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Abstract 
Purpose  Plant microbial biostimulants, such as 
arbuscular mycorrhizal fungi (AMF), enhance nutri-
ent concentration in fruits, including tomato. How-
ever, field studies on tomato AMF inoculation are 
scarce. AMF species belonging to Gigasporaceae and 
Glomeraceae families known to vary in life-history 
strategies may determine differential effects on plant 
nutrient benefits and residue decomposition. Despite 
this, the effect of different life-history strategies on 
nutrient acquisition of tomato fruits has not been 
investigated yet.
Methods  We studied the effect of inoculation of two 
tomato varieties with four AMF species belonging to 
Glomeraceae and Gigasporaceae. Fungal coloniza-
tion, yield, fruit nutrient concentration, litter decom-
position, and bacterial and fungal abundances in soil 
were assessed in the field under organic agriculture.

Results  Overall Gigasporaceae promoted the con-
centration of nutrients in tomato fruits compared to 
Glomeraceae. A variability in AM fungal colonization 
and fruit nutrient concentration was detected within 
Glomeraceae. Scutellospora pellucida increased 
the yield (+ 27%) of var. Rio Grande with respect 
to Gigaspora gigantea. In var. Rio Grande, inocula-
tion with Funneliformis mosseae did not change litter 
decomposition as compared to non-inoculated con-
trols, whereas it was lower than in Sclerocystis sinu-
osa and Gigasporaceae species, which showed the 
highest decomposition rates. AMF inoculation pro-
moted soil total bacterial and fungal abundance and 
fungal:bacterial (F:B) ratio compared to controls, and 
members of Gigasporaceae had the highest F:B ratio.
Conclusion  These findings pointed at the inclusion 
of AM fungal life-history strategy within the selec-
tion criteria for the development of biofertilizers able 
to enhance the nutritional value of vegetables under 
organic farming systems.

Keywords  Biofertilization · Arbuscular 
mycorrhizal fungi · Single isolate inoculum · Crop 
yield · Nutrient uptakes · Litter bags

Introduction

Tomato (Solanum lycopersicum L.) is the second most 
important vegetable in the world in terms of produc-
tion, after potato (FAOSTAT database, average period 
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2011–2020; https://​www.​fao.​org/​faost​at/​en/#​data/​
QCL), and one of the most studied fleshy fruits (Singh 
et  al. 2021). Tomato fruits represent an important 
source of health-promoting compounds (Chaudhary 
et al. 2018; Dorais et al. 2008). Due to their importance 
for human health, the study of sustainable approaches, 
such as plant microbial biostimulants (González-
González et al. 2020; Sharma et al. 2017), to improve 
the production and nutritional value of tomato is of 
great relevance to producers as well as consumers 
(Baulcombe et al. 2009). This is especially true in the 
recent scenario of “hidden hunger” due to shortage of 
micronutrients in crops that has been determined by 
several factors, among which plant breeding, agro-
nomic management and the increase of atmospheric 
CO2 (Myers et  al. 2014; Scharff et  al. 2022). Indeed, 
beneficial microorganisms, such as arbuscular mycor-
rhizal fungi (AMF) could represent an important tool 
for enhancing tomato yield and mineral nutrient con-
centration (e.g., Coccina et al. 2019; Hart et al. 2015; 
Pellegrino et al. 2020).

Arbuscular mycorrhizal fungi (AMF, phylum 
Glomeromycota, Tedersoo et  al. 2018) are ubiqui-
tous in natural and agricultural ecosystems (Brundrett 
and Tedersoo 2018). They establish a symbiosis with 
the majority of plant species in terrestrial environ-
ments (ca. 67% of plant species) (Bueno et al. 2019; 
Maherali et al. 2016), supplying mineral nutrients to 
the plants in exchange for photosynthetically fixed 
carbon (C) (from 4 to 20% of the photosynthates) in 
the form of lipids as well as sugars (Bago et al. 2000; 
Jiang et  al. 2017; Luginbuehl et  al. 2017). Carbon-
mineral exchanges between host and fungus occur 
through arbuscules, namely highly branched fun-
gal structures present in cortical root cells (Parniske 
2008). These fungi represent fundamental factors of 
plant productivity (Pellegrino et al. 2015; Zhang et al. 
2019) since the extraradical mycelium can promote 
plant uptake and translocation of nutrients (e.g., P, 
N, K, Ca, Mg, Fe, Zn, Cu and Mn) (Lehmann et al. 
2014; Lehmann and Rillig 2015; Watts-Williams 
and Cavagnaro 2014) and redistribute soil resources 
among plants linked by a common mycorrhizal net-
work (Cardini et al. 2021; Javot et al. 2007; Jin et al. 
2005). The effect of AM fungal inoculation on AM 
fungal root colonization, plant growth, and nutri-
ent acquisition in different varieties of tomato has 
been well documented in microcosm (e.g., Al-Karaki 
2000; Al-Karaki et al. 2001; Giovannetti et al. 2012; 

Hart et  al. 2015). By contrast, few studies of AM 
fungal inoculation were carried out in open-field 
conditions (Bona et  al. 2017; Bowles et  al. 2016; 
Conversa et  al. 2013), where agricultural practices 
(e.g., tillage and fertilization) might have negatively 
impacted native AMF-crop interactions (Gosling 
et al. 2010; Hamel et al. 1997; Piazza et al. 2019). In 
low fertile conditions, AM fungal inocula can suc-
cessfully adapt and develop with native AMF (Pel-
legrino et  al. 2012, 2022; Ryan and Graham 2018). 
Bowles et  al. (2016), in a field experiment, compar-
ing MYC + and the mutant nonmycorrhizal tomato 
genotype rmc, demonstrated the beneficial effect of 
AMF on tomato yield (+ 25%) and leaf and fruit N 
and P uptake (+ 22% and + 26%, respectively). Simi-
larly, plants of tomato (var. PKM-1 and var. TC 2000) 
inoculated at nursery with Rhizophagus intraradices 
or a mix of AM fungal species and transplanted in the 
field showed a higher AM fungal colonization and 
arbuscule frequency at harvest, as well as enhanced 
plant growth, yield attributes, and N and P uptake in 
shoot and roots (Bona et al. 2017; Subramanian et al. 
2006). By contrast, tomato var. Rio Grande, Roma 
and Perfect Peel, pre-inoculated at nursery with Fun-
neliformis mosseae IMA1, Rhizophagus intraradices 
IMA6 and a mix of the two species, and transplanted 
in the field, although variably colonized by AMF, did 
not show yield enhancement compared with mock-
inoculated controls (Njeru et al. 2017).

Some studies have shown that AM fungal species 
belonging to different families, such as Gigasporaceae 
and Glomeraceae, may vary in their life-history char-
acteristics, such as sporulation, extraradical mycelium 
development and root colonization strategies, with 
important consequences on mycorrhizal functioning 
(e.g., Brundrett et  al. 1999; Hart and Reader 2002, 
2004; Klironomos and Hart 2002). Members of the 
Glomeraceae family are known to have a highly infec-
tive extra-radical mycelium (Morton 1993; Tommerup 
and Abbott 1981), to contact roots quickly (fast colo-
nizer) and to allocate a large fraction of fungal biomass 
inside the roots, forming vesicles for storage of lipids 
(Hart and Reader 2002; Morton and Benny 1990). On 
the other hand, members of the Gigasporaceae fam-
ily regenerate most frequently from spores (Morton 
1993; Tommerup and Abbott 1981), and usually exten-
sively colonize the soil, exhibiting a slow and lim-
ited colonization of the roots (Hart and Reader 2002, 
2004; Maherali and Klironomos 2012). Moreover, 
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Glomeraceae have very delicate hyphae characterized 
by a shosrt longevity, creating a smaller extraradical 
mycelium, whereas Gigasporaceae have robust and 
densely aggregated hyphae characterized by a slower 
turn-over, creating a larger extraradical mycelium 
(Jakobsen et al. 1992; Smith et al. 2000). Indeed, a high 
ratio of soil to root colonization may provide the crop 
with the greatest benefit in term of plant growth and P 
uptake (Hart and Reader 2002). Conversely, a little net 
nutritional benefit may occur when the ratio of soil to 
root colonization is low, since a small extension of the 
extraradical mycelium would limit the nutrient trans-
fer to the crop (Hart and Reader 2002). Meanwhile, a 
larger AM fungal root colonization can be positively 
related to a better protection of the host against root 
phatogens (Maherali and Klironomos 2007; Chagnon 
et al. 2013), putately associated to high plant biomass.

