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Abstract
A large number of recent studies consider a compartmental SIRmodel to study optimal
control policies aimed at containing the diffusion of COVID-19 while minimizing the
economic costs of preventive measures. Such problems are non-convex and standard
results need not to hold. We use a Dynamic Programming approach and prove some
continuity properties of the value function of the associated optimization problem.We
study the corresponding Hamilton–Jacobi–Bellman equation and show that the value
function solves it in the viscosity sense. Finally,we discuss someoptimality conditions.
Our paper represents a first contribution towards a complete analysis of non-convex
dynamic optimization problems, within a Dynamic Programming approach.
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1 Introduction

Following the COVID-19 outbreak a large number of papers have been written com-
bining elements of both epidemiology and economics. One important motivation for
these papers is that the pandemic faced policymakers with the challenge of keeping the
virus diffusion under control while avoiding to suffocate economic activity (see, e.g.,
Acemoglu et al. 2021; Alvarez et al. 2021; Ash et al. 2022; Atkeson 2020; Eichen-
baum et al. 2021; Farboodi et al. 2021; Fabbri et al. 2023; Favero 2020; Federico
and Ferrari 2021; Federico et al. 2022; Goenka and Liu 2020; Gollier 2020). From a
mathematical perspective, this motivation leads to the formulation of suitable dynamic
optimization problems, that can be tackled with different techniques. A common issue
of these problems is that, even in simple settings, without considering heterogeneity
of viral transmission or uncertainty on the infection mortality, they are mathematically
involved because they may not be convex.

In the typical setup of these problems, the state dynamics are given by the so-called
compartmental models, where the state variables are the epidemic compartments, such
as the Susceptibles, the Infected, and the Recovered in the SIR model. A peculiar fea-
ture of the state equations is an interaction term between some of these classes, usually
the product between the number of susceptibles and infected. The state dynamics pro-
vide the constraint for the optimization problem and the interaction term makes the
Hamiltonian function associated to the control problem non-convex. In this situation,
the classical sufficiency results for the Pontryagin Maximum Principle, like the Arrow
or Mangasarian conditions, cannot be applied, as they require convexity of the Hamil-
tonian function. Likewise, the lack of convexity hinders the application of numerical
methods, which are often employed in the analysis of these dynamic optimization
problems.

This paper studies a specific family of non-convex problems to show that the
Dynamic Programming approach can be profitably applied to analyze them. In par-
ticular, Dynamic Programming allows us to characterize the value function of the
optimization problem as the unique viscosity solution of a suitable Hamilton-Jacobi-
Bellman (HJB) equation. It also identifies optimality conditions which are sufficient
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for global optima independently of any convexity assumption (see, e.g., Bardi and
Capuzzo-Dolcetta 1997).

We illustrate our approach with an application to the simple model of Alvarez et al.
(2021), one of the recent epi-econ papers featuring the type of non-convexities in the
epidemic propagation terms discussed above. The main results of the paper establish:
the continuity, and in some cases the Lipschitz continuity, of the value function of the
optimization problem; the fact that the value function is the unique viscosity solution
of the HJB equation associated to the control problem and that it is also a bilateral
viscosity solution; a sufficient optimality condition in terms of the semidifferentials
of the value function. More details are given in Sect. 1.1 and 1.2 below. It is important
to highlight that our results can be proved (with straightforward changes) for other
models dealing with an optimal control problem in the presence of an SIR setup, such
as those presented in Acemoglu et al. (2021), Piguillem and Shi (2022), Eichenbaum
et al. (2021), Jones et al. (2021), Pollinger (2023), Zaman et al. (2017), Bolzoni et al.
(2017), Balderrama et al. (2022), Elhia et al. (2013), and Ketcheson (2021).

We emphasize that, due to the difficulty of the problem, some issues remain open.
In particular, we cannot prove that the value function is differentiable everywhere.
This also means that we cannot rule out a singular behaviour (e.g., discontinuities)
of optimal strategies in some regions of the state space. This fact may represent an
issue, for instance, in numerical simulations for the type of optimization problems that
we consider. To the best of our knowledge, there are no results in the mathematical
literature that provide a numerical scheme suited to them; in addition, the extension of
known numerical schemes for viscosity solutions to the kind of first-order Hamilton-
Jacobi-Bellman equations that we treat here does not seem straightforward, due again
to the non-convexity of the state dynamics and of the Hamiltonian.

1.1 Technical issues and selected related contributions

Optimal control problems that are non-convex either in the objective functional or in the
state dynamics (or both), are notoriously difficult to study with a Maximum Principle
approach. Indeed, the standard sufficiency conditions, like the Arrow or the Man-
gasarian conditions, do not hold. Nonetheless, Goenka et al. (2021) and Goenka et al.
(2022) analyzed epi-econ SIS and SIR models with a Maximum Principle approach,
by providing sufficient conditions for local extrema under weaker assumptions than
those of the Arrow or the Mangasarian conditions. The Maximum Principle approach
was applied also in Goenka et al. (2014) to a SIS model complemented with economic
variables, by proving existence of optimal strategies. In Aspri et al. (2021), where a
SEIARD model is studied, the authors establish the existence of optimal strategies in
a specific class of controls by exploiting the convexity of the objective function. The
results proved in all these papers rely on the structure of the problems, in particular on
the convexity of the objective function and, for sufficient conditions, on some ideas
given first in Leitmann and Stalford (1971). Unfortunately, these results cannot be
directly applied to our case, since our objective function may be non-convex.

As we previously anticipated, the Dynamic Programming approach (if applicable)
presents clear advantages in treating non-convex problems. One of these advantages
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is the possibility of characterising the value function of the optimization problem as
the unique viscosity solution1 of the HJB equation associated to the optimal control
problem. It is important to stress that proving such a characterization can motivate
the study of numerical algorithms suited to the class of optimization problems that
we study here. These numerical schemes could be used to approximate the value
function.2 In our setting, the main issue that we face to prove this property of the value
function is the presence of positivity state constraints, which may be a hindrance to
show uniqueness, see, e.g., Soravia (1999a, b). This problem is solved because the
so-called interior cone condition holds. This condition was introduced first in Soner
(1986) and it allows us to prove uniqueness of the solution to the HJB equation in the
viscosity sense (see Theorem 4.4 below).

Another advantage of the Dynamic Programming approach is the possibility of
identifying optimality conditions which are sufficient for global optima independently
of any convexity assumptions (more details on this in, e.g., Bardi andCapuzzo-Dolcetta
1997, Chapter III, Section 2.5 and Fabbri et al. 2017, Section 2.5). These conditions
are usually obtained through the so-called Verification Theorems and the main issue is
to show that the value function is continuously differentiable in the interior of the state
space. This is rather problematic in our setting because, in general, value functions are
not continuously differentiable, i.e., they admit singularities (see, e.g., Fleming and
Soner 2006, Section II.2). There are quite general conditions that imply continuous
differentiability of the value function, namely, its semiconcavity and strict convexity
in the costate variables of the Hamiltonian function (see Cannarsa and Soner 1989;
Cannarsa and Sinestrari 2004, Section 5.3 and also Bardi and Capuzzo-Dolcetta 1997,
Chapter II, Section 5). Unfortunately in our case these conditions do not hold or are
difficult to show (provided that they hold). For this reason, based on the ideas of Bardi
and Capuzzo-Dolcetta 1997, Chapter III, Sections 2.3−2.4, we establish a Backward
Dynamic Programming Principle. This is key to prove that the value function is a
bilateral solution of the correspoding HJB equation (see Theorem 4.7 below) and to
state a weak form of sufficient optimality condition (see Theorem 4.8).

Wemention that similar techniques were used successfully in other economic appli-
cations, see, e.g., Bambi and Gozzi (2020), Freni et al. (2006), Freni et al. (2008).
However, in those problems homogeneity and semiconcavity allowed the authors to
apply the method of Cannarsa and Soner (1989), which cannot be used in our setting.

1.2 Overview of themain results

From a technical perspective, we can single out three main contributions of our paper.

1 The concept of viscosity solutions has been introduced by Crandall and Lions (1983) (see, e.g., Crandall
et al. 1992 for a synthesis of viscosity solution theory) to cope with the fact that, in many optimal control
problems, the value functions are not differentiable everywhere and the associated HJB equations may
not have classical (i.e., differentiable) solutions, even in simple cases. Using such a more general solution
concept it is possible to prove existence and uniqueness of solutions which are simply continuous (or even
discontinuous) and to apply suitable algorithms to compute numerically the value function.
2 We refer the reader to (Bardi and Capuzzo-Dolcetta 1997, Appendix A) for an introduction to numerical
schemes for viscosity solutions to HJB equations.
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• First,weprove that the value function is uniformly continuous and, for a sufficiently
large discount rate, Lipschitz continuous in its domain (see Proposition 3.2).

• Second, we establish dynamic programming principles for our problem (the stan-
dard one and the backward one, see Propositions 3.3 and 3.9, respectively). This
allows us to characterize the value function as the unique viscosity solution to the
associated HJB equation (28), satisfying a suitable boundary condition (i.e., being
a supersolution at the boundary), and to prove that it is also a bilateral solution
(Theorem 4.7).

