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Abstract: The ControlInSteel project, a cooperation of four research institutes, revisited
research projects of the last 20 years focusing on automation and control solutions applied to the
downstream steel production route. During this investigation we found hints to those solutions,
which were beneficial for specific problems. For our analysis, 46 projects were systematically
reviewed. Taxonomies for the problem space, the solution space, the barriers and issues and the
impact were developed and each project categorized along these taxonometrical dimensions. As
a result, the interdependencies between solutions and impact could be analysed in a quantifiable
way, which led to a new way of evaluating project success. It also brought new insights about the
most promising techniques already applied and those techniques, that have been apparently not
yet been applied to steel production, although being highly successful in other domains. This
leads to potential future research chances for the steel production and their complex process
chains. The paper will also finally demonstrate how a similar taxonometrical approach can be
used to conserve expert knowledge in automation to feed a truly artificially intelligent control
solution – not only exploiting machine learning methods but essentially using machine reasoning
on top of the digitized expert knowledge to achieve improved process automation.
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1. INTRODUCTION

Facing ecological, economical and even political chal-
lenges, the mission of modern automation becomes more
diverse, facetted and difficult. Throughout the past years,
the European Union financially funded research in steel
processing via the Research Fund for Coal and Steel
(RFCS) programme. Many projects conducted within this
context focused on innovative automation and control
solutions in the downstream process chain where steel
is in its solid state. In retrospective, those projects also
took place during the fundamental disruptions brought
by increasing digitalisation, rise of Big Data and finally
the industrial scope application of artificial intelligence.
All these revelations provided the foundations and tech-
nologies for new innovations in process automation as
well. Here, the dissemination project ControlInSteel comes
into play. This project ran from July 2020 till December
2022 and reviewed two decades of the the most influential
automation and control research in steel industry. Thus,
it covered the relevant period in time, where these new

technologies emerged and de-facto provided real impact
at industrial sites for the first time.
The ControlInSteel project used a semantic analysis of the
conducted projects. It considered the problem space T1,
the solution space T2 (containing the according automa-
tion solution) and lastly the achieved impact T3. Each Tλ

is a mathematical set (where λ abbreviates 1,2 or 3). This
allows us to map the projects that applied control methods
onto the different Tλ. On the basis of these semantic sets,
we can identify which method led to greatest impact in
steel production. Additionally, we can find methods with
high potential, never being tried out in steel research. In
the course of the present paper, we demonstrate how this
analysis was performed and to which interpretations it
leads. In short, we have the following objectives:
Objective 1: to analyze the interdependencies between
aggregates, solutions and impact.
Objective 2: to quantify how much impact was generated
by a specific technique, which is equivalent to establish a
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Fig. 1. Schematic of the envisioned analysis results: using
the project analysis to connect control methodology
with impact metrics.

conditional probability distribution
P = P (”Emission Reduction”|”Hot Rolling”, ”MPC”)

on top of our taxonomy sets. This allows to quantify
the de-facto generated impact as a function of the used
control method. Fig. 1 shows a schematic view on this
mapping approach. In Sec. 2, we explain further details of
the method. After this introduction, the paper will present
theoretic considerations in Sec. 2, followed by details on
the problem and solution space in Sec.3. Sec.4 focuses on
the impact analysis and Sec. 5 concludes with the most
important results optained by our approach.

2. THEORETIC BACKGROUND

2.1 Semantic extraction

Semantic approaches have some history in steel industry,
whereas it is safe to say, that semantics have though never
been fully embraced by this industry yet. For analysing
research, Zhu et al. (2022) present a recent work on the
where they used a semantic approach that integrated
expert reliability. In contrast, our present work covers a
rather retrospective analysis of already finished (or nearly
finished) projects - thus, taking advantage of the reported
information at the end of a project.
In Fig. 1 we show an abstract schematic about how
projects methodology can be mapped on impact. Similarly
(not shown here) one can map the problem space or
the barrier spaces. What is necessary to extract this
information?

• Preparation: First, you have to define some closed
set of works, in our case a defined set of 46 re-
search projects (which can be found at our web-
page www.controlinsteel.com), that clearly reported
on methodology, problems, impact and transfer.