Arbuscular mycorrhizal fungi, although known to 
have no saprotrophic capacity, represent an important 
group of microorganisms involved in litter decompo-
sition (Cheng et al. 2012; Gui et al. 2017; Hodge and 
Storer 2015), a crucial process affecting the release of 
nutrients and the stabilization of soil organic carbon 
(SOC). Herman et al. (2012) and Hodge et al. (2001) 
proved that AMF enhance litter decomposition, 
increase N capture from organic patches and alter the 
C flow through changes in soil microbial communi-
ties. Arbuscular mycorrhizal fungi might impact litter 
decomposition by affecting soil saprotrophic micro-
organisms (Nuccio et  al. 2013) and/or soil structure 
(Pellegrino et  al. 2021, 2022; Rillig and Mummey 
2006). Recently, multipartite synergies between AMF 
and soil microbial communities were demonstrated to 
substantially enhance plant and fungal N acquisition 
from organic matter (Hestrin et al. 2019). These syn-
ergies resulted in a greater relative acquisition from 
organic versus mineral nutrient stocks, but without 
loss of soil organic matter (SOM) due to the stimula-
tion of the primary productivity and the SOM forma-
tion by root and mycorrhizal C inputs. However, we 
are still far from fully understanding the mechanisms 
by which AMF are able to influence litter decompo-
sition in field conditions, where inoculated members 
of the families Glomeraceae and Gigasporaceae may 
differently affect fungal to bacterial ratio and organic 
residue decomposition due to their peculiar coloni-
zation strategies (Mei et  al. 2022). Fungal:bacterial 
ratio is a suitable proxy for of litter degradation effi-
ciency, ranging from low to high values in intensive 

and extensive agricultural systems, respectively 
(Delgado-Baquerizo et al. 2015; García-Palacios et al 
2013). Fungi have long generation times, are able to 
decompose recalcitrant substrates and have a high 
organic substrate degradation efficiency. Bacteria 
show instead a rapid growth response in soils con-
taining readily decomposable substrate and have a 
low substrate degradation efficiency (Joergensen and 
Wichern 2008). Indeed, bacteria have a biomass with 
a C/N ratio lower than fungi and immobilize more N 
per unit of C assimilated (Austin et al. 2004). At soil 
C/N higher than 10 and with organic residues hav-
ing high C/N and high proportion of recalcitrant sub-
strates, a fungal-dominated community is expected 
to increase residue decomposition (García-Palacios 
et al. 2013; Delgado et al. 2015).

The aim of this work was to evaluate in field con-
ditions under organic agriculture the effect of nurs-
ery inoculation of tomato (Solanum lycopersicum 
L.) with four single AM fungal isolates belonging to 
Glomeraceae and Gigasporaceae on AM fungal root 
colonization, yield, litter decomposition, and bacte-
rial and fungal abundance in soil, as proxy for nutri-
ent cycling and C storage. Two varieties of tomato, 
characterized by different growth habits, were stud-
ied: var. Pisanello (Berni et  al. 2018) with an inde-
terminate growth habit and var. Rio Grande with a 
determinate growth habit (Fig. S1a). We hypothesized 
similar responses in AM fungal root colonization, 
yield and nutrient concentration in fruits of both vari-
eties to inoculation with isolates belonging to Giga-
sporaceae and Glomeraceae. Although in field condi-
tions competition with other microorganisms occurs, 
members of Gigasporaceae, better exploring the soil 
by hyphae and less colonizing the roots, would have 
a stronger effect on nutrient uptake, plant growth and 
traslocation of nutrients to fruits, whereas members 
of Glomeraceae, extensively colonizing the root sys-
tem, would enhance root pathogen protection thus 
increasing plant growth and fruit yield (Fig. S1b). We 
also hypothesized differences at family level in the 
effect of AM fungal inoculation on organic residue 
decomposition and soil fungal and bacterial abun-
dance. After AM fungal inoculation, we expected a 
shift from bacterial- to fungal-dominated communi-
ties with a general increase of residue decomposition. 
However, given the life-history strategies of Giga-
sporaceae, we expected that members of this family 
would increase fungal abundance in soil more than 
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members of Glomeraceae. This would imply a higher 
fungal:bacterial ratio and a higher residue decomposi-
tion under inoculation with Gigasporaceae members 
(Fig. S1b).

Materials and methods

Fungal material

Arbuscular mycorrhizal fungi (AMF) used were: 
Gigaspora gigantea PA125 and Scutellospora pel-
lucida MN408A belonging to Gigasporaceae, and 
Funneliformis mosseae MD118 and Sclerocystis 
sinuosa MD126 belonging to Glomeraceae. Inocula 
were obtained from pot cultures maintained in the 
collection of the Crop Science Research Center of 
the Scuola Superiore Sant’Anna, Italy. The inocula of 
the single AM fungal isolates were produced in 15 L 
pots (four pots for each isolate). Pots were filled with 
sandy soil and Terragreen (calcinated clay, OILDRI, 
Chicago, IL, USA) (1:1 by volume) and with 1.5 L 
per pot of starting crude inoculum (10% by vol-
ume). The substrate was previously steam-sterilized 
(121 °C for 25 min, on two consecutive days) to kill 
native AMF. All the pots received 3 L of a filtrate, 
obtained by sieving a mixture of the four AM fungal 
inocula through a sieve with pore diameter of 50 μm, 
to ensure a common prokaryotic community for all 
treatments. The host plant was Sorghum vulgare L., 
following Morton et al. (1993). Plants were grown in 
a climatic chamber (27 °C day and 21 °C night tem-
perature; 18:6 h light:dark cycle, 420 μmol m−2 s−1), 
supplied with tap water as needed and with a weekly 
fertilization of half-strength Hoagland’s solution 
(250  ml per pot). Three months after inoculation, 
plant shoots were harvested and soil and roots used as 
inocula (i.e., crude inoculum: mycorrhizal roots and 
soil containing spores and extraradical mycelium). 
Details about AM fungal isolate geographical origin, 
collector and original supplier are given in Table S1.

Experimental field site and climatic data

The experiment was carried out in 2019 and 2020 in 
two distinct fields at the organic farm “Fattoria Le 
Prata” Pisa, Italy (43°44’ N, 10°24’E; 2 m above sea 
level and 0.0% slope). The soil in 2019 was a silty-
clay loam (8.0% sand, 54.1% silt and 37.9% clay) 

with 35.9  g  kg−1 soil organic carbon (SOC) (Walk-
ley–Black; Nelson and Sommers 1982), 7.9 pH (deion-
ized water 1:2.5 w/v; McLean 1982), 2.2 g  kg−1 total 
N (Kjeldahl; Bremner and Mulvaney 1982) (dota-
tion suitable for plant growth) and 1.89  g  kg−1 P, 
22.00  mg  kg−1 available P (Olsen) (Olsen and Som-
mers 1982) (very low availability). The soil in 2020 
was a silty-clay loam (10.2% sand, 50.2% silt and 
39.6% clay) with 30.5  g  kg−1 SOC (Walkley–Black), 
8.0 pH(H2O), 1.83  g  kg−1 total N (Kjeldahl) (dota-
tion for plant growth), 1.72 g kg−1 P and 17.0 mg kg−1 
available P (Olsen) (very low availability). Climate of 
the site is cold, humid Mediterranean (Csa) according 
to the Köppen-Geiger climate classification (Kottek 
et  al. 2006). Averaged over 1990–2020, mean annual 
maximum and minimum air temperatures were 20.4 
and 9.9 °C, respectively, and annual precipitation was 
1084  mm. During the field experiment (May–Sep-
tember), maximum and minimum temperatures were 
27.4 °C and 16.0 °C, respectively, in 2019, and 27.4 °C 
and 15.5  °C in 2020, while total precipitation was 
236 mm and 270 mm in 2019 and 2020, respectively. 
The preceding crop of tomato grown in 2019 and 2020 
was organically-fertilized bread wheat. Details about 
temperature (mean, minimum and maximum daily 
temperature) and rainfall for the tomato growth cycles 
are given in Fig. S2.