• Third, we show an optimality condition (see Theorem 4.8), that allows us to char-
acterize the optimal strategies. In particular, we show that (except from trivial
cases) the optimal strategy is a laissez-faire policy as long as the ratio between the
rate of newly infected people and the population that can be put in lockdown is
not higher than a threshold, which depends on the difference between the marginal
cost of infected and the marginal cost of susceptibles. As this ratio increases, the
lockdown is enforced up to a full lockdown, when a second threshold is passed.

The paper is organized as follows. In Sect. 2 we introduce the optimal control
problem for the SIRD model that we aim to analyse and we provide some preliminary
results. In Sect. 3 we provide continuity properties of the value function (Sect. 3.1) and
we establish the dynamic programming principles (Sect. 3.2). In Sect. 4 we study the
HJB equation and, in particular, we provide the explicit expression of the Hamiltonian
function; in Sect. 4.1 we prove that the value function is a viscosity solution, in a
suitable sense, of the HJB equation; Sect. 4.2 contains some optimality conditions,
with which we are able to provide an economic intepretation of optimal policies. In
Sect. 5 we draw some conclusions on our results and present some ideas for future
work on the subject.

2 The optimal control problem

In this section we introduce the optimization problem for the SIRD model that we
study. We denote by S, I , R, D, the classes of susceptible, infectious, recovered,
and dead individuals, respectively. We assume that there are no newborn and that
people either die from the infection or live forever; this is clearly unrealistic, but it is
compatible with the duration of the pandemic/endemic phase, which is shorter than
the average life duration.

The dynamics of the population introduced above are influenced by a planner,
who may enforce lockdown by choosing its intensity, i.e., the percentage Lt of the
population that is forced to be locked down, at each time t ≥ 0. This percentage can
be chosen up to some fixed threshold L̄ ≤ 1, that is, Lt ∈ [0, L̄], for each t ≥ 0.
However, the lockdown effectiveness is assumed to be less than the planned one,
because people may fail to respect the lockdown measures and the virus can still
circulate; the lockdown intensity is thus damped by a factor θ ∈ (0, 1), i.e., θLt is
the real fraction of population that is actually in lockdown. Lockdown applies only
to susceptible and infectious individuals, since we assume that recovered ones cannot
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get infected again; this is possible because we assume that testing is available, and
hence the planner knows who is infected and who has recovered.

The model we consider is specified as follows. The epidemic dynamics are given,
for all t ≥ 0, by the following system of controlled ordinary differential equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S′
t = −β(1 − θLt )St (1 − θLt )It , S0 = s0,

I ′
t = β(1 − θLt )St (1 − θLt )It − γ It − Itϕ (It ) , I0 = i0,

R′
t = γ It , R0 = r0,

D′
t = Itϕ (It ) , D0 = d0.

(1)

The lockdown intensity function t �→ Lt is chosen in the set of admissible control
strategies

L := {
L : [0,+∞) → [0, L̄], Borel-measurable

}
. (2)

The parameters appearing in (1) have the following meaning: β > 0 is the number of
susceptible agents per unit of time to whom an infected agent can transmit the virus,
among those who are not in lockdown; γ > 0 is the fraction of infected agents that
recovers; ϕ(i) is the rate per unit of time of infected agents i that die.

Remark 2.1 The case where the highest possible intensity of lockdown is equal to 1,
i.e., L̄ = 1, corresponds to allowing the possibility of a full lockdown. This is not
realistic, as basic activities related for example to energy production and distribution
of fundamental goods must remain functional. Nonetheless, we will not introduce the
restriction L̄ < 1, since it has no particular effect on themathematical results presented
below.

The following assumption ensures existence and uniqueness of a solution to (1), for
any given L ∈ L . This can be easily shown with standard methods (see, e.g., Bardi
and Capuzzo-Dolcetta 1997, Chapter III, Section 5).

Assumption 2.2 The function ϕ, appearing in (1), is positive, bounded, and Lipschitz
continuous. More specifically,

0 < ϕ(i) ≤ γ, for all i ∈ [0, 1], (3)

where γ is the fraction of infected agents that recovers, and there exists a constant
Mϕ > 0, such that, for all i, i ′ ∈ [0, 1],

|ϕ(i) − ϕ(i ′)| ≤ Mϕ |i − i ′|. (4)

Remark 2.3 In our model, the mortality rate is not constant, but provided by the func-
tion ϕ, and depends on the number of infected people. Such a choice is motivated by
some studies (see, e.g., Ciminelli and Garcia-Mandicó 2020; Favero 2020). Various
papers in the literature deal, instead, with a constant mortality rate (lower than γ ),
which is a case covered by our model. However, specializing our results to the case
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of a constant mortality rate would not allow us to obtain deeper or more refined state-
ments. Indeed, as highlighted in the Introduction, the technical difficulties lie in the
fact that the epidemic dynamics given in (1) feature an interaction term between the
number of susceptibles and infected.

In our setting,we account for the possibility of a vaccine and a cure being discovered
(for simplicity at the same time) at a random time τ , which we assume to be defined on
some probability space (�,F ,P) and exponentially distributed with intensity ν > 0.
Our model also describes the worst-case scenario in which a vaccine or a cure are not
discovered: in this case, we set τ equal to +∞ P-almost surely.

We assume that the planner maximizes the following quantity over all admissible
control strategies

E

[∫ τ

0
e−r t [(Nt − Dt − (St + It ) Lt ) w − χ Itϕ (It )] dt + w

r
e−rτ (Nτ − Dτ )

]

,

(5)

whereEdenotes the expectationwith respect to probabilityP, Nt is the total population
(including deaths) at time t ≥ 0, i.e., Nt := St + It +Rt +Dt , r > 0 is a fixed discount
factor, w > 0 is the output produced by each agent alive that is not in lockdown,
χ > 0 is an extra cost, in units of output, for each agent that dies as a consequence
of the infection. Hence, the planner aims at maximizing the present value of the total
production output, considering the cost of fatalities.

In particular, if we consider the case in which a vaccine and a cure are discovered
at an exponentially distributed random time τ , the planner disregards what happens
to the epidemic dynamics after τ , as she/he considers that all the individuals who
survived the epidemic at time τ , i.e., Nτ − Dτ , are infinitely lived and productive.
This fact is accounted for in the second term inside the expectation appearing in (5).
If, instead, we consider the worst-case scenario in which a vaccine or a cure are never
discovered, i.e., τ = +∞ P-almost surely, then (5) reduces to the quantity

∫ +∞

0
e−r t [(Nt − Dt − (St + It ) Lt ) w − χ Itϕ (It )] dt .

2.1 Preliminary results

Let us fix, for the time being, an arbitrary admissible control L ∈ L . For simplicity,
we normalize the initial population so that N0 = s0 + i0 + r0 + d0 = 1.

From (1), we have N ′
t = 0, thus Nt = 1, for all t ≥ 0. Therefore, for every time

t ≥ 0 and any initial condition (s0, i0, r0, d0), with s0 + i0 + r0 + d0 = 1, the state of
the system (St , It , Rt , Dt ) belongs to the simplex3


 := {(s, i, r , d) : s, i, r , d ≥ 0, s + i + r + d = 1} .

3 Said otherwise, the flow associated to (1) leaves invariant the set 
.
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This fact is consistent with the assumption that there are no newborn and that people
either die from the infection or live forever. Moreover, to determine uniquely the
solution to (1) it is enough to provide the triplet (s0, i0, r0) as initial condition, with
s0, i0, r0 ≥ 0 and s0 + i0 + r0 ≤ 1, and set d0 = 1 − s0 − i0 − r0. From now on, we
will specify only such a triplet, unless stated otherwise.

Since t �→ Dt is clearly nondecreasing, we have that the number of people alive at
time t ≥ 0, i.e., Nt − Dt = St + It + Rt , is nondecreasing over time, that is,

St + It + Rt ≤ s0 + i0 + r0 ≤ 1, t ≥ 0.

Therefore, for all t ≥ 0 and any initial condition (s0, i0, r0) as above, the state of the
system (St , It , Rt , Dt ) belongs to the set


(s0, i0, r0) := {(s, i, r , d) ∈ 
 : s + i + r ≤ s0 + i0 + r0}.

Remark 2.4 It is immediate to check that if i0 = 0, then (St , Rt , Dt ) = (s0, r0, d0),
for every t ≥ 0, i.e., the dynamics is constant and not affected by the choice of the
control strategy. If s0 = 0 the dynamics is not constant but, as before, is not affected
by the choice of the control strategy.

Recall that the planner maximizes over all admissible control strategies L ∈ L the
functional

J̃ (L, s0, i0, r0) := E

[∫ τ

0
e−r t [(Nt − Dt − (St + It ) Lt ) w − χ Itϕ (It )] dt

+ w

r
e−rτ (Nτ − Dτ )

]

, (6)

which depends on any given initial condition s0, i0, r0 ≥ 0, with s0 + i0 + r0 ≤ 1,
for (1). Using the dynamics of processes (S, I , R, D) and the law of the random
variable τ , we can rewrite the functional J̃ as follows.

