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of its parts. Several designs of the propulsive rotors 
are considered: from helical flagella with different 
chirality to marine propellers, and their relative per-
formance is assessed.
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1 Introduction

A microswimmer is a microscopic object (i.e., of 
size in the range 1–100 × 10−6 m) with the ability to 
move in a fluid environment. Examples coming from 
nature include sperm cells, bacteria, parasites carry-
ing potentially deadly diseases (e.g. the plasmodium 
sporozoite responsible for transmission of malaria), 
unicellular algae, protists, and protozoa (in particu-
lar: ciliates, flagellates). Since swimming is crucial in 
carrying out their biological function, understanding 
the mechanics of swimming for these living creatures 
is important; the reviews [1–5] and the many refer-
ences cited therein can provide ample material for 
an introduction to the subject. At the same time, the 
motility of small living organisms is inspiring new 
concepts and constructs for small scale motile robots 
and devices, with many potential applications in the 
biomedical sector ranging from minimally invasive 
endoscopic and surgical devices, to targeted drug 
delivery, see, e.g., [6–9]. The most basic navigation 

Abstract Navigation problems for a model bio-
inspired micro-swimmer, consisting of a cargo head 
and propelled by multiple rotating flagella or propel-
lers and swimming at low Reynolds numbers, are for-
mulated and solved. We consider both the direct prob-
lem, namely, predicting velocity and trajectories of 
the swimmer as a consequence of prescribed rotation 
rates of the propellers, and inverse problems, namely, 
find the rotation rates to best approximate desired 
translational and rotational velocities and, ultimately, 
target trajectories. The equations of motion of the 
swimmer express the balance of the forces and tor-
ques acting on the swimmer, and relate translational 
and rotational velocities of the cargo head to rotation 
rates of the propellers. The coefficients of these equa-
tions, representing hydrodynamic resistance coeffi-
cients, are evaluated numerically through a custom-
built finite-element code to simulate the (Stokes) fluid 
flows generated by the movement of the swimmer and 
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problem for an artificial microswimmer is to predict 
the swimming speed on the basis of the geometry of 
the swimmer and of the characteristics of the motor. 
This problem has been formulated by Purcell in his 
seminal papers [10, 11], where the problem is also 
elegantly solved for a swimmer made of a rigid head 
and a rigid rotating helical tail (bio-inspired by the 
body architecture of the bacterium Escherichia coli), 
assuming that hydrodynamic interactions between 
head and tail are negligible. More recent extensions 
to include explicitly the effect of these hydrodynamic 
interactions, the presence of surrounding walls, or the 
effect of non-negligible inertial forces are discussed, 
for example, in [12–14].

Investigating biology with the functionalist view-
point of the engineer often leads to new under-
standing of biological mechanisms and functions, 
while modeling the mechanics of life-like miniature 
machines can lead to the design of novel bio-inspired 
artificial constructs with superior performance. In this 
two-way interaction between biology and engineer-
ing, mathematical modeling plays an important role 
in that it allows to distill the essence of the success 
of some specific mechanism, phrase in the portable 
language of mathematical formalisms, and make it 
available to applications at different length scales, 
or based on different material systems, that can be 
quite different from the one that initially prompted 
the research. In this paper, we focus on robotic micro-
swimmers whose body architecture is based on rotat-
ing tails attached to a rigid head and mimics the one 
of bacteria. We consider navigation and control prob-
lems inspired by those typically posed in the context 
of unmanned aerial vehicles (drones) see, e.g., [15, 
16]. We extend and adapt the techniques used in that 
field to the context of microswimming. In doing so, 
we follow Purcell [10] and consider, for simplicity, 
the case in which hydrodynamic interactions among 
the main body (hull) and the propulsive units (rotors) 
can be neglected. Through the analysis of some spe-
cific model systems, we show how to formulate and 
solve some navigation problems. The direct swim-
ming problem consists in solving for the dynamics of 
the swimmer, namely, predicting velocity and trajec-
tories of the swimmer as a consequence of prescribed 
rotation rates of the rotors. The inverse swimming 
problem (namely, find the rotation rates of the rotors 
to best approximate desired translational and rota-
tional velocities and, ultimately, target trajectories) is 

a classical control problem. We anticipate and hope 
that this viewpoint will be useful also in future studies 
of microswimmers of biological interest, and in the 
design of new bio-inspired robotic constructs that can 
find interesting applications as biomedical devices.