Experimental set‑up

A first experiment was set-up in 2019 with tomato 
(Solanum lycopersicum L.) var. Pisanello, an old Tus-
can variety described and conserved in the regional 
genetic bank for the conservation of endangered (or 
threatened) varieties (http://​germo​plasma.​regio​ne.​
tosca​na.​it/; Berni et  al. 2018) and a second experi-
ment was set-up in 2020 with tomato var. Rio Grande, 
a modern and widely used variety. Inoculation by 
AMF was performed in greenhouse at sowing, before 
plantlet transplanting to the field. In detail, 160 seeds 
of S. lycopersicum were placed in a propagation tray 
with hole dimension of 26.4  ml (total volume: 4.22 
L), containing as substrate a mixture of peat, soil, 
coarse silica sand and heat-expanded clay (1:1:2:2 
by volume). The soil utilized in the mixture was 
a sandy loam collected at the “Centro di Ricerche 
Agro-Ambientali Enrico Avanzi”, University of Pisa, 
Italy. Chemical and physical characteristics of the 
soil used were as follows: 8.0 pH (deionized water 
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1:2.5 w/v; McLean 1982), 15.3% clay, 30.1% silt, 
54.6% sand, 2.2% SOM (Walkley–Black; Nelson 
and Sommers 1982), 1.3  g  kg−1 total N (Kjeldahl; 
Bremner and Mulvaney 1982), 469.5  mg  kg−1 total 
P (Olsen), 17.6 mg kg−1 extractable P (Olsen) (Olsen 
and Sommers 1982) and 149.6  mg  kg−1 extractable 
K (Thomas 1982). The mixture was steam-sterilized 
(121 °C for 25 min, on two consecutive days) to kill 
naturally occurring AMF. The tray (one for each AM 
fungal isolate and one for the control) were inocu-
lated either with 850  mL of crude inoculum of one 
out of the four AM fungal isolates or with 850 mL of 
a sterilized mixture of them (non-mycorrhizal con-
trol). The non-mycorrhizal control was steam-steri-
lized (121 °C for 25 min, on two consecutive days). 
Potential differences in AM fungal colonization 
ability of the four isolates were balanced using such 
high amounts of inoculum (10% by volume). Each 
tray received 565 mL of a filtrate, obtained by siev-
ing (pore diameter of 43  μm) a mixture of the four 
crude inocula and of a sample of the agricultural soil 
used for the preparation of the substrate, to ensure an 
initial common prokaryotic community to all treat-
ments. Plantlets were grown in the climatic chamber 
from the start of April to the end of May (24 °C day 
and 18 °C night temperature; 14:10 h light:dark cycle, 
420 μmol m−2 s−1) on both years of cultivation (2019 
and 2020) for about 60 days. Plantlets were supplied 
with tap water as needed and with a weekly fertiliza-
tion of half-strength Hoagland’s solution (70 mL per 
tray). Plants were transplanted into the field in May 
(mean length of seedlings: 18  cm) (var. Pisanello: 
16th May 2019; var. Rio Grande: 23rd May 2020). For 
both tomato varieties, the experiment layout was a 
completely randomized design with four fungal treat-
ments (G. gigantea, G.giga; S.pellucida, S.pellu; F. 
mosseae, F.mos; S. sinuosa, S.sin) and the mock-inoc-
ulated control (-M), and three replicate plots. Each 
replicate plot of the experiment with var. Pisanello 
had a size of 9.6  m length × 1.6  m width (15.4 m2) 
and was composed by two rows with 30 plants for 
each row. Each replicate plot of the experiment with 
var. Rio Grande had a size of 2.5 m length × 1.25 m 
width (3 m2) and was composed by four rows with 
eight plants for each row. Plants of var. Pisanello 
were spaced 30 cm within the row, 1 m between rows 
and 160  cm between twin rows and plants of var. 
Rio Grande were spaced 25  cm within and between 
rows. In both years, the plots were separated by 

uninoculated plants of the same varieties. Schematic 
overview of the experimental design in 2019 and 
2020 are presented in Fig. S3a and Fig. S3a. The 
tomato plants were daily watered through drip irriga-
tion with pressure regulation, allowing similar water 
flow for each plot. No mineral fertilization neither 
chemical or mechanical weed control were applied.

Mycorrhizal infection potential of the AM fungal 
inocula and of the experimental soil

Infectivity of the experimental field soil and of the AM 
fungal inocula was evaluated using a modified mycor-
rhizal infection potential (MIP) test in a growth chamber 
with (24 °C day and 18 °C night temperature; 12:12 h 
light:dark cycle, 420  μmol  m−2  s−1) (Pellegrino et  al. 
2011). Three S. vulgare seeds were sown in 50 mL ster-
ile plastic tubes filled with 25 mL of the four AM fungal 
inocula and of the experimental field soil, and 25  mL 
of sterile quartz grit. The experimental field soil was 
obtained by taking five soil samples in 2019 and 2020 
before tomato transplanting. Soil samples were collected 
by using a soil corer (8 cm diameter) at a depth of 30 cm 
and then they were air dried. Three replicate plastic 
tubes were used for each AM fungal inoculum (n = 12) 
and for each soil samples (five soil replicates per year; 
n = 30). After emergence, plants were thinned to one per 
tube. Plants were harvested after two-week growth and 
root systems were cleared and stained, using lactic acid 
instead of phenol (Phillips and Hayman 1970). Then, 
the roots were mounted on microscope slides, examined 
under an optical microscope (Leitz Laborlux S, Wetzlar, 
Germany), and AM fungal root colonization parameters 
(% of arbuscules, vesicles and AM fungal root coloniza-
tion) were assessed (McGonigle et al. 1990).

Effect of AM fungal inoculation on tomato root 
colonization

Arbuscular mycorrhizal fungal root colonization of 
var. Pisanello was assessed at the BBCH 62 growth 
stage (2nd inflorescence with first flower open), 
whereas the AM fungal root colonization of var. 
Rio Grande was assessed at BBCH 22 (2nd primary 
apical side shoot visible), BBCH 62 and BBCH 89 
(fully ripe: all fruits have typical fully ripe color) 
(Meier 2001). On 22nd July 2019 (BBCH 62) two 
plants of var. Pisanello from each replicate plot 
were sampled, and AM fungal root colonization 
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parameters (percentage of AM fungal root coloni-
zation and of root length containing arbuscules and 
vesicle) were assessed under an optical microscope 
(Leitz Laborlux S, Wetzlar, Germany), after clear-
ing and staining, using lactic acid instead of phenol 
(Phillips and Hayman 1970), following the grid-
line intersect method (McGonigle et  al. 1990). On 
23rd May, 7th July and 27th August 2020 (BBCH 22, 
BBCH 62 and BBCH 89, respectively) two plants of 
var. Rio Grande from each replicate plot were sam-
pled and AM fungal root colonization parameters 
were assessed, as previously described.

Effect of AM fungal inoculation on tomato yield and 
fruit nutrient concentrations

Plants of var. Pisanello were harvested 11 times, 
from 22nd July to 4th October 2019, while plants of 
var. Rio Grande were harvested six times, from 3rd 
August to 21th September 2020. For both varieties, 
the harvests were performed on 10 plants in the cen-
tral area of each plot and fruit fresh weight per plant 
and number of fruits per plant were measured. Fruits 
of ripeness stage 6 (red) (USDA 1975) were collected 
at each harvest. This allowed to calculate the fruit 
fresh weight per plant at each harvest (Yield) and the 
production for the whole harvesting period per plant, 
namely the total fresh weight per plant (Total yield). 
In addition, the shoot dry weight (SWD) of tomato 
var. Rio Grande was determined at BBCH 22, after 
oven drying at 65 °C up to constant weight. For total 
yield and SDW we also calculated the host benefit 
as (fresh or dry weight inoculated plant – fresh/dry 
weight not inoculated plant)/fresh or dry weight not 
inoculated plant) × 100.

The fruits of var. Pisanello sampled at first and 
second harvest (22nd of July and 1st August 2019, 
respectively) and the fruits of var. Rio Grande sam-
pled at the second harvest (10th August 2020) were 
washed and immediately stored at -80 °C. Fruit sam-
ples were lyophilized and ground to fine powder prior 
to the analysis of mineral nutrients. Approximately 
0.2  g of lyophilized tomato were digested using the 
COOLPEX Smart Microwave Reaction System 
(Yiyao Instrument Technology Development Co., 
Ltd., Shanghai, China) after the addition of 8.0  mL 
of nitric acid (65%). The solution was diluted with 
Milli-Q water and analyzed. The concentration of P, 
K, Ca, Mg, Zn, Fe, Cu and Mn was determined using 

a Microwave Plasma Atomic Emission Spectros-
copy instrument (4210 MP-AES, Agilent Technolo-
gies, Santa Clara, CA, USA) (Liberato et  al. 2020), 
while N concentration was determined using the Kje-
dahl method (Jones et al. 1991). Increases of miner-
als (e.g., P, K, Mn, Cu and Zn) in fruits are known 
to be of relevance not only for tomato nutrition, pro-
ductivity and health, but also for fruit quality (e.g., 
synthesis of phytonutrients such as ascorbic acid and 
β-complex vitamins) (Dorais et al. 2008). Moreover, 
phytonutrients in tomato are strongly affected by 
intensity, duration, and quality of light. For exam-
ple, vitamin C, lycopene, β-carotene and phenols in 
tomato fruits increase per se with the increase of light 
intensity and duration. Thus, we sampled in the first 
harvests so that the measurement of the effect of AM 
fungal inoculation would remain within the linear 
growth of phytonutrient accumulation in fruits.