• Vocabulary synchronisation: One would assume that
control theory usually uses identical terminologies,
but in fact, multiple synonyms exist and there are
sevaral occasions, where the vocabularies of different
works have to be carefully synchronised. One example
is the use of the principal component analysis (PCA)
which is often also termed as Karhunen-Loeve trans-
form. This is just one of many examples here.

Fig. 2. Mindmap of the problem space taxonomy T1,
including channels of interaction.

Fig. 3. Impact dimensions and the overall distribution
P (j, T3) of the reviewed automation and control
projects.

• Taxonomy development: Starting with such a con-
solidated and synchronised vocabulary, we generated
taxonomies for the different spaces: for the problem
space, the solution space and the impact space. The
previously mentioned PCA is an example from the
solution space. Some taxonomies required also the
derivation of criteria.

• Taxonomical mapping of the projects: In this step,
we went through all projects and allocated them to
the taxonomies.

Based on the taxonomies apply rules of ontologic rea-
soning, to inversely map whether the elements of the
taxonomies are linked with each other. This requires first,
to get a formal description of our semantic sets. Let
Π = {0, 1, 2, ..., 45} be the set of numbers marking our
N = 46 projects. Tλ is any of our taxonomies, where λ is
defined as in Sec.1. The taxonomy operator Tλ, retrieves
the projects feature vector when mapped onto the taxon-
omy dimensions,

fλ(i) = [(fλ0(i), fλ1(i), ...] = Tλ(i), (1)
where i ∈ Π is a project, and fλj(i) is the associated fea-
ture weight of project i within the taxonomy Tλ regarding
the jth entry in Tλ. For extracting a singular element j of
Tλ for project i we write for convenience,

fλj(i) = Tλ(i, j). (2)
For the problem space and the solution space these values
f are either 0 or 1: formally fλ,i ∈ [0, 1] for i ∈ Tλ, if
λ = 1 or λ = 2. For the impact space, where we use
a floating point distribution, f3j ∈ R for each j ∈ T3.
The straightforward distributions can then be obtained
by summing through the necessary sets,

P (j, Tλ) =
∑
i∈Π

∑
k∈Tλ

fλj(i)δkj (3)

using the Kronecker notation to formalise counting the
contribution of the jth entry to the overall group of all
projects. Similarly, the conditional distribution can be
obtained for ρ ̸= λ by

P (j, Tλ|m = 1 with m ∈ Tρ) = (4)∑
i∈Π

∑
k∈Tλ

∑
r∈Tρ

fλj(i)δkjδmr,

In practise, we store the taxonomies in JSON documents.
The operation (1) and the loops (3) and (4) are performed
in Python on top of an in memory database containing
the document-oriented data in Apache Parquet. For the
visualization of graphs we use the pyvis network library.
One further aspect is the use of linkage between the tax-
onomies, which we model with graphs. We first start with
the internal taxonomy edges, modelled by the mapping ϕλ
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The operation (1) and the loops (3) and (4) are performed
in Python on top of an in memory database containing
the document-oriented data in Apache Parquet. For the
visualization of graphs we use the pyvis network library.
One further aspect is the use of linkage between the tax-
onomies, which we model with graphs. We first start with
the internal taxonomy edges, modelled by the mapping ϕλ

in which all entries that belong to project i are given by
taxonomy set Tλ,

ϕλ : Eλ(i) → {(fλj , λ)|fλj = Tλ(i, j)} (5)

and where the node set contains all entries and a center
point abbreviately written λ. This is a star-form graph
that is very simple and helpful for evaluation. We connect
all taxonomy entries for a project i on their top level, which
means the trivial graph ϕT

ϕT : ET (i) → {(λ, π(i))|λ ∈ (1, 2, 3) ∧ π(i) ∈ Π} , (6)

modeling a second star-form graph for the top-level edges.
Here, πλ∀λ and ϕT describe formally any project i.