Lemma 2.5 For all s0, i0, r0 ≥ 0, with s0 + i0 + r0 ≤ 1, and all L ∈ L , it holds

J̃ (L, s0, i0, r0) = w

r
−

∫ +∞

0
e−(r+ν)t

(
(St + It ) Ltw +

(w

r
+ χ

)
Itϕ (It )

)
dt,

(7)

where ν = 0, if τ = +∞ P-almost surely.

Proof We can explicitly compute the expectation in (6) using the law of the random
time τ and the dynamics of (S, I , R, D). As noted previously, if τ = +∞ P-almost
surely, we have that

J̃ (L, s0, i0, r0) =
∫ +∞

0
e−r t [(Nt − Dt − (St + It ) Lt ) w − χ Itϕ (It )] dt . (8)
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If, instead, τ is an exponential random variable with intensity ν > 0,

J̃ (L, s0, i0, r0) = E

[∫ τ

0
e−r t [(Nt − Dt − (St + It ) Lt ) w − χ Itϕ (It )] dt

+ w

r
e−rτ (Nτ − Dτ )

]

=
∫ +∞

0

{∫ s

0
e−r t ((Nt − Dt − (St + It ) Lt ) w − χ Itϕ (It )) dt

}

νe−νs ds

+
∫ +∞

0

{w

r
e−r t (Nt − Dt )

}
νe−νt dt .

Applying the Fubini-Tonelli theorem we get that

∫ +∞

0

{∫ s

0
e−r t ((Nt − Dt − (St + It ) Lt ) w − χ Itϕ (It )) dt

}

νe−νs ds

+
∫ +∞

0

{w

r
e−r t (Nt − Dt )

}
νe−νt dt

=
∫ +∞

0

{∫ +∞

t
νe−νs ds

}

e−r t ((Nt − Dt − (St + It ) Lt ) w − χ Itϕ (It )) dt

+
∫ ∞

0

ν

r
e−(r+ν)t (Nt − Dt ) w dt

=
∫ +∞

0
e−(r+ν)t

(

(Nt − Dt )
r + ν

r
w − (St + It ) wLt − χ Itϕ (It )

)

dt . (9)

Observe that (8) is a special case of (9), with ν = 0. Finally, noting that N ′
t − D′

t =
S′
t + I ′

t + R′
t = Itϕ(It ) and integrating by parts, we get

J̃ (L, s0, i0, r0) =
∫ +∞

0
e−(r+ν)t

(

(Nt − Dt )
r + ν

r
w − (St + It ) wLt − χ Itϕ (It )

)

dt

= r + ν

r
w

∫ +∞

0
e−(r+ν)t (Nt − Dt ) dt −

∫ +∞

0
e−(r+ν)t ((St + It ) wLt + χ Itϕ (It )) dt

= w

r
N0 − w

r

∫ +∞

0
e−(r+ν)t Itϕ(It ) dt −

∫ +∞

0
e−(r+ν)t ((St + It ) wLt + χ Itϕ (It )) dt,

whence, recalling that N0 = 1, we obtain (7). 	

Remark 2.6 It is worth emphasizing that the proof of Lemma 2.5 shows once more
that our optimization problem includes the worst-case scenario in which a vaccine or a
cure are never discovered, i.e., in which τ = +∞ P-almost surely. Indeed, it suffices
to consider ν = 0 in all of the results of this paper, which remain valid also in this
case.

Remark 2.7 The state variables appearing on the right-hand-side of (7) are only S
and I , i.e., the number of susceptible and infectious individuals. If we consider the
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dynamics of this pair of variables, namely,

{
S′
t = −β(1 − θLt )St (1 − θLt )It , S0 = s0
I ′
t = β(1 − θLt )St (1 − θLt )It − γ It − Itϕ (It ) , I0 = i0,

(10)

then, for each L ∈ L , the solution to (10) is completely determined by any given
initial condition (s0, i0) ∈ T , where

T := {(s, i) ∈ [0, 1]2, s.t. 0 ≤ s + i ≤ 1}. (11)

Moreover, since the map t �→ St + It is decreasing, we get that St + It ≤ s0 + i0.
Therefore, for any t ≥ 0, any (s0, i0) ∈ T , and any L ∈ L , the state (St , It ) belongs
to the set

T (s0, i0) := {(s, i) ∈ T : s + i ≤ s0 + i0}.

Clearly, specifying only (s0, i0) ∈ T is not enough to determine the solution to the
complete system (1), as r0 is also needed. As a consequence of the discussion above
and of Lemma 2.5, the functional J̃ does not depend on r0, and hence our optimization
problem depends only on the state variables S and I .

Equation (7) also shows that the optimizationproblem introduced at the beginningof
this section is equivalent to the optimization problemdefined, for any given (s, i) ∈ T ,
as

inf
L∈L

J (L, s, i)

s.t.

{
S′
t = −β(1 − θLt )St (1 − θLt )It , S0 = s,

I ′
t = β(1 − θLt )St (1 − θLt )It − γ It − Itϕ (It ) , I0 = i,

(P)

where, for all L ∈ L and (s, i) ∈ T ,

J (L, s, i) :=
∫ +∞

0
e−(r+ν)t

(
(St + It ) Ltw +

(w

r
+ χ

)
Itϕ (It )

)
dt . (12)

Thus, from this point onward, we consider problem (P). As usual, we introduce the
value function for the above minimization problem, namely,

V (s, i) := inf
L∈L

J (L, s, i), (s, i) ∈ T . (13)

To conclude this section, we provide a brief comparison between the optimization
problem studied here, i.e., problem (P), and the one analyzed in Alvarez et al. (2021).
The optimization problem (P) is equivalent to the one studied in Alvarez et al. (2021),
Eq. (7). We modified slightly the setup of Alvarez et al. 2021 including a class D of
dead people, that is, we consider an SIRDmodel; the dynamics of the classes S, I and
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R are left unchanged, thus our formulation is completely equivalent to that of Alvarez
et al. (2021), with the advantage that the population remains constant in our setting.
We stress once more that we consider here the situation where testing is available and
quarantine is not enforced. We make some remarks on other possible extensions of
this model further below (see Remark 4.10).

Remark 2.8 It is also worth noting that Lemma 2.5 shows that optimization prob-
lem (P) is equivalent to the maximization one presented in Alvarez et al. (2020),
Eq. (5). This provides a rigorous foundation to the arguments given in Alvarez et al.
(2020), p. 10, regarding the equivalence of these two problems.

3 Properties of the value function and dynamic programming
principles

In this section we begin our analysis of problem (P) with the dynamic programming
approach. We derive in Sect. 3.1 a regularity result for the value function of this prob-
lem, defined in (13); then, in Sect. 3.2 we establish the forward and backward dynamic
programming principles, that are used in Sect. 4.

3.1 Properties of the value function

As shown in the previous section, the state variables for problem (P) are the number
of susceptible and infected individuals, whose dynamics are given in (10). To show
some regularity results for the value function V (see Proposition 3.2 below), we need
to provide, first, a useful estimate concerning the unique solution to this system of
ordinary differential equations.

In what follows, we set for convenience Xt = (St , It ), t ≥ 0, and we introduce the
notation XL,x0

t , SL,s0,i0
t , I L,s0,i0

t , to stress the dependence of the solution to (10) on
the control strategy L ∈ L and on the initial condition x0 = (s0, i0) ∈ T . We also
define the vector field

b(s, i, l) :=
[ −βsi(1 − θl)2

βsi(1 − θl)2 − γ i − iϕ (i)

]

, (s, i) ∈ T , l ∈ [0, L̄]. (14)

In this way, we can write the system (10) as

{
X′
t = b (Xt , Lt ) ,

X0 = x0 ∈ T ,

or equivalently, in integrated form,

XL,x0
t = x0 +

∫ t

0
b

(
XL,x0
s , Ls

)
ds, t ≥ 0. (15)

We have the following lemma.
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Lemma 3.1 LetX and X̃ be the two solutions to (10) corresponding to initial conditions
x0, x̃0 ∈ T and strategies L, L̃ ∈ L , respectively. Then,

∥
∥Xt − X̃t

∥
∥ ≤

(

‖x0 − x̃0‖ + 4θ(L̄ + 1)
∫ t

0

∣
∣Lr − L̃r

∣
∣ dr

)

eMbt . (16)

In particular, if L = L̃, then,

‖Xt − X̃t‖ ≤ ‖x0 − x̃0‖ eMbt , t ≥ 0. (17)

Proof It is easy to show that the vector field b, introduced in (14), is bounded on
T × [0, L̄] and that it is Lipschitz continuous in (s, i) ∈ T , uniformly with respect
to l ∈ [0, L̄]. More precisely, we have that

sup
(s,i,l)∈T ×[0,L̄]

‖b(s, i, l)‖ ≤ 3
[
β + γ

] =: Kb, (18)

and, for all (s, i), (s′, i ′) ∈ T ,

sup
l∈[0,L̄]

‖b(s, i, l) − b(s′, i ′, l)‖ ≤ Mb‖(s, i) − (s′, i ′)‖, (19)

with Mb := 2
[
β + γ + Mϕ

]
, where Mϕ is the Lipschitz constant appearing in (4).