2  Equations of motion

We consider a model micro-swimmer composed of 
a rotationally symmetric head (the cargo or resistive 
unit, which can be used as a hull to contain a payload, 
and that we model as a prolate ellipsoid of revolu-
tion along the longitudinal axis with unit vector �3 ) 
and four rotors (propulsive units shaped as either 
helical tails or marine propellers) with axes of rota-
tion parallel to the longitudinal axis of the hull and 
rigidly attached to the hull with a fixed eccentricity e 
(the same eccentricity for all four propulsive units, for 
simplicity). Formally, we denote the ellipsoidal body 
of the microswimmer (the hull) as Bh , the propulsive 
rotors as Bp,i , i = 1,… , 4 , and we denote the swim-
mer body as B , which is the union of Bh and of all 
the Bp,i . The position vector with respect to the center 
gravity of Bh of the i-th rotor is denoted by �i and we 
will assume �i = h�3 + e(�i)

⟂ , where (�i)⟂ is the unit 
vector obtained by normalizing the projection of �i 
in the plane perpendicular to �3 , so that all the rotors 
have the same offset along the longitudinal axis h, 
and the same eccentricity e. We refer to Fig. 1 for a 
sketch of the geometry of the micro-swimmer.

For the rotors we will consider several different 
designs, including single helical tails, double heli-
cal tails of higher symmetry, and marine propellers, 
as discussed below. The fluid environment in which 
the robot moves is a Newtonian viscous fluid (air, 
water, glycerol, etc.) flowing at low Reynolds num-
bers, so that inertial forces can be neglected and its 

Fig. 1  Sketch of the geometry of the micro-swimmer
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fluid dynamics is governed by the following (Stokes) 
equations:

Here the volume of the fluid surrounding the body B 
extends to the whole space ℝ3 (i.e., no confining walls 
are considered, for simplicity), �(�) ∈ ℝ3 , p(�) ∈ ℝ 
are, respectively, the velocity and pressure of the fluid 
at a generic point � ∈ ℝ3�B , while 𝜇 > 0 is the fluid 
dynamic viscosity and � ∈ ℝ3 is the velocity vec-
tor field of the solid swimmer. Equality between the 
velocity of the fluid and of the solid at points on the 
boundary of the swimmer, where the two are in con-
tact, is the no-slip boundary condition. We consider a 
neutrally buoyant solid swimmer, and neglect inertial 
and gravity forces. The equations of motion reduce 
to the balance of generalized viscous forces (i.e., 
forces and moments, e.g., with respect to the center 
of mass of the swimmer’s body) exerted by the fluid 
on the swimmer. The center of mass of the body of 
the swimmer is denoted by � , and its orientation is 
described by a time-parametrized rotation that maps 
the orientation at time t = 0 , which we assume to 
coincide with the orientation of the lab frame, to the 
current orientation (the one of the body frame at time 
t) according to �i(t) = ℚ(t)�i(0) , with ℚ(0) = 𝕀 , the 
identity matrix. Translational and rotational velocities 
of the body of the swimmer are related to positional 
and orientational variables by the equations

where we have denoted with �̌ the axial tensor asso-
ciated with � , i.e., the skew-symmetric tensor such 
that �̌� = � × � for every vector �.

In view of the linearity of the Stokes system (1), 
the generalized viscous forces exerted by the fluid on 
the swimmer are linear functions of the translational 
and rotational velocities of the swimmer �,� and of 
the rotational velocities of the rotors �i = �i�3 , so 
that the equations of motion of the swimmer can be 
written as

(1)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

∇ ⋅ �(�) = 0 ∀� ∈ ℝ3�B

−∇p(�) + �Δ�(�) = 0 ∀� ∈ ℝ3�B

‖�(�)‖, p(�) → 0 for ‖�‖ → +∞

�(�) = �(�) ∀ � ∈ �B

(2)
d

dt
�(t) = �(t),

(
d

dt
ℚ(t)

)
ℚ

T (t) = �̌(t)

