connected classifier with softmax activation. Ev- 

ry classifier has a different number of outputs, depending on 

he number of values the corresponding attribute can assume 

see Table 1 ). Table 2 summarizes the details of the network 

rchitecture. 

The memory block has a size of 4080 × 151 . The first dimen- 

ion stems from the concatenation of 12 (one per attribute) 340- 

imensional features, whereas 151 is the total number of attribute 

alues. The model has been trained on an Nvidia Tesla K80 using 

he Adam optimizer with learning rate 0.0 0 01. 

Attribute Manipulation Given a query image and a desired at- 

ribute manipulation, we use our feature extractors to obtain dis- 

ntangled attribute specific representations. Through the usage of 

he memory module we compute the residual feature and, as spec- 

fied in Eq. (7) , we perform the manipulation in the feature space. 

o obtain a set of relevant garment images with the desired at- 

ribute values we pose the problem as a retrieval task. To this end 
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Fig. 4. Overall model architecture. The backbone extract features which are disentangled thanks to the usage of attribute classifiers and gradient reversal at training time. 

At inference time, the network receives a manipulation vector which is used to extract the corresponding prototype vectors from the memory block and alter the current 

garment. Manipulated garments can then be retrieved from a predefined database. 

Fig. 5. Attribute classification accuracy, testing each of the N classifiers against each of the extracted feature vectors. Thanks to attribute disentanglement, it can be seen 

how only the i th feature can be correctly classified by the i th classifier. The only exception is the gender classifier, which is the hardest to separate from the other attributes 

since it is based on shared characteristics (collar, pattern, category, etc). 
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Table 3 

Comparison of the proposed approach 

against the state of the art for attribute 

classification on Shopping100k. 

Method Accuracy 

AMNet [6] 78.30 

ADDE-M [2] 79.30 

N ∗ N classifiers (Ours) 79.58 

N classifiers (Ours) 79.61 
e use a K-Nearest Neighbor with L2 distance to identify garments 

ith similar feature vectors to the one of the manipulated query. 

o evaluate the attribute manipulation task we use top-K retrieval 

ccuracy by counting the fraction of retrieved garments that share 

he same attributes of the target among the K retrieved items. 

Results 

We first tested our feature extractor capability, without using 

he memory or any attribute manipulation. In particular, we have 

easured the attribute prediction accuracy of the classifiers and 

ompared it to the results obtained by prior work that followed 

 similar approach. In Table 3 we report the results for attribute 

lassification. 
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Fig. 6. Top-5 results obtained retrieving garments after attribute manipulation on Shopping100k. Perfect matches are highlighted in green. (For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 4 

Comparison between our model and the state of the art on Shopping100k. For 

each method we report Top-K accuracy, varying the number of retrieved items. 

Method Top-10 Top-20 Top-30 Top-40 Top-50 

AMNet [6] 25.62 36.13 42.94 47.71 61.64 

FSN [18] 38.41 47.44 57.17 61.62 66.70 

ADDE-M [2] 41.17 52.93 59.81 64.10 67.29 

DAtRNet [1] - - 67.70 - - 

N ∗ N classifiers (Ours) 41.78 53.44 60.36 64.90 68.27 

N classifiers (Ours) 43.02 54.13 60.76 65.18 68.53 

c

h
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w
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f

u

1
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g

m

Both our models with N and N ∗ N classifiers obtain an accu- 

acy higher than prior works. This suggests that the usage of gra- 

ient reversal has a beneficial effect on attribute separation in the 

atent space. The two variants obtain similar results, with a slight 

mprovement for the model with N shared classifiers. 

In Fig. 5 we report the confusion matrix obtained by predicting 

ttribute values from the disentangled features generated by each 

LP, using all the classifiers from the model with N classifiers. It 

an be seen how the i th classifier manages to classify well the cor-

espondent i th feature, while it is unable to extract meaningful 

nformation from the other features. Note that such matrix does 

ot sum to 100% either row-wise nor column-wise since each pair 

f feature-classifier is evaluated independently. Furthermore, each 

lassifier at training time observes all features, yet N-1 of them are 

ubject to the effect of the GRL layer. 