3. ANALYSIS OF PROBLEM AND SOLUTION
SPACE

3.1 Archetypes of control problems in steel processing

Of course, most projects circle around two archetypes of
problems:
Type 1. Open or closed-loop control of a singular process
where Jelali et al. (2002) is only one example of works that
initiated a tremendous series of activities monitoring the
health of control loops as shown in Jelali (2000), and Jelali
(2005) and and consequently optimizing their performance
presented in Jelali (2007).
Type 2. Control of (often complex) holistic systems,
mainly characterised by considering a subbranch of the
production street or the whole street. This type can be
further divided into
(a) Process chain optimisation for the overall product

flow, which was addressing reallocation problems in
Neuer et al. (2016) and later led to yield improvement
as shown by Iannino et al. (2021). Most recently, even
cyber-attacks on control systems and the production
route are considered, where attacks can be detected
by appropriate machine learning techniques as shown
by J. Ordieres-Mere (2022) and Neuer et al. (2019).

(b) Network optimisation problems, which are the
foremost solution to the challenge of reducing emis-
sions, waste, and to distribute available ressources
effectively. Here the works of Matino et al. (2019),
Dettori et al. (2022) and Wolff et al. (2019) demon-
strated the successful application of mixed-integer
programming to this class of problems.

3.2 Canonical control solutions

In its most canonical form, control theory uses feedforward
and feedback loops to interfere with a given process, in
order to achieve some desired system state. Reviewing
all project reports, we see a technological advancement in
the control methodology that was clearly sparked by the
inclusion of model knowledge or otherwise prior knowledge
on the system. While this is quite reasonable, we found

the surprising fact of our analysis that stochastic ap-
proaches, especially those theoretical concepts that involve
the inclusion of stochastic processes and uncertainty in the
control process, are dramatically underrepresented. This
coincides with a general observation among most consid-
ered projects, that elements of uncertainty quantification
especially as it is common standard in natural sciences,
was rarely adopted within these research projects. Even
those projects that essentially relied on database tech-
niques, often discarded inductive statistics or probabilistic
treatments.
One clear example is the adoption of Bayesian statistics,
especially Bayesian inference which was discussed for up-
stream steel processing and amongst others demonstrated
by Klimes et al. (2011). In their influential paper, Leitão
and Restivo (2006) showed how distributed problems like
the process chain could be treated by autonomous agents
- yet, without touching details of the individually involved
control systems. It is important to note, that such type of
meta-control approach requires in its most general treat-
ment a complex interplay of different individual canonical
process control loops. Such an complete treatment was not
touched by any research project that we evaluated. Indeed,
most projects that focused on distributed problem solving
selected one or two central processes of most interest and
built distributed use cases around those primary processes
to study and research the dynamics. Summarizing, this
class of solutions has not been utilized to full capacity
yet. Consequently, we would expect that a true holonic
control of the overall process chain should be focused by
future research. We also reviewed most recent technologies
of selected plant builders, which embraced the digitalisa-
tion trend and even prepared demonstration sites for new
prototypes. Still, the full scope as envisioned by holonic
manufacturing was not achieved so far.

4. IMPACT ANALYSIS

4.1 Impact dimensions

The analysis of the impact is the most crucial part of
our work. It was performed as sketched in Sec. 2, pri-
marily based on reviewing the project reports and some
selected interviews. In the center of analysis, we put the
definition of a suited set of impact dimensions to structure
and quantify the impact. We identified following impact
dimensions:

• Quality improvement
• Defect root cause (eliminated by better control)
• Cost reduction
• Yield improvement
• Power consumption (reduction)
• Waste reduction
• Emission reduction
• Worker safety
• Worker performance
• Customer satisfaction
• Enabling technology (iterative)
• Novel approach (breakthrough)
•
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Fig. 4. Assorted projects and their impact evaluation charts plotted as radar charts as indicated abractly in Fig.1. Note,
the projects cannot be rated against each other, as we normalised the maximum total impact - being interested in
the distribution among the dimensions.

Fig. 5. Impact of quality improvement as a function of
time. While being in the focus in the beginning,
projects focusing this topic decreased over time.

where indeed some dimensions appear to be correlated, as
quality improvement and customer satisfaction suggest.
In fact, each dimension features an inherent uniqueness,
which could not be covered by combinations of the other
axis. The dimensions were choosen to optimize taxono-
metric orthogonality as good as possible. Figure 4 shows
a selection of six projects and their corresponding radar
plots. All projects are diverse in their impact distribution.
Some results are straightforward, as SISCON concentrated
on surface inspection, it is clear that it impacted root
causes for defects and customer satisfaction. For others,
like DynergySteel or PUC, emission reduction and waste
reduction were achieved.