Effect of AM fungal inoculation on residue 
decomposition and bacterial and fungal abundance in 
soil

In each replicate plot of var. Rio Grande, four litter 
bags filled with a standard organic substrate (hay) 
were inserted vertically into the soil at 10  cm soil 
depth near to the tomato roots. Five grams of hay 
composed by Dactylis glomerata L. (45%), Phleum 
pratense L. (50%) and Urtica dioica L. (5%) (“Vita 
Verde Small Alpine Hay”, Vitakraft pet care GmbH 
& Co. KG, Bremen, Germany) were inserted into 
10 cm × 10 cm polypropylene net litter bags (1.5-mm 
mesh) (Tenax-ortoclima plus, Tenax s.p.a., Lecco, 
Italy). The hay was ground in a 3  mm grid forage 
mill (Retsch GmbH, Haan, DE). Main hay charac-
teristics on dry basis at the beginning of the experi-
ment were: 32.4% C, 0.82% N, 18.8 MJ kg−1 energy, 
2.9% protein, 3.7% lipid, 12.2% lignin (determined as 
acid detergent lignin, ADL; Van Soest et  al. 1991), 
35.5% cellulose and 5.7% hemicellulose (Baldi et al. 
2021). The litter bags were sealed using staples and 
hot glue. A plastic label was added to the litter bags 
for identification in the field and for easiness of find-
ing purposes. Four litter bags per plot were posi-
tioned at plant transplanting (23th May, BBCH 22) 
(defined as litter deposition time). Then, one litter bag 
from each plot was collected after 40 days (2nd July 
2020), 52 (14th July 2020), 67 (29th July 2020) and 86 
(10th August 2020) days from litter deposition. After 
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sampling, litter bags were opened, gently cleaned 
from soil and spontaneous plants, dried at 40 °C and 
weighted. The percentage of remaining mass com-
pared to the initial one was calculated. Litter bag 
decomposition coefficient (k) was also calculated 
from mass loss and expressed as a first-order decay 
constant. The k for each sample was calculated as 
follows:

where k is the first-order rate constant (day−1); Co is 
the initial weight of the sample; Ct is the litter bags 
dry weight at each sampling data (t).

On the tomato roots (a pool of the two root sys-
tems excavated from the soil of each replicate plot 
and used for assessing AM fungal root colonization), 
we employed a combination of washing and ultra-
sound treatments to separate the soil rhizospheric 
fraction (Bulgarelli et  al. 2015). To assess the bac-
terial and fungal abundance, DNA from the rhizos-
pheric soil was extracted (0.25 g dry soil per sample) 
using the Dneasy PowerSoil Kit (QIAGEN, Venlo, 
Netherlands), following the manufacturer’s instruc-
tions. Soil DNA extraction was performed at stage 
BBCH 89 (var. Pisanello 30th August 2019, var. 
Rio Grande 27th August 2020). To minimize DNA 
extraction bias, soil samples were extracted in tripli-
cate and DNA was pooled prior to the analysis. Fun-
gal and bacterial relative abundance in each sample 
were quantified using a modification of the technique 
described by Fierer et  al. (2005). Quantitative PCR 
(qPCR) analysis was conducted using a CFX Con-
nect Real-Time System thermal cycler (Biorad, Her-
cules, California) with a program of 50 °C for 10 min, 
95 °C for 15 min, 40 cycles of 95 °C for 1 min, and 
53  °C for 30  s, followed by melting curve analysis. 
qPCR reactions consisted of 10 μL of a qPCR Mas-
ter Mix (KAPA SYBR® FAST, Kapa Biosystems, 
USA), 0.5 μL each of forward and reverse primers, 
7 μL sterile water, and 15  ng DNA quantified by a 
Qubit 4 fluorometer using the Qubit 1 × dsDNA HS 
Assay Kit (Thermo Fisher Scientific, Waltham, MA, 
USA). The 16S rRNA gene region was used as bacte-
rial target, whereas ITS1 region was used to estimate 
fungal abundance. The bacterial 16S rRNA gene was 
amplified using the pair of primers Eub338/Eub518 
(Eub338: 5′-ACT CCT ACG GGA GGC AGC AG-3′; 
Eub518: 5′-ATT ACC GCG GCT GCT GG-3′), while 

k = ln
(

Co∕Ct

)

∕t

the fungal internal transcribed spacer (ITS) region 
was amplified using the pair of primers ITS1f/5.8  s 
(ITS1f: 5′-TCC GTA GGT GAA CCT GCG G-3′; 
5.8  s: 5′-CGC TGC GTT CTT CAT CG-3′) (Fierer 
et  al. 2005). The efficiency of the two pair of prim-
ers was similar (99.8%). Each 96-well plate also 
contained reactions with ten-fold serial dilutions of 
pure bacterial and fungal DNA (Bacillus subtilis and 
Amanita rubescens) in order to verify the linearity 
of the relationship between threshold cycle (Ct) and 
DNA concentration. Standard curves were generated 
using triplicate of plasmids, from 103 to 109 copies 
of the template. Sample Ct values were divided by 
the mean slope of the standard curves across all runs, 
to ensure that increases in fungal and bacterial abun-
dance were equally weighted. Each sample was run in 
triplicate, and the mean Ct value was used for anal-
ysis. The gene copies were referred to g of dry soil. 
The fungal:bacteria ratio was determined as the ratio 
of the ITS1 Ct to the 16S Ct. The fungal:bacteria ratio 
(calculated as fungal gene copy number divided by 
bacterial gene copy number; F:B ratio) was used as a 
predictor of organic residue decomposition and thus 
nutrient cycling (García-Palacios et al. 2013; Delgado 
et al. 2015).

Statistical analysis

One-way analysis of variance (ANOVA) was per-
formed on AM fungal root colonization, total yield, 
fruit nutrient concentrations and contents, soil bac-
terial and fungal abundance and fungal:bacterial 
ratio, after the necessary transformations (e.g., 
log10, arcsen). Orthogonal contrasts were used to 
test differences between + M (all four isolates) vs 
-M (mock inoculated controls) (1st comparison); 
between Gigasporaceae and Glomeraceae (2nd com-
parison: inter-family diversity); between the two 
isolates of Gigasporaceae (3rd comparison: intra-
family diversity) and between the two isolates of 
Glomeraceae (4th comparison: intra-family diver-
sity). Moreover, at each harvest, fruit yield was ana-
lyzed using one-way ANOVA with AM fungal inoc-
ulation [five levels: control (-M), G. gigaspora, S. 
pellucida, F. mosseae and S. sinuosa] as fixed fac-
tor. Mycorrhizal infection potential (MIP) data of 
the AM fungal inocula were analyzed by one-way 
ANOVA with AM fungal inoculation (G. gigaspora, 
S. pellucida, F. mosseae, S. sinuosa) as fixed factor, 
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whereas MIP data of the field soil were analyzed 
by one-way ANOVA with year (2019 and 2020) as 
fixed factor. Litter bag data of var. Rio Grande were 
analyzed by two-way ANOVA with AM fungal 
inoculation (five level) and time of field exposure 
(four treatments: 40, 52, 67, 79 days) as fixed fac-
tors. All data were ln- or arcsine-transformed when 
needed to fulfil the assumptions of ANOVA. Post-
hoc Tukey-B significant difference test was used for 
comparison among treatments. Means and standard 
errors given in tables and figures are for untrans-
formed data. All analyses were performed using the 
software package on SPSS 21.0 (SPSS Inc., Chi-
cago, IL, USA).

The permutational analysis of variance (PER-
MANOVA) was used to test the overall effect of AM 
fungal inoculation (Inoc) (five levels: -M, G.giga, 
S.pellu, F.mos, S.sin) on total fruit yield and fruit con-
centration of nutrients and AM fungal root traits (% 
of arbuscules, vesicles, AMF root colonization) of 
tomato varieties Pisanello and Rio Grande. Response 
data were fourth-root transformed and normalized, 
and the resemblance matrix was calculated using the 
Euclidean distance between samples. P values were 
calculated using the Monte-Carlo test (Anderson and 
Braak 2003). Since PERMANOVA is sensitive to dif-
ferences in multivariate location (average community 
composition of a group) and dispersion (within-group 
variability), the analysis of homogeneity of multi-
variate dispersion (PERMDISP; Anderson 2006) 
was performed to check the homogeneity of disper-
sion among groups (beta-diversity) (Anderson et  al. 
2006). When PERMANOVA indicated a significant 
effect, the principal coordinate analysis (PCO) was 
performed to visualize the most relevant patterns in 
the data. The circle in each plot, whose diameter is 
1.0, allows the reader to understand the scale of the 
vectors in the vector plot. PERMANOVA pairwise 
comparisons between all pairs of the Inoc levels was 
also performed. Moreover, for the var. Rio Grande, 
to test the significance of the relationship between 
the matrix of percentages of remaining mass of litter 
bags at the four sampling times and the matrix of soil 
fungal and bacterial abundance, a RELATE analy-
sis, based on Spearman rank and 999 permutations, 
was performed (ρ = 1 perfect relationship) (Clarke 
and Warwick 2001). All the analyses were carried 
out using PRIMER 7 and PERMANOVA + software 
(Anderson et al. 2008; Clarke and Gorley 2015).