Moving to the attribute manipulation task, we measure the top- 

 retrieval accuracy obtained by our model. This metric is com- 

uted as the number of hits, i.e. retrieved garments that have the 

ame exact attributes of the target, divided by the number of re- 

rieved garments. 

In Table 4 we report the top-K retrieval accuracies for our two 

roposed models, compared against results from the state of the 

rt. As the number of retrieved items increases, the accuracy im- 

roves for both models, reaching more than 68% for K = 50. A slight

ifference is present between the two models yet the architecture 

ith N shared classifiers consistently outperforms the N ∗ N clas- 

ifiers variant. In particular, for low values of K we have the big- 

er improvements, meaning that we are able to retrieve more pre- 
209
ise items in the first positions of the rankings. Moreover, since we 

ave less trainable parameters, and thus a more lightweight model, 

or the remainder of the paper we will present results obtained 

ith the first model. 

Interestingly, thanks to the usage of the Gradient Reversal 

ayer and the disentangled representations, we are also able to 

utperform prior works. As baselines we use AMNet [6] , FSN 

19] and ADDE-M [2] . Like our models, all methods use an AlexNet 

26] backbone to extract image features, making the comparison 

air. In addition, despite adopting the same memory-based manip- 

lation of ADDE-M we report an improvement of 1.85% in top- 

0 accuracy. We can ascribe this improvements to the usage of 

 better pre-training and better attribute feature disentanglement, 

ained thanks to our gradient reversal training strategy. 

In addition to top-K retrieval accuracy, we also measures Nor- 

alized Discounted Cumulative Gain (NDCG@k) [30] , which quan- 
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Fig. 7. Failure cases. None of the top-5 retrieved images match with the target attributes after the manipulation. Whereas the manipulation is often carried out correctly, 

some other attributes have changed as well. 

Table 5 

Comparison between our model and the state of the art on Shopping100k. 

We measure NDCG@30 for attribute manipulation. 

Method NDCG@30 NDCG target @30 NDCG others @30 

AMNet [6] 71.48 40.10 75.71 

ADDE-M [2] 73.67 43.05 77.79 

N classifiers (Ours) 74.26 44.00 78.32 
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Table 6 

Normalized Discounted Cumulative Gain on Shopping100k, varying the number of 

retrieved items K. For our method we use the N classifiers versions. 

NDCG NDCG target NDCG others 

K ADDE-M [2] Ours ADDE-M [2] Ours ADDE-M [2] Ours 

@1 80.18 80.97 45.65 47.66 84.82 85.45 

@2 78.67 79.36 46.93 48.82 82.96 83.49 

@3 77.93 78.55 47.09 48.81 82.10 82.58 

@4 77.40 78.04 47.00 48.71 81.51 82.00 

@5 77.02 77.64 46.85 48.55 81.11 81.58 

@10 75.84 76.42 45.83 47.46 79.90 80.34 

@20 74.55 75.10 44.27 45.53 78.63 79.09 

@30 73.67 74.26 43.05 44.00 77.79 78.32 

@40 72.95 73.60 42.08 42.77 77.09 77.73 

@50 72.30 73.07 41.25 41.75 76.47 77.25 

i

f

s

t

m
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a

i

a

a

c

W

ifies the ranking quality and is defined as 1 
Z 

∑ k 
j=1 

2 rel( j) −1 

log ( j+1) 
where 

el( j) is the attribute relevance score for the jth retrieved item, de- 

ned as the fraction of correct attributes, and Z is a normalization 

onstant ensuring that correct results have a score equal to 1. Fol- 

owing [2] we report also NDCG target and NDCG others . These variants 

f NDCG adopt different formulations for rel(j): NDCG target simply 

hecks if the manipulated attribute is correct, whereas NDCG others 

onsiders the attributes that should be kept fixed. 