4.2 Discussion of results of impact scoring

We analysed all projects and mapped a fixed impact score
of 5 to all projects, according to the appropriate distri-
bution of impacts. Of course, this normalisation assumes
that each project contributed the same maximum impact.
Contrarily, one could have introduced a flexible scheme to
judge the projects. This, however, would lead to subjective
rating of projects that was not the intention of the anal-
ysis. With our approach, we extract just the distribution
of impact. The resulting, overall impact distribution for
all projects is shown in Figure 3. From this analysis it is
clear, that the most impact was generated for quality im-

Fig. 6. Impact ”emission reduction reduction” as a func-
tion of time. This slowly increases over the years.

provement, closely followed by yield improvement. Neither
emission reduction nor power consumption are among the
most dominant topics.
A first obvious conclusion is to strengthen efforts for
these latter impact fields. Without explicitly including
newer projects by now, it can be seen that the political
activities of the European Union, namely the Green Deal,
are increasing the impact in these dimensions. The newest
abstracts (2022) of recently started projects supports
this assumption. Figure 3 also reveals missing efforts for
worker safety and worker performance. Both fields could
significantly benefit from advanced automation, yet both
are dramatically underrepresented in steel research up to
now. With respect to worker performance, it is difficult to
comprehend, why so few projects actually covered robotics
and robotic process automation (RPA) that supports the
work of human staff. This field is at the heart of process
control, see e.g. Edlich et al. (2019), having the capability
to significantly improve worker performance. We see a
clear need to improve in this field to keep steel production
competitive. This need is emphasised by the fact that also
Industry 4.0 and digitalisation requires a constant (re-
)training of the people involved in the production process.
In Bughin et al. (2018) this was also identified as key
challenge for automation as such.
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Fig. 4. Assorted projects and their impact evaluation charts plotted as radar charts as indicated abractly in Fig.1. Note,
the projects cannot be rated against each other, as we normalised the maximum total impact - being interested in
the distribution among the dimensions.

Fig. 5. Impact of quality improvement as a function of
time. While being in the focus in the beginning,
projects focusing this topic decreased over time.

where indeed some dimensions appear to be correlated, as
quality improvement and customer satisfaction suggest.
In fact, each dimension features an inherent uniqueness,
which could not be covered by combinations of the other
axis. The dimensions were choosen to optimize taxono-
metric orthogonality as good as possible. Figure 4 shows
a selection of six projects and their corresponding radar
plots. All projects are diverse in their impact distribution.
Some results are straightforward, as SISCON concentrated
on surface inspection, it is clear that it impacted root
causes for defects and customer satisfaction. For others,
like DynergySteel or PUC, emission reduction and waste
reduction were achieved.

4.2 Discussion of results of impact scoring

We analysed all projects and mapped a fixed impact score
of 5 to all projects, according to the appropriate distri-
bution of impacts. Of course, this normalisation assumes
that each project contributed the same maximum impact.
Contrarily, one could have introduced a flexible scheme to
judge the projects. This, however, would lead to subjective
rating of projects that was not the intention of the anal-
ysis. With our approach, we extract just the distribution
of impact. The resulting, overall impact distribution for
all projects is shown in Figure 3. From this analysis it is
clear, that the most impact was generated for quality im-

Fig. 6. Impact ”emission reduction reduction” as a func-
tion of time. This slowly increases over the years.

provement, closely followed by yield improvement. Neither
emission reduction nor power consumption are among the
most dominant topics.
A first obvious conclusion is to strengthen efforts for
these latter impact fields. Without explicitly including
newer projects by now, it can be seen that the political
activities of the European Union, namely the Green Deal,
are increasing the impact in these dimensions. The newest
abstracts (2022) of recently started projects supports
this assumption. Figure 3 also reveals missing efforts for
worker safety and worker performance. Both fields could
significantly benefit from advanced automation, yet both
are dramatically underrepresented in steel research up to
now. With respect to worker performance, it is difficult to
comprehend, why so few projects actually covered robotics
and robotic process automation (RPA) that supports the
work of human staff. This field is at the heart of process
control, see e.g. Edlich et al. (2019), having the capability
to significantly improve worker performance. We see a
clear need to improve in this field to keep steel production
competitive. This need is emphasised by the fact that also
Industry 4.0 and digitalisation requires a constant (re-
)training of the people involved in the production process.
In Bughin et al. (2018) this was also identified as key
challenge for automation as such.