Results

Mycorrhizal infection potential of the AM fungal 
inocula and of the experimental soil

The mycorrhizal infection potential (MIP) used to 
measure the infectivity of the experimental soil was 
not significantly different between the two years. 
Thus, averaging over years, the percentages of root 
length containing arbuscules and vesicles and AM 
fungal root colonization of S. vulgare (used as host 
plant in the test tube experiment) were 2.2% ± 1.2, 
0.03% ± 0.03 and 9.1% ± 2.4, respectively (mean ± SE 
of five replicates per each field; data not shown). The 
MIP was also similar among the AM fungal inocula 
(Table S1), with percentages of root length containing 
arbuscules and vesicles and AMF root colonization of 
8.6% ± 1.4, 0.2% ± 0.09 and 23.8% ± 2.1, respectively 
(mean ± SE of three replicates per each inoculum; 
data not shown).

Effect of AM fungal inoculation on tomato root 
colonization

In 2019, at stage BBCH 62, the presence of arbus-
cules, vesicles and AMF root colonization in roots of 
inoculated plants of tomato (S. lycopersicum L.) var. 
Pisanello (+ M: all AM fungal isolates) was signifi-
cantly higher than in the mock-inoculated treatment 
(-M) (Fig.  1a-c; Table  S2). Moreover, there was a 
significant intra-family variability (Glomeraceae): S. 
sinuosa showed a higher AM fungal root colonization 
than F. mosseae (Fig. 1d).

In 2020, at BBCH 22, AM fungal inoculation sig-
nificantly increased the occurrence of arbuscules and 
AM fungal colonization in roots of tomato var. Rio 
Grande, whereas did not affect the presence of vesi-
cles (Fig. 2a, c; Table S3). Moreover, the inoculation 
with isolates belonging to Gigasporaceae significantly 
increased the occurrence of arbuscules in the roots of 
tomato compared with the isolates belonging to the 
family Glomeraceae (Fig. 2b). At BBCH 62, the per-
centage of root length containing arbuscules and AM 
fungal root colonization was significantly increased 
by inoculation (Fig. 2d, eb). At BBCH 89, inoculation 
with F. mosseae significantly increased percentage of 
AM fungal root colonization and of root length con-
taining vesicles compared with S. sinuosa (Fig.  2h, 
ic). Moreover, the occurrence of vesicles in the roots 
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of tomato was significantly increased by AM fungal 
inoculation (Fig. 2f). Finally, an inter-family variabil-
ity was detected: the occurrence of vesicles was pro-
moted in the roots of tomato inoculated with isolates 
belonging to the family Gigasporaceae compared 
with the ones inoculated with the isolates belonging 
to the family Glomeraceae (Fig. 2g).

Effect of AM fungal inoculation on tomato yield and 
fruit nutrient concentrations

In 2019, AM fungal inoculation significantly 
increased total fruit yield of tomato var. Pisanello 
accumulated during the productive phase by 32% 
(Fig.  3a; Table  S2). Moreover, there was a differ-
ence between the members of Gigasporaceae: tomato 
plants inoculated with S. pellucida showed higher 
total yield (+ 27%) than plants inoculated with G. 
gigantea. Details about yield at each harvest are given 

in Fig. S4. In 2020, at BBCH 22, AM fungal inocu-
lation increased shoot dry weight (SDW) of var. Rio 
Grande by 115% (Fig.  3c; Table  S3). In addition, 
significant differences were observed between the 
SDW of plants inoculated with S. sinuosa (+ 75%) 
compared with those inoculated with F. mosseae 
(Fig.  3d). Moreover, total yield of var. Rio Grande 
was increased by 38% following AM fungal inocula-
tion (Fig. 3e), whereas no differences were recorded 
among and within families (Table S3).

In 2019, at first harvest, AM fungal inocu-
lation significantly increased N concentration 
and decreased Zn concentration in fruits of var. 
Pisanello (Fig.  4a, c; Table  S4). Fruits of plants 
inoculated with F. mosseae had higher values of 
both N and Cu concentration than those inoculated 
with S. sinuosa (Fig.  4b,e). In addition, inocula-
tion with S. pellucida increased Cu concentration 
compared to G. gigantea (Fig.  4d). At the second 

Fig. 1   Presence of arbus-
cules (a) and vesicles (b), 
and AMF root colonization 
(c) of Solanum lycopersi-
cum L. var. Pisanello: -M 
(mock inoculation, control) 
vs + M (AMF inoculation) 
(n = 3 and n = 12, respec-
tively). AMF root coloniza-
tion: Funnelliformis mos-
seae (F.mos) vs Sclerocystis 
sinuosa (S.sin) (d) (n = 3). 
Figure reports only the 
significant results among all 
the tested linear orthogo-
nal contrasts (Table S2). 
Sampling was performed at 
BBCH 62
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harvest, AM fungal inoculation, although decreas-
ing Ca concentration in fruits (Fig.  4h), increased 
P, Mg, Cu, and Mn concentration compared with 
control (Fig.  4f, i, l, m). An inter-family variabil-
ity was recorded, and Mg and Mn concentration 
in fruits increased in plants inoculated with mem-
bers of Gigasporaceae compared with those inocu-
lated with Glomeraceae (Fig.  4j, n). Moreover, 
within Glomeraceae, the inoculation with F. mos-
seae, similarly to the first harvest, increased K, Mg 
and Mn concentration as compared to S. sinuosa 
(Fig.  4g, k, o). Large intra-family differences were 
also reported in var. Pisanello at the first harvest in 
the fruit mineral content (Table S5 and S6). Moreo-
ver, inter-family differences were recorded in fruit 
K and Ca content. Similarly, at the second harvest, 
some inter-family differences were observed in 
nutrient content of fruits (i.e., K, Mg, Zn and Mn: 
Gigasporaceae > Glomeraceae).

In 2020, at the second harvest, AM fungal inocu-
lation increased P, K, Zn, Fe, Cu and Mn concen-
tration in fruits of var. Rio Grande compared with 
control (Fig. 4p, r, v, y, z, ab; Table S4). In addition, 
the concentration of N, K, Zn, Cu and Mn in fruits 

of plants inoculated with members of Gigasporaceae 
was higher than in those inoculated with Glomer-
aceae (Fig. 4q, s, w, aa, ac). Conversely, Ca concen-
tration was lower in Gigasporaceae than Glomer-
aceae (Fig.  4u). Finally, significant differences were 
recorded within Glomeraceae: F. mosseae increased 
Zn concentration in fruits (Fig. 4x), whereas S. sinu-
osa increased K concentration (Fig. 4t). By contrast, 
nutrient content in fruits was not modified by inocu-
lation treatments (Table S7 and S8), with the excep-
tion of Ca that was higher in plants inoculated with 
Glomeraceae.

To summarize the effect of AM fungal inoculation on 
plant agronomic traits and AM fungal root colonization 
patterns, PERMANOVAs showed a significant response 
in total yield and fruit nutrient concentration, as well as 
in AM fungal traits, in both Pisanello and Rio Grande 
tomato varieties (Fig. 5; Table S9). In the PCO biplots, 
the first two principal coordinates explained 30.2 and 
39.0% of the total variance in the varieties Pisanello and 
Rio Grande, respectively (Fig.  5). Pairwise tests high-
lighted significant differences between F. mosseae and 
mock-inoculated control (-M) and between G. gigas-
pora and -M in the var. Pisanello (Table S9). Moreover, 

Fig. 2   Presence of arbuscules in roots of Solanum lyco-
persicum L. var. Pisanello at BBCH 22: -M (mock inocula-
tion, control) vs + M (AMF inoculation) (a) (n = 3 and n = 12, 
respectively); Gigasporaceae (Giga) vs Glomeraceae (Glome) 
(b) (n = 6). AMF root colonization: -M vs + M (c) (n = 3 and 
n = 16, respectively). Presence of arbuscules (d) and AMF 

root colonization (e) at BBCH 62: -M vs + M. At BBCH 89, 
presence of vesicles: -M vs + M (f); Giga vs Glome (g) (n = 6); 
Funnelliformis mosseae (F.mos) vs Sclerocystis sinuosa (S.sin) 
(h) (n = 3). AMF root colonization: F.mos vs S.sin (i) (n = 3). 
Figure reports only the significant results among all the tested 
linear orthogonal contrasts (Table S3)
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significant differences were detected between F. mos-
seae and -M, G. gigaspora and -M, S.pellucida and -M, 
as well as between F. mosseae and G. gigaspora, and 
G.gigaspora and S.sinuosa (Table  S9). However, since 
the two tomato varieties were studied in different years, 
the results can not be directly compared with each other.

