
Enabling event-based hierarchical synchronization
in SDN ONOS clusters

Alessandro Pacini1, Davide Scano1, Luca Valcarenghi1, Andrea Sgambelluri1, Alessio Giorgetti2
1Scuola Superiore Sant’Anna, Pisa, Italy - alessandro.pacini@santannapisa.it

2National Research Council of Italy (IEIIT-CNR), Pisa, Italy

Abstract—This demo presents an implementation of a resilient
hierarchical synchronization system for SDN ONOS controller
clusters. Two applications are designed and developed to be used
respectively at child clusters and parent cluster to propagate net-
work topology events over dedicated gRPC channels. Therefore,
topological views of all the considered child domains are kept
synchronized at the parent despite possible control plane failures.
This work represents a novel solution specifically designed for
hierarchical synchronization in ONOS clusters.

Index Terms—Hierarchical, SDN, ONOS, Clusters, gRPC

I. OVERVIEW

ONOS is one of the most widely used open-source Software
Defined Networking (SDN) controllers [1]. It achieves high
performance and scalability, while supporting the management
of a large number of devices through different protocols
(e.g., OpenFlow, P4, Netconf, etc.). Thanks to its modular
architecture, applications can be easily developed and installed
on top of it, thus extending the controller functionalities.
ONOS also supports cluster configuration, where multiple in-
stances act together to manage the same network. In this way,
resiliency and scalability of the entire architecture are drasti-
cally increased. However, in this multi-instance configuration,
cluster’s instances have strict synchronization requirements to
keep aligned the topology view. Thus, a rapid fail-over in
case of data plane and control plane failures is achievable. For
this reason, when it comes to handle a wide area network, a
typical approach is to split it into multiple SDN domains. Each
domain is managed by a single instance controller or cluster,
where no one has the full topology view. In this context, two
architectural designs can be found in the literature to share
topology views among different SDN domains [2]. The first
one is the flat design, in which each controller shares its local
network view with one or more SDN controllers, typically
using pub-sub frameworks [3]. In this way, each controller
owns the global topology view while managing just its own
local domain. The second one is the hierarchical design, where
there are two types of instances: child and parent. Each child
instance controls its domain, sharing its state with the parent
one. The latter is the one which is able to reconstruct the entire
topology view by combining the information coming from the

This work has received funding from the European Union’s Horizon 2020
research and innovation programme, B5G-OPEN Project, grant agreement
No. 101016663. This work also received funding from the ECSEL JU project
BRAINE (grant agreement No 876967). The JU receives support from the EU
Horizon 2020 research and innovation programme and the Italian Ministry of
University and Research (MUR).

children. In such scenarios, point-to-point communications are
typically used among controllers [4].

In this work, an event-based synchronization mechanism
for a hierarchical design is proposed. The system exploits
two specifically developed applications to propagate network
topology updates from children to parent over dedicated gRPC
channels. Finally, the applications have been intended to
exploit the ONOS distributed configuration, thus enabling re-
silient hierarchical synchronization among ONOS clusters. To
the authors knowledge, this is a novel solution for specifically
enabling ONOS clusters to a hierarchical design.

II. SYSTEM ARCHITECTURE AND WORKFLOW

The system relies on two developed applications:
• Hierarchical Sync Child, running on the ONOS child

clusters;
• Hierarchical Sync Parent, running on the ONOS parent

cluster.
Fig. 1 illustrates an example of system deployment, where two
ONOS child clusters synchronize their topology views towards
the ONOS parent cluster. For the Hierarchical Sync Child,
the application is composed of two main parts: the Listener
and the Sender. The Listener implements a mechanism for
which events related to the managed domain are processed,
parsed and stored in a distributed and reliable way. On the
other hand, the Sender consumes those events from the storage
while sending them over a gRPC channel towards the parent
cluster, acting as client. Meanwhile, the Parent application
includes two different parts: the Receiver and the Publisher.
The Receiver takes the child events, received by the local
running gRPC server, and saves them into a parent-dedicated
distributed storage. The Publisher instead retrieves, reconverts,
and publishes the events onto its local topology view (i.e.,
making the topology exploitable by ONOS core services)
while preserving their generation order per child. Both applica-
tions use the synchronization mechanisms provided by ONOS
to develop distributed applications. Indeed, any functionality
implemented by each of them is actually replicated on each
ONOS instance in the cluster. In this way, the system is
able to seamlessly manage ONOS cluster instance failures,
both at parent and children, without losing events. Further
technical details about system’s synchronization resiliency will
be discussed during the demo. As for the gRPC channels,
they have been developed to use unary and synchronous calls,
exchanging properly converted ONOS event objects.

