
IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. Y, MONTH YEAR 1

Priority-driven Differentiated Performance for
NoSQL Database-as-a-Service
Remo Andreoli, Tommaso Cucinotta and Daniel Bristot De Oliveira

Abstract—Designing data stores for native Cloud Computing services brings a number of challenges, especially if the Cloud Provider
wants to offer database services capable of controlling the response time for specific customers. These requests may come from
heterogeneous data-driven applications with conflicting responsiveness requirements. For instance, a batch processing workload does
not require the same level of responsiveness as a time-sensitive one. Their coexistence may interfere with the responsiveness of the
time-sensitive workload, such as online video gaming, virtual reality, and cloud-based machine learning. This paper presents a
modification to the popular MongoDB NoSQL database to enable differentiated per-user/request performance on a priority basis by
leveraging CPU scheduling and synchronization mechanisms available within the Operating System. This is achieved with minimally
invasive changes to the source code and without affecting the performance and behavior of the database when the new feature is not
in use. The proposed extension has been integrated with the access-control model of MongoDB for secure and controlled access to
the new capability. Extensive experimentation with realistic workloads demonstrates how the proposed solution is able to reduce the
response times for high-priority users/requests, with respect to lower-priority ones, in scenarios with mixed-priority clients accessing
the data store.

Index Terms—Cloud Computing, Differentiated Performance, NoSQL, Cloud Storage, MongoDB.

✦

1 INTRODUCTION

O VER the past decade, Cloud Computing proved to be
a cost-effective paradigm for businesses looking for

ways to ease the development, deployment, monitoring,
and operations of monolithic or distributed applications fea-
turing continuous availability and reliability. In this regard,
the Infrastructure-as-a-Service (IaaS), Software-as-a-Service
(SaaS), and Platform-as-a-Service (PaaS) cloud paradigms
allow customers to avail of a number of services with on-
demand capabilities, avoiding the capital investment and
maintenance burden of on-premise infrastructures [1]. One
of the key advantages of the cloud computing paradigm is
the decoupling between providers, who manage the physical
infrastructure and offer cloud services fully managed on
a 24/7 basis, and customers (or tenants), who use them.
Cloud-native software [2] makes use of many techniques
to efficiently operate at a global scale on multiple geo-
distributed, fault-independent sites, such as data replication
and sharding, horizontal scalability, load balancing, and
efficient orchestration of virtual machines and containers.

At the heart of the cloud-native distributed software
ecosystem, there are storage services, which must address
the stringent performance, reliability, and scalability re-
quirements of today’s database-driven web applications.
These often perform massive big-data processing, as in
extreme-scale simulations [3] or application scenarios mak-
ing use of machine learning and artificial intelligence. This
has led to a new generation of data stores, named NoSQL to

• R. Andreoli and T. Cucinotta are with the Institute of Communication,
Information and Photonics Technologies at Scuola Superiore Sant’Anna,
Pisa, Italy.
E-mail: {r.andreoli, t.cucinotta}@santannapisa.it

• D. Bristot De Oliveira is with RedHat Inc., Pisa, Italy.
E-mail: bristot@redhat.com

highlight the difference compared to the relational counter-
part, which employs more relaxed design choices, departing
from traditional ACID guarantees to embrace schema-less
and weak-consistency data models and simpler APIs, gain-
ing in efficiency and scalability.

Since the success of a cloud-based application is directly
correlated to the quality of the user experience, the so-
called Quality-of-Service (QoS), it is fundamental for a cloud
provider (CP) to consistently provide performance levels
as expected by its customers, whether implicit or formally
defined in an in-place Service Level Agreement (SLA). A
well-known [4], [5], [6] performance-related challenge in
Cloud Computing is to provide predictable response times
for time-sensitive, low-latency, and interactive applications,
such as video streaming, online gaming [7], social networks
in virtual and augmented reality [8] and Internet-of-Things
(IoT) network systems, which all intrinsically possess tight
responsiveness requirements.

In this context, a CP should expose managed virtual-
ized infrastructure elements (e.g., virtual machines) and
cloud services (e.g., storage solutions) that exhibit stable
and predictable performance to build reliable applications
that satisfy the timing constraints necessary for high-quality
interactivity with minimum degradation [4], [9]. However,
multi-tenant architectures are well-known to suffer from the
“noisy neighbor” effect. This can be tackled by deploying
dedicated hardware, but it is quite expensive, whilst nor-
mally CPs save on operational costs and energy consump-
tion by applying resource consolidation techniques [10],
[11], [12] to maximize the infrastructure utilization and
help running a sustainable and cost-effective service. For
instance, multiple VMs can be hosted on the same physical
machine, or data from multiple independent tenants may
be stored within a single scalable data store, to reduce

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. Y, MONTH YEAR 2

the overall software footprint. As a practical example, Dy-
namoDB [13] is an infinitely scalable and reliable fully-
managed NoSQL service with performance guarantees that
stores data from different customers on the same physical
machines to ensure higher utilization, and therefore saving
on costs. Clearly, this allows for heterogeneous workload
patterns with competing requirements, such as a combina-
tion of heavyweight requests for batch or high-performance
applications, which generally need to process high volumes
of data at maximum throughput, and lightweight requests
coming from time-sensitive applications, which generally
need to process a small amount of data with tight response
times. This turns into a risk of unstable performance for
multi-tenant cloud services, therefore a cloud platform may
not be able to meet pre-specified temporal requirements
without a mechanism to reduce and/or control the in-
terferences [14] among the different co-located workloads.
The problem is non-trivial and does not revolve around
maximizing overall throughput [4], as with general-purpose
applications: although the response time for an activity
tends to decrease as the overall throughput increases, the
trade-off becomes evident when the cloud service has to
balance the need for maximizing throughput in ongoing
batch requests, with the urgent need to serve time-sensitive
requests. The more resources are dedicated to the latter
request types, the larger is the impact on the throughput;
conversely, the fewer resources time-sensitive activities are
granted, the longer it takes for them to complete, while the
overall system throughput grows.

1.1 Contributions

This paper tackles the above-mentioned performance chal-
lenge in the domain of storage services, addressing the need
of designing evolved fully-managed NoSQL data stores
that support highly heterogeneous workloads. We present
a modification to the popular open-source MongoDB data
store that extends it, adding the ability to differentiate re-
sponse times on a per-request or per-client basis, according
to a simple mechanism that enforces a priority-driven re-
quest ordering. This is achieved by exploiting a combination
of features and locking primitives within the Operating
System (OS). The final result is a NoSQL data store that
enables higher-priority users to pre-empt or postpone access
to the data store for lower-priority users, for the time needed
by higher priority requests to be served. The proposed
solution acts as a “building block” towards fully-managed
storage services with predictable performance (if coupled
with a real-time admission control mechanism) or for use-
cases where there is a need to differentiate between multiple
performance provisioning offers. A CP hosting our modified
version of MongoDB can offer a subscription-based model
with different fees in which high-priority, “gold” users are
served before low-priority, “bronze” users. For instance, a
tenant requesting data access with high responsiveness will
be assigned the high-priority status.

This paper follows up on, and provides significant ex-
tensions to, our prior research [15], [16]. Compared to that,
in this work we present improvements to the internal de-
sign of the prioritization mechanism, measuring the addi-
tional computational overhead of the proposal. Moreover,

each component of the proposal is coupled with pseu-
docode describing the implementation logic. We present a
workaround for an “unsafe” instance of busy-waiting in
MongoDB, which went unnoticed in our previous papers
due to the experimentation setup. This caused very high
response time spikes in many-core, many-clients scenarios.
We integrated the proposal within the MongoDB access-
control model; in this way, database administrators can
restrict the use of the differentiated performance feature to a
subset of “privileged” users. We provide new experimental
results with more realistic, many-clients interference scenar-
ios using the well-known Yahoo! Cloud Serving Benchmark
(YCSB) framework [17]. Finally, we provide a more detailed
and up-to-date discussion of related research.

1.2 Paper Overview

The rest of this paper is organized as follows: Section 2
introduces background concepts about MongoDB and CPU
scheduling in Linux, which are useful for a better under-
standing of what follows; Section 3 describes how the pro-
posed modifications have been integrated into the internals
of MongoDB; Section 4 provides experimental data from
executions of the modified MongoDB, demonstrating the
effectiveness of the proposal and highlighting what trade-
offs between throughput and individual response times
are achievable. Section 5 briefly discusses related industrial
and academic works. Finally, Section 6 provides concluding
remarks, and it addresses possible directions for future
research on the topic.

2 BACKGROUND

This section introduces basic concepts about MongoDB and
its internals, and some details on the default scheduler
within the Linux kernel. The goal of this section is to provide
the necessary background information to understand the
reasoning behind our proposed modifications to MongoDB,
which are described in Section 3.

