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Metabolite and lipoprotein profiles reveal sex-related oxidative
stress imbalance in de novo drug-naive Parkinson’s disease
patients
Gaia Meoni 1, Leonardo Tenori 1,2, Sebastian Schade 3, Cristina Licari1, Chiara Pirazzini4, Maria Giulia Bacalini4, Paolo Garagnani5,
Paola Turano 1,2, PROPAG-AGEING Consortium*, Claudia Trenkwalder6, Claudio Franceschi 5,7✉, Brit Mollenhauer6✉ and
Claudio Luchinat 1,2✉

Parkinson’s disease (PD) is the neurological disorder showing the greatest rise in prevalence from 1990 to 2016. Despite clinical
definition criteria and a tremendous effort to develop objective biomarkers, precise diagnosis of PD is still unavailable at early stage.
In recent years, an increasing number of studies have used omic methods to unveil the molecular basis of PD, providing a detailed
characterization of potentially pathological alterations in various biological specimens. Metabolomics could provide useful insights
to deepen our knowledge of PD aetiopathogenesis, to identify signatures that distinguish groups of patients and uncover
responsive biomarkers of PD that may be significant in early detection and in tracking the disease progression and drug treatment
efficacy. The present work is the first large metabolomic study based on nuclear magnetic resonance (NMR) with an independent
validation cohort aiming at the serum characterization of de novo drug-naive PD patients. Here, NMR is applied to sera from large
training and independent validation cohorts of German subjects. Multivariate and univariate approaches are used to infer
metabolic differences that characterize the metabolite and the lipoprotein profiles of newly diagnosed de novo drug-naive PD
patients also in relation to the biological sex of the subjects in the study, evidencing a more pronounced fingerprint of the
pathology in male patients. The presence of a validation cohort allowed us to confirm altered levels of acetone and cholesterol in
male PD patients. By comparing the metabolites and lipoproteins levels among de novo drug-naive PD patients, age- and sex-
matched healthy controls, and a group of advanced PD patients, we detected several descriptors of stronger oxidative stress.
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INTRODUCTION
Parkinson’s disease (PD), after Alzheimer’s disease, is the second
most prevalent neurodegenerative disease, affecting 1% of the
population over the age of 601, and contributing significantly to
the rise in the cost of public health. Despite many years of
investigations on metabolic perturbances in PD2–7, the mechan-
isms of aetiopathogenesis, progression, and efficacy of drug
treatment on the disease evolution need to be further explored.
Currently, routine analytical tests have not yet provided sufficient
information to identify reliable blood biomarkers to detect early
signs of PD, to monitor the progression of the disease and to
detect the effects of therapy intervention.
Metabolomics has become a powerful tool to characterize the

biochemistry underlying the onset of different diseases and
provides useful applications in the biomedical field.8–13. Nuclear
Magnetic Resonance (NMR) is one of the most used analytical
techniques for metabolomic investigations and it proved to be
efficient in characterizing the metabolic composition of different
biospecimens in the context of molecular medicine14–23. The NMR
approach allows one to profile both small metabolites and
lipoproteins.
To date, few metabolomic studies focused on de novo drug-

naive PD patients (dn2PD). Most of them used limited number of

subjects (<50)24,25 and the results are not always overlapping nor
concordant, possibly because of the different analytical
approaches or inclusion of PD patients with various phenotypes
and stages of PD (genetic or idiopathic PD; de novo or advanced
PD patients, etc.)11,26, or because of the limited sample size.
In this work, we look for the presence of a metabolomic

fingerprint of Parkinson’s disease in the sera of dn2PD, and, if
present, whether it is sex specific. To do so, we considered
307 subjects, both dn2PD (n= 228) and healthy controls (CTR, n=
79), partitioned between two large independent training and
validation cohorts. The peculiar aspect of this collection is the
presence of many dn2PD patients, to explore the serum
biochemistry of the pathology independently of the effects of
the antidopaminergic treatment. Additionally, a cohort of 22
advanced PD patients under dopaminergic treatment (advPD) was
included to check and test for serum alterations in the disease
progression. An overview of the present study design is illustrated
in Fig. 1. The subjects in this study are a subset of the cohorts
analyzed in the H2020 Project “PROPAG-AGEING” (www.propag-
ageing.eu/project)27. To our best knowledge, this is the first large
NMR-based study with an independent validation cohort aiming
at the serum characterization of dn2PD patients.
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Fig. 1 Study design flowchart. The number of subjects for each group (the de novo drug-naive Parkinson’s disease patients (dn2PD), healthy
control subjects (CTR), and advanced Parkinson’s disease under dopaminergic treatment (advPD)) is reported. The number of male (M) and
female (F) subjects for each group are also reported.
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RESULTS
Exploratory analysis
As a first unsupervised approach, PCA was applied on all available
samples (from both training and validation cohorts) to obtain an
overview of the variation in the data. Figure 2 shows the PCA 3D
score plot on bucketed 1D NOESY spectra color-coded by subject
status proving the absence of outlier samples.