Thanks to (19), we deduce that

‖Xt − X̃t‖ ≤ ‖x0 − x̃0‖ + 4θ(L̄ + 1)
∫ t

0

∣
∣Lr − L̃r

∣
∣ dr + Mb

∫ t

0
‖Xs − X̃s‖ ds, t ≥ 0,

and hence a simple application of Gronwall’s lemma (see, e.g., Bardi and Capuzzo-
Dolcetta 1997, Chapter III, Section 5, or Fleming and Rishel 1975, Appendix A)
yields (16). Setting L = L̃ we immediately deduce (17). 	


Let us introduce the running cost function appearing inside the functional J given
in (12), i.e.,

f (s, i, l) := (s + i) lw +
(w

r
+ χ

)
iϕ (i) , (s, i, l) ∈ T × [0, L̄]. (20)

It is not hard to show that f is non-negative and bounded on T × [0, L̄] and that
it is Lipschitz continuous in (s, i) ∈ T , uniformly with respect to l ∈ [0, L̄]. More
precisely,

sup
(s,i,l)∈T ×[0,L̄]

f (s, i, l) ≤ L̄w +
(w

r
+ χ

)
γ =: K f , (21)

and, for all (s, i), (s′, i ′) ∈ T ,

sup
l∈[0,L̄]

| f (s, i, l) − f (s′, i ′, l)| ≤ M f ‖(s, i) − (s′, i ′)‖, (22)
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where M f := 2
[
L̄w +

(w

r
+ χ

)
(γ + Mϕ)

]
and Mϕ is the Lipschitz constant

appearing in (4).
From these facts, we deduce the following result.

Proposition 3.2 The value function V given in (13) is non-negative, bounded, and
uniformly continuous on T . If, moreover, r + ν ≥ Mb, where Mb is the constant
appearing in (19), then V is Lipschitz continuous on T .

Proof The value function V is clearly non-negative, because f is. Boundedness easily
follows from (21). Indeed, for all L ∈ L and all (s, i) ∈ T ,

J (L, s, i) =
∫ +∞

0
e−(r+ν)t f (St , It , Lt ) dt

≤ sup
(s,i,l)∈T ×[0,L̄]

f (s, i, l)
∫ +∞

0
e−(r+ν)t dt ≤ K f

r + ν
,

and hence

0 ≤ V (s, i) = inf
L∈L

J (L, s, i) ≤ K f

r + ν
.

Toprove uniformcontinuity it is enough to show thatV is continuous onT , becauseT
is a compact subset ofR2. Let us fix ε > 0, (s, i), (s̃, ĩ) ∈ T , and the corresponding
solutions to (10) (S, I ), (S̃, Ĩ ), for any given admissible control. Consider an ε-optimal
control for the minimization problem with initial data (s̃, ĩ), that is, Lε ∈ L such that

V (s̃, ĩ) ≥
∫ +∞

0
e−(r+ν)t f (S̃t , Ĩt , L

ε
t ) dt − ε.

Then, for a constant T > 0 to be chosen later, using (21), (22), and (17), we obtain

V (s, i) − V (s̃, ĩ) ≤
∫ T

0
e−(r+ν)t | f (St , It , Lε

t ) − f (S̃t , Ĩt , L
ε
t )| dt

+
∫ +∞

T
e−(r+ν)t | f (St , It , Lε

t ) − f (S̃t , Ĩt , L
ε
t )| dt + ε

≤ M f

∫ T

0
e−(r+ν)t‖(St , It ) − (S̃t , Ĩt )‖ dt + 2K f

∫ +∞

T
e−(r+ν)t dt + ε

≤ M f

∫ T

0
e−(r+ν)t‖(s, i) − (s̃, ĩ)‖ eMbt dt + 2K f

r + ν
e−(r+ν)T + ε

≤ M f

r + ν − Mb
(1 − e−(r+ν−Mb)T )‖(s, i) − (s̃, ĩ)‖ + 2K f

r + ν
e−(r+ν)T + ε.

The second term of the right hand side of the last inequality can be made smaller than
ε choosing T large enough, while the first one can be made smaller than ε choosing an
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appropriate δ > 0 such that ‖(s, i)−(s̃, ĩ)‖ < δ. Exchanging the roles of (s, i), (s̃, ĩ),
we get that V is continuous on T .

Finally, if r + ν ≥ Mb, we can take T → +∞ and ε → 0+ and get from the last
inequality

|V (s, i) − V (s′, i ′)| ≤ M f

r + ν − Mb
‖(s, i) − (s̃, ĩ)‖,

that is, V is Lipschitz continuous on T . 	


3.2 Dynamic programming principles

In this subsection we provide the dynamic programming principles for optimization
problem (P).

We start with the following standard result, stating that the value function V satisfies
the Dynamic Programming Principle. The proof is analogous to that of Bardi and
Capuzzo-Dolcetta 1997, Proposition III.2.5 and is thus omitted.

Proposition 3.3 For all (s, i) ∈ T and all T > 0, the value function V verifies

V (s, i) = inf
L∈L

{∫ T

0
e−(r+ν)t f (St , It , Lt ) dt + e−(r+ν)T V (ST , IT )

}

.

The following facts can be easily deduced from the Dynamic Programming Prin-
ciple (for a slightly different approach, see Fleming and Rishel 1975, Theorems 3.1,
3.2).

Proposition 3.4 For all L ∈ L , the function

t �→
{∫ t

0
e−(r+ν)u f (Su, Iu, Lu) du + e−(r+ν)t V (St , It )

}

,

is non-decreasing and it is constant if and only if L is optimal.

As a result of the previous proposition, we obtain the following useful regularity
result for the value function V evaluated at optimal trajectories of the system (10).

Corollary 3.5 Let L̂ ∈ L be an optimal control and denote by (Ŝ, Î ) the corresponding
optimal trajectory of the system (10). Then, for almost every t ≥ 0, there exists
V ′(Ŝt , Ît ) and

V ′(Ŝt , Ît ) = (r + ν)V (Ŝt , Ît ) − f (Ŝt , Ît , L̂ t ), t ≥ 0.

Proof We follow closely the arguments given in the proof of Proposition 4.13 in Freni
et al. 2008. Let us consider the function

g(t) :=
∫ t

0
e−(r+ν)u f (Ŝu, Îu, L̂u) du + e−(r+ν)t V (Ŝt , Ît ). (23)
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Since L̂ is an optimal control, we know from Proposition 3.4 that g is constant.
Moreover, g is differentiable at all Lebesgue points of L̂ , which implies that g′(t) = 0,
for almost all t ≥ 0. From (23) we deduce that

V (Ŝt , Ît ) = e(r+ν)t
{

g(t) −
∫ t

0
e−(r+ν)u f (Ŝu, Îu, L̂u) du

}

, t ≥ 0,

and hence, for almost all t ≥ 0, V ′(Ŝt , Ît ) exists and satisfies

V ′(Ŝt , Ît ) = (r + ν)e(r+ν)t
{

g(t) −
∫ t

0
e−(r+ν)u f (Ŝu, Îu, L̂u) du

}

− f (Ŝt , Ît , L̂ t ), t ≥ 0,

whence the claim. 	

We want to show, next, that a result analogous to Proposition 3.3 holds for the

backward trajectories of the system (10), that are given by the solution Y of

YL,y0
t = y0 −

∫ 0

t
b

(
YL,y0
r , Lr

)
dr , t < 0, (24)

for any initial condition y0 = (s0, i0) ∈ T and any Borel-measurable function
L : (−∞, 0] → [0, L̄]. To denote the solution to (24) we will use the notation YL,y0

t

or YL,s0,i0
t , t ≥ 0, to stress its dependence on L and y0 = (s0, i0) ∈ T . We have to

restrict the set of admissible controls for the backward equation (24), as there is no
guarantee that the backward trajectories remain in the state spaceT . Thus, we define,
for any given (s, i) ∈ T , the set

L −(s, i) =
{
L : (−∞, 0] → [0, L̄] Borel-measurable, s.t. YL,s,i

t ∈ T , ∀t ∈ (−∞, 0]
}

.

Remark 3.6 It is important to note that, if (s, i) ∈ T are such that s + i = 1, with
i 
= 0, then L −(s, i) = ∅. Indeed, from (10) we deduce that

St + It = s + i +
∫ 0

t
(γ + ϕ(Is))Isds, t < 0,

and hence St + It > 1, for all t < 0.

We need also the following definition.

Definition 3.7 We say that a point (s, i) ∈ T is optimal if there exist (s0, i0) ∈ T ,
t∗ > 0, and an optimal strategy L∗ ∈ L – i.e., V (s0, i0) = J (L∗, s0, i0) – such that

(s, i) = X(L∗;s0,i0)
t∗ . We denote the set of optimal points by O .

Remark 3.8 The definition above can be rephrased saying that the controller can drive
the system starting from (s0, i0) to (s, i) in finite time with an optimal strategy L∗.