978-1-6654-7334-7/22/1.00 ©2022 IEEE 92

20
22

 IE
EE

 C
on

fe
re

nc
e

on
 N

et
w

or
k

Fu
nc

tio
n

Vi
rt

ua
liz

at
io

n
an

d
So

ft
w

ar
e

De
fin

ed
 N

et
w

or
ks

 (N
FV

-S
DN

) |
 9

78
-1

-6
65

4-
73

34
-7

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

N
FV

-S
DN

56
30

2.
20

22
.9

97
47

75

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on August 02,2023 at 20:06:53 UTC from IEEE Xplore. Restrictions apply.

ONOS Parent Cluster

gRPC gRPC

ONOSONOS

Hierarchical Sync Child
Sender

Listener

ONOSONOS

Hierarchical Sync Child
Sender

Listener

ONOSONOSONOS

ONOS Child
Cluster 1

ONOS Child
Cluster 2

ONOS

1

2

3

4

6

ONOS

Hierarchical Sync Parent
Receiver

Publisher
5

Fig. 1. High-level architecture view and synchronization workflow.

Fig. 1 also provides a visual representation of the entire
workflow to be demonstrated (the numbers in the figure and
here below indicate the sequence of events):

1) A network topology event (e.g., port down) occurs in
the switch represented in red and controlled by ONOS
child cluster 1;

2) The ONOS core dispatches the event within the cluster
instances, ensuring a consistent view among them;

3) The Hierarchical Sync Child app:
• Captures the event through its Listener component;
• Sends it over the gRPC client within the Sender

component.
4) The event propagates from the child to the parent cluster;
5) The Hierarchical Sync Parent app:

• Receives the event at the gRPC server embedded in
the Receiver component;

• Reproduces the event into the parent view using the
Publisher one.

6) All the parent cluster instances align with each other,
and so with the latest topology view of the child.

III. DEMONSTRATION WALKTHROUGH

This demonstration aims to show the potential of the
proposed hierarchical synchronization system. Three ONOS
clusters are used: two children and one parent. After installing
the aforementioned applications on each cluster, a Mininet-
based topology is used to emulate an OpenFlow network.
The topology is divided into two SDN domains, each one
managed by a different child. During this phase, the ONOS
GUI is displayed for each cluster (e.g., children and parent).
To this extent, it is possible to graphically show how fast the
topologies of the child clusters synchronize with the parent.
Indeed, as far as the elements are discovered by each child,
they appear both at the child and at the parent view. The latter,
in this case, combines together the views of the two domains.

Later, other events are manually generated by switching
down network elements in the Mininet CLI on both SDN
domains, further proving the responsiveness of the system that
will update the parent view. Finally, within the same scenario,
some ONOS instances (both at one of the children and at
the parent clusters) will be deactivated emulating a failure
in the control plane. This will demonstrate the resilience of
the proposed implementation, which will continue to process
events despite instance failures.

IV. IMPACT

In this demo, the implementation of an event-based hier-
archical synchronization system for ONOS clusters is pre-
sented. The key aspect of this work is the full compatibility
and integration with the ONOS architecture. Thanks to the
transparency of the developed applications, it is possible to
natively use the information of the child topologies at the
parent side. This lays the foundation for a new set of parent
applications that could be realized. Indeed, by exploiting
the ONOS core services, hierarchical applications can be
programmed to react to child events. Thus, the global view
could be further exploited to apply both reactive and proactive
cross-domain decisions.

REFERENCES

[1] “ONOS.” [Online]. Available: https://opennetworking.org/onos/
[2] T. Hu, Z. Guo, P. Yi, T. Baker, and J. Lan, “Multi-controller based

software-defined networking: A survey,” IEEE Access, vol. 6, pp. 15 980–
15 996, 2018.

[3] M. Gerola, F. Lucrezia, M. Santuari, E. Salvadori, P. L. Ventre, S. Salsano,
and M. Campanella, “ICONA: A peer-to-peer approach for software
defined wide area networks using ONOS,” in 2016 Fifth European
Workshop on Software-Defined Networks (EWSDN), 2016, pp. 37–42.

[4] D. Scano, A. Giorgetti, A. Sgambelluri, E. Riccardi, R. Morro,
F. Paolucci, P. Castoldi, and F. Cugini, “Hierarchical control of sonic-
based packet-optical nodes encompassing coherent pluggable modules,”
in 2021 European Conference on Optical Communication (ECOC), 2021.

93
Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on August 02,2023 at 20:06:53 UTC from IEEE Xplore. Restrictions apply.