Predictive modeling: OPLS-DA analysis
Disease fingerprinting. OPLS-DA analysis was chosen as super-
vised approach to extrapolate the hidden variables that could be
used to characterize the serum fingerprint28 (considering the
whole NMR spectrum, therefore including the resonance signals
arising from metabolites and lipoproteins) of dn2PD. First, the
training cohort was used to explore differences between dn2PDs
and CTRs and to derive a discriminant serum fingerprint to
correctly assign the new samples according to the diagnosis
(dn2PD or CTR). The OPLS-DA model built on bucketed serum 1D
NOESY spectra of the training cohort showed an evident
discrimination between subject groups, featuring an overall mean
predictive accuracy of 75.3%, a specificity of 75.0%, and a
sensitivity of 75.3% for the classification of dn2PD and CTR
(Table 1, Supplementary Fig. 1a).

Sex-dependent fingerprint. Since it has been widely demonstrated
that differences between the two sexes could affect manifestation,
epidemiology, and pathophysiology of many diseases, and sex

discrimination is apparent in metabolomics profiles29–34, two
independent cross-validated models were created for male
(Table 1, Supplementary Fig. 1b) and female training subjects
(Table 1, Supplementary Fig. 1c). As shown in Table 1 the male
model provides a better discrimination, with an overall predictive
accuracy of 73.0% compared to the 61.6% predictive accuracy of
the female model.

Model validation. An independent cohort was used to validate
the existence of a serum metabolic fingerprint differentiating CTRs
from dn2PD patients. Indeed, the efficacy of the global training
model in discriminating dn2PD serum samples from CTR was
tested using bucketed 1D NOESY spectra from the validation
cohort, which were blindly projected onto the OPLS-DA dis-
crimination space obtained from the previously described training
model built on both sexes together (Supplementary Fig. 2). New
test samples were predicted with an overall accuracy of 74.4%, a
specificity of 65%, and a sensitivity of 75.6% (Table 2, Supple-
mentary Fig. 2a, b), thus confirming the presence of a fingerprint
discriminating CTRs from dn2PD patients. Then, training male and
female models were used separately to blindly predict test
samples (Table 2). As expected, the model built on the male group
performs better in terms of accuracy, sensitivity, and specificity,
which are around 70%, while the female model shown completely
unbalanced performance values with a sensitivity as low as 41.7%
(Table 2).
advPD vs dn2PD: Furthermore, OPLS-DA models were created

with bucketed 1D NOESY to visualize the discrimination accuracies
in the comparison of advPD patients with the dn2PD patients and
then with CTR subjects. In the first comparison, we obtained an
overall mean predictive accuracy of 87.4% (CI= 76.2–95.2%), a
mean specificity of 85.1 (CI= 71.4–100%), and a mean sensitivity
of 89.7 (CI= 76.2–100%), evidencing a clear discrimination
between dn2PD and advPD. Optimal performances were obtained
also by comparing the advPD patients’ spectra with those from
CTRs, resulting in a mean accuracy of 86.9% (CI= 81.6–97.4%), a
mean specificity of 87.5% (CI= 78.9–100%), and a mean sensitivity
of 86.4% (CI= 78.9–94.7%). Further, projecting onto the OPLS-DA
discrimination space built on the training models (dn2PD vs CTRs)
the 22 bucketed serum 1D-NOESY spectra of advPD subjects, the
presence of a serum metabolic signature characterizing healthy
from diseased subjects at different stages of the pathology was
highlighted. Indeed, all the advPD male and female patients
resulted to be correctly classified as PD patients, with an accuracy
of 100%. This result supports the idea of the presence of a specific
metabolomic signature of PD in sera of affected patients,
regardless of the dopaminergic treatment, as the use of PD
medication by advPD patients does not influence the classification
of those subjects in a model where only patients free from L-DOPA
administration are included.