Here the 6 × 6 grand resistance matrix �tot contains 
the hydrodynamic resistive coefficients for rigid 
motions of the swimmer, and the i-th column of the 
6 × 4 propulsive matrix ℙ contains forces and torques 
generated by the i-th rotor turning at unit speed while 
all other rotors are still ( �i = 1 , �j = 0 for j ≠ i ) and 
the hull is not moving ( � = � = � ). The procedure to 
construct these matrices is further described below. 
Following [10, 11] we use additivity of resistance 
forces contributed by the individual components of 
the swimmer (this approximation arises from neglect-
ing hydrodynamic interactions between the various 
parts of the composite swimmer, see the discussion in 
Sect. 7) and write

where

are the grand resistance matrices of the hull and 
the i-th rotor, respectively, each partitioned in 3 × 3 
blocks containing translational ( � ), coupling ( ℂ ) and 
rotational ( � ) resistance coefficients, while

where (ř
i
) is the axial tensor associated with r

i
 , the 

position vector of the i-th rotor with respect to � . 
Matrices �e,i contain the transport terms due to the 
eccentricity of the rotors, and are needed to account 
for the fact that the moments in the grand resistance 
matrices �p,i are computed with respect to the center 
of mass of the i-th rotor, while the last three equa-
tions in (3) express the vanishing of the moment with 
respect to the center of mass of the swimmer body. 
Moreover, again due to the possible eccentricity of 
the rotors, a rotational motion around the center of the 
hull � with angular velocity � induces a translational 
velocity of the i-th rotor given by � × �i . Clearly, all 
these contributions vanish in the case �i = 0 . Finally, 

(3)𝔽tot

�
�

�

�
+ ℙ

⎡⎢⎢⎢⎣

�1

�2

�3

�4

⎤⎥⎥⎥⎦
=

�
�

�

�

(4)�tot = �h +

4∑
i=1

�p,i +

4∑
i=1

�e,i

(5)𝔽h =

[
𝕂h ℂh

ℂT
h
𝕎h

]
, 𝔽p,i =

[
𝕂p,i ℂp,i

ℂT
p,i

𝕎p,i

]

(6)𝔽e,i =

[
𝕆 𝕂p,i(ři)

T

(ř
i
)𝕂p,i (ři)ℂp,i + ℂT

p,i
(ř

i
)T + (ř

i
)𝕂p,i(ři)

T

]
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recalling that �i = �i�3 , the i-th column of the 6 × 4 
propulsion matrix ℙ is given by

More in detail, the coefficients of the grand resistance 
matrices (5) are obtained from the following repre-
sentation formulas for the hydrodynamic forces and 
moments on the hull and on the i-th rotor

where �h is the total force on the hull and �h is the total 
moment with respect to the hull center of gravity � of 
the forces acting on the hull, � (i) represents the force 
acting on the i-th rotor, � (i) is the moment computed 
with respect to the center of gravity of the i-th pro-
peller �p,i , and �i(t) = ℚ(t)�i(0) is the position vector 
of the i-th rotor with respect to the center of gravity 
� of the hull. Computing the total force and the total 
moment with respect to � of allthe forces in (8), and 
factoring out � , � , and �i , we obtain the equations of 
motion (3), with coefficients given by (4)–(7).

3  An ideal swimmer with high symmetry

It is useful to consider an ideal swimmer (that is 
endowed with complete rotational symmetry, and 
for which the structure of the matrices containing 
the hydrodynamic coefficients is particularly sim-
ple, thanks to many cancellations) with the prop-
erty that selected swimming problems can be solved 
analytically. These closed form solutions will be 
used as conceptual benchmarks for swimming prob-
lems formulated on more realistic swimmer geom-
etries, that can be solved only numerically, as dis-
cussed later in Sect. 6.