Effect of AM fungal inoculation on residue 
decomposition and bacterial and fungal abundance in 
soil

A significant interaction between AMF inocula-
tion (AMF inoc) and time of field exposure (Time) 

was observed for litter bags weight (% of remaining 
mass) and decomposition rate (expressed as a first-
order decay constant, k) (P < 0.001; Fig.  6a, b). As 
expected, for all treatments, the percentage of remain-
ing mass decreased with time, showing the high-
est values at 40 days and the lowest at 79 days in G. 
gigantea and in S. sinuosa, respectively (Fig. 6a). At 
40 days from litter bag deposition, lower percentages 
of remaining mass were recorded in all treatments 
as compared with G. gigantea, whereas at 52  days 
S. sinuosa showed a significantly lower remaining 
mass than all the treatments including the not inocu-
lated control (-M). In the S. pellucida treatment, litter 

Fig. 3   Total yield (accumulated fruit fresh weight per plant) 
of Solanum lycopersicum L. var. Pisanello: -M (mock inocu-
lation, control) vs + M (AMF inoculation) (n = 3 and n = 12, 
respectively) (a); Gigaspora gigantea (G.giga) vs Scutellos-
pora pellucida (S.pellu) (n = 6) (b). Shoot dry weight (SDW) 
of S. lycopersicum L. var. Rio Grande: -M vs + M (n = 3 and 

n = 12, respectively) (c); Funnelliformis mosseae (F.mos) vs 
Sclerocystis sinuosa (S.sin) (n = 3) (d); total yield of S. lyco-
persicum L. var. Rio Grande: -M vs + M (n = 3 and n = 12, 
respectively) (e). Figure reports only the significant results 
among all the tested linear orthogonal contrasts (Table S2 and 
S3). Data on SDW of var. Rio Grande refer to BBCH 22
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bags weights significantly decreased at each sam-
pling time, while in the other treatments a more vari-
able trend was recorded. At the latest sampling time, 
86 days from litter bag deposition, -M and F. mosseae 
showed similar percentage of remaining mass (mean: 
8.5%) in comparison with the other AM fungal inocu-
lated treatments (mean: 1.3%).

The decomposition rate per day, during the starting 
period of litter bag deposition (1–40 days), was simi-
lar among all AM fungal inoculated treatments and 
-M, whereas during the following 12  days (between 
40 and 52 days from litter bag deposition) S. sinuosa 
strongly promoted the decomposition rate compared 
to the other treatments (Fig. 6b). In the third period 
(the following 15  days), S. pellucida determined a 
faster decomposition as compared to the other treat-
ments, whereas during the fourth period (the latest 
15  days), G. gigantea, S. pellucida and S. sinuosa 
showed higher values of decomposition rate per day 
compared to -M and F. mosseae.

Total bacterial and fungal abundance as well as 
fungal:bacterial ratio in the rhizospheric soil of both 
tomato varieties significantly increased under AM 
fungal inoculation (Fig.  6c, e; Table  S10 and S11). 
Moreover, fungal abundance and fungal:bacteria ratio 
increased in the rhizospheric soil of var. Pisanello 
under Gigasporaceae compared with Glomeraceae 
(Fig. 6d; Table S10 and S11). Similarly, in the rhizos-
pheric soil of var. Rio Grande, bacterial and fun-
gal abundance and fungal:bacteria ratio increased 
under Gigasporaceae compared with Glomeraceae 
(Fig.  6f; Table  S10 and S11). In var. Rio Grande, 
fungal:bacterial ratio was higher under G. gigaspora 
compared with S. pellucida (Fig.  6g). Finally, we 
found a significant relationship between the matrix 
of percentages of remaining mass of litter bags at the 
four sampling times and the matrix of soil fungal and 

bacterial abundances (RELATE analysis, ρ = 0.241) 
(Fig. S5).

Discussion

The present study showed that: (i) AM fungal inoc-
ulation increased AM fungal colonization traits at 
flowering as well as total yield and fruit nutrient con-
centration (e.g., P, Cu, and Mn) in both tomato vari-
eties; (ii) in the var. Rio Grande AM fungal inocula 
belonging to Gigasporaceae positively affected the 
occurrence of arbuscules and vesicles at transplanting 
and fruit maturity, respectively; (iii) Gigasporaceae 
promoted the concentration of nutrients in fruits in 
comparison with Glomeraceae; (iv) a variability of 
AM fungal colonization and fruit nutrient concen-
tration occurred within members of Glomeraceae in 
both varieties; (iv) within Gigasporaceae, S. pellucida 
increased the yield of var. Rio Grande compared to 
G. gigantea; (v) in var. Rio Grande the inoculation 
with F. mosseae determined a residue decomposi-
tion similar to controls and lower than S. sinuosa 
and the two species belonging to Gigasporaceae; 
(vi) in both tomato varieties AM fungal inoculation 
promoted total bacterial and fungal abundance as 
well as fungal:bacterial ratio as compared to control; 
(vii) Gigasporaceae increased fungal:bacterial ratio 
as compared to Glomeraceae, irrespective of tomato 
variety.

Mycorrhizal infection potential of the AM fungal 
inocula and of the experimental soil

The mycorrhizal infection potential (MIP) of the 
field experimental soil sampled in 2019 and of 2020 
were low. The values are consistent with the low MIP 
recorded in agricultural soils located in the same area 
(Bedini et  al. 2013; Di Bene et  al. 2013; Pellegrino 
et  al. 2011). This supports AM fungal inoculation 
and confirms how agricultural practices (such as type 
and dose of organic fertilizer; Aguilar et  al. 2017) 
can damage soil AM fungal inoculum potential and 
impair native AM fungal community, with putatively 
adverse effects on growth and yield of crops (Gosling 
et al. 2006; Johnson 1993; Plenchette et al. 2005). On 
the other side, the AM fungal species utilised as inoc-
ula in our study showed values of MIP similar among 
each other and higher than the field experimental soil. 

Fig. 4   Concentration of nutrients in fruits of Solanum lyco-
persicum L. var. Pisanello at 1st harvest (a-e) and 2nd harvest 
(f-o) and in fruits of var. Rio Grande at 2nd harvest (p-ac). 
Orthogonal contrasts: -M (mock inoculation, control) vs + M 
(AMF inoculation) (n = 3 and n = 12, respectively); Gigaspo-
raceae (Giga) vs Glomereaceae (Glome) (n = 6); Gigaspora 
gigantea (G.giga) vs Scutellospora pellucida (S.pellu) (n = 3); 
Funnelliformis mosseae (F.mos) vs Sclerocystis sinuosa (S.sin) 
(n = 3). First and second harvest for var. Pisanello: 22nd July 
2019 and 1st August 2019, respectively; second harvest for var. 
Rio Grande: 10.th August 2020. Figure reports only the sig-
nificant results among all the tested linear orthogonal contrasts 
(Table S4)

◂
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This suggested potential to compete successfully with 
indigenous AMF and a positive effect on plant growth 
and nutrient uptake (Smith et al. 1992), in accordance 
to the site-specificity of AM fungal inoculant estab-
lishment and persistence (Kokkoris et al. 2019).

Effect of AM fungal inoculation on tomato root 
colonization

At flowering, irrespective of AM fungal species, 
AM fungal inoculation increased percentages of AM 
fungal root colonization and of root length contain-
ing arbuscules of both tomato varieties. These results 
are in accordance with the positive effect recorded on 
mycorrhizal colonization parameters assessed at dif-
ferent sampling times in some tomato varieties (TC 
2000, PKM-1, Rio Grande, Roma and Perfect Peel) 
inoculated at nursery by an inoculum composed by 
five AM fungal species and by single inocula (Bona 
et  al. 2017; Njeru et  al. 2017; Subramanian et  al. 
2006). However, at fully ripening, the lack of differ-
ence in mycorrhizal colonization observed in treated 
and control plants of var. Rio Grande is in contrast 
with the results of Bona et al. (2017) and Njeru et al. 
(2017). This inconsistency might be due to differ-
ences in soil AM fungal native inoculum potential 
linked to soil texture and in the responsiveness of the 

host genotype, or to differences in the adopted agri-
cultural systems (conventional vs organic).