Metabolite and lipoprotein profiles
Profiling of dn2PD. Based on multivariate results on NMR spectra,
univariate statistics were applied on training cohort samples by

Fig. 2 PCA 3D score plot of the whole study population. Each dot
represents a 0.02 ppm bucketed 1D-NOESY 1H-NMR spectrum color-
coded by subject groups.

Table 1. Performances of the OPLS-DA 1D-NOESY models
discriminating dn2PD patients from CTR subjects of the training
cohort.

Overall (95% CI) % Male (95% CI) % Female
(95% CI) %

Accuracy % 75.3 (76.2–74.5) 73.0 (74.2–71.9) 61.6 (63.2–60.1)

Specificity % 75.0 (76.4–74.5) 74.7 (76.2–73.3) 62.1 (63.8–60.4)

Sensitivity % 75.3 (76.3–74.3) 71.3 (72.4–70.2) 61.2 (63.4–58.9)

Overall model (considering all the samples from the training cohort), male
and female models (considering separately male and female training
groups of cases and controls). Accuracy %, specificity %, and sensitivity %
and their confidence intervals (95%) are reported.

Table 2. Performances of the prediction models.

Overall (95% CI) % Male (95% CI) % Female
(95% CI) %

Accuracy % 74.4 (80.7–67.3) 71.4 (80.4–61.0) 75.3 (84.0–64.7)

Specificity % 65 (84.6–40.8) 75.0 (96.8–34.9) 41.7 (72.3–15.2)

Sensitivity % 75.6 (82.2–68.1) 71.1 (80.5–60.1) 80.8 (89.1–69.9)

Table of the averages of the accuracies, the specificities, and the
sensitivities of test samples (CTR and dn2PD) on the OPLS-DA training
models.

G. Meoni et al.

3

Published in partnership with the Parkinson’s Foundation npj Parkinson’s Disease (2022)    14 



keeping subjects separate according to the sex. Corroborating
what previously demonstrated by the multivariate models, only
male dn2PD patients showed a significantly different profile in
terms of metabolites and lipoproteins compared to CTR males
(Supplementary Table 1). A total of 26 compounds (metabolites
and lipoproteins) resulted to be significantly different (FDR < 0.05)
in the comparison of male dn2PD patients and CTR males:
acetone, ornithine, and phenylalanine appear to be significantly
higher in dn2PD patients with respect to CTRs, while all the
23 significant lipoproteins decrease in the dn2PD group
(Fig. 3, Supplementary Table 1). Instead, no significant differences
were detected when comparing female dn2PD patients with
female CTRs of the training group, as reported in Supplementary
Table 1. Binomial logistic regression models were built using the
significant metabolites obtained by comparing the serum profile
of male CTR and male dn2PD patients of the training cohort (see
Fig. 3). The corresponding AUCs (area under the curve) were
calculated (Table 3).
Looking at the discrimination between the two male groups

(dn2PD and CTR), all the selected metabolites and lipoproteins
have a probability between 68.4 and 80.2% to distinguish case
(dn2PD) from the control (CTR) group. A model based on the
concentrations of 27 metabolites and 111 lipoproteins was built to

assess its performance in discriminating male dn2PD patients and
male CTR subjects. In Supplementary Table 2 the performances
obtained in the dn2PD vs CTR model (training cohort+ validation
cohort) are compared: (i) using the whole NMR spectrum; (ii) using
the concentrations of the identified metabolites and lipoproteins.
The former approach appears to perform slightly better (mean
accuracy: 77.2%) than the latter (mean accuracy: 73.05%). The list
of variable importance in projection (VIP) scores obtained with the
latter approach is reported in Supplementary Fig. 3.
Profiling disease progression: To explore metabolic variations in

more detail, serum metabolic profiles of all dn2PD, advPD patients,
and CTRs were investigated combining training and validation
cohort samples in a single heatmap (both males and females)
showing the top 30 analytes identified by t-test (Fig. 4). In the two-
way hierarchical clustering heatmap, groups and compounds are
separated using hierarchical clustering (Ward’s algorithm), with
the dendrogram being scaled to represent the distance between
each branch (distance measure: Pearson’s correlation). In Fig. 4, a
distinct profile signature emerges between PD patients (dn2PD
and advPD) and CTRs as depicted by the column dendrogram. PD
patients are characterized by higher levels of acetone compared
to CTRs. Furthermore, the levels of acetone, formic acid, and
histidine result to be higher in dn2PD than the advPD and CTR