2.1 MongoDB Overview

MongoDB1 is an open-source, document-oriented NoSQL
data store [18]. In what follows, the discussion refers to
version 4.42. Data is stored in the form of document collec-
tions, which are analogous to tables in relational databases,
but since MongoDB is schema-less, a collection can ac-
commodate heterogeneous documents with different at-
tributes. Documents are defined using the JSON format,
and they are transmitted and stored in a binary-encoded
serialized format for efficiency in storage space and scan
speed. A user interacts with a MongoDB system using
libraries called drivers, available for various programming
languages, that implement an application-programming in-
terface (API) exposing a JSON-based query language. The
simplest MongoDB deployment, which does not allow for
redundancy nor scalability, is called a standalone deployment
and comprises a single instance of the mongod daemon.
This is a multi-threaded C++ program implementing the

1. See: https://www.mongodb.com/
2. See: https://github.com/mongodb/mongo/tree/v4.4

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. Y, MONTH YEAR 3

core database activities: management of user connections,
query planning and all the “background” activities, such as
replication, monitoring and throttling. MongoDB supports
data redundancy by deploying a replica set, a group of
mongod instances residing on different physical machines
that store replicated versions of the same data set: the so-
called primary node receives all the write requests and tracks
the changes to the data set, whereas the secondary nodes
replicate the state of the primary to reflect the changes. Read
operations are usually also directed to the primary node, but
it is possible to tweak availability by changing the read pref-
erence request parameter, at the cost of sacrificing full con-
sistency and data freshness, because a secondary node may
return stale data. A replicated MongoDB deployment allows
leveraging data durability and throughput on a per-request
or per-client basis through the write concern and read concern
options, which respectively define the number of replica set
members that must acknowledge a write operation before
returning a positive response to the client, and the number
of replica nodes that have acknowledged and persisted the
data requested by a read operation: high values lead to high
reliability but poor system throughput, whereas low values
lead to quicker responses from the database but also to a
higher risk of data loss in case of hardware failures. The
combination of the two concern options enables different
causal consistency guarantees [19]: for instance, the write
concern value to guarantee that a write operation on a
given document is completed before any successive write
operation (i.e. monotonic write) is ⌊#nodes

2 ⌋+1, the majority
of the replica set.

MongoDB supports also data sharding, which allows
partitioning a document collection into smaller fragments
(shards) distributed across a cluster of many machines ac-
cording to user-defined criteria. The resulting sharded cluster
requires a set of mongod instances handling the individual
shards, possibly arranged in replica sets. A sharded cluster in-
terfaces with the clients through a router component called
mongos, which behaves like a regular mongod instance, but it
uses internally a local shard metadata database to look up
which mongod instances can actually handle each request.

2.2 MongoDB Internals

There are mainly two technical points regarding the internal
architecture of MongoDB that interest the present proposal:
how concurrent user connections are handled and how the
replication internal activities are carried out. MongoDB uses
a client-server architecture: a client communicates with the
database server (i.e. a stand-alone mongod instance, a replica
set member, or a mongos instance) using a simple socket-
based, request-response protocol called MongoDB Wire Pro-
tocol. A client, which could be either a secondary node
fetching data changes or a user application performing
a database operation, establishes a connection with the
database using an IP address and a port. For the sake of
simplicity, the term external client refers to a user connection,
whereas internal client refers to a replica member connec-
tion.

The server manages each individual connection context
(the so-called session) synchronously using a thread pool: a
unique client worker thread is reserved for every connection

Fig. 1: The FSM modeling the session life-cycle of a client
connection.

to handle the server-side activities that determine the life-
cycle of the interaction. Therefore, the underlying worker
thread does not change for the duration of the client session.
Figure 1 presents the workflow of interaction as a finite-state
machine (FSM), where each state corresponds to a set of
activities performed by the underlying client worker thread.
First, a client thread creates the context of the connection
(Session-Created state), then it waits for incoming messages
from the client (Wait-Request state). Upon receiving a mes-
sage, the worker thread processes the operation enveloped
into the request message (Process-Request state) and handles
possible interactions with other mongod instances, waiting
for their responses (Wait-Response state), e.g., in case of
replication with write concern higher than 1. Then, the
client thread waits for another request from the client.
Eventually, the connection to the database is terminated, or
a failure occurs, thus causing the session to end (Session-
End state). The underlying worker thread then performs
clean-up operations, becoming ready to be destroyed, or
being reused for another client connection, depending on
the server configuration. The bold path depicted in Figure 1
corresponds to the so-called standard transition path, which
models the traditional client-server interaction: wait for a
client request, process it, and send a response back.

MongoDB is capable of achieving high throughput
for concurrent read and write operations thanks to the
WiredTiger3 storage engine. This implements an optimistic
version of the classic Multi-Version Concurrency Control
(MVCC) mechanism [20] at document-level, allowing for
multiple write operations to different documents to occur
at the same time. The term “optimistic” refers to how
write conflicts are handled: a write conflict occurs whenever
simultaneous update operations affect the same document,
and it is resolved by accepting only a single operation as
valid, while transparently retrying the others. Data consis-
tency is enforced by periodic point-in-time snapshots of the
data to present a consistent view to the clients. Therefore,
new changes are visible for read operations only after all
write conflicts are resolved and a new snapshot of the data
set is taken.

2.3 Replication internals
Regarding the internals of the replication mechanism, the
primary node keeps track of the changes to the data set
in the operation log (oplog in short), a fixed-size MongoDB
collection. Changes to an oplog entry are described in

3. See: https://source.wiredtiger.com/

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. Y, MONTH YEAR 4

Fig. 2: The workflow of the replication process from the
secondary node point of view: fetch oplog entries, batch
them, apply in parallel to the local copy of the data set.

an idempotent format: each oplog operation produces the
same results whether it is applied to the given dataset
once or multiple times. In order to enforce data consistency
among replica members, each oplog entry is paired with a
timestamp, which is also used by WiredTiger to return the
correct view of the data to a read operation. A secondary
node periodically connects to a source node, which could be
either the primary node or an up-to-date secondary node,
then copies and applies asynchronously these operations in
order to reflect the changes to its local copy of the data
set. More specifically, the replication process is performed
by the following components, depicted in Figure 2: the
OplogFetcher establishes the connection to the primary node,
retrieves the oplog entries in several batches (i.e. multiple
runs of the standard transition path) and stores them in the
OplogBuffer; the OplogBatcher pulls the fetched entries from
the buffer and creates the next batch to be applied to the
local data set; lastly, the OplogApplier distributes the newly
created batch to a pool of parallel writer threads that apply
them. As the chronological order of oplog entries within a
batch cannot be controlled, some database operations like
removing a collection require a singleton batch. After the
batch has been applied, the secondary node notifies the
primary, which in turn sends a successful response to the
pending user operations that took place before the timestamp
of the last applied oplog entry, if the number of received
notifications matches with the write concern requirement.

2.4 Linux Scheduler / POSIX Niceness

A multi-tasking OS has to serve multiple concurrently run-
ning threads or processes, often generically referred to as
tasks [21], assigning them time slices over the available
CPU(s). The component responsible for granting CPU time
to the tasks is the scheduler, which chooses the execu-
tion order depending on the scheduling policy and per-
task scheduling parameters. For instance, the Linux ker-
nel provides a framework that comprises three scheduling
policies, each suitable for specific use cases: fair schedul-
ing for general-purpose applications, fixed-priority, and
reservation/deadline-based scheduling for real-time scenar-
ios. The last two categories are deterministic policies used
for embedded real-time scenarios where the total real-time
workload is known upfront: failing a proper analysis of
the requirements causes problems that could compromise
the functioning of the entire system. However, there are
studies [22] exploring the applicability of these scheduling
strategies to deploy highly time-sensitive applications in
Cloud infrastructures. Notice that these scheduling policies

are associated with a static ordering, so that deadline-
based tasks run before, and preempt, any priority-based
and general-purpose tasks which determine the tasks to run
next. Given the nature of real-time tasks, they are always
scheduled before general-purpose tasks.

The default Linux scheduler for general-purpose appli-
cations, the Completely Fair Scheduler (CFS) [23], provides
a weighted-fair partitioning of the time available on each
CPU among the ready-to-run tasks in its ready queue.
CFS employs UNIX nice levels to manipulate the weight
associated with a task in the weighted-fair share scheduling
algorithm: more specifically, a numerically large nice value
increases the willingness of a thread to give precedence to
others. The valid range of nice level values is between -
20 (highest priority) and 19 (lowest priority), where each
nice value increment/decrement corresponds roughly to a
relative modification of the task weight of 10%4. Negative
nice values are usually only available to privileged tasks,
but it is possible to make them accessible to unprivileged
ones as well, by proper configuration of the permissions in
limits.conf5.

3 PROPOSED APPROACH

This section explains how the internal MongoDB architec-
ture design is leveraged to achieve differentiated perfor-
mance on a per-request/client basis without compromising
the correct functioning of the data store, with near zero
overhead when the prioritization mechanism is not in use.
Our modifications can be summarized in 5 main points,
which are further detailed in the subsections that follow:

1) UNIX nice levels are exploited to prioritize higher-
priority client threads over lower-priority ones;

2) An instance of busy-waiting in WiredTiger is mod-
ified to avoid priority inversion and starvation of
client threads in mongod;

3) when replication is used, request batches are truncated
earlier when containing mixed-priority requests, to
avoid a large number of lower-priority requests to
slow down the time needed to complete higher-
priority ones;

4) a custom semaphore allows for containing the vol-
ume of lower-priority requests that hit the disk
while higher-priority requests are pending;

5) the access control model of MongoDB is extended to
allow an administrator to configure what users are
allowed access to higher-priority requests.