(7)ℙi =

[
(ℂp,i)�3

(𝕎p,i + ř
i
ℂp,i)�3

]

(8)

⎧
⎪⎪⎨⎪⎪⎩

�h = 𝕂h� + ℂh�

�h = (ℂh)
T� +𝕎h�

� (i) = 𝕂p,i

�
� +� × �i

�
+ ℂp,i

�
� + �i

�

�
(i) = (ℂp,i)

T
�
� +� × �i

�
+𝕎p,i

�
� + �i

�

The grand resistance matrix of the swimmer 
body (the hull) is assumed of the form

Notice that the equation above gives the compo-
nents of the grand resistance matrix with respect to 
the body frame, which we have chosen to be aligned 
with the principal axes of inertia of the swimmer 
body, whose longitudinal axis is parallel to �3 . These 
components are invariant with time. This is natural 
since viscous drag coefficients reflect the shape of the 
object, which is seen invariant in the body frame. We 
are assimilating here the hull to an ellipsoid of revolu-
tion, and we are neglecting the presence of rigid links 
anchoring the rotors to the swimmer body. In Sect. 6 
we will model explicitly these links, and the structure 
of the matrix will be slightly perturbed. The grand 
resistance matrix of the i-th rotor is assumed of the 
form

We will consider two cases. Either the rotors are all 
equal, or else the first two propellers have one chiral-
ity (e.g., they are both left-handed helical filaments), 
and the other two have opposite chirality (e.g., they 
are both right-handed helical filaments). We assume 
that the unit vectors �1 , �2 are parallel to the links 
between hull and propellers shown in Fig. 2. The first 

(9)�h =

⎡⎢⎢⎢⎢⎢⎢⎣

K11,h 0 0 0 0 0

0 K11,h 0 0 0 0

0 0 K33,h 0 0 0

0 0 0 W11,h 0 0

0 0 0 0 W11,h 0

0 0 0 0 0 W33,h

⎤⎥⎥⎥⎥⎥⎥⎦

(10)

𝔽p,i =

�
𝕂p,i ℂp,i

ℂT
p,i

𝕎p,i

�

=

⎡⎢⎢⎢⎢⎢⎢⎣

K11,p,i 0 0 C11,p,i C12,p,i 0

0 K11,p,i 0 C21,p,i C22,p,i 0

0 0 K33,p,i 0 0 C33,p,i

C11,p,i C21,p,i 0 W11,p,i 0 0

C12,p,i C22,p,i 0 0 W11,p,i 0

0 0 C33,p,i 0 0 W33,p,i

⎤⎥⎥⎥⎥⎥⎥⎦
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case is illustrated in Fig. 2, case (a). All rotors have 
the same grand resistance matrix, given by

The propulsive matrix for this case is then given by

The second case is illustrated in Fig. 2, case (b). In 
this case we have

in Eq.  (10) (these coupling coefficients change sign 
because of the change of chirality) and the propulsive 
matrix is given by

(11)�p,i =

⎡
⎢⎢⎢⎢⎢⎢⎣

K11,p 0 0 C11,p C12,p 0

0 K11,p 0 C21,p C22,p 0

0 0 K33,p 0 0 C33,p

C11,p C21,p 0 W11,p 0 0

C12,p C22,p 0 0 W11,p 0

0 0 C33,p 0 0 W33,p

⎤
⎥⎥⎥⎥⎥⎥⎦

, i = 1,… , 4, case (a)

(12)

ℙ
+ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

C33,p C33,p C33,p C33,p

0 C33,p ⋅ e 0 − C33,p ⋅ e

−C33,p ⋅ e 0 C33,p ⋅ e 0

W33,p W33,p W33,p W33,p

⎤
⎥⎥⎥⎥⎥⎥⎦

, case (a)

(13)
C33,p,3 = C33,p,4 = −C33,p,1 = −C33,p,2, case (b)

(14)

ℙ
− =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

C33,p C33,p − C33,p − C33,p

0 C33,p ⋅ e 0 C33,p ⋅ e

−C33,p ⋅ e 0 − C33,p ⋅ e 0

W33,p W33,p W33,p W33,p

⎤
⎥⎥⎥⎥⎥⎥⎦

, case (b)

Again, we refer to Sect.  6 for examples of grand 
resistance and propulsion matrices arising for con-

crete examples of realistic rotors, shaped as either 
helical tails or as marine propellers, and computed 
by solving numerically outer Stokes problems of the 
type (1), with suitable assignments of the swimmer 
velocity field �.

4  Swimming problems: solutions for the ideal 
swimmer

Substituting the hydrodynamic coefficients for 
the ideal swimmers given by Eq.  (9) and either 
Eqs. (11)–(12) or Eqs. (13)–(14) into the equations 
of motion (3), we can formulate and solve analyti-
cally some physically relevant navigation problems 
that can be used as conceptual benchmarks for the 
discussion of more complex cases, for which only 
numerical simulation is feasible.