Fig. 3 Bar-plot of Log2 fold changes values (Log2FC). Statistically significant variables (FDR < 0.05) quantified in serum spectra of the male
subjects belonging to the training cohort are reported. Negative Log2FC values mean higher concentrations in CTR subjects, while positive
Log2FC values refer to higher concentration levels in dn2PD.
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subjects. Instead, the PD profile seems to be characterized by
lower levels of cholesterol (Chol), low-density lipoproteins (LDL),
ApoB100, LDL-cholesterol (esterified and free), phospholipids, and
ApoB concentrations in LDL and triglycerides content in LDL
fractions (LDL, LDL3, LDL4, and LDL5). Additionally, we notice a
marked decrease of ApoA1 lipoprotein and ApoA1 content in the
HDL4 fraction, of free cholesterol in the HDL and HDL4 fractions,
and of citric acid along the series CTRs>dn2PD > advPD. Likewise,
a reduction is also observed in the concentration of LDL4, ApoB in
LDL4, cholesterol (esterified and free), and phospholipids in LDL4
and LDL5 fractions. Finally, a lowering of ApoA2-HDL3, N,N-
dimethylglycine, and methionine also occurs.

DISCUSSION
To our knowledge, this is the first large NMR-based metabolomics
study dealing with the characterization of serum profiles of de
novo Parkinson’s disease patients free from dopaminergic
treatment compared to healthy sex/age-matched volunteers. In
this context, advanced PD patients under dopaminergic treatment
are also examined. The use of many well-characterized dn2PD and
the presence of an external validation cohort represent major
strengths of this study. Fingerprinting of the full NMR spectra
discriminates dn2PD and CTR with a predictive accuracy of 75.3%.
The NMR spectra of advPD classify them in the dn2PD group with
100% accuracy, proving the existence of a PD serum signature
which is clearly recognizable even in the presence of the
confounding effect of the dopaminergic therapy.

A more pronounced fingerprint and profile of PD is found in
men with respect to women. Increasing evidence points to sex as
a crucial determining factor in the development and phenotypical
expression of PD. The risk of developing PD is a factor of two
higher in men than in women35,36. Our observation could support
the idea that disease development, at least in dn2PD patients,
might involve different pathogenetic mechanisms in male and
female subjects.
Multivariate analysis detects significant alterations of several

metabolites and lipoproteins in PD patients, some of which also
survive the scrutiny of univariate analysis. The observation of
acetone being higher in dn2PD patients reinforces previous
studies8 and is in line with a general condition of oxidative stress
and of increased oxidative stress defense37,38. Acetone is a waste
product formed from acetoacetic acid. Accumulation of acetone in
blood and in breath is common in diabetes, in patients during
anesthesia or surgical stress. Other factors such as body weight,
age, and especially alcoholism influence the resting blood
concentration of acetone39. Higher acetone, 3-hydroxybutyrate,
and acetate levels have been described also in blood samples
from patients with other neurodegenerative diseases, such as
multiple sclerosis40 and amyotrophic lateral sclerosis41. To date,
the biological reason for serum acetone to be associated with the
onset of PD remains not completely elucidated.
Formic acid and histidine are significantly higher in dn2PD when

compared with advPD patients and CTRs. Formic acid has been
classically identified as mitochondrial toxin and could be also
potentially implied in the dopaminergic pathway, explaining the

Table 3. Area under the ROC curve (AUC) values for male subjects of the training and the test set.