3.1 Prioritization using Nice Levels
The proposed mechanism enriches the query language
of MongoDB with two new features: a new database
command, called setClientPriority, which allows a
client to change the priority for the current session,
and a new option for the runCommand general-purpose
database command, which allows prioritizing a single re-
quest. Both features allow for specifying the new priority

4. More information at: https://github.com/torvalds/linux/blob/
master/kernel/sched/core.c#L11185.

5. More information at: https://manpages.debian.org/jessie/
libpam-modules/limits.conf.5.en.html.

https://github.com/torvalds/linux/blob/master/kernel/sched/core.c#L11185
https://github.com/torvalds/linux/blob/master/kernel/sched/core.c#L11185
https://manpages.debian.org/jessie/libpam-modules/limits.conf.5.en.html
https://manpages.debian.org/jessie/libpam-modules/limits.conf.5.en.html

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. Y, MONTH YEAR 5

level as either high, normal, or low. However, while the
setClientPriority command changes priority for all
the following requests till the end of the session, the priority
declared by a runCommand operation persists for a single
client-server interaction only (i.e., a single loop involving
transitions Wait-Request→ Process-Request→ Wait-Response,
in the FSM in Figure 1), then the subsequent requests keep
being served at the configured session priority.

The main mechanism by which we provide priority-
driven differentiated performance in MongoDB is to al-
ter the CPU scheduling settings of client worker threads
so that those serving higher-priority requests are favored.
The current implementation on Linux exploits the UNIX
nice levels through the setpriority() system call6, but an
analogous Windows-based implementation could lever-
age the setThreadPriority() Win32 API7. The prior-
ity specified for a request, or a whole client session, is
mapped to a precise nice value: the MongoDB command
setClientPriority(high-priority) has the effect of
setting the nice level of the underlying worker thread to the
lowest value of −19 (if the client is authorized to do so, see
Section 3.5); the option normal-priority restores the default
nice value of 0, and low-priority sets it to the highest value of
+20. Since MongoDB v4.4 reserves a dedicated server-side
worker thread for each incoming user connection, and these
threads are concurrently running while repeatedly carrying
out the actions in Figure 1, it is clear that prioritizing some
of the threads results in giving them a higher chance to
run and complete earlier their pending operations when
these threads are competing for being scheduled on the
same CPU(s). Notice that our usage of nice levels requires a
minimum of additional permissions in order to be deployed
correctly on Linux. Specifically, the mongod server needs
to be able to set negative nice values, something that can
conveniently be done by configuring in limits.conf the
allowed niceness range for the OS user through which
MongoDB is launched on the server.

3.2 Modifications to WiredTiger Busy-Waiting

WiredTiger employs busy-waiting in a number of instances
where the wait duration for a condition is expected to
be shorter than the overhead of context switching and re-
scheduling, which is typical of blocking synchronization
primitives. For instance, WiredTiger busy-waits during the
snapshot creation procedure, more specifically when initial-
izing new transactions and allocating their transaction IDs.
This is because individual completion times are expected to
be short, therefore WiredTiger attempts to group together as
many transactions as possible, among those being concur-
rently issued by different worker threads.

However, busy-waiting is generally considered an anti-
pattern if: 1) interrupts are not disabled, which is not pos-
sible in user-space; 2) task-core pinning is not 1:1, which
is not enforced by MongoDB nor WiredTiger – an arbitrary
number of clients can be connected and issue requests to
a mongod instance at any time, resulting in an arbitrary

6. More information at: https://man7.org/linux/man-pages/man2/
setpriority.2.html.

7. More information at https://docs.microsoft.com/en-us/
windows/win32/api/processthreadsapi/.

number of client threads concurrently using the WiredTiger
API to commit transactions to disk. This “unsafe” use of
busy-waiting within WiredTiger, in combination with the
nice level manipulation detailed above, causes extremely
high worst-case latency values for write operations when
the number of client worker threads exceeds the number
of free physical cores. For instance, we measured worst-
case latency values of up to 1 second (300% more than the
average) in a quad-core standalone deployment of mongod
with 8 connected clients. This is due to an instance of priority
inversion: one or more high-priority worker threads busy-
wait on a transaction-related condition that only a lower-
priority thread can unblock. However, if there are no free
physical cores available at that time, the latter thread is not
given CPU time, since the CFS keeps scheduling the higher-
priority threads that keep spinning, until the exhaustion
of their time-slices. At that point, the lower-priority thread
exits starvation, thus it is able to finally allocate its trans-
action ID and unblocks the condition other spin-waiting
higher-priority threads were waiting for, so they can finally
proceed. Nice levels induce small variations in the schedul-
ing evaluation (see Section 2.4), without compromising the
functioning of the system. Thus lower-priority threads get
anyway a chance to run, albeit rarely. However, the use
of real-time priorities and the POSIX real-time scheduling
policy, instead of UNIX nice values, caused in some experi-
ments a complete stall of the database when configured with
a few physical cores. This happens because the thread with
the highest real-time priority keeps running undisturbed.
Note that such priority inversion problem occurs also in
the regular, unmodified version of MongoDB, albeit it is far
less noticeable. When all threads have the same nice value,
the CFS essentially becomes a round-robin scheduler, with a
time-slice between 3ms and 24ms, depending on the number
of concurrently active threads8. Indeed, in such a scenario,
worst-case latency peaks of 20ms are easily observable in
MongoDB deployments with a reduced number of CPU
cores (e.g., quad-core).

For this reason, we integrated a simple back-off strategy
to the busy-waiting logic in WiredTiger, which spins 100
times, and then sleeps for 50 microseconds. This way, the
WiredTiger transactions corresponding to higher-priority
requests that try to spin-wait for too long, are temporarily
put to sleep so that the transactions corresponding to lower-
priority requests are no longer heavily starved and the
system can move forward.

3.3 Truncation of Oplog Batches
Solely using nice levels is not enough to assure priority-
driven differentiated performance. This is because, in replica
set deployments where concurrent user operations require
a write concern higher than 1, we have an instance of what
we call unbiased replication: since the primary node does not
respond to the user until a subset of secondary nodes repli-
cate the batch in which the operation resides, this leads to
an inevitable priority inversion, as the OplogApplier applies
the oplog entries in parallel, and thus each batch represents
a “limbo” state where no chronological or priority order
is enforced. A simple propagation of priorities through the

8. The actual boundaries can be tuned via sysctl parameters.

https://man7.org/linux/man-pages/man2/setpriority.2.html
https://man7.org/linux/man-pages/man2/setpriority.2.html
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. Y, MONTH YEAR 6

oplog does not solve the issue: intra-batch oplog re-ordering
by priority is pointless since the next batch does not get
processed until the current one is exhausted; inter-batch
priority re-ordering does not comply with the data con-
sistency model implemented by WiredTiger (see Section 2),
because the chronological order of the timestamps coupled
to oplog entries would get mixed up between batches,
causing critical internal errors. The ideal solution for oplog
re-ordering would be a re-design of the replication process,
but that would in turn require a complete overhaul of the
database architecture and a more relaxed implementation of
the data consistency model [19].

In the proposed approach herein presented, we under-
take a minimally-invasive approach to the problem just
mentioned above, with no changes at all in the replication
protocol, and a slight modification to the batch creation
logic, i.e., batch truncation: when the OplogBatcher identifies
a priority fall between two continuous oplog entries in the
batch, it prematurely “cuts” the batch being assembled, so to
speed-up the commit to persistent storage of the prioritized
entry(ies) preceding the lower-priority request(s) following
in the batch. Naturally, this speeds up the secondary node
acknowledgment to the primary, as described in Section 2.3.
Pseudocode 1 presents the batch truncation implementation
logic. Note that the following priority order is assumed in
the pseudocode: HIGH > NORM > LOW .

Algorithm 1 Truncate Oplog Batch

Input: oplogBuffer, list of to-be-applied oplog entries
1: entries← ∅
2: while ¬ oplogBuffer.empty() do
3: entry ← oplogBuffer.pop()
4: if entries.back().prio > entry.prio then
5: Send entries to OplogApplier
6: entries← ∅
7: end if
8: entries.append(entry)
9: end while

3.4 Custom Semaphore
In a typical server-class multi-core mongod deployment with
dozens of cores, while a single high-priority request is being
processed, many lower-priority ones may be concurrently
handled by other client threads running on other cores,
resulting in additional transactions to be performed on disk
before the high-priority request can be acknowledged to
the client. This still happens even in the presence of the
batch truncation mechanism described above, as the system
will anyway keep taking a large number of lower-priority
requests that, albeit postponed by de-prioritization and/or
batch truncation, will have to be synchronized on disk,
and/or transferred to replicas, sooner or later, impacting
on higher-priority requests, given the serializable nature of
MongoDB transactions. Therefore, for guaranteeing a better
service to higher-priority requests, lower-priority worker
threads must be slowed down so that oplog entries corre-
sponding to high-priority requests are naturally scheduled
first and subsequently grouped together when processed
by the OplogBatcher. Therefore, our modification includes

a semaphore-like mechanism integrated within the client
session life-cycle, that mitigates the effect of unbiased repli-
cation, by keeping track of the number of worker threads
currently in the Process-Request state, and applying a sim-
ple priority rule: if the number of higher-priority requests
being processed is beyond a tunable threshold, then tem-
porarily block the worker threads which are processing
lower-priority requests. This custom semaphore allows the
creation of a prioritized channel to WiredTiger with close
to no interferences from lower-priority requests. Whenever
the number of higher-priority requests returns below the
threshold, the blocked threads performing lower-priority
requests are resumed and continue execution.