4.1  Direct swimming problem

The direct swimming problem consists in pre-
dicting the velocity of the swimmer in response 

Fig. 2  The two configura-
tions of the rotors as seen 
from �3 (top-view): a all 
rotors with same chirality 
and same angular veloc-
ity (left), b opposite rotors 
with opposite chirality and 
opposite angular velocity. 
The directions of the links 
joining the rotors to the hull 
are used to define the unit 
vectors �1 , �2 of the body 
frame
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to prescribed rotation rates of the rotors. In other 
words, given the components of the vector of rotor 
velocities � as data, solve the equations of motion 
(3) in terms of the unknown translational and rota-
tional velocities. Since the 6 × 6 matrix �tot is invert-
ible, there is a unique solution for any arbitrary 
assignment of the rotor velocities �i , i = 1,… , 4 , 
namely,

We are interested in particular to the following two 
concrete problems. For the ideal swimmer with iden-
tical rotors, case (a), consider equal rotor velocities

Using Eqs. (9), (11), and (12), Eq. (15) becomes

Its solution is given by U1 = U2 = Ω1 = Ω2 = 0 and

or, more explicitly,

We remark that, in this case, it is impossible to have 
a non-zero translational velocity accompanied by 
zero rotational velocity. Since it turns out that always 
C33 ≪ K33,W33 , zero rotational velocity con only 
occur if � = 0 , and hence also the translational veloc-
ity must vanish. For the ideal swimmer with opposite 
rotors having opposite chirality, case (b), we are inter-
ested in the case

and Eq. (15) becomes

(15)
[
�

�

]
= −𝔽−1

tot
ℙ�

(16)�1 = �2 = �3 = �4 = �

(17)
�
�

�

�
= −𝔽−1

tot
ℙ
+

⎡⎢⎢⎢⎣

1

1

1

1

⎤⎥⎥⎥⎦
� = −𝔽−1

tot

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

4C33,p

0

0

4W33,p

⎤
⎥⎥⎥⎥⎥⎥⎦

�

(18)
[
U3

Ω3

]
= −

[
K33,tot C33,tot

C33,tot W33,tot

]−1 [
4C33,p

4W33,p

]

(19)

⎧⎪⎪⎨⎪⎪⎩

U3 = 4
W33,totC33,p − C33,totW33,p

K33,pW33,p − C2
33,p

�

Ω3 = 4
−C33,totC33,p + K33,totW33,p

K33,pW33,p − C2
33,p

�

(20)�3 = �4 = −�1 = −�2 = −�

Its solution is given by U1 = U2 = Ω1 = Ω2 = Ω3 = 0 
and the only non-vanishing velocity component is

We remark that, in this case, it is possible to have a 
non-zero translational velocity accompanied by zero 
rotational velocity. As discussed in more detail in 
Sect. 5, and as it is intuitively obvious, this leads to 
straight trajectories along the initial orientation of the 
longitudinal axis of the body swimmer �3(0) , with 
no rotations along the body axis (purely translational 
motion along a straight line parallel to �3(0)).

4.2  Inverse swimming problem

The inverse swimming problem consists in deter-
mining rotation rates �i , i = 1,… , 4 of the rotors 
to best approximate a set of translational and rota-
tional velocities and, ultimately, a target trajectory. 
Arranging the �i in a vector � =

[
�1,�2,�3,�4

]T 
of unknowns, and the components of � and � in a 
vector � =

[
U1,U2,U3,Ω1,Ω2,Ω3

]T of data, we can 
rewrite the equations of motion (3) in the standard 
form �� = � as follows

The 6 × 4 matrix ℙ is clearly not invertible and there 
exist data � for which Eq. (23) do not have exact solu-
tions. One can then turn to approximate solutions, 
which are typically not unique. One possible notion 
of approximate solution of (23) is one that minimizes 
the error in the least squares sense

The pseudo-inverse ℙ† of the coefficient matrix ℙ 
is useful to find the solution �† of (24) with small-
est norm ‖�‖ = (