OR (95% CI) P value FDR AUC TRAINING AUC TEST

Ornithine 10.7 (3.02–37.88) 0.0002 0.0021 0.74 0.50

Phenylalanine 9.28 (2.74–31.49) 0.0004 0.0021 0.78 0.54

Acetone 8.43 (2.24–31.74) 0.0016 0.0022 0.80 0.77

Cholesterol 0.18 (0.059–0.56) 0.0031 0.0036 0.70 0.75

LDLChol 0.16 (0.04–0.42) 0.0008 0.0021 0.75 0.66

ApoB100 0.14 (0.04–0.46) 0.0010 0.0021 0.72 0.64

LDLChol/HDLChol 0.14 (0.04–0.44) 0.0008 0.0021 0.73 0.52

ApoB100/ApoA1 0.15 (0.05–0.48) 0.0012 0.0021 0.73 0.52

LDL 0.12 (0.03–0.41) 0.0007 0.0021 0.75 0.67

LDL4 0.14 (0.04–0.46) 0.0012 0.0021 0.72 0.58

LDL5 0.16 (0.05–0.49) 0.0011 0.0021 0.72 0.50

Tg-LDL 0.22 (0.07–0.65) 0.0062 0.0062 0.68 0.61

FreeChol-LDL 0.16 (0.05–0.51) 0.0020 0.0026 0.73 0.67

Pho-LDL 0.12 (0.04–0.42) 0.0008 0.0021 0.75 0.67

ApoBLDL 0.12 (0.04–0.41) 0.0007 0.0021 0.75 0.67

Tg-LDL3 0.17 (0.05–0.54) 0.0025 0.0031 0.72 0.70

Tg-LDL4 0.21 (0.07–0.61) 0.0041 0.0046 0.69 0.50

Tg-LDL5 0.24 (0.08–0.66) 0.0061 0.0062 0.69 0.51

Chol-LDL4 0.15 (0.05–0.48) 0.0015 0.0022 0.72 0.59

Chol-LDL5 0.15 (0.05–0.46) 0.0009 0.0021 0.73 0.50

FreeChol-LDL4 0.19 (0.06–0.61) 0.0046 0.0050 0.70 0.61

FreeChol-LDL5 0.16 (0.05–0.50) 0.0014 0.0022 0.72 0.55

Pho-LDL4 0.15 (0.05–0.48) 0.0015 0.0022 0.72 0.59

Pho-LDL5 0.15 (0.05–0.46) 0.0009 0.0021 0.73 0.50

ApoB-LDL4 0.14 (0.04–0.46) 0.0012 0.0021 0.72 0.58

ApoB-LDL5 0.16 (0.05–0.49) 0.0011 0.0021 0.72 0.50

For training binomial logistic regression models, odds ratio (OR), 95% confidence interval (CI), P value, and related values adjusted with the
Benjamini–Hochberg correction (FDR) are also reported.
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lower level of this molecule in patients under L-DOPA treatment.
Instead, literature data report a controversial role of histidine
regarding its pro-/anti-oxidant activity8,42. Increased concentra-
tions of histidine and phenylalanine have been recently observed
also in saliva of PD patients43, thus suggesting alterations in
neurotransmitters, especially dopamine44. Other detected meta-
bolites, such as citric acid, methionine, and N,N-dimethylglycine,
playing important roles against oxidative stress damage45–47, have
been found downregulated in our PD groups. Citric acid alteration
could explain the interplay between oxidants and energy
metabolism in PD48. Methionine and N,N-dimethylglycine are
produced by the betaine-homocysteine methyltransferase from
homocysteine and betaine. Other studies suggest accumulation of
homocysteine in blood and CSF as a risk factor for PD and
dementia49,50, and this could explain lower levels of the end
products in PD patients.
Increased levels of ornithine have been previously detected in

serum samples of de novo PD and advanced PD patients6. Here,
we found higher level of ornithine only in the male dn2PD group

compared to CTR subjects in the training cohort. However, this
metabolite is not significantly altered in the male validation
cohort, nor was it found to be altered in the dn2PD female
population.
Several studies pose lipids and lipoproteins as central players in

Parkinson’s disease51–58. Various subclasses of fatty acids, glycer-
olipids, phospholipids, sterol, and lipoproteins may contribute to
PD pathogenesis. However, controversial, fragmented and not
always reproducible data are available in the literature. Mollen-
hauer et al.59 reported lower serum cholesterol levels in PD
patients, independent of nutritional status and body mass index
(BMI); dysregulation of cholesterol trafficking was shown to be
involved in the pathogenesis of neurodegeneration in PD. Higher
cholesterol and LDL-Chol levels might attenuate neurodegenera-
tive process in PD-affected males60. Consistently, we found lower
cholesterol levels in male patients at early PD stage. For the first
time, we also characterize the lipoprotein subclasses profile of
serum samples of PD patients. Our results point to a statistically
significant decrease of the concentration of small low-density