Fig. 7. Autogenerated python graph visualisation of the
CEFLA project - as one example of the graph ap-
proach given by combining the graphs of (6) and (5)
for the different taxonomy sets.

Closely related to worker performance is the field of worker
safety. Only few projects actually touched this topic. Many
projects mentioned the objective to address worker safety,
but rarely, automation and control concepts were dedi-
cated to provide a solution. Mostly, the impact on worker
safety was secondary in nature, rather a welcome side-
product of some more important technological advance-
ments.

4.3 Time development of impact

The accumulated picture is only one perspective. Impact
can also be analysed as function of time. Formally, this
means any project i ∈ Π is linked to a specific time ti.
Both, start date or end date can be used here, where we
decided to consider only the start year. This simplifies
the treatment. In Figure 5 this is shown for the quality
improvement. Quality improvement was a mayor aim
in 2000 and following years. But it decreased over the
following years. During this time, customer satisfaction,
yield improvement and mostly production performance
oriented topics dominated research projects. In contrast,
Fig. 6 the impact on emission reduction is shown over the
years. This impact, with exceptions, rises over time. It
shows that the steering mechanism of the research funding
and the work of involved evaluation experts, indeed helped
to develop a strategy for steel research towards higher
sustainability in production. Examples include complex
control strategies for off-gas and steam distribution as
shown e.g. by Colla et al. (2018).

5. RESULTS OF THE SEMANTIC DEDUCTION

5.1 Semantic model per project

As we stated in the introduction and in Sec. 2, one of our
aims is to quantify the impact as function of the model.
With the established amount of data produced by evalu-
ating the projects we can now first derive a representation
model for each project. In Figure 7 we show an example
result for the one concise project, namely the CEFLA
project. This project mainly applied model-predictive con-
trol and internal model control. The projection indicates,
how these techniques impacted the steel production, in this
case a cold-rolling problem regarding flatness. All project
results would exceed the scope of this publication, but
they can be found at our webpage www.controlinsteel.com,
when opening the interactive project database.

5.2 Deduced impact per method

Figure 8 shows the accumulated methodological impact
generated for two assorted methods IMC and Agent-based
optimization, combined over all projects in the database
using eq. (4). Nonetheless, Fig. 8 reflects the probability
of achieving a certain impact dimension, when applying

the selected method (at least for the research projects in
steel industry).
Only those projects, that covered optimisation techniques
like quadratic programming or mixed-integer solvers, were
impacting emission reduction, waste reduction and power
consumption.

5.3 Discussion on relevance of semantically stored
knowledge for artificially intelligent control solutions

Artificial intelligence, meaning to depart from pure ma-
chine learning modelling towards truly mimicking human
solution strategies, will require any AI system to have
access to expert knowledge - here, the taxonomies and
impact results we evaluated from the research projects
are such an knowledge reservoir. Fig. 6 also highlights
a success of the combination of optimization techniques
and machine learning for control problems (here for emis-
sion reduction). Those techniques are clearly impacting
ecologic improvement over the last years and should be
treated as highly relevant for the field.
This knowledge is now available for an AI system. It can
use the probability distributions to determine the best
solution combination for maximising impact. To proof this
claim, we trained a generic decision tree in Python using
the Scikit-Learn toolbox and feeding 40 of the project
models as input data. It was possible for the tree to
predict the remaining 6 projects and their methodologies.
Of course, an extension to predicting new combinations
was not possible. The results of this investigation will be
part of a separate and more detailed publication on this
topic. Let us emphasise this point once again: it is clear,
that humans can easily construct such solution paths. But
in order to establish an AI procedure that autonomously
decides which solution or solution combination is best,
it requires access to those pieces of knowledge, which in
parallel would be used by the human decider.
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