∑4

i=1
�2
i
)1∕2 . This matrix can be 

(21)
�
�

�

�
= −𝔽−1

tot
ℙ
−

⎡⎢⎢⎢⎣

1

1

−1

−1

⎤⎥⎥⎥⎦
� = −𝔽−1

tot

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

4C33,p

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

�

(22)U3 = 4
C33,p

K33,tot

�

(23)ℙ� = 𝔽tot�

(24)min
�i

‖ℙ� − 𝔽tot�‖2 for given � ≠ 0.
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computed starting from the Singular Value Decompo-
sition (SVD) of ℙ

where � , �  are two orthogonal matrices whose col-
umns contain the left-singular and right-singular 
vectors of ℙ , respectively, and � is a diagonal matrix 
whose entries are the singular values Σii of ℙ . The 
pseudo-inverse ℙ† of ℙ is then given by

where the elements of the diagonal matrix �† are 
given either by Σ†

ii
= 1∕Σii if Σii ≠ 0 , or by Σ†

ii
= 0 if 

Σii = 0 . We then obtain

Concretely, we are interested in the inverse problem 
of approximating a translational motion with velocity

The interest of this problem is that it leads to a straight 
trajectory parallel to the initial orientation of the lon-
gitudinal axis of the swimmer, joining an initial and a 
target position along that axis with no energy losses 
that would accompany wobbling motions around the 
straight trajectory, and with no rotations around the 
body axis. Besides saving energy, the last feature 
would be useful for microswimmers equipped with a 
camera located inside the hull and pointing along the 
direction of the body axis. Similarly to what happens 
with drones hovering above a still target, having no 
rotations would imply that the still target would not 
appear rotating in the images collected by the camera, 
as is desirable. For the ideal swimmer with identical 
rotors, case (a), the approximate solution (27) cor-
responding to � given by (28) (translational motion 
along longitudinal axis of the hull) is, in particular,

Equation (29) above represents only an approximate 
solution for the inverse problem of pure translational 
swimming with velocity (28). As it is known from the 
discussion of the direct swimming problem for the 
ideal swimmer of type (a), equal rotation rates of the 

(25)ℙ = 𝕌�𝕍
T

(26)ℙ
† = 𝕌�

†
𝕍
T

(27)�
† = ℙ

†
𝔽tot�.

(28)� =
[
0, 0, U3, 0, 0, 0

]T

(29)�
† =

1

4

�
C33,pF33,tot + 4W33,pC33,p

C2
33,p

+W2
33,p

�
U3

⎡⎢⎢⎢⎣

1

1

1

1

⎤⎥⎥⎥⎦

rotors lead to non-zero rotational velocities along the 
longitudinal axis of the swimmer. For the ideal swim-
mer with opposite rotors having opposite chiralities, 
case (b), the approximate solution (27) corresponding 
to � given by (28) (translational motion along the lon-
gitudinal axis of the hull) is

Equation (30) above represents also an exact solution 
for the inverse problem of pure translational swim-
ming with velocity (28). As it is known from our 
previous discussion of the direct swimming prob-
lem for the ideal swimmer of type (b), if propellers 
with opposite chirality rotate with angular velocities 
of equal absolute value and opposite sign, then the 
motion of the swimmer is a pure translation along the 
longitudinal axis of the hull.

5  Trajectories

Once the translational and rotational velocities � , � of 
the swimmer are known, its trajectory and orientation 
can be recovered by integrating equations (2), see e.g. 
[17]. We consider here the case of constant rotor veloci-
ties. Since the components in the body frame {�i} , 
i = 1, 2, 3 of the hydrodynamic matrices in the equa-
tions of motion (3) are time-invariant (either exactly 
or up to a good level of approximation), it is natural to 
write these equations in the body frame, and to solve 
for the components of � , � in this frame, which are 
denoted by Ui and Ωi , i = 1, 2, 3 and are time-invariant. 
It follows from (2) that

and using the skew-symmetric matrix

(30)�
† =

1

4C33,p

F33,totU3

⎡⎢⎢⎢⎣

1

1

−1

−1

⎤⎥⎥⎥⎦

(31)d

dt
�(t) =

3∑
i=1

Ui�i(t)

(32)
d

dt
�i(t) =� × �i(t)