Fig. 4 Two-way hierarchical clustering heatmap of the top 30 serum metabolites and lipoproteins. Top features ranked by t-test to retain
the most contrasting patterns. Heatmap displays average features concentrations for each group (CTR, dn2PD, and advPD). The horizontal axis
represents the groups, and the vertical axis represents 30 selected features concentrations in which features with similar trends cluster in
rows. The magnitude of abundance change (“red” increased or “blue” decreased) is shown in accordance with the color scale on the right.
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lipoproteins in dn2PD patients. Lower LDL-related parameters,
especially LDL-cholesterol levels, have been associated with
higher PD risk52,53,61 and generally, small dense LDL particles
(sdLDL) are more susceptible to oxidation than larger LDLs.
Therefore, we suggest that sdLDL particles may provide an
optimal substrate for ROS oxidative action, which appears to be
increased in dn2PD patients54,55,58.
An interesting result of the present research is that females

have a much weaker PD fingerprint than males. Other investiga-
tions have found that there are differences in the serum profiles of
PD males and females. Because of the scarcity of sex-specific
analyses in PD research, the complicated connection between sex
and metabolism in relation to PD remains unknown. Further
research should consider the modulatory effect of sex hormones,
blood metabolites, and PD.
Our data indicate serum alterations which are consistent with

increase oxidative stress in PD, suggesting that the early stage of
PD may be characterized by increased oxidative defenses and a
worsening of the oxidative stress status. The signature of such
process is detectable in circulating metabolites and lipoproteins at
the very beginning of the clinical onset of the disease. Oxidative
stress imbalance bridges the disease with the aging process, the
major risk factor for PD. Thus, this result can be somehow
interpreted as a peculiar sign of accelerated PD ageing. Of course,
further biological investigations are needed to explore in more
detail the peripheral signature of ROS stress and PD pathogenesis
in Central Nervous System. Our results also support the presence
of a complex interaction between sex and metabolism in
relation to PD.

METHODS
Patient cohorts
The study population consists of a total of 329 German subjects, including
dn2PD patients, advPD patients, and healthy CTR. In detail (Fig. 1), patient
cohorts included: (1) a training cohort, consisting of 72 dn2PD and 59 CTR,
for a total of 131 subjects from the baseline visit of the Kassel cohort, as
previously published27,59,62,63; (2) an independent validation cohort
consisting of samples from 156 dn2PD, 20 CTR, and 22 advPD patients,
for a total of 198 subjects, as part of the cross-sectional Kassel cohort27.
Patients enrolled in this study were clinically phenotyped before sample
collection. Phenotyping included 1.5 Tesla magnetic resonance imaging
(MRI) to determine structural abnormalities, quantitative levodopa testing
as published64, smell identification test (Sniffin’ sticks, Burghardt Mes-
stechnik GmbH, Wedel, Germany), Mini Mental Status Examination
(MMSE) followed by further cognitive testing and video-supported
polysomnography to determine REM sleep behavior disorder in a subset
of patients. The phenotyping was done based on these results and in
accordance to established criteria for PD (UK Brain Bank Criteria)65,
multiple system atrophy (MSA)66, dementia with Lewy bodies (DLB)67,
progressive supranuclear palsy (PSP)68, corticobasal degeneration (CBD)69,

Alzheimer’s disease and frontotemporal dementia (FTD)70. Subjects with
marked vascular lesions in MRI indicative of a vascular comorbidity and
subjects with normal pressure hydrocephalus by MRI were excluded.
A complete overview of the demographic characteristics of analyzed

patients is reported in Table 4. The study was conducted according to the
Declaration of Helsinki and with informed written consent provided by all
subjects. The study was approved by the ethics committee of the
Physician’s Board Hesse, Germany (Approval No. FF89/2008 for DeNoPa)
and the University Medical Center Goettingen, Germany (Approval No. 9/7/
04 and 36/7/02 for Kassel cohort).