We are now ready to state theBackward Dynamic Programming Principle. Its proof
is very similar to the one given in Freni et al. 2008, Proposition 4.7 (see also, Bardi
and Capuzzo-Dolcetta 1997, Proposition 2.25).
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Proposition 3.9 For every (s, i) ∈ T , every t > 0, and every L ∈ L −(s, i), the value
function V satisfies

V (s, i) ≥ V
(
Y(L;s,i)

−t

)
e(r+ν)t −

∫ t

0
f
(
Y(L;s,i)

−u , L−u

)
e(r+ν)u du.

Moreover, if (s, i) ∈ O we have that, for every 0 < t < t∗ (where t∗ is given in
Definition 3.7),

V (s, i) = sup
L∈L −(s,i)

{

V
(
Y(L;s,i)

−t

)
e(r+ν)t −

∫ t

0
f
(
Y(L;s,i)

−u , L−u

)
e(r+ν)u du

}

.

Remark 3.10 Since in the second part of Proposition 3.9 it is assumed that (s, i) ∈ O ,
the supremum in the last equality is attained, and hence we can replace it with a
maximum.

4 The Hamilton–Jacobi–Bellman equation

In this section we study the HJB equation for optimization problem (P), which is
given by

(r + ν)v(s, i) = min
l∈[0,L̄]

[
(s + i)lw + β(1 − θl)2si (∂iv(s, i) − ∂sv(s, i))

]

+iϕ(i)
(w

r
+ χ

)
− (γ + ϕ(i))i∂iv(s, i), (s, i) ∈ T .

(25)

In Sect. 4.1 we characterize the value function as the unique viscosity solution, in
a sense to be made precise later, of the HJB equation (25). Then, in Sect. 4.2 we give
some optimality conditions, that allow us to characterize optimal policies.

We give a preliminary result that allows to write (25) in a more explicit form. Let
us define, for all (s, i, p, q, l) ∈ T × R2 × [0, L̄] the current value Hamiltonian

HCV(s, i, p, q, l) := (s + i)lw + β(1 − θl)2si (q − p)

+ iϕ(i)
(w

r
+ χ

)
− (γ + ϕ(i))iq

= βθ2si(q − p)l2 + [(s + i)w − 2βθsi(q − p)] l

+ βsi(q − p) + iϕ(i)
(w

r
+ χ

)
− (γ + ϕ(i))iq , (26)

and the Hamiltonian

H(s, i, p, q) := min
l∈[0,L̄]

HCV(s, i, p, q, l), (s, i, p, q) ∈ T × R2, (27)
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so that (25) can be written as

(r + ν)v(s, i) = H (s, i, ∂sv(s, i), ∂iv(s, i)), (s, i) ∈ T . (28)

We also define the set of minimizers for (27), i.e.,

�(s, i, p, q) := {l ∈ [0, L̄] : HCV(s, i, p, q, l) = H(s, i, p, q)},
(s, i, p, q) ∈ T × R2. (29)

The following proposition shows that H and � can be explicitly computed.

Proposition 4.1 Let us define the following sets, which form a partition of T × R2,

CI := {
(s, i, p, q) ∈ T × R2 : i = 0

}
,

CS := {
(s, i, p, q) ∈ T × R2 : s = 0, i 
= 0

}
,

A0 := {
(s, i, p, q) ∈ T × R2 : s 
= 0, i 
= 0, p = q

}
,

A1 := {
(s, i, p, q) ∈ T × R2 : s 
= 0, i 
= 0, q < p

}
,

A2 :=
{

(s, i, p, q) ∈ T × R2 : s 
= 0, i 
= 0, q > p,
βsi

s + i
≤ w

2θ(q − p)

}

,

A3 := {
(s, i, p, q) ∈ T × R2 : s 
= 0, i 
= 0, q > p,

w

2θ(q − p)
<

βsi

s + i
<

w

2θ(1 − θ L̄)(q − p)

}

,

A4 :=
{

(s, i, p, q) ∈ T × R2 : s 
= 0, i 
= 0, q > p,
βsi

s + i
≥ w

2θ(1 − θ L̄)(q − p)

}

.

For any (s, i) ∈ T , (p, q) ∈ R2, the Hamiltonian H defined in (27) is given by

H(s, i, p, q) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if (s, i, p, q) ∈ CI ,

iϕ(i)
[w

r
+ χ

]
− iq (γ + ϕ(i)) , if (s, i, p, q) ∈ CS ∪ A0,

βsi(q − p) + iϕ(i)
[w

r
+ χ

]
− iq (γ + ϕ(i)) , if (s, i, p, q) ∈ A1 ∪ A2,

w2

4θ2(p − q)

(s + i)2

βsi
+ w

θ
(s + i)

+iϕ(i)
[w

r
+ χ

]
− iq (γ + ϕ(i)) , if (s, i, p, q) ∈ A3,

βsi
(
θ L̄ − 1

)2
(q − p) + w L̄(s + i)

+iϕ(i)
[w

r
+ χ

]
− iq (γ + ϕ(i)) , if (s, i, p, q) ∈ A4.

and the set of minimizers � is given by
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�(s, i, p, q) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0, L̄], if (s, i) = (0, 0),

{0}, if (s, i, p, q) ∈ CI ∪ CS ∪ A0 ∪ A1 ∪ A2,

with (s, i) 
= (0, 0),
{
1

θ
− w

2θ2(q − p)

s + i

βsi

}

, if (s, i, p, q) ∈ A3,

{L̄}, if (s, i, p, q) ∈ A4.

Moreover, the Hamiltonian H is continuous onT ×R2 and, for each fixed (s, i) ∈ T ,
the function R2 � (p, q) �→ H(s, i; p, q) is concave.

Proof We note, first, that continuity of H is a straightforward consequence of the fact
that the current value Hamiltonian HCV is continuous on T × R2 × [0, L̄] and that
[0, L̄] is a compact subset of R.

We also note that for each fixed (s, i, p, q) ∈ T × R2 the set of minimizers
�(s, i, p, q) coincides with the set of minimizers of the quadratic expression

H0(l; s, i, p, q) := βθ2si(q − p)l2 + [(s + i)w − 2βθsi(q − p)] l, l ∈ [0, L̄].

We divide our proof according to the different possible cases.
Clearly, H0(l; 0, 0, p, q) = 0, for all l ∈ [0, L̄] and any (p, q) ∈ R2, and hence

�(0, 0, p, q) = [0, L̄]. If, instead, (s, i) 
= (0, 0), then

H0(l; s, i, p, q) =

⎧
⎪⎨

⎪⎩

swl, if (s, i, p, q) ∈ CI ,

iwl, if (s, i, p, q) ∈ CS,

(s + i)wl, if (s, i, p, q) ∈ A0.

Therefore, for eachfixed (s, i, p, q) ∈ CI∪CS∪A0,with (s, i) 
= (0, 0), theminimum
of l �→ H0(l; s, i, p, q), l ∈ [0, L̄], is attained at l = 0. Thus,

�(s, i, p, q) = {0}, (s, i, p, q) ∈ CI ∪ CS ∪ A0, with (s, i) 
= (0, 0),

and, still considering (s, i) 
= (0, 0),

H(s, i, p, q) = HCV(s, i, p, q, 0)

=
⎧
⎨

⎩

0, if (s, i, p, q) ∈ CI ,

iϕ(i)
[w

r
+ χ

]
− iq (γ + ϕ(i)) , if (s, i, p, q) ∈ CS ∪ A0.

Next, we study the case where s 
= 0, i 
= 0, and q 
= p. We observe that, for
each fixed (s, i, p, q) ∈ A1 ∪ A2 ∪ A3 ∪ A4, the abscissa of the vertex of the parabola
x �→ H0(x; s, i, p, q) is

x� := 1

θ
− w

2θ2(q − p)

s + i

βsi
.
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If q < p, then the parabola x �→ H0(x; s, i, p, q) is concave and x� > L̄ . Indeed,

x� > L̄ ⇐⇒ βsi

s + i
>

w

2θ(1 − θ L̄)(q − p)
.

Since w > 0, 0 < θ < 1, 0 < L̄ ≤ 1, and q − p < 0, the right-hand-side is negative,
and hence the latter inequality is verified. Therefore, for each fixed (s, i, p, q) ∈ A1,
the minimum of l �→ H0(l; s, i, p, q), l ∈ [0, L̄], is attained at l = 0. Thus,

�(s, i, p, q) = {0}, (s, i, p, q) ∈ A1,

and

H(s, i, p, q) = HCV(s, i, p, q, 0)

= βsi(q − p) + iϕ(i)
[w

r
+ χ

]
− iq (γ + ϕ(i)) , (s, i, p, q) ∈ A1.

If q > p, then then the parabola x �→ H0(x; s, i, p, q) is convex and we have
three possible cases. If x� ≤ 0, i.e., if βsi

s+i ≤ w
2θ(q−p) , then the minimum of l �→

H0(l; s, i, p, q), l ∈ [0, L̄], is attained at l = 0. Thus,

�(s, i, p, q) = {0}, (s, i, p, q) ∈ A2,

and

H(s, i, p, q) = HCV(s, i, p, q, 0) = βsi(q − p) + iϕ(i)
[w

r
+ χ

]

−iq (γ + ϕ(i)) , (s, i, p, q) ∈ A2.