(33)=

⎡⎢⎢⎣

0 Ω3 − Ω2

−Ω3 0 Ω1

Ω2 − Ω1 0

⎤⎥⎥⎦
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we can rewrite the last equation as

We assume that the body frame coincides with the 
laboratory frame at t = 0 , and the solution of Eq. (34) 
is easily expressed in terms of the exponential matrix 
�(t) = exp( t) as

we then integrate (31) to get the trajectory of the 
center of gravity. We set

and, similarly,

Moreover, we denote by 𝜓 = cos−1(�̂0 ⋅ �̂0) the 
(constant) angle between � and � , by �̂0 the unit 
vector perpendicular to both �̂0 and �̂0 such that 
�̂0 × �̂0 = sin(𝜓)�̂0 and set �̂0 = �̂0 × �̂0 , so that 
the triplet {�̂0, �̂0, �̂0} is an orthonormal basis. We 
obtain

Equation (36) gives the trajectory in the lab frame of 
the center of gravity �(t) starting from �(0) at time 
t = 0 and it represents a circular helix with axis paral-
lel to �̂0 . The straight trajectories of Sect. 4 are a spe-
cial case corresponding to � parallel to � , leading to 
sin(�) = 0 . When � and � are orthogonal, cos� = 0 
and the helical trajectories (36) degenerate to circu-
lar ones (the swimmer swims in circles). We remark 
that helical trajectories are ubiquitous for biological 
microswimmers (in particular: unicellular ciliates or 
flagellates) that swim by beating periodically their 
cilia or flagella [18–21]. This is a direct consequence 
of the invariance (to translations and rotations) of the 
equations of motion of the swimmer, Eq.  (3), writ-
ten in the body frame. A more precise version of this 

(34)d

dt
�i(t) =

3∑
i=1

ij�j(t).

(35)�i(t) =

3∑
i=1

�ij(t)�j(0)

�0 =

3�
i=1

Ui�i(0), U0 = ‖�0‖, �̂0 = �0∕U0,

�0 =

3�
i=1

Ωi�i(0), Ω0 = ‖�0‖, �̂0 = �0∕Ω0.

(36)�(t) = U0t cos(𝜓)�̂0 +
U0

Ω0

sin(𝜓)
(
cos(Ω0t)�̂0 + sin(Ω0t)�̂0

)
.

statement can be found in [22, 23], where it is called 
the Helix Theorem.

6  Navigation problems and trajectories 
for realistic geometries

In order to solve concretely the equations of motion 
(3), the hydrodynamic coefficients contained in 
the grand resistance matrices �  (of either the whole 
swimmer or of one of its parts; we contemplate both 
cases by referring to the grand resistance matrix of 
a generic body B ) and in the propulsion matrix ℙ 
need to be evaluated. The row index in these matrix 
identifies the type of generalized force (components 
of force along {�i} , i = 1, 2, 3 for the first three rows, 
components of the moment with respect to center 
of gravity along {�i} , i = 1, 2, 3 for the second three 
rows). The column index identifies the type of swim-
mer motion for which the corresponding generalized 
force is being evaluated: translation at unit speed 
along {�i} , i = 1, 2, 3 for the first three columns of 
�  , rotation at unit speed around an axis through the 
center of gravity and parallel to {�i} , i = 1, 2, 3 for the 
last three columns of �  , rotation at unit speed of the 
i − th rotor (while the rest of the swimmer is fixed) 
for the i − th column of ℙ . We follow here [14] and 
exploit the reciprocal theorem (see, e.g., [24]) to com-
pute these hydrodynamic coefficients. More in detail, 

denoting by �i the velocity field in the fluid region 
Bext⧵B obtained by solving the outer Stokes prob-
lem (1) with prescribed velocity �i on the solid B , the 
generic hydrodynamic coefficient �ij in matrices �  
and ℙ can be computed as

where D� is the symmetric part of the gradient of the 
velocity field � . Here we are writing Bext rather than 
ℝ3 since, in practice, we solve the outer Stokes prob-
lem in free space by replacing ℝ3 with a large compu-
tational box Bext and setting �(�) = 0 on � ∈ �Bext . As 
the row index i and the column index j vary in (37), 
the Dirichlet data �i in the outer Stokes problem (1) 