NMR sample preparation and analysis
All blood samples from training and validation cohorts were collected
between 8 AM and 9 AM under fasting condition using Sarstedt tubes for
serum collection by venous puncture. Tubes with blood samples were
centrifuged at 2500 × g for 10 min; serum was aliquoted and frozen within
30min after collection. The samples were stored at −80 °C, transported in
dry ice, until analysis following standard procedures for NMR metabolomic
studies28,71,72. Samples were then prepared at the Magnetic Resonance
Center (CERM/CIRMMP) University of Florence, Italy73. The analytical
preparation of serum samples and their NMR spectra acquisition followed
the protocols detailed elsewhere28.
For each serum sample, the one-dimensional (1D) NOESY pulse

sequence was applied to acquire 1H-NMR spectra, using a Bruker
600MHz spectrometer, with a proton Larmor frequency of 600.13 MHz
and equipped with a 5mm PATXI 1H-13C-15N and 2H decoupling probe.
The spectrometer includes a z axis gradient coil, an automatic tuning-
matching (ATM), and an automatic and refrigerated sample changer
(SampleJet). To stabilize at the level of ±0.1 K the sample temperature, a
BTO 2000 thermocouple was employed, and each NMR tube was kept for
about 5 min inside the NMR probe head to equilibrate at the acquisition
temperature of 310 K.

Spectral processing
Before applying Fourier transform, raw data were multiplied by an
exponential line-broadening function of 0.3 Hz. Transformed spectra were
automatically corrected for phase and baseline distortions and calibrated
to a reference signal (anomeric glucose proton signal at 5.24 ppm), using
Topspin 3.2 software (Bruker BioSpin).
Each 1D serum spectrum, in the range of 0.2–10.0 ppm, was bucketed

into 0.02 ppm chemical shift segments using AssureNMR (version 2.2)
software (Bruker BioSpin). Regions containing the residual water signal
(between 4.68 and 4.84 ppm) were removed.

Serum and lipoprotein identification and quantification
Twenty-seven metabolites and 111 lipoprotein components (Supplemen-
tary Table 1) were identified and quantified from 1D 1H-NOESY NMR
spectra using the AVANCE Bruker IVDr (Clinical Screening and In Vitro
Diagnostics research, Bruker BioSpin)74 software. For all serum samples,
different lipoproteins (VLDL, LDL, IDL, HDL) and different lipoprotein
subclasses, classified according to density and size, for a total of
15 subclasses (VLDL-1 to VLDL-5, LDL-1 to LDL-6, and HDL-1 to HDL-4),

Table 4. Demographic characteristics of the population under study.

Training cohort Validation cohort

dn2PD CTR P dn2PD CTR P advPD P (advPD vs dn2PD) P (advPD vs CTR)

Age 65.1 ± 9.4 64.5 ± 6.9 0.68 65 ± 11.4 71.7 ± 5.1 6 × 10–5 68.9 ± 7.3 0.05 0.16

Sex (male/tot) 40/72 36/59 0.53 83/156 8/20 0.26 15/22 0.19 0.07

BMI 27.7 ± 5 26.7 ± 3.8 0.25 27.1 ± 4.9 26.2 ± 3.2 0.35 25.9 ± 3.7 0.25 0.8

UPDRS III 19 ± 10.2 0.4 ± 0.9 7.4 × 10–24 23 ± 12.8 / / 34.4 ± 15.8 0.003 /

Hoehn and Yahr stage 1.8 ± 0.6 0 1.6 × 10–35 2 ± 0.8 / / 3.1 ± 0.6 6.7 × 10–8 /

MMSE 28.4 ± 1.3 28.7 ± 1.2 0.27 28 ± 1.9 / / 23.3 ± 5.4 0.002 /

Subjects taking Chol-lowering drugs/
tot)

7/72 3/59 0.32 32/156 / / 5/22 0.39 /

Diabetes (cases/tot) 4/72 3/59 0.9 21/156 0/20 / 2/22 0.57 /

Uric acid lowering medications 8/72 3/59 0.21 12/156 2/20 0.72 2/22 0.82 0.92

Mean ± standard deviation and p-value (P) are reported.
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were detected. For each main class and subclass, reported data consist of
concentrations of lipids (total cholesterol, free cholesterol, phospholipids,
and triglycerides) contained in each fraction. Concentrations of apolipo-
proteins ApoA1 and ApoA2 were estimated for HDL class and each relative
subclass, while Apo-B concentrations were calculated for VLDL, IDL classes,
and all LDL subclasses.