Theoretically, this mechanism would allow high-priority
requests to undergo near-zero interference from lower-
priority ones, that are paused during execution of higher-
priority requests. If this is applied regardless of the number
of high-priority requests being processed, then the overall
throughput of MongoDB risks undergoing quite a big im-
pact, as the parallelism capabilities of the database are ef-
fectively reduced. For this reason, the proposed mechanism
allows for customizing an activation threshold value, which
specifies the maximum number of concurrent high-priority
requests in the processing state required to activate the
priority channel. Below such threshold, the lower-priority
requests are still served. A high value implies a lower rate of
semaphore activations (i.e. fewer blocked threads), whereas
a low value implies a higher rate of semaphore activations
(i.e., more blocked threads). This option allows blocking
lower-priority requests only under significant volumes of
higher-priority traffic, thus achieving different trade-offs
between response time to higher-priority requests, and drop
in overall throughput of the system.

In practice, the custom semaphore is implemented by
modifying the entry and exit points from the Process-Request
state, as depicted in Figure 3, which shows the modified
FSM representing the client session life-cycle. Pseudocodes 2
and 3 present the implementation logic. The semaphore is
designed to block the worker threads before entering the
code sections related to the storage engine, and then resume
them when the higher-priority requests have been pro-
cessed. The mechanism does not interfere with the execution
of requests that change the user priority, nor with sessions
corresponding to internal clients (i.e. secondary node con-
nections): this is essential for the correct functioning of the
system. Note that the shown pseudocodes are conceptual –
the actual implementation comprises a series of condition
variables, mutexes, and atomic counters for keeping track
of the high-priority, normal-priority, and low-priority users.

3.5 Security and Access Control
The prioritization mechanisms described above are fully
integrated into the role-based access control [24] model of
MongoDB to prevent “greedy” clients from draining all the
throughput capacity: this allows, for instance, an adminis-
trator to provide different database accounts with properly
configured permissions so that users requesting interac-
tive workloads are allowed to submit prioritized requests,
whereas users characterized by batch-type workloads can-
not leverage the priority mechanism to their advantage.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. Y, MONTH YEAR 7

Algorithm 2 Semaphore Entry Logic

Input: session, active database connection object
Input: thr lvl, user-defined activation threshold
Input: high proc, list of high-priority sessions in process
Input: norm proc, list of normal-priority sessions in process
Input: {norm,low} wait, wait queues

1: if session.is user then
2: if session.prio == HIGH then
3: high proc.append(session)
4: else if session.prio == NORM then
5: norm proc.append(session)
6: while len(high proc) ≥ thr lvl do
7: norm wait.push(session)
8: session.cond var.wait()
9: end while

10: else
11: while len(high proc+norm proc) ≥ thr lvl do
12: low wait.push(session)
13: session.cond var.wait()
14: end while
15: end if
16: end if

Algorithm 3 Semaphore Exit Logic

Input: session, active database connection object
Input: thr lvl, user-defined activation threshold
Input: high proc, list of high-priority sessions in process
Input: norm proc, list of normal-priority sessions in process
Input: {norm,low} wait, wait queues

1: if session.is user then
2: if session.prio == HIGH then
3: high proc.remove(session)
4: else if session.prio == NORM then
5: norm proc.remove(session)
6: end if
7: if len(high proc) < thr lvl then
8: while ¬norm wait.empty() do
9: blck session← norm wait.pop()

10: blck session.cond var.signal()
11: if norm wait.empty() then return;
12: end while
13: end if
14: if len(high proc+ norm proc) < thr lvl then
15: ▷ SAME code as lines 8-13, but for low wait
16: end if
17: end if

More precisely, the proposed modifications to MongoDB
let an administrator associate each account with additional
permissions that control whether an attempt to switch to a
high, normal, or low priority would succeed, or fail with
an unauthorized error code. Notice that authorized clients
still need to explicitly call the setClientPriority or the
generic runCommand commands, specifying the required
priority value.

4 EXPERIMENTAL EVALUATION

YCSB [17] is the industry-standard benchmark tool for
NoSQL data stores. It comprises a set of user-defined per-

Fig. 3: The FSM modeling the session life-cycle of a client
connection, integrated with the custom semaphore.

formance tests, called workloads, that define parameters such
as the probability distribution of requests across the key
space, the number of pre-inserted records, and the propor-
tion of read, update, scan and insert operations to issue.
YCSB evaluates the deployment’s average request response
time and overall throughput via a multi-threaded workload
generator which issues to the targeted data store a prede-
fined number of back-to-back operations. In this paper, the
purpose of YCSB is to emulate realistic “noise” over the
database instance, which could be seen as the interference
created by batch applications interacting with the data store.
At the same time, the individual response times of a set
of client connections are monitored. These could be seen
as user workloads with high responsiveness requirements
(simply called “time-sensitive” from now on). The goal is
to demonstrate how the proposed approach allows tuning
the effect of interference between the YCSB noise and the
time-sensitive workloads with respect to the unmodified
version of MongoDB, thus achieving priority-based per-
formance differentiation. Under ideal circumstances, where
MongoDB is able to dedicate a physical core for each client
worker thread (i.e. #physical cores > #worker threads),
there is no need for performance differentiation, since it
would efficiently handle most workloads. However, this
is not often the case, especially in Cloud Infrastructures,
where a multi-tenant architecture is in place and services
are encapsulated in fixed-size virtual machines. For this
reason, the experiments have been performed on a restricted
number of physical cores such that the worker threads are
forced to contend CPU time, thus emulating the resource
contention scenario of a typical public Cloud Infrastruc-
ture. The workflow of each experiment does not vary: the
time-sensitive clients connect to the database system while
the YCSB workload is running, declare their priority with
setClientPriority (in the case of modified MongoDB),
and then start submitting a fixed number of synchronous
write operations, with no wait time between subsequent
requests. For the sake of the experimental evaluation, we
are interested in the response times of individual requests
experienced by the time-sensitive clients, and the average
throughput achieved by the YCSB noise before, during and
after the time-sensitive workloads have been exhausted.
For instance, we are not considering the total completion
time of the YCSB noise, since we are assuming that it
emulates a set of indefinitely long-running, batch processes
issuing synchronous operations back-to-back. In our con-
text, response time is defined as the time taken to send a

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. Y, MONTH YEAR 8

query to the MongoDB deployment, execute it and receive
back a response. Notice that it includes possible time spent
waiting at the semaphore for the corresponding server-side
worker thread. All client-related activities are hosted on a
dedicated, 96-core physical system (Arm 64 server with 2
ThunderX 88XX CPUs and 64 GB of RAM) connected to the
MongoDB deployment by a 1 gbE link. This is to ensure
no interference with the server-side activities, which are
hosted on a different 112-core physical system (x86-64 server
with 2 Xeon Gold CPUs and 125 GB of RAM) with CPU
frequency blocked at 2.20 GHz, and hyper-threading and
turbo-boosting disabled. The latter is accompanied by two
20-core twin systems (x86-64 server with 2 Intel(R) Xeon(R)
CPU E5-2640 CPUs and 64 GB of RAM) with a similar DVFS
configuration, but CPU frequency blocked at 2.40 GHz. They
are used as secondary nodes in replicated scenarios.

The first subsection verifies experimentally the correct-
ness of the proposed mechanism by visually showing how
the requests are ordered on a priority basis in a simple
scenario with multiple priority requirements, but no YCSB
noise. Subsequently, the remaining subsections demonstrate
how the response times observed by different clients are
differentiated on a priority basis with respect to the original
version of MongoDB, in different deployment set-ups in-
volving also the update-heavy, predefined YCSB workload
(50% Updates, 50% Reads). Notice that in this case only two
priority levels are used to make the plots more readable
and the explanations clearer. For the sake of reproducibility,
the experimental evaluation can be replicated using a small
performance testing framework purposely developed for
this work9, and a pre-configured instance of YCSB10.