If, instead, 0 < x� < L̄ , that is, w
2θ(q−p) <

βsi
s+i < w

2θ(1−θ L̄)(q−p)
, then the minimum

of l �→ H0(l; s, i, p, q), l ∈ [0, L̄], is attained at l = x�. Thus,

�(s, i, p, q) =
{
1

θ
− w

2βθ2

s + i

si

1

q − p

}

, (s, i, p, q) ∈ A3,

and

H(s, i, p, q) = HCV(s, i, p, q, x�) = w2

4βθ2

(s + i)2

si

1

p − q
− iq (γ + ϕ(i))

+w

θ
(s + i) + iϕ(i)

[w

r
+ χ

]
, (s, i, p, q) ∈ A3.

Finally, if x� ≥ L̄ , that is, βsi
s+i ≥ w

2θ(1−θ L̄)(q−p)
, then the minimum of l �→

H0(l; s, i, p, q), l ∈ [0, L̄], is attained at l = L̄ . Thus,

�(s, i, p, q) = {L̄}, (s, i, p, q) ∈ A4,
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and

H(s, i, p, q) = HCV(s, i, p, q, L̄) = β
(
θ L̄ − 1

)2
si(q − p) − iq (γ + ϕ(i))

+w L̄(s + i) + iϕ(i)
[w

r
+ χ

]
, (s, i, p, q) ∈ A4.

Putting together all these facts we get the explicit expressions for H and �.
It is not difficult to show that the expression of H on the set A3 is, for each fixed

(s, i) ∈ T , a concave function in (p, q). Therefore, (p, q) �→ H(s, i, p, q) is con-
cave. 	


Remark 4.2 Note that the function (p, q) �→ H(s, i, p, q), for fixed (s, i) ∈ T , is
not strictly concave, as all expressions (except for the third one) given above for H
are clearly linear in (p, q).

4.1 The value function is the unique viscosity solution of the HJB equation

We now show that the value function V is the unique solution to the HJB equation (28)
in the sense of viscosity solutions, introduced by Crandall and Lions (1983). In what
follows, if g : Rn → R is a continuously differentiable function, Dg(x) denotes the
gradient of g at x ∈ Rn , i.e., the vector of partial derivatives

Dg(x) := (
∂x1g(x), . . . , ∂xn g(x)

)
, x ∈ Rn .

We denote by intT the interior of T . We need the following definitions.

Definition 4.3 A continuous function v : T → R is called a constrained viscosity
solution of (28) on T if it is both

• a viscosity subsolution of (28) on intT , i.e., if

(r + ν)v(s, i) − H (s, i, ∂sψ(s, i), ∂iψ(s, i)) ≤ 0

whenever ψ ∈ C1(T ) and (s, i) ∈ intT is a global maximum point of (v − ψ);
• a viscosity supersolution of (28) on T , i.e., if

(r + ν)v(s, i) − H (s, i, ∂sψ(s, i), ∂iψ(s, i)) ≥ 0

whenever ψ ∈ C1(T ) and (s, i) ∈ T is a global minimum point of (v − ψ).

If u is continuous on an open set� ⊂ Rn and x ∈ �we define the superdifferential
of u at x as the set

D+u(x) =
{

p ∈ Rn : lim sup
y→x,y∈�

u(y) − u(x) − p · (y − x)

|y − x | ≤ 0

}
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and the subdifferential of u at x as the set

D−u(x) =
{

p ∈ Rn : lim inf
y→x,y∈�

u(y) − u(x) − p · (y − x)

|y − x | ≥ 0

}

.

It follows that a continuous function v : � → R is a viscosity subsolution of (28)
on � if and only if (r + ν)v(s, i) − H (s, i, p, q) ≤ 0 for every (s, i) ∈ � and every
(p, q) ∈ D+v(s, i), and it is a viscosity supersolution of (28) on � if and only if
(r + ν)v(s, i)− H (s, i, p, q) ≥ 0 for every (s, i) ∈ � and every (p, q) ∈ D−v(s, i).

We establish, first, the following uniqueness result.

Theorem 4.4 The value function V is the unique constrained viscosity solution to the
HJB equation (28).

Proof By Proposition 3.2, V is a bounded and uniformly continuous function on T
and by Proposition 3.3 it satisfies the Dynamic Programming Principle. Therefore,
reasoning as in Soner (1986), Theorem 2.1, (see also Calvia 2018, Theorem 4.10), we
deduce that V is the unique constrained viscosity solution to (28). 	


Using the Backward Dynamic Programming Principle, we can say something more
on the value function as a viscosity solution to (28). We need the following definition.

Definition 4.5 Let� ⊂ Rn be an open set. A continuous function v : � → R is called
a bilateral viscosity subsolution (resp. supersolution) of (28) on �, if and only if v is
a viscosity subsolution (resp. supersolution) on � of both

(r + ν)v(s, i) − H (s, i, ∂sv(s, i), ∂iv(s, i)) = 0, (30)

− (r + ν)v(s, i) + H (s, i, ∂sv(s, i), ∂iv(s, i)) = 0, (31)

that is, (r + ν)v(s, i) − H (s, i, p, q) = 0, for every (s, i) ∈ � and every (p, q) ∈
D+v(s, i) (resp., (r + ν)v(s, i) − H (s, i, p, q) = 0, for every (s, i) ∈ � and every
(p, q) ∈ D−v(s, i)).

Finally, we say that v is a bilateral viscosity solution of (28) on � if it is both a
bilateral subsolution and supersolution on �.

Remark 4.6 Recall that, in general, a viscosity solution to either (30) or (31) is not a
viscosity solution to the other one.

Theorem 4.7 The value function V is a bilateral viscosity supersolution to (28) in the
interior of T . In particular, for every (p, q) ∈ D−V (s, i), with (s, i) in the interior
of T ,

(r + ν)V (s, i) = H (s, i, p, q) . (32)

Moreover, V is a (non bilateral) viscosity subsolution to (28) in the interior of T .
This is equivalent to say that, for every (p, q) ∈ D+V (s, i), with (s, i) in the interior
of T ,

(r + ν)V (s, i) − H (s, i, p, q) ≤ 0.
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Finally, for any (s, i) in the boundary of T and any (p, q) ∈ D−V (s, i),

(r + ν)V (s, i) − H (s, i, p, q) ≥ 0,

and, for any (s, i) ∈ C∪O , whereO is the set of optimal points given inDefinition 3.7,

C := {(s, i) ∈ T : i = 0} ∪ {(s, i) ∈ T : s = 0, i 
= 1},

and any (p, q) ∈ D+V (s, i),

−(r + ν)V (s, i) + H (s, i, p, q) ≤ 0.

Proof We provide a sketch of the proof. By Theorem 4.4, V is the unique constrained
viscosity solution to (28), and hence we deduce that V is a viscosity solution of (28)
on the interior of T . More precisely, we have that, for any (s, i) in the interior of T ,

(r + ν)V (s, i) ≥ H (s, i, p, q) , (p, q) ∈ D−V (s, i),

(r + ν)V (s, i) ≤ H (s, i, p, q) , (p, q) ∈ D+V (s, i), (33)

and that, for any (s, i) in the boundary of T and any (p, q) ∈ D−V (s, i),

(r + ν)V (s, i) − H (s, i, p, q) ≥ 0.

Using the fact that, by Proposition 3.9, V satisfies also the Backward Dynamic
Programming Principle, arguing as in Bardi and Capuzzo-Dolcetta 1997, Corol-
lary III.2.28, we find that V is a supersolution of −(r + ν)V (s, i)
+ H (s, i, ∂sV (s, i), ∂i V (s, i)) = 0 on the interior of T , i.e., for any (s, i) in the
interior of T ,

− (r + ν)V (s, i) + H (s, i, p, q) ≥ 0, (p, q) ∈ D−V (s, i), (34)

and that, for any (s, i) ∈ O and any (p, q) ∈ D+V (s, i),

−(r + ν)V (s, i) + H (s, i, p, q) ≤ 0.

Combining (33) and (34), we get (32).
We are, thus, left to show that the last inequality in the statement of the theorem

holds for all (s, i) ∈ C and all (p, q) ∈ D+V (s, i). Let us define, for all (s, i) in the
boundary of T , the set

U(s, i) := {l ∈ [0, L̄] : there exist L ∈ L −(s, i) and τ > 0 such that Lt = l, ∀t ∈ (−τ, 0]}.

Note that, by Remark 3.6, we have that U(s, i) = ∅, for all (s, i) ∈ T such that
s + i = 1, with i 
= 0. Moreover, a simple inspection of (10) reveals that if i0 = 0,
then also the backward dynamics is constant, regardless of the choice of L , and that
if s0 = 0, i0 
= 1, then for any l ∈ [0, L̄] one can find a time τ and a constant
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control equal to l on (−τ, 0] that keeps the backward dynamics on the segment s = 0,
0 < i < 1. This means that

U(s, i) = [0, L̄], (s, i) ∈ C . (35)

Arguing as in Freni et al. 2008, Proposition 4.10, we deduce that V verifies, for any
(s, i) ∈ C and any (p, q) ∈ D+V (s, i),

−(r + ν)V (s, i) + Hin (s, i, p, q) ≤ 0,

where Hin is the inward Hamiltonian

Hin (s, i, p, q) = inf
l∈U(s,i)

HCV(s, i, p, q, l), (s, i, p, q) ∈ C × R2.