We compared our model with N classifiers with the state of the 

rt in Table 5 , for K = 30 as done in prior work. We do not report

esults for FSN [18] since the authors do not provide results for 

DCG in the paper. Our method obtains better results in all three 

etrics. In particular, the larger gain is obtained for NDCG target , un- 

erlining the effectiveness of the proposed method for manipulat- 

ng attributes. To provide a more in depth analysis, we also com- 

are our method against the best performing competitor, ADDE- 

, varying the number of retrieved items K. In Table 6 we re- 

ort such a comparison for the three metrics NDCG, NDCG target and 

DCG others . Interestingly, the proposed approach obtains higher re- 

ults in all settings, also for low values of K which represent the 

ost challenging setting. In particular, for NDCG target we report ap- 

roximately a 2% improvement at K = 1. On average, we observe an 
210
mprovement of 0.65% for NDCG, 1.04% for NDCG target and 0.54% 

or NDCG others . 

Overall, we conclude that thanks to the usage of gradient rever- 

al we can obtain a better disentanglement of fashion attributes in 

he latent space, yielding state of the art performance in attribute 

anipulation, both concerning the target attributes as well as the 

riginal attributes that should be left unchanged. 

Ablation Study Here we discuss the importance of components 

n the model, in particular attribute classifiers and the usage of 

he GRL layer. Attribute-specific classifiers and gradient reversal 

re two entwined concepts. If we remove gradient reversal then 

t does not make sense to feed each of the N attribute features to 

ll the N classifiers or we would obtain the opposite of what we 

re trying to achieve, i.e. we would obtain N general features that 

apture all the attributes at once without any disentanglement. 

hat we can instead demonstrate is that if we remove gradient 
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Fig. 8. Comparison of our method and ADDE-M [2] . 

Table 7 

Ablation study. We compare our proposed approach with and without the us- 

age of gradient reversal layer. GRL proves to be highly important for obtaining 

more disentangled features and thus perform well of the downstream task of 

attribute manipulation. 

Method Top-10 Top-20 Top-30 Top-40 Top-50 

N classifiers 43.02 54.13 60.76 65.18 68.53 

N classifiers w/o GRL 40.39 49.87 55.76 61.44 63.18 
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eversal but we still keep attribute-specific classifiers (each classi- 

er is used only for its corresponding feature, as in ADDE-M [2] ), 

hen the disentanglement gets worse and the manipulation accu- 

acy drops. In Table 7 we show this behavior. 

Qualitative Results 

Here we report qualitative results showing results for attribute 

anipulation. In Fig. 6 we show the top-5 retrieved items after a 

anipulation. Correct matches are highlighted in green. The model 

s capable of correctly performing the manipulations, providing at 

east a correct result among the first results. It can be seen that 

ven when the match is not perfect, the target attribute has been 

orrectly changed. 

Similarly, in Fig. 7 we show some failure cases. In these exam- 

les, none of the retrieved items matches perfectly with the target. 

onetheless, it has to be noticed that most garments indeed have 

he correct value for the manipulated attribute, yet they differ for 

ome other aspect. For example, in the first row, the style attribute 

as been modified from photo to striped correctly for all retrieved 

tems, but the other attributes of the query have been altered. 

In addition, we compare our results to the ones obtained with 

DDE-M in Fig. 8 . In the first row, we can see that both mod-

ls were capable of providing a good match, however in the rank- 

ng yielded by our model the correct garment is the first whereas 

or ADDE-M the third. In other examples instead ADDE-M failes to 

rovide a correct match, contrarily to our method. 
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. Conclusions 

In this paper we presented an attribute disentanglement strat- 

gy using attribute-specific classifiers along with several gradient 

eversal layers. Since training such a network with lots of classi- 

ers, most of which under the effect of gradient reversal, makes 

he training process challenging, we also presented a novel loss 

alancing approach to avoid the reversed losses to diverge. The 

resented method achieves state of the art results and improved 

eature quality compared to prior work. As an application, we used 

he learned features for attribute manipulation, a task that allows 

ser to interactively retrieve garments with custom modifications 

ased on a query fashion item. 
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