4.1 Correctness of the Proposal
The first experiment aims at showing experimentally how
the modified MongoDB behaves in the presence of different-
priority requests hitting the system using a set of our time-
sensitive clients only, without any YCSB noise workload.
We deployed a 32-clients scenario in a quad-core standalone
mongod deployment, where 4 out of the 32 clients are de-
ployed with a high priority level, whereas the remaining
ones are equally divided between normal and low priority.
The CPU contention is quite high since each physical core
is shared among 8 worker threads. Figure 4 (Top) shows the
response times (Y axis) over time (X axis) of 1000 write op-
erations issued per client: the original version of MongoDB,
shown in the first plot, achieves a flat 1233 microseconds
average response time for all the clients, being unable to pro-
vide differentiated performance. The second plot shows our
modified version of MongoDB with activation threshold set
to 1 (default), which instead is able to transfer the requested
priorities to the underlying worker threads, reducing the
average response time for high-priority clients down to 511
microseconds (∼59% decrease). Naturally, this comes at the
cost of some temporary unstable performance for normal-
priority clients, as depicted by the average response time
of 1700 microseconds with peaks of tens of milliseconds,
and a complete stall of the low-priority ones. Ultimately,
this implies an increase in the total duration of the test. The

9. https://gitlab.retis.santannapisa.it/rtnosql/mongodb-perf
10. https://github.com/deRemo/rt-YCSB

103

Response Time (s)

0.0

0.5

1.0

Pr
op

or
tio

n

Experimental CDF

Original
Act. Th. 1
Act. Th. 2

Fig. 4: Response times (Y axis) over time (X axis) in a
32-client scenario with different priorities using a quad-
core deployment (Top). Three cases: unmodified MongoDB,
modified MongoDB with an activation threshold of 1, and
modified MongoDB with an activation threshold of 2. The
corresponding experimental cumulative distribution func-
tion of the response times for high-priority clients is shown
in the bottom panel.

last timeline plot demonstrates the tuning capabilities of the
activation threshold to reduce the drop in throughput: for
instance, a value of 2 allows for high- and normal-priority
clients to coexist at the cost of almost doubling the average
response time for the high-priority clients with respect to
the default activation threshold. Anyhow, response times
for high-priority users are reduced by ∼26%, compared to
original MongoDB, and the test duration is roughly the
same as the first timeline plot. Figure 4 (Bottom) shows
the experimental cumulative distribution function (CDF) of
the response times experienced by high-priority clients in
the three considered cases. Regarding the computational
overhead of the proposal, the entry logic requires 125 CPU
cycles, whereas the exit logic requires 300 CPU cycles,

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. Y, MONTH YEAR 9

corresponding to 52 and 125 nanoseconds, respectively, on
our 2.20 GHz Xeon Gold CPU. The exit logic lasts longer
because it is in charge of deciding which worker threads to
re-activate based on the previously expressed priority rule.
Nonetheless, both overheads are not much more expensive
than an average main memory operation, making them
negligible.

4.2 Single Time-Sensitive Client

This subsection is dedicated to the experiments performed
with a single high-priority client in a 32-client scenario, where
the remaining 31 normal-priority connections are estab-
lished by YCSB. In this scenario, the activation threshold is
set to the recommended value of 1 so that the semaphore is
in use, otherwise the performance differentiation would be
entirely dependent on nice levels, with the problems already
discussed in Section 3. Each time-sensitive client issues
15000 write operations, whereas each YCSB user submits
continuously a mix of 50%/50% read/write operations till
termination. Figure 5 shows the resulting response times of
a time-sensitive client and the corresponding throughput of
YCSB noise. Each row of plots corresponds to a different
level of CPU contention in mongod: from the highest (2-
cores, topmost plots), where each physical core is shared
between 16 worker threads, to the lowest (16-cores, bottom-
most plots), where each physical core is shared between
2 worker threads. Notice that a lower contention scenario
allows naturally for a higher throughput.

Figure 5a presents the results in a standalone MongoDB
deployment, thus no data durability guarantees. The pro-
posed mechanism keeps the response times of time-sensitive
users close to the scenario with no YCSB noise, hereinafter
called the “baseline”, whereas the original MongoDB is
unable to achieve low responsiveness, especially in a high-
contention scenario. In the 2-core deployment, the proposed
approach achieves a ∼71% decrease in median response
time for the time-sensitive client, with respect to the original
version of MongoDB. Most notably, our proposal experi-
ences a ∼96% decrease in 99.9th percentile (P999) response
time, closely resembling the baseline. This comes at the cost
of a ∼33% decrease of the YCSB clients throughput for the
duration of the time-sensitive clients, as depicted by the
throughput drop in the right-column plot (roughly from
time 10 to 17). In lower contention scenarios, the throughput
drop is naturally higher, since more physical cores avail-
able implies more running client threads, and therefore the
semaphore activates more often. Notice that in the 16-core
case (bottommost plots), the decrease in average response
time is negligible with respect to the original version of
MongoDB, because it is already close to the baseline (shown
in the response time plot). Nonetheless, the 99th percentile
(P99) response time is ∼20% better.

Figure 5b presents the results of analogous experiments
but performed in a 3-member replica set deployment with
write concern set to majority for the time-sensitive workload.
The replication process adds up a noticeable overhead to
the individual latencies. As described in Section 2.3, the
primary node waits for a subset of secondary nodes before
answering a query to ensure data consistency. The modified
MongoDB provides significantly reduced response times

for time-sensitive clients, w.r.t. the original MongoDB. This
is especially evident in high throughput scenarios (i.e.,
less CPU contention): a higher throughput implies more
crowded oplog batches to be processed by secondary nodes,
which in turn causes extremely high latencies for write
operations with data durability requirements. Therefore, the
oplog entries corresponding to YCSB noise operations may
backlog time-sensitive requests in the original version of
MongoDB, whereas the proposed approach is able to keep
the performance differentiated. This has dramatic repercus-
sions in low CPU contention scenarios: for instance, the
original version of MongoDB experiences excessively long
latencies in the 16-core deployment case (corresponding
to the bottommost plot in Figure 5b). Our proposal beats
original MongoDB by ∼93% on median response time, and
by ∼94% on P999, closely matching the baseline response
time. The effect of the backlog is further highlighted in the
timeline plot in Figure 6: the YCSB workload has been pre-
maturely terminated, in the original version of MongoDB,
to complete the experiment in a reasonable amount of time.
Conversely, the modified version of MongoDB is able to al-
most temporarily halt the YCSB throughput, decreasing the
original rate by 99% for the duration of the time-sensitive
workload. Notice this rate reduction is justifiable consider-
ing the number of time-sensitive requests and the average
baseline response time of 2200 microseconds: a write request
with a majority write concern takes almost 6 times longer
to complete, w.r.t a “normal” write request in our replica
set deployment. For the majority of such a time span, the
high-priority client keeps the priority channel active. This
results in 33 seconds of total completion time for the time-
sensitive workload, and therefore at least 33 seconds of total
waiting time for the lowest priority loads with an average
categorical stop period of 2200 microseconds.

4.3 Multiple Time-Sensitive Clients

Additional experiments have been performed with a num-
ber of high-priority clients in a 32-client scenario, where
the remaining normal-priority clients come from YCSB (Fig-
ure 7). The testing approach is the same as in the previous
subsection, although these experiments have been arranged
so that: the number of time-sensitive clients is always
equal to the amount of allocated physical cores; the total
number of concurrent clients (i.e. time-sensitive + YCSB
noise) is kept constant throughout the different levels of
CPU contention to ensure a fair comparison between the
various cases shown in the plots. Unlike the experiments
in the previous subsection, the activation threshold can be
set higher than 1 to allow for different trade-offs between
response time of time-sensitive clients and overall through-
put. Figure 7a presents the results in a standalone Mon-
goDB deployment, thus with no data durability guarantees.
The results follow the trend of previous experiments in
Figure 5a, especially the base case of activation threshold
equal to 1. A higher activation threshold consistently implies
worst performance for the time-sensitive workload but with
the advantage of having a lower throughput drop in the
YCSB noise. Notice that the performance degradation for
the time-sensitive clients mostly impacts the P99 and P999
response time. A higher activation threshold implies worse

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. Y, MONTH YEAR 10

Orig.
(no YCSB)

Orig. Proposal

103

104

2056

59191

2106

578

3111

608
502

1637

472

Avg.
p99.9
p99
p50

0 10 20
0

5000

10000

15000

Orig.
Proposal

Orig.
(no YCSB)

Orig. Proposal

103

6 × 102

2 × 103
3 × 103

2066

3488

2079

543

2175

591
496

812

464
0 10 20

0

10000

20000

30000

Orig.
(no YCSB)

Orig. Proposal

103

6 × 102

2 × 103 2037
2258

2082

550

843

598

500
590

473
0 10 20

0

20000

40000

Orig.
(no YCSB)

Orig. Proposal

103

6 × 102

2 × 103 2041
2197 2148

543

817

660

494
537

491
0 10 20

0

20000

40000

60000

1 Time-Sensitive User, 31 Noise threads, 2-core mongod (standalone)

4-core mongod (standalone)

8-core mongod (standalone)

16-core mongod (standalone)

Re
sp

on
se

 T
im

e
(

s)

Timeline (s)

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

(a) Standalone Deployment.