By (35) we deduce that Hin (s, i, p, q) = H (s, i, p, q) for all (s, i, p, q) ∈ C ×R2,
and hence we obtain the last inequality stated in the theorem. 	


4.2 Optimality conditions

In this section we present some optimality conditions that allow us to interpret optimal
strategies in light of the partition of T × R2 introduced in Proposition 4.1.

Let us introduce, first, some notations. We define D±V (s, i) := D+V (s, i) ∪
D−V (s, i), (s, i) ∈ T and we denote by ∂(a,b)V (s, i) the directional derivative of
V in the direction of the vector (a, b) ∈ R2, that is (if the limit exists),

∂(a,b)V (s, i) = lim
h→0

V (s + ha, i + hb) − V (s, i)

h ‖(a, b)‖ (s, i) ∈ T .

Clearly, if (s, i) ∈ T is a point in the boundary of T , we consider only directions
(a, b) pointing inside T . To ease notations, whenever x0 = (s0, i0) ∈ T and L ∈ L

are fixed, we denote the unique solution to (10) XL,x0
t = (SL,s0,i0

t , I L,s0,i0
t ), t ≥ 0,

simply by Xt = (St , It ).
From Bardi and Capuzzo-Dolcetta 1997, Lemma III.2.50 and Remark III.2.51 we

get that the directional derivatives ∂X′
t
V (Xt ) exist for almost every t ≥ 0. Therefore,

we get the following conditions for optimality, that can be obtained applying Bardi and
Capuzzo-Dolcetta 1997, Theorems III.2.49, III.2.52 and recalling that, for r+ν > Mb,
the value function V is Lipschitz continuous on T , thanks to Proposition 3.2.

Theorem 4.8 Assume that r + ν > Mb and let x0 ∈ T .

(i) A control strategy L ∈ L is optimal if and only if, for a.e. t ≥ 0 (i.e. in the
Lebesgue points of f (Xt , Lt )),

∂X′
t
V (Xt ) + f (Xt , Lt ) = (r + ν)V (Xt ),

where f is the running cost function introduced in (20).
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(ii) If L ∈ L is an optimal control strategy, then for almost every t > 0 and every
p ∈ D±V (Xt ) we have

p · b (Xt , Lt ) + f (Xt , Lt ) = min
l∈[0,L̄]

{p · b (Xt , l) + f (Xt , l)} . (36)

Remark 4.9 Condition 4.8 above is also sufficient for optimality if the set D+V (Xt )

coincides with the Clark differential of V atXt for almost every t . For instance, this is
the case if we restrict to constant control strategies, because the value function is then
the infimum over a compact set of smooth functions with uniform bounds. The above
condition on D+V is also satisfied if the value function happens to be differentiable
everywhere.

Thanks to the explicit computations carried out in Proposition 4.1 we can refor-
mulate condition (36) in Theorem 4.8 as follows; we assume x0 
= (0, 0), L ∈ L
optimal, t > 0 and p = (p, q) ∈ D±V (Xt ).

• If (St , It , p, q) ∈ CI ∪ CS ∪ A0 ∪ A1 ∪ A2, then Lt = 0.
• If (St , It , p, q) ∈ A3, then

Lt = 1

θ
− w

2θ2(q − p)

St + It
βSt It

in particular, 0 < Lt < L̄ .
• If (St , It , p, q) ∈ A4, then Lt = L̄ .

Furthermore, if we assume that the value function V , given in (13) is differentiable
everywhere, then we can interpret optimal strategies and the partition of T × R2

appearing in Proposition 4.1 as follows. Assume that x0 
= (0, 0), that L ∈ L is
optimal, consider t > 0, and define

K (1)(St , It ) = w

2θ(∂i V (St , It ) − ∂sV (St , It ))
,

K (2)(St , It ) = w

2θ(1 − θ L̄)(∂i V (St , It ) − ∂sV (St , It ))
.

• If It = 0, then there is no epidemic. In this case, (St , It , ∂sV (St , It ), ∂i V (St , It )) ∈
CI and, clearly, Lt = 0.

• If St = 0, then the epidemic dies out without any need for a lockdown. In this
case, (St , It , ∂sV (St , It ), ∂i V (St , It )) ∈ CS and Lt = 0.

• If St , It 
= 0, then the value at time t of the optimal policy L depends
also on the derivatives of the value function and, in particular, on the sign of
∂i V (St , It ) − ∂sV (St , It ). More precisely, if ∂i V (St , It ) − ∂sV (St , It ) ≤ 0,
i.e., if the marginal cost of the infected is not higher than the marginal cost of
the susceptibles, then the optimal policy at time t is a laissez-faire policy. In
this case, (St , It , ∂sV (St , It ), ∂i V (St , It )) ∈ A0 ∪ A1. If, instead, ∂i V (St , It ) −
∂sV (St , It ) > 0, i.e., if the marginal cost of the infected is higher than themarginal
cost of the susceptibles, then:
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• The optimal policy at time t is a laissez-faire policywhenever the ratio between
the rate of newly infectedpeople and the population that canbeput in lockdown,
βSt It
St+It

, is not higher than the threshold K (1)(St , It ). In this case,
(St , It , ∂sV (St , It ), ∂i V (St , It )) ∈ A2;

• A fraction of the population, smaller than L̄ , is put in lockdown at time t , when-
ever the ratio βSt It

St+It
is between the two thresholds K (1)(St , It ) and K (2)(St , It ).

In this case, (St , It , ∂sV (St , It ), ∂i V (St , It )) ∈ A3;
• The highest possible fraction of population, i.e., L̄ , is put in lockdown at time
t , whenever the ratio βSt It

St+It
is higher than the threshold K (2)(St , It ). In this

case, (St , It , ∂sV (St , It ), ∂i V (St , It )) ∈ A4.

Remark 4.10 We observe that our main results can be applied to other similar epi-econ
models which display the same structure, in particular:

• the state equations are a controlled modification of the compartmental models in
epidemiology, like SIR or similar;

• the cost functional to minimize is not strictly convex or, possibly, non-convex.

This is the case, for instance, of the model discussed in Acemoglu et al. (2020). All
the results above hold also in that context, with all the required adaptations. A more
general setting in which the techniques showed in this paper may be applied, is the
optimal control of age-structured SIR-type models. To the best of our knowledge,
the study of HJB equations in this context is still not carried out completely (see,
e.g., Fabbri et al. 2021).

It is important to note that some issues remain open in the analysis of the model
discussed in this paper and of those cited above. For instance, little is known about
optimal strategies; a deeper study in this direction is required and this calls for different
ideas and proofs.

5 Conclusion

This paper makes a first step towards a complete analysis of the dynamic programming
approach for a class of epi-econ models that have been formulated and studied in
recent years. From a technical point of view such models are difficult to study mainly
due to the lack of convexity of the dynamics and of the cost. Existing numerical
methods for solutions to HJB equations in the viscosity sense are not suitable (nor
can be straightforwardly adapted) to simulate the value function of our optimization
problem. Such simulations, in the absence of a closed-form expression for the value
function, would allow us to obtain more insights about its behaviour. Other important
aspects that we could not analyze with the results presented here are the existence
and uniqueness of an optimal strategy, possibly in feedback form, and the behavior
of optimal trajectories, that is, the evolution of the epidemics under the action of an
optimal control.

Nevertheless, we think that our results provide a solid ground for further research.
For instance, an important aspect to be analyzed is the behavior of optimal trajectories.
More precisely, the next steps will be:
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• to characterise the set where the value function is differentiable and where singu-
larities in its gradient may arise;

• to use the sufficient optimality conditions proved here to characterise the optimal
strategies;

• to extend or adapt existing numerical schemes to the non-convex case, in order to
cover at least some of the examples mentioned herein.

Acknowledgements The authors warmly thank the Referees and the Associate Editors for their careful
scrutiny which brought to a substantially improved version of the paper.

Funding Open access funding provided by Luiss University within the CRUI-CARE Agreement. F. Gozzi
and F. Lippi acknowledge financial support from the ERC grant 101054421-DCS. Views and opinions
expressed are however those of the author(s) only and do not necessarily reflect those of the European
Union or the European Research Council. A. Calvia, F. Gozzi, G. Zanco are supported by the Italian
Ministry of University and Research (MIUR), in the framework of PRIN project 2017FKHBA8 001 (The
Time-Space Evolution of Economic Activities: Mathematical Models and Empirical Applications).