The hypothesis that members of Glomeraceae 
allocate a larger fraction of fungal biomass inside the 
roots and members of Gigasporaceae exhibit a lim-
ited root colonization, supported by the findings of 
Maherali and Klironomos (2007), was not confirmed 
by our results in the field. Indeed, a similar AM fun-
gal root colonization was recorded at flowering in the 
roots of tomato var. Pisanello inoculated by both AM 
fungal families, as well as at transplanting, flowering 
and harvest in tomato var. Rio Grande. Thus, the effect 
of native AMF on this trait is shown to overcome the 
life-history colonization strategies characteristic of the 
two AM fungal families. The Glomeraceae intra-fam-
ily variability in AM fungal root colonization of both 
tomato varieties supports previous studies that detected 
significant differences in AM fungal root coloniza-
tion among closely related AM fungal species belong-
ing to the same family and colonizing different plant 
genotypes (Maherali and Klironomos 2012). Indeed, 
host-specificity and functional diversity in AMF was 
supported by the opposite trend in the AM fungal root 
colonization of F. mosseae and S. sinuosa detected in 
the varities Pisanello and Rio Grande. Nevertheless, 
further studies with a larger number of AM fungal iso-
lates would better elucidate both inter- and intra-family 

Fig. 5   Principal Coordinates Analysis (PCO) biplots on the 
effect of AM fungal inoculation on total yield, fruit nutrient 
concentration and AMF root traits (arbuscules, vesicles, AMF 
root colonization) of Solanum lycopersicum L. var. Pisanello 
(a) and var. Rio Grande (b). Treatments were: -M (mock inoc-
ulation, control); Gigaspora gigantea (G.giga); Scutellospora 

pellucida (S.pellu); Funneliformis mosseae (F.mos); Sclerocys-
tis sinuosa (S.sin). G.giga and S.pellu belong to Gigasporaceae 
and F.mos and S.sin to Glomeraceae. Response data were 
fourth-root transformed and normalized, and the resemblance 
matrix was calculated using the Euclidean distance between 
samples (n = 3; Table S9)
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variability in mycorrhizal colonization traits, since in 
the field the interactions between inoculated AMF and 
native microbial community can be an additional factor 
adding complexity in the outcome of the symbiosis.

Effect of AM fungal inoculation on tomato yield and 
fruit nutrient concentrations

In accordance with the overall increase of AM fungal 
colonization in tomato roots following nursery inoc-
ulation, total yield was improved by 35%, on aver-
age over both inoculated varieties. Our results are in 
agreement with the yield increase (22%) detected on 
tomato var. TC 2000 inoculated at nursery by a mix-
ture of five AM fungal species (Bona et al. 2017). By 
contrast, Subramanian et  al. (2006) did not find any 
effect of nursery AM fungal inoculation by R. intra-
radices on fruit yield of tomato var. PKM-1, under 

well watered conditions over a two-year experiment. 
Similarly, Njeru et  al. (2017), nursery inoculat-
ing three varities of tomato (Roma, Rio Grande and 
Perfect Peel), did not find fruit yield changes during 
a three-year experiment. Nevertheless, during the 
third year of the study following no cover crops, var. 
Rio Grande inoculated with a mixture of F. mosseae 
IMA1 and R. intraradices IMA6 showed 54% higher 
fruit yield compared with control. The incosistencies 
in field outcome of the AM fungal inoculation high-
light the importance of performing multi-year experi-
ments and verifying the effects on all harvests, taking 
into consideration the scalability of the tomato fruit 
ripening. Indeed, Conversa et al. (2013) detected rel-
evant yield increases at some harvest times during 
the two-year experiment on tomato var. Ercole. Other 
factors that can affect the field outcome of AM fun-
gal inoculation can be the variability in compatibility 

Fig. 6   Interaction between AM fungal inoculation and time on 
the percentage of remaining mass (a) and on the decomposi-
tion coefficient (k) of the litter bags (b) applied in the experi-
ment with Solanum lycopersicum L. var. Rio Grande. Differ-
ent letters represent significant differences among treatments 
(Tukey-B test, P ≤ 0.05; n = 3). Treatments were: -M (mock 
inoculation, control); Gigaspora gigantea (G.giga); Scutello-
spora pellucida (S.pellu); F. mosseae (F.mos); S. sinuosa (S.
sin). G.giga and S.pellu belong to Gigasporaceae and F.mos 
and S.sin to Glomeraceae. Sampling times were: 40, 52, 67 
and 86 days from litter bag deposition (LD). LD corresponds 
to plant transplanting (23.th May 2020). Fungal:bacterial ratio 

(F:B) in soil of S. lycopersicum L. var. Pisanello: -M vs + M 
(AMF inoculation) (c) (n = 3 and n = 12, respectively); Giga-
sporaceae (Giga) vs Glomeraceae (Glome) (d) (n = 6). F:B in 
soil of S. lycopersicum L. var. Rio Grande: -M vs + M (e) (n = 3 
and n = 12, respectively); Giga vs Glome (f) (n = 6); G.giga 
vs S.pellu (g) (n = 3). Sampling was performed at BBCH 89. 
Three biological replicates per treatment were analyzed. Each 
one was obtained from a triplicate extraction of DNA from the 
rhizospheric soil collected from a pool of two plants per repli-
cate plot. Figure reports only the significant results among all 
the tested linear orthogonal contrasts (Table S10 and S11)
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between plant genotype and AM fungal isolate, soil 
water/nutrient availability and soil AM fungal inocu-
lum potential (Bitterlich et al. 2019; Hart and Reader 
2002; Subramanian et al. 2006).

Very few studies explored in the field the effect of 
AM fungal inoculation on nutrients in tomato fruits 
and they focused only on N and P uptake (Bowles 
et  al. 2016; Conversa et  al. 2013). In line with the 
increases detected in the present study on fruit P 
concentration following AM fungal inoculation, 
Conversa et al. (2013) reported P increases at 0 and 
26.2 kg P ha−1 fertilizer rates. It is worth pointing out 
that this effect can be of key importance for tomato 
production, since it is known that high P uptake is 
needed for maximizing tomato growth and devel-
opment (Zhu et al. 2018). Similarly to Bowles et al. 
(2016), reporting AM fungal mediated increases in 
fruit N content by 22%, we found a promotion of fruit 
N concentration in var. Pisanello at 1st harvest. This 
is also supported by the higher N content detected 
in roots and shoots of tomato under field AM fungal 
inoculation (Subramanian et al. 2006).

Among the other seven minerals (K, Ca, Mg, Zn, 
Fe, Cu and Mn) analysed in tomato fruits, positive 
responses to AM fungal inoculation were detected 
for Mg, Cu, and Mn in var. Pisanello and for K, Zn, 
Fe, Cu and Mn in var. Rio Grande at 2nd harvest, 
whereas negative responses were detected in var. 
Pisanello for Zn and Ca at 1st and 2nd harvest, respec-
tively. There is well-documented proof in literature 
of positive changes in fruit Zn, Cu, Fe and Mn con-
centration (13%, 34%, 8%, and 19%, respectively) 
following AM fungal inoculation (Lehmann et  al. 
2014; Lehmann and Rillig 2015). The increase of K 
in fruits of the inoculated tomato var. Rio Grande is 
also in line with Liu et al. (2002) who detected higher 
K concentration in AM fungal inoculated plants of 
maize. Indeed, higher K concentration can be a con-
sequence of increased P concentration in plant tissues 
(Cardoso and Kuyper 2006). The detected increases 
in fruits of minerals, such as P, K, Mn, Cu and Zn 
are indeed of relevance for plant nutrition, but also 
for tomato quality, since ascorbic acid and β-complex 
vitamins increase in fruits with increasing levels of 
those mineral elements (Dorais et al. 2008). It is also 
important to underline that higher K concentration in 
fruits of tomato were linked to higher values of the 
health-promoting carotenoids and lycopene (Trudel 
and Ozbun 1971), and that the mycorrhizal-mediated 

increases of divalent cations, playing a crucial role 
in pectin metabolism (Mignani et al. 1995), can also 
influence tomato tissue softening during ripening. 
Moreover, Ca, P, and Zn can maintain the integrity of 
membranes (Marschner 2012), while Zn, Cu, Fe and 
Mn can govern nonenzymatic and enzymatic compo-
nents of the anti-oxidative system of plant (Marschner 
2012) and enhance plant defence (Poschenrieder et al. 
2006).