Orig.
(no YCSB)

Orig. Proposal

104

105

3653

97201

4959

2738

83847

3534

2079

4690

2304

Avg.
p99.9
p99
p50

0 20 40 60
0

5000

10000

Orig.
Proposal

Orig.
(no YCSB)

Orig. Proposal

104

3829

20084

5042

2837

12250

3596

2186

8191

2290

0 20 40 60
0

10000

20000

Orig.
(no YCSB)

Orig. Proposal

104

3665

73638

5206

2669

31366

3736

2053

20361

2282

0 20 40 60
0

10000

20000

30000

Orig.
(no YCSB)

Orig. Proposal

104

105

3797

86397

5438

2746

66033

3691

2116

34973

2302

0 20 40 60
0

10000

20000

30000

40000

1 Time-Sensitive User, 31 Noise threads, 2-core mongod (replica set)

4-core mongod (replica set)

8-core mongod (replica set)

16-core mongod (replica set)
Re

sp
on

se
 T

im
e

(
s)

Timeline (s)

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

(b) Replica set Deployment.

Fig. 5: Single time-sensitive client in a 32-client scenario. Each subfigure depicts 50th, 99th, 99.9th percentiles and mean
response time (Left column) for the time-sensitive client; throughput per second (Right column) achieved by 31 YCSB
threads while the single time-sensitive client is running. Each row corresponds to different degrees of CPU contention,
from highest to lowest (Top to bottom).

Fig. 6: Time-sensitive requests timeline in a 32-client sce-
nario using a 16-core replica set deployment, comparing the
original MongoDB with the modified one. The grey dashed
line highlights the end of the YCSB stress test.

performance for the time-sensitive workload if the number
of high-priority clients is not equal to or higher than the

threshold. This happens especially toward the end of an
experiment since some high-priority clients exhaust their
workload first. The effect is more noticeable in lower CPU
contention scenarios with fewer semaphore activations (i.e.
a higher threshold value), where the performance differ-
entiation is more subtle regardless of the drop in YCSB
throughput, as can be seen from plots. Figure 7b presents the
experimental results performed in a 3-member replica set
deployment with write concern set to majority for the time-
sensitive workload. Notice that in this case, the activation
threshold parameter is almost irrelevant, due to the amount
of waiting time required for a single high-priority request to
be processed, as already described at the end of the previous
subsection.

5 RELATED WORK

Real-time database systems [25] were the first to move
away from the conventional goal of providing fast average
response times or overall high throughput. Unlike tradi-
tional databases [26], a real-time one must meet the timing
constraints of a set of real-time applications by employing
appropriate scheduling protocols for data processing, CPU,

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. Y, MONTH YEAR 11

Orig.
(no YCSB)

Orig. 1

103

104

2096

60528

2079

695

3129

650
525

1720

516

Avg.
p99.9
p99
p50

0 10 20 30
0

5000

10000

15000

Orig.
Act. Th. 1

Orig.
(no YCSB)

Orig. 1 2

103

6 × 102

2 × 103
3 × 103

1787

3431

1083

2016

609

1992

668 672

503

829

470 486

0 10 20 30
0

10000

20000

30000

Orig.
Act. Th. 1
Act. Th. 2

Orig.
(no YCSB)

Orig. 1 2 4

103

6 × 102

1000

1172

771

866

1139

602

860

578

681

780

469

531

471 477
516

0 10 20 30
0

20000

40000

Orig.
Act. Th. 1
Act. Th. 2
Act. Th. 4

Orig.
(no YCSB)

Orig. 1 2 4 8

103

2 × 103
1817

2039

1717

1081

1371

1772

809

960

789 812

973 934

705 727 706 703 726 729

0 10 20 30
0

10000

20000

30000 Orig.
Act. Th. 1
Act. Th. 2
Act. Th. 4
Act. Th. 8

2 Time-Sensitive Users, 30 Noise threads, 2-core mongod (standalone)

4 Time-Sensitive Users, 28 Noise threads, 4-core mongod (standalone)

8 Time-Sensitive Users, 24 Noise threads, 8-core mongod (standalone)

16 Time-Sensitive Users, 16 Noise threads, 16-core mongod (standalone)

Proposal Activation Threshold

Re
sp

on
se

 T
im

e
(

s)

Timeline (s)

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

(a) Standalone Deployment.

Orig.
(no YCSB)

Orig. 1

105

107

3631

1.18136e+07

38782657

4.45512e+06

3119
2102

5017
2213

Avg.
p99.9
p99
p50

0 20 40 60 80
0

5000

10000

Orig.
Act. Th. 1

Orig.
(no YCSB)

Orig. 1 2

104

3909

23740

4261

6646

3395

11509

3572 3402

2444

7857

2542 2396
0 20 40 60 80

0

5000

10000

15000

20000

Orig.
Act. Th. 1
Act. Th. 2

Orig.
(no YCSB)

Orig. 1 2 4

104

5151

69435

5076

12856
18224

4656

21963

4539 4425 4616

3361

14919

3334 3210 3228
0 20 40 60 80

0

10000

20000

30000

Orig.
Act. Th. 1
Act. Th. 2
Act. Th. 4

Orig.
(no YCSB)

Orig. 1 2 4 8

104

6533

52246

6797
7958 8820

11577

5597

13196

5639 5755 5860
6977

4022

9112

4032 4108 4071 4113

0 20 40 60 80
0

10000

20000 Orig.
Act. Th. 1
Act. Th. 2
Act. Th. 4
Act. Th. 8

2 Time-Sensitive Users, 30 Noise threads, 2-core mongod (replica set)

4 Time-Sensitive Users, 28 Noise threads, 4-core mongod (replica set)

8 Time-Sensitive Users, 24 Noise threads, 8-core mongod (replica set)

16 Time-Sensitive Users, 16 Noise threads, 16-core mongod (replica set)

Proposal Activation Threshold

Re
sp

on
se

 T
im

e
(

s)

Timeline (s)

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

(b) Replica set Deployment.

Fig. 7: Multiple time-sensitive clients in a 32-client scenario. Each subfigure depicts 50th, 99th, 99.9th percentiles and mean
response time (Left column) for time-sensitive clients; throughput per second (Right column) achieved by several YCSB
threads while the time-sensitive clients are running. Each row corresponds to different degrees of CPU contention, from
highest to lowest (Top-Bottom). Note that the total number of concurrent clients (i.e. time-sensitive + YCSB noise) always
sums up to 32.

I/O, and memory access, so that there are no missed dead-
lines, or their number is minimized. However, real-time
database system research is of interest only for the hard real-
time system niche, with no recent academic literature on the
topic.

An orthogonal line of research addresses the need for
improved latency by fine-tuning the underlying runtime
environment, and by using optimized file systems, I/O sub-
systems, and cutting-edge storage devices. The first section
of Table 1 summarizes a subset of papers in the context of
“local storage optimization”. Kim et al. [27] propose an I/O
stack schema within the Linux kernel that takes advantage
of both zero-copying and the use of the page cache for
modern low-latency solid-state drives (SSDs) to reduce la-
tency. Litz et al. [28] present an SSD device-level redundancy
technique to enforce predictable low-tail latency for Flash
accesses: more specifically, the mechanism provides an al-
ternative read data path when a NAND chip is temporarily
inaccessible, thus eliminating the possibility of reads being
stalled by high latency operations (read-after-write serial-
ization). Kang et al. [29] propose an optimized firmware
for NVMe SSDs to enable strong physical isolation for co-

located virtualized services. The device-level interferences
are reduced by setting up exclusive I/O paths and cache
regions, thus hugely improving the tail latency. Pine [30]
is an isolation tool for storage services with differentiated
performance. Pine dynamically manages the disk resource
allocation and the I/O concurrency level for each service
according to their latency and throughput requirements.
Although this is one of the few works that closely matches
our context (i.e., differentiated performance), it does not
prioritize time-sensitive storage services. Moreover, it only
focuses on a single physical machine. In general, these low-
level mechanisms are useful for local storage optimizations,
however, to support differentiated levels of service perfor-
mance in a distributed environment, the database software
itself needs to be changed with non-trivial modifications to
the request processing and handling code paths.

The advent of web-based interactive applications with
high responsiveness requirements, together with the devel-
opments of highly scalable cloud infrastructures, have fos-
tered the growth of NoSQL architectures, capable of ingest-
ing arbitrarily high volumes of data and scaling at will on
several nodes. In the academic literature, no studies address

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. Y, MONTH YEAR 12

TABLE 1: Related Works

Study Context Software Stack Feature Performance
Evaluation

[27] Storage Opt. OS Zero-copy I/O Stack Throughput

[28] Storage Opt. Firmware Device-level resource contention control Tail latency

[29] Storage Opt. Firmware Device-level physical isolation of resources Tail latency

[30] Storage Opt. OS Dynamic storage resource allocation • Tail latency
• Throughput

[31], [32] Cassandra Ext. Application QoS-aware and QoD-aware
task scheduling ∅

[33] MongoDB Ext. Application Concurrency control optimized
for write-heavy workloads Throughput

[34] NoSQL Prototype Application Self-designing storage engine • Latency
• Throughput

[35] NoSQL Prototype Application Dynamic reconfiguration • Tail latency
• Throughput

[36] NoSQL Prototype Application Latency-aware storage for state externalization
in stateless applications Latency