Statistical analyses
All data analyses were performed using R (version 3.6.1), an open source
software for the statistical management of data75.
Multivariate data analysis was conducted on bucketed 1D NMR spectra

of all available samples to visualize if spectral features contribute to the
separation between groups. Principal component analysis (PCA) was used
as a first exploratory approach76 to visualize the presence of outliers and to
investigate, in an unsupervised manner, the data structure both in the
training and in the validation cohorts. PCA analysis was performed on data
scaled to unit variance.
Orthogonal projections to latent structures discriminant analysis (OPLS-

DA) was employed as supervised technique to check for the presence of a
serum metabolomic signature of the disease that distinguishes dn2PD
patients from CTR77. The OPLS-DA approach was applied because it is an
improvement of the PLS-DA method. Compared to PLS-DA, the advantage
of OPLS-DA is that just one component is employed as a class predictor,
while the remaining components reflect variations orthogonal to the first
predictive component. A regression model is created in OPLS-DA using
multivariate data and a response variable that simply contains class
information.
When an unbalanced number of subjects was compared, OPLS-DA

models were built by reducing groups to the same size by random
sampling, thus including in the model an equal number of subjects from
each group. The procedure was repeated 100 times and the results
averaged over the 100 models. All discriminant and predictive analyses
were performed on bucketed 1D-NOESY spectra without prior normal-
ization. The OPLS-DA models were validated by repeated twofold cross
validation (2CV) method. The 2CV scheme (detailed in ref. 78), briefly
consists of two nested loops CV1 and CV2, where CV1 optimize the
number of components to be used in the OPLS-DA model, while the CV2 is
to assess the final model performance. In the outer loop (CV2) the
complete dataset is split into a test set and a training set: the test set is set
aside, and the training set is used in the loop CV1. Within CV1 the training
set is split into an internal validation set and another training set (this
operation is repeated 50 times). This last training set is used to develop a
series of OPLS-DA models with different number of latent variables from
which the samples in the internal validation set are predicted. In the CV2
the 90% of the data are randomly chosen at each iteration as a training set
to build the model. Then, the remaining 10% are tested. The full procedure
is repeated 100 times to derive average discrimination accuracy, sensitivity,
and specificity and their confidence intervals (95% CI). Overall, for different
classifications, accuracy, sensitivity, and specificity were calculated accord-
ing to standard definitions, by means of a Monte-Carlo (MC) 2CV scheme (R
script written in-house).
Moreover, to externally test the efficacy of the training model in

discriminating dn2PD from CTR subjects, bucketed 1D NOESY spectra of
the validation cohort serum samples (dn2PD, CTR, and advPD subjects of
the validation cohort) were blindly projected onto the OPLS-DA score plot
resulting from the training model.
Univariate Wilcoxon test79 was employed to compare metabolite and

lipoprotein concentrations between patient groups. The Benjamini &
Hochberg method80 was applied to correct for multiple testing, and
adjusted P-values (FDR) < 0.05 were considered statistically significant.
Log2 fold change (FC) ratios of the median intensities were also calculated
for all analyses performed. Effect sizes were estimated for group
comparisons using Cliff’s delta formulation81 (Cd), which contributes to
the characterization of the meaningful signals by giving an estimation of
the magnitude of the separation in the different comparisons. Magnitude
is evaluated using the thresholds provided in Romano et al.82, where Cd
values < 0.147 are “negligible”, (Cd) < 0.33 are “small”, (Cd) < 0.474 are
“medium”, and (Cd) > 0.474 are “large”.
Association between each statistically significant analyte of the training

cohort and the disease was assessed and validated using logistic
regression in combination with ROC curve analysis. Before performing
any analysis, continuous values of the analytes were standardized by
centering and dividing by two standard deviations83 using the “rescale”
function of the R package “arm”.

First, a binomial logistic regression model was built, for each statistically
significant analyte found in the training cohort (i.e., a metabolite or a
lipoprotein concentration), using the “glm” function in the R package
“stats”. These analytes (metabolites and lipoproteins) were used as the
predictors (x), while the dichotomic variable indicating the status (i.e., CTR
or dn2PD) was used as the dependent variable (y) to be predicted.
The fitted values obtained for each analyte and for each subject were

used to estimate areas under the ROC curves (AUC values, using the
“colAUC” function of the R package “caTools”). Subsequently, the fitted
regression models built on the training set were used to predict
probabilities of samples in the validation cohort (values between 0 and
1) to be classified as CTR or dn2PD (“predict.glm” function in the R package
“stats”). These predicted probabilities were used to calculate AUC values
for the validation cohort that were further compared with AUC values
reported for the training cohort.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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