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of
this article.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Acemoglu, D., Makhdoumi, A., Malekian, A., Ozdaglar, A.: Testing, voluntary social distancing and the
spread of an infection. Technical report, National Bureau of Economic Research (2020)

Acemoglu,D., Chernozhukov,V.,Werning, I.,Whinston,M.D.:Optimal targeted lockdowns in amultigroup
sir model. Am. Econ. Rev. Insights 3(4), 487–502 (2021)

Alvarez, F., Argente, D., Lippi, F.: A simple planning problem for COVID-19 lock-down, testing, and
tracing. Am. Econ. Rev. Insights 3(3), 367–82 (2021)

Alvarez, F.E., Argente, D., Lippi, F.: A simple planning problem for COVID-19 lockdown. Technical report,
National Bureau of Economic Research (2020)

Ash, T., Bento, A.M., Kaffine, D., Rao, A., Bento, A.I.: Disease-economy trade-offs under alternative
epidemic control strategies. Nat. Commun. 13(1), 3319 (2022)

Aspri, A., Beretta, E., Gandolfi, A., Wasmer, E.: Mortality containment vs. economics opening: optimal
policies in a SEIARD model. J. Math. Econ. 93, 102490, 19 (2021)

Atkeson, A.G.: What will be the economic impact of COVID-19 in the US? Rough estimates of disease
scenarios. Staff Report 595, Federal Reserve bank of Minneapolis (2020)

Balderrama, R., Peressutti, J., Pinasco, J.P., Vazquez, F., de laVega, C.S.: Optimal control for a SIR epidemic
model with limited quarantine. Nat. Sci. Rep. 12, 12583:1 (2022)

Bambi, M., Gozzi, F.: Internal habits formation and optimality. J. Math. Econ. 91, 165–172 (2020). https://
doi.org/10.1016/j.jmateco.2020.09.008

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jmateco.2020.09.008
https://doi.org/10.1016/j.jmateco.2020.09.008


A simple planning problem for COVID-19 lockdown: a dynamic...

Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman
equations. In: Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston,
MA, (1997). With appendices by Maurizio Falcone and Pierpaolo Soravia

Bolzoni, L., Bonacini, E., Soresina, C., Groppi,M.: Time-optimal control strategies in SIR epidemicmodels.
Math. Biosci. 292, 86–96 (2017)

Calvia, A.: Optimal control of continuous-timeMarkov chains with noise-free observation. SIAM J. Control
Optim. 56(3), 2000–2035 (2018). https://doi.org/10.1137/17M1139989

Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton–Jacobi equations, and optimal control. In:
Progress in Nonlinear Differential Equations and their Applications, vol. 58. Birkhäuser Boston, Inc.,
Boston, MA (2004)

Cannarsa, P., Soner, H.M.: Generalized one-sided estimates for solutions of Hamilton–Jacobi equations
and applications. Nonlinear Anal. Theory Methods Appl. Int. Multidiscip. J. 13(3), 305–323 (1989).
https://doi.org/10.1016/0362-546X(89)90056-4

Ciminelli, G., Garcia-Mandicó, S.: How healthcare congestion increases COVID-19 mortality: evidence
from Lombardy, Italy. medRxiv (2020)

Crandall, M.G., Lions, P.-L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc.
277(1), 1–42 (1983)

Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential
equations. Am. Math. Soc. Bull. New Ser. 27(1), 1–67 (1992). https://doi.org/10.1090/S0273-0979-
1992-00266-5

Eichenbaum,M.S., Rebelo, S., Trabandt,M.: Themacroeconomics of epidemics. Rev. Financ. Stud. 34(11),
5149–5187 (2021)

Elhia, M., Rachik, M., Benlahmar, E.: Optimal control of an SIR model with delay in state and control
variables. Int. Sch. Res. Not. 403549, 1–7 (2013)

Fabbri, G., Gozzi, F., Swiech, A.: Stochastic optimal control in infinite dimension. In: 82 of Probability
Theory and Stochastic Modelling, vol. 82. Springer, Cham (2017). Dynamic programming and HJB
equations, with a contribution by Marco Fuhrman and Gianmario Tessitore

Fabbri, G., Gozzi, F., Zanco, G.: Verification results for age-structured models of economic-epidemics
dynamics. J. Math. Econ. 93, 102455 (2021)

Fabbri, G., Federico, S., Fiaschi, D., Gozzi, F.: Mobility decisions, economic dynamics and epidemic. Econ.
Theory (2023). https://doi.org/10.1007/s00199-023-01485-1

Farboodi, M., Jarosch, G., Shimer, R.: Internal and external effects of social distancing in a pandemic. J.
Econ. Theory 196, 105293 (2021)

Favero, C.: Why is COVID-19 mortality in Lombardy so high? Evidence from the simulation of a SEIHCR
model. Covid Economics, Vetted and Real-Time Papers (2020)

Federico, S., Ferrari, G.: Taming the spread of an epidemic by lockdown policies. J. Math. Econ. 93, 102453
(2021). https://doi.org/10.1016/j.jmateco.2020.102453

Federico, S., Ferrari, G., Torrente, M.-L.: Optimal vaccination in a sirs epidemic model. Econ. Theory
(2022). https://doi.org/10.1007/s00199-022-01475-9

Fleming,W.H., Rishel, R.W.:Deterministic and stochastic optimal control. In:Applications ofMathematics,
no. 1. Springer-Verlag, Berlin, New York (1975)

Fleming,W.H., Soner, H.M.: ControlledMarkov processes and viscosity solutions. In: StochasticModelling
and Applied Probability, vol. 25, 4th edn. Springer, New York (2006)

Freni, G., Gozzi, F., Salvadori, N.: Existence of optimal strategies in linearmultisectormodels. Econ. Theory
29(1), 25–48 (2006). https://doi.org/10.1007/s00199-005-0025-y

Freni, G., Gozzi, F., Pignotti, C.: Optimal strategies in linear multisector models: value function and opti-
mality conditions. J. Math. Econ. 44(1), 55–86 (2008)

Goenka, A., Liu, L.: Infectious diseases, human capital and economic growth. Econ. Theory 70, 1–47 (2020)
Goenka, A., Liu, L., Nguyen, M.-H.: Infectious diseases and economic growth. J. Math. Econ. 50, 34–53

(2014). https://doi.org/10.1016/j.jmateco.2013.10.004
Goenka, A., Liu, L., Nguyen,M.-H.: SIR economic epidemiological models with disease inducedmortality.

J. Math. Econ. 93, 102476 (2021)
Goenka, A., Liu, L., Nguyen, M.-H.: Modelling optimal lockdowns with waning immunity. Econ. Theory

26, 58 (2022). https://doi.org/10.1007/s00199-022-01468-8
Gollier, C.: Cost-benefit analysis of age-specific deconfinement strategies. J. Public Econ. Theory 22(6),

1746–1771 (2020)

123

https://doi.org/10.1137/17M1139989
https://doi.org/10.1016/0362-546X(89)90056-4
https://doi.org/10.1090/S0273-0979-1992-00266-5
https://doi.org/10.1090/S0273-0979-1992-00266-5
https://doi.org/10.1007/s00199-023-01485-1
https://doi.org/10.1016/j.jmateco.2020.102453
https://doi.org/10.1007/s00199-022-01475-9
https://doi.org/10.1007/s00199-005-0025-y
https://doi.org/10.1016/j.jmateco.2013.10.004
https://doi.org/10.1007/s00199-022-01468-8


A. Calvia et al.

Jones, C., Philippon, T., Venkateswaran, V.: Optimal mitigation policies in a pandemic: social distancing
and working from home. Rev. Financ. Stud. 34(11), 5188–5223 (2021)

Ketcheson, D.I.: Optimal control of an SIR epidemic through finite-time non-pharmaceutical intervention.
J. Math. Biol. 83(1), 7 (2021)

Leitmann, G., Stalford, H.: A sufficiency theorem for optimal control. J. Optim. Theory Appl. 8, 169–174
(1971). https://doi.org/10.1007/BF00932465

Piguillem, F., Shi, L.: Optimal Covid-19 quarantine and testing policies. Econ. J. 132(647), 2534–2562
(2022)

Pollinger, S.: Optimal contact tracing and social distancing policies to suppress a new infectious disease.
Econ. J. (2023). https://doi.org/10.1093/ej/uead024

Soner, H.M.: Optimal control with state-space constraint. I. SIAM J. Control Optim. 24(3), 552–561 (1986)
Soravia, P.: Optimality principles and representation formulas for viscosity solutions of Hamilton–Jacobi

equations. I. Equations of unbounded and degenerate control problems without uniqueness. Adv.
Differ. Equ. 4(2), 275–296 (1999)

Soravia, P.: Optimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi
equations. II. Equations of control problems with state constraints. Differential and integral equations.
Int. J. Theory Appl. 12(2), 275–293 (1999)

Zaman, G., Kang, Y.H., Cho, G., Jung, I.H.: Optimal strategy of vaccination & treatment in an SIR epidemic
model. Math. Comput. Simul. 136, 63–77 (2017). (ISSN 0378-4754)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/BF00932465
https://doi.org/10.1093/ej/uead024

	A simple planning problem for COVID-19 lockdown: a dynamic programming approach
	Abstract
	1 Introduction
	1.1 Technical issues and selected related contributions
	1.2 Overview of the main results

	2 The optimal control problem
	2.1 Preliminary results

	3 Properties of the value function and dynamic programming principles
	3.1 Properties of the value function
	3.2 Dynamic programming principles

	4 The Hamilton–Jacobi–Bellman equation
	4.1 The value function is the unique viscosity solution of the HJB equation
	4.2 Optimality conditions

	5 Conclusion
	Acknowledgements
	References