This paper MongoDB Ext. OS + Application Priority-based request processing Diff. Performance

the challenge of differentiating query response times on a
priority basis. Anyhow, there are a number of works propos-
ing whole performance-aware NoSQL database prototypes,
with very few papers proposing ready-to-use mechanisms
integrated into a production-grade database system such as
MongoDB. These works could be coupled with strong real-
time design principles to guarantee predictable response
times and sufficient resources for time-sensitive activities.
The second section of Table 1 presents a qualitative anal-
ysis of a subset of works on novel NoSQL data stores.
AQUAS [31], [32] is a QoS-aware allocator that enriches the
Cassandra [37] NoSQL database with several task schedul-
ing policies and a cost estimation component to satisfy
individual clients’ performance requirements expressed as
a set of user-defined Quality-of-Service (QoS) and Quality-
of-Data (QoD) constraints. However, the work does not
provide an exhaustive evaluation. Xyza [33] is an exten-
sion of MongoDB that combines classic and novel design
techniques to overcome the scalability limits of current
concurrency control mechanisms. For instance, it replaces
the complex lock manager with a simpler wait-signal mech-
anism based on atomic primitives and partitions the system-
wide journaling system into a per-client journal to avoid I/O
contention. Although the paper refers to an older version
of MongoDB’s concurrency control and does not evaluate
the proposal in replicated scenarios, the idea of per-client
journaling could benefit our work too. Sophia [35] is a
reconfigurable NoSQL datastore that estimates performance
degradation and predicts workload pattern changes without
impacting data availability during reconfiguration. Szalay
et al. [36] propose a latency-aware and data access pattern-
aware method in the context of stateless applications. The
latency towards the most frequently accessed data entries is
minimized by monitoring the performance of the underly-
ing infrastructure, tracking the number of reads and writes,

and then re-optimizing data locations across the database
instances. Cosine [34] is a self-designing storage engine that
introduces a unified model to produce an optimal key-value
data structure given a budget, a workload, and a target
performance. It spans diverse storage engine designs, such
as B-trees and Log-Structured Hash-tables, and picks the
one which minimizes the expected cost and latency.

Outside academia, the are several fully-managed
Database-as-a-Service solutions that promise low latency
and/or high throughput. The most famous one is Dy-
namoDB [13], which allows its customers to specify the
throughput requirements (read and write capacity) for a
given table, and then the service allocates sufficient re-
sources to the table to predictably achieve real-time per-
formance and stable latency values under 10ms at the
99th percentile. Predictability is achieved by performing
granular capacity planning at individual physical infras-
tructure elements, like individual storage nodes and even
individual single SSD drives, coupled with optimizations,
adaptive load-balancing, and topology reconfigurations at
the infrastructure level. DynamoDB is the only industrial-
grade database service that closely matches our context: Dy-
namoDB offers differentiated performance throughput-wise
with tail latency guarantees; our proposal achieves differen-
tiated performance between time-sensitive and throughput-
first applications via prioritization. However, DynamoDB is
proprietary software only available through AWS, whereas
our proposal is based on an open-source code base. Scylla
Cloud11 offers a fully-managed option of their ScyllaDB
NoSQL database, which employs a highly asynchronous,
shared-nothing architecture (i.e. each CPU core handles
a different subset of data, without sharing) that guaran-
tees high-throughput/low-latency workloads. ScyllaDB ef-

11. See: https://www.scylladb.com/product/scylla-cloud/

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. Y, MONTH YEAR 13

ficiently allocates the resources to each shard of data thanks
to custom-made schedulers for CPU and I/O processing,
taking full advantage of low-level Linux primitives and
the underlying hardware. Other fully-managed services are
Google Firestore [38] and MongoDB Atlas12. Despite the
generic claims, only DynamoDB quantifies its predictability
guarantees. One of the latest breeds of database systems is
in-memory data stores, which employ the main memory
instead of disk storage for ultra-fast access times. They
are designed for applications where huge amounts of data
must be processed in real-time. A few industry-level, fully-
managed examples are Google Memorystore13, Amazon
ElastiCache14 and Amazon MemoryDB15. However, none of
these services offer a performance differentiation feature.

6 CONCLUSIONS AND FUTURE WORK

The paper describes a variant of the MongoDB NoSQL
database which embeds priority-driven scheduling on a per-
user or per-request basis so that higher-priority workloads
are served first. This is achieved by instantiating a priori-
tized channel for higher-priority requests and revoking or
restricting access to the storage unit to lower-priority ones.
In practice, the priority order is enforced by a combination
of nice level manipulation and a semaphore-like structure
that indirectly propagates the priorities in replicated sce-
narios. Experimental results carried on stand-alone and a
3-replica set deployment demonstrate how higher-priority
requests are consistently served with shorter response times
exhibiting less variance, with respect to lower-priority re-
quests. For instance, in most scenarios with a replica set, the
P999 response time of the proposal is less than or equal to
the median of original MongoDB. Then, it is demonstrated
how to fine-tune the trade-off between reduced response
time and overall system throughput when possible, by
controlling the loss in parallelism caused by the semaphore
system. This is especially noticeable in standalone scenarios
with fewer high-priority users, where requests with mixed
priority are more interleaved. Furthermore, this work high-
lights an issue with the synchronization mechanism imple-
mented by the underlying storage engine (i.e. WiredTiger),
and presents a workaround that proved beneficial for the
case study. To the best of our knowledge, our proposal is
the only open-source NoSQL data store with such query
prioritization feature.

As possible future work on the topic, it might be interest-
ing to investigate an interface that allows to specify the tim-
ing constraints for a given request/user so that the database
can provide end-to-end response time guarantees. Such a
feature might be implemented by adding a capacity man-
agement layer within MongoDB, and coupling the proposed
mechanism with an adaptive controller that automatically
adjusts the activation threshold and the priorities according
to the workload requirements, or using more advanced
CPU scheduling techniques, like SCHED DEADLINE [39].
Another option is to further improve the worst-case la-
tency values and increase the performance predictability

12. See: https://www.mongodb.com/atlas/database
13. See: https://cloud.google.com/memorystore
14. See: https://aws.amazon.com/elasticache/
15. See: https://aws.amazon.com/memorydb/

by simplifying the synchronization logic of MongoDB and
WiredTiger.

ACKNOWLEDGMENTS

The authors would like to thank Sulabh Mahajan and the
rest of the MongoDB development team for their insightful
support on the internals of MongoDB and WiredTiger.

REFERENCES

[1] S. Bibi, D. Katsaros, and P. Bozanis, “Business Application Acquisi-
tion: On-Premise or SaaS-Based Solutions?” IEEE Software, vol. 29,
no. 3, pp. 86–93, 2012.

[2] D. Gannon, R. Barga, and N. Sundaresan, “Cloud-native applica-
tions,” IEEE Cloud Computing, vol. 4, no. 5, pp. 16–21, 2017.

[3] M. A. S. Netto, R. N. Calheiros, E. R. Rodrigues, R. L. F. Cunha,
and R. Buyya, “Hpc cloud for scientific and business applications:
Taxonomy, vision, and research challenges,” ACM Comput. Surv.,
vol. 51, no. 1, Jan. 2018.

[4] M. Garcı́a-Valls, T. Cucinotta, and C. Lu, “Challenges in real-
time virtualization and predictable cloud computing,” Journal of
Systems Architecture, vol. 60, no. 9, pp. 726–740, 2014.

[5] T. Li, J. Tang, and J. Xu, “Performance modeling and predictive
scheduling for distributed stream data processing,” IEEE Transac-
tions on Big Data, vol. 2, no. 4, pp. 353–364, Dec 2016.

[6] R. Mancini., T. Cucinotta., and L. Abeni., “Performance modeling
in predictable cloud computing,” in Proceedings of the 10th Interna-
tional Conference on Cloud Computing and Services Science - CLOSER,,
INSTICC. SciTePress, 2020, pp. 69–78.

[7] R. Shea, J. Liu, E. N. Ngai, and Y. Cui, “Cloud gaming: architecture
and performance,” IEEE network, vol. 27, no. 4, pp. 16–21, 2013.

[8] S. M. Park and Y.-G. Kim, “A metaverse: taxonomy, components,
applications, and open challenges,” IEEE Access, pp. 1–1, 2022.

[9] G. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo, Soft Real-Time
Systems. Springer, 2005.

[10] R. Buyya, C. Vecchiola, and S. T. Selvi, Mastering cloud computing:
foundations and applications programming. Newnes, 2013.

[11] A. Varasteh and M. Goudarzi, “Server consolidation techniques in
virtualized data centers: A survey,” IEEE Systems Journal, vol. 11,
no. 2, pp. 772–783, 2017.

[12] C. Curino, E. P. Jones, S. Madden, and H. Balakrishnan,
“Workload-aware database monitoring and consolidation,” in
Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 313–324. [Online].
Available: https://doi.org/10.1145/1989323.1989357

[13] S. Perianayagam, A. Vig, D. Terry, S. Sivasubramanian, J. C. S.
III, A. Mritunjai, J. Idziorek, N. Gallagher, M. Elhemali,
N. Gordon, R. Krog, C. Lazier, E. Mo, T. Rath, and S. Sosothikul,
“Amazon DynamoDB: A scalable, predictably performant, and
fully managed NoSQL database service,” in 2022 USENIX
Annual Technical Conference (USENIX ATC 22). Carlsbad, CA:
USENIX Association, Jul. 2022, pp. 1037–1048. [Online]. Available:
https://www.usenix.org/conference/atc22/presentation/vig

[14] T. Cucinotta, L. Abeni, M. Marinoni, R. Mancini, and C. Vitucci,
“Strong temporal isolation among containers in openstack for nfv
services,” IEEE Transactions on Cloud Computing, 2021.