 The absence of differences between the two fami-
lies in AM fungal root colonization was likely deter-
mined by the interactions of the inocula with native 
microorganisms, whose abundance could have been 
enanched by inoculation, and reflected in no differ-
ences in plant growth and fruit yield. The under-
standing of the plant growth response to inoculation 
with members of Gigasporaceae and Glomeraceae is 
certainly made more complex by the occurrence of 
native AMF in field conditions. Indeed, Maherali and 
Klironomos (2007), studying in pot experiments the 
influence of phylogeny on AM fungal colonization 
strategies, found contrasting results in comparison with 
us. Higher root colonization, characteristic of Glomer-
aceae, correlated with reduced plant growth, whereas 
lower root colonization together with higher level of 
extraradical hyphal growth, characteristic of Gigaspo-
raceae, correlated with higher plant growth (Maherali 
and Klironomos 2007). Thus, we can support that the 
agroecological relevance of the life-strategies of the 
two AM fungal families in terms of productivity may 
have been modulated in our study also by site-specific 
factors, such as soil disturbance, texture, pH, availabili-
ties of mineral nutrients, plant genotype or the active 
microbiome shaped by the hyphal exudates (Hart and 
Reader 2004; Klironomos 2003; Lekberg et  al. 2007; 
van der Heijden and Scheublin 2007; Zhou et al. 2020), 
as well as by intra-family functional variability (Avio 
et al. 2006; Mnkvold et al. 2004). The intra-family var-
iability was supported by the higher total yield found 
in the var. Pisanello inoculated with S. pellucida com-
pared with G. gigantea, together with the higher shoot 
dry weight found in the var. Rio Grande inoculated 
with S. sinuosa compared with F. mosseae.

The hypothesis that members of Gigasporaceae, 
due to their colonization strategy, would have had 
a stronger effect on nutrient uptake of fruits com-
pared with members of Glomeraceae, was instead 
confirmed by our results on fruit nutrient con-
centrations. Indeed, the concentration of several 
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nutrients were higher in fruits inoculated with Gig-
asporaceae (var. Pisanello: Mg and Mn; var. Rio 
Grande: N, K, Zn, Cu, Mn), with the only exception 
of Ca in fruits of tomato var. Rio Grande. Thus, 
this beneficial functional trait of Gigasporaceae can 
be of great importance in nursery/field inoculation 
programmes in order to improve tomato quality by 
enhancing macro- and micro-nutrient concentration 
in fruits, especially under the scenario of increased 
atmospheric CO2, which is reported to lower min-
eral nutrient uptake by almost all crops (Gojon 
et  al. 2022; Pimenta et  al. 2022). Previously, 
Maherali and Klironomos (2007) reported that 
inoculation with Gigasporaceae correlated with 
enhanced P concentration in shoot, whereas inoc-
ulation with Glomeraceae determined the oppo-
site response. Accordingly, Powell et  al. (2009) 
found that evolution of increased soil coloniza-
tion is positively correlated with shoot P content. 
By contrast, recently, Sorghum sudanense grown 
in pots and inoculated with members of Glomer-
aceae family outperformed plants inoculated with 
Gigasporaceae for shoot P concentrations, whereas 
other mineral elements (i.s., Zn, K, Mn and Na) 
were similar between the two families (Horsch et al 
2022). Moreover, as regard plant P concentration, 
the mix of the two families outperformed single-
family inocula. Thus, the correlation between fun-
gal colonization strategies and functional host ben-
efits is still to be fully clarified. To generalize host 
nutrient response to AM fungal functional traits, all 
factors potentially affecting the relationship should 
be taken into consideration.

Among the factors potentially affecting the rela-
tionship between AM fungal life-history strategies 
and plant nutrient uptake, intra-family variability was 
found to play a major role. Indeed, consistent increases 
of several nutrient concentrations were found in fruits 
of tomatoes inoculated with F. mosseae compared 
to S. sinuosa. The behaviour of F. mosseae might be 
related to peculiar charateristics of this AM fungal spe-
cies. Funneliformis mosseae is known to be ubiquitous 
in agricultural soils (Helgason et  al. 1998; Pellegrino 
et  al. 2020), quickly colonize plant roots (Chagnon 
et  al. 2013) and facilitate shoot biomass and root 
length, as well as shoot and fungal P uptake respect to 
other species belonging to the same family (Avio et al. 
2006; Munkvold et al. 2004).

Effect of AM fungal inoculation on residue 
decomposition and bacterial and fungal abundance in 
soil

Inoculation by AMF, as expected, increased soil fun-
gal abundance in comparison with controls in both 
tomato varieties. By contrast, soil bacterial abundance 
promoted by AM fungal inoculation increased pro-
portionally less than soil fungal abundance, thereby 
determining a strong increase of the fungal:bacterial 
(F:B) ratio in inoculated plots. Moreover, based on 
the higher F:B ratio we expected higher litter decom-
position rates and lower percentages of remain-
ing mass in inoculated treatments (García-Palacios 
et  al. 2013; Delgado et  al. 2015). In our field study 
with var. Rio Grande, fungal-dominated communi-
ties detected in inoculated treatments were associated 
with lower percentage of litter remaining mass and 
higher decomposition rate (i.e., k) at the latest litter 
bag sampling, with the exception of F. mosseae. This 
general behaviour is in line with the results of a recent 
meta-analysis on AMF and soil enzyme activities 
(Qin et al. 2020). In this work, AMF were reported to 
increase soil enzyme activities (e.g., N-, P-, C-releas-
ing enzymes), expecially under conditions of neutral 
pH and small availabilty of P (Qin et  al. 2020) that 
are the conditions found in our study. In support of 
these findings, AMF were also found to promote lit-
ter decomposition (Herman et al. 2012; Hodge et al. 
2001; Mei et al. 2022), although they are assumed to 
facilitate soil C sequestration by increasing C input to 
soil and by protecting SOC from decomposition via 
soil aggregation (Pellegrino et  al. 2022; Rillig and 
Mummey 2006).

The fact that Gigasporaceae family allocates a 
larger fungal biomass in soil compared with Glom-
eraceae was confirmed by our results on the higher 
F:B ratios in inoculated soil in both tomato varie-
ties. In addition within Gigasporaceae, the higher 
F:B ratios found in soil of var. Rio Grande inoculated 
with G. gigantea compared with S. pellucida can be 
due to a larger dimension of the spores and a greater 
mycelium development (Dalpè et  al. 2005; Dood 
et  al. 2000). Moreover, our hypothesis that inocula-
tion with Gigasporaceae, associated with a higher 
soil fungal:bacterial ratio, would have determined a 
higher residue decomposition, and that Glomeraceae, 
associated with a lower soil fungal:bacterial ratio, 
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would have determined a lower litter decomposition, 
was not fully confirmed. Indeed, both members of 
Gigasporaceae and S. sinuosa showed high decom-
position rates per day at the latest sampling. How-
ever, the positive relationship found between fungal 
and bacterial abundance and percentage of remaining 
mass suggests a good predictivity of the microbial 
traits for residue decomposition dynamics. Moreo-
ver, since AMF improve C input by increasing plant 
productivity and by producing extraradical mycelium, 
and reduce C stock by promoting residue decomposi-
tion, the assessment of SOC should be integrated in 
the study of residue decomposition to improve the 
prediction of the outcome of inoculation in terms of 
SOM stabilization. Finally, we should take into con-
sideration that the fungal:bacterial ratio obtained in 
this study using the qPCR DNA assay (Fierer et  al. 
2015) reflects microbial abundance, but not necessary 
activity. Thus, the assessment of enzyme activities in 
further studies would improve our understanding of 
the mechanisms involved in residue decomposition 
dynamics.

Conclusions

Our work highlights the importance of applying 
AM fungal inocula to tomato at nursery for improv-
ing yield and fruit nutrient concentrations. Nursery 
inoculation of vegetables is easy to perform and may 
generate time and cost benefits compared to soil inoc-
ulation. The understanding of the plant responses to 
AM fungal functional traits turned out to be crucial 
for more efficient exploitation of AMF in sustainable 
agricultural biofertilizer programs targeted to the pro-
duction of high-quality food. Overall Gigasporaceae, 
which accelerates litter decomposition, might be of 
great relevance for the uptake and translocation of 
several macro- and micro-nutrients to tomato fruits 
and should be included in mixed microbial inocu-
lants for the enhancement of the nutritional value of 
tomato under organic farming systems. Moreover, 
due to the variability of environmental conditions in 
time and space, host benefit could be greater with the 
application of communities having AMF with diverse 
life-history stategies. Therefore, we suggest that 
field inoculation with mixtures of members of Giga-
sporaceae and Glomeraceae families should should 
be further studied to improve our knowledge on the 

significance of AM fungal functional groups for host 
nutrient response.
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