[15] R. Andreoli, T. Cucinotta, and D. Pedreschi, “RT-MongoDB: A
NoSQL Database with Differentiated Performance,” in Proceedings
of the 11th International Conference on Cloud Computing and Services
Science (CLOSER), INSTICC. SciTePress, 2021, pp. 77–86.

[16] R. Andreoli and T. Cucinotta, “Differentiated performance in nosql
database access for hybrid cloud-hpc workloads,” in High Perfor-
mance Computing, H. Jagode, H. Anzt, H. Ltaief, and P. Luszczek,
Eds. Cham: Springer International Publishing, 2021, pp. 439–449.

[17] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears, “Benchmarking cloud serving systems with
ycsb,” in Proceedings of the 1st ACM Symposium on Cloud
Computing, ser. SoCC ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 143–154. [Online]. Available:
https://doi.org/10.1145/1807128.1807152

[18] R. Cattell, “Scalable sql and nosql data stores,” Acm Sigmod Record,
vol. 39, no. 4, pp. 12–27, 2011.

https://doi.org/10.1145/1989323.1989357
https://www.usenix.org/conference/atc22/presentation/vig
https://doi.org/10.1145/1807128.1807152

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. Y, MONTH YEAR 14

[19] E. A. Brewer, “Towards robust distributed systems,” in PODC,
vol. 7, no. 10.1145. Portland, OR, 2000, pp. 343 477–343 502.

[20] P. A. Bernstein and N. Goodman, “Multiversion concurrency
control—theory and algorithms,” ACM Trans. Database Syst., vol. 8,
no. 4, p. 465–483, Dec. 1983.

[21] T. Anderson and M. Dahlin, Operating Systems: Principles and
Practice. Recursive books, 2014, vol. 1: Kernel and Processes.

[22] T. Cucinotta, L. Abeni, M. Marinoni, A. Balsini, and C. Vitucci,
“Reducing temporal interference in private clouds through real-
time containers,” in 2019 IEEE International Conference on Edge
Computing (EDGE). IEEE, 2019, pp. 124–131.

[23] C. S. Wong, I. Tan, R. D. Kumari, and F. Wey, “Towards achieving
fairness in the linux scheduler,” SIGOPS Oper. Syst. Rev., vol. 42,
no. 5, p. 34–43, Jul. 2008.

[24] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan-
dramouli, “Proposed nist standard for role-based access control,”
ACM Transactions on Information and System Security (TISSEC),
vol. 4, no. 3, pp. 224–274, 2001.

[25] B. Kao and H. Garcia-Molina, “An overview of real-time database
systems,” in Real Time Computing, W. A. Halang and A. D.
Stoyenko, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
1994, pp. 261–282.

[26] J. M. Hellerstein, M. Stonebraker, and J. Hamilton, Architecture of a
database system. Now Publishers Inc, 2007.

[27] S. Kim, G. Lee, J. Woo, and J. Jeong, “Zero-copying i/o stack for
low-latency ssds,” IEEE Computer Architecture Letters, vol. 20, no. 1,
pp. 50–53, 2021.

[28] H. Litz, J. Gonzalez, A. Klimovic, and C. Kozyrakis, “Rail:
Predictable, low tail latency for nvme flash,” ACM Trans.
Storage, vol. 18, no. 1, jan 2022. [Online]. Available: https:
//doi.org/10.1145/3465406

[29] L. Kang and B. Jacob, “Zoned ftl: Achieve resource isolation
via hardware virtualization,” in The International Symposium on
Memory Systems, ser. MEMSYS 2021. New York, NY, USA:
Association for Computing Machinery, 2022. [Online]. Available:
https://doi.org/10.1145/3488423.3519326

[30] Y. Li, J. Zhang, C. Jiang, J. Wan, and Z. Ren, “Pine: Optimizing
performance isolation in container environments,” IEEE Access,
vol. 7, pp. 30 410–30 422, 2019.

[31] C. Xu, F. Xia, M. A. Sharaf, M. Zhou, and A. Zhou, “Aquas: A
quality-aware scheduler for nosql data stores,” in 2014 IEEE 30th
International Conference on Data Engineering, 2014, pp. 1210–1213.

[32] C. Xu, M. A. Sharaf, X. Zhou, and A. Zhou, “Quality-aware sched-
ulers for weak consistency key-value data stores,” Distributed and
Parallel Databases, vol. 32, no. 4, pp. 535–581, 2014.

[33] Y. Patel, M. Verma, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Revisiting concurrency in high-performance nosql
databases,” in 10th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 18). Boston, MA: USENIX Association,
Jul. 2018.

[34] S. Chatterjee, M. Jagadeesan, W. Qin, and S. Idreos, “Cosine: a
cloud-cost optimized self-designing key-value storage engine,”
Proceedings of the VLDB Endowment, vol. 15, no. 1, pp. 112–126,
2021.

[35] A. Mahgoub, P. Wood, A. Medoff, S. Mitra, F. Meyer, S. Chaterji,
and S. Bagchi, “Sophia: Online reconfiguration of clustered nosql
databases for time-varying workloads.” in USENIX Annual Tech-
nical Conference, 2019, pp. 223–240.

[36] M. Szalay, P. Matray, and L. Toka, “Annabelladb: Key-value store
made cloud native,” in 2020 16th International Conference on Net-
work and Service Management (CNSM), 2020, pp. 1–5.

[37] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 2, pp. 35–40, 2010.

[38] R. Kesavan, D. Gay, D. Thevessen, J. Shah, and C. Mohan, “Fire-
store: The nosql serverless database for the application developer,”
in 2023 IEEE 39th International Conference on Data Engineering
(ICDE), 2023, pp. 3367–3379.

[39] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli, “Deadline schedul-
ing in the linux kernel,” Software: Practice and Experience, vol. 46,
no. 6, pp. 821–839, 2016.

Remo Andreoli has a MSc with honors in Com-
puter Science from University of Pisa. He held
a research scholarship from Sant’Anna School
of Advanced Studies (SSSA), during which he
worked on differentiated performance mecha-
nisms for NoSQL databases, earning a best
student paper award at CLOSER 2021. He is
currently a PhD student at SSSA investigating on
resource management optimization techniques
for cloud infrastructures.

Tommaso Cucinotta has a MSc in Computer
Engineering from University of Pisa (Italy), and a
PhD in Computer Engineering from Scuola Su-
periore Sant’Anna (SSSA) in Pisa, where he has
been investigating on real-time scheduling for
soft real-time and multimedia applications, and
predictability in infrastructures for cloud comput-
ing and NFV. He has been MTS in Bell Labs
in Dublin (Ireland), investigating on security and
real-time performance of cloud services. He has
been a software engineer in Amazon Web Ser-

vices in Dublin (Ireland), where he worked on improving the performance
and scalability of DynamoDB. Since 2016, he is Associate Professor at
SSSA and head of the Real-Time Systems Lab (RETIS) since 2019.
Tommaso Cucinotta has also brought a number of funded research
projects to the RETIS lab, notably EU projects, and international col-
laborations with private companies, including some big-tech ones.
Tommaso Cucinotta coauthored roughly a hundred international peer-
reviewed scientific publications on topics in his areas of interest, and
more than 20 filed and 9 granted patents. He is in the technical program
committee of a number of international workshops and conferences
related to his research topics, and he also performs regularly peer-
reviewing for papers submitted to prestigious international journals.

Daniel Bristot De Oliveira has a joint Ph.D. de-
gree in Automation Engineering from UFSC (BR)
and Embedded Real-Time systems from Scuola
Superiore Sant’Anna (IT). Currently, he is Senior
Principal Software Engineer at Red Hat, work-
ing on developing the real-time features of the
Linux kernel. Daniel helps in the maintenance
of real-time related tracers and toolings for the
Linux kernel and the SCHED DEADLINE. He
is an affiliate researcher at the Retis Lab, and
researches real-time and formal methods.

https://doi.org/10.1145/3465406
https://doi.org/10.1145/3465406
https://doi.org/10.1145/3488423.3519326

	1 Introduction
	1.1 Contributions
	1.2 Paper Overview

	2 Background
	2.1 MongoDB Overview
	2.2 MongoDB Internals
	2.3 Replication internals
	2.4 Linux Scheduler / POSIX Niceness

	3 Proposed Approach
	3.1 Prioritization using Nice Levels
	3.2 Modifications to WiredTiger Busy-Waiting
	3.3 Truncation of Oplog Batches
	3.4 Custom Semaphore
	3.5 Security and Access Control

	4 Experimental Evaluation
	4.1 Correctness of the Proposal
	4.2 Single Time-Sensitive Client
	4.3 Multiple Time-Sensitive Clients

	5 Related Work
	6 Conclusions and Future Work
	References
	Biographies
	Remo Andreoli
	Tommaso Cucinotta
	Daniel Bristot De Oliveira