(37)�ij = 2� ∫
Bext⧵B

D�i ⋅ D�jdV .
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scan translations and rotations at unit speed, the �j 
scan translations, rotations, and individual rotor rota-
tion at unit speed, and �ij scans all the coefficients of 
the matrices �  and ℙ . For example, the element �ij of 
the 3 × 3 submatrix � giving the components of vis-
cous drag (i-th force component) opposing transla-
tions at unit speed in the direction of �j is

where �i (respectively, �j ) is the solution of the outer 
Stokes problem (1) corresponding to a prescribed 
velocity on the swimmer’s boundary given by � = �i 
(respectively, � = �j ). In order to evaluate the hydro-
dynamic coefficients a CFD program was devel-
oped within an MSc thesis by the first author using 
Pyhton, based on the FEniCSx library, a widespread 
open-source computing platform that can be executed 
with good results on a personal computer (Dell XPS 
9560 2.8GHz i7-7700HQ with 8 GB RAM in our 
case). The code has been validated against benchmark 
results from the literature, comparing both veloc-
ity fields with the case of a rotating helix [25], and 
drag coefficients [26, 27] for a sphere and an ellipsoid 
in free space, showing that the computational box 
is large enough and mesh refinement is sufficient to 
guarantee relative errors of magnitude 10−3 with the 
use of a personal computer. Use of an implementation 
on a High Performance Computing (HPC) platform 

(38)�ij = 2� ∫
Bext⧵B

D�i ⋅ D�jdV .

allowing larger computational boxes and finer meshes 
showed smaller relative errors, not exceeding 10−5 . 
The HPC code was also written in Python, and based 
on the FEniCS [28] library, which uses an MPI imple-
mentation for parallelcomputations, and relied, for the 
solution of the linear systems resulting from the dis-
cretization, on the the PETSc library, which provides 
state-of-the art parallel iterative solvers. The code 
also allows for more complex configurations, such as 
the possibility of simulating the hydrodynamic flow 
around a swimmer in confined environment (e.g. a 
narrow channel), and of taking inertial effects into 
account, which becomes a necessity when the size of 
the swimmer is not microscopic. The Navier–Stokes 
equations are solved in place of the Stokes equations 
when needed, at moderate values of Reynolds num-
ber. This code was also validated against results from 
literature, from standard examples of Stokes [29] flow 
to more complex motions of falling discs and spheres 
in a fluid at moderate (but non-zero) Reynolds num-
bers [30, 31]. We collect in the rest of this section the 
matrices containing the hydrodynamic coefficients for 
some concrete geometries, illustrated in the figures 
that follow, and use them to calculate the correspond-
ing trajectories generated by specific choices of rotor 
velocities, as illustrated below.

The body of the swimmer is the prolate spheroid 
shown in Fig.  3 with four links of equal length e 
protruding in directions perpendicualr to the axis of 

Fig. 3  Ellipsoid hull with minor semi-axes 
a = b = 50 × 10−3  m and major semi-axis c = 150 × 10−3  m, 
where the trace on the hull surface of the computational mesh 
for the fluid domain is also shown. The four transversal links 
have all length e = 40 × 10−3 m

Fig. 4  Single left-handed helix. R  =  8.5 × 10−3  m, 
L = 220 × 10−3 m, P = 53 × 10−3 m

Fig. 5  Double left-handed helix, R  =  8.5 × 10−3  m, 
L = 220 × 10−3 m, P = 53 × 10−3 m
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symmetry (parallel to �3 ). The corresponding grand 
resistance matrix is given in (39). Here, and in all the 
formulas that follow for the resistance matrices we 
have used the notation ex to denote ×10x ; the value of 

Fig. 6  Trajectories for 
left-handed single-helical 
propellers (left) and double-
helical ones (right)

For the rotors we will consider several alternative 
choices. For the case shaped as a single left-handed 
helix with axis length L, radius R, and pitch P, illus-
trated in Fig. 4, the grand resistance matrix �p is given 
by

Considering propellers shaped as double-helices, 
obtained from the previous ones by adding a second 
identical helix with the same axis but shifted by a 
phase-angle � , see Fig.  5, we obtain a grand resist-
ance matrix �p given by

(40)
�
𝕂p ℂp

ℂT
p
𝕎p

�
=

⎡⎢⎢⎢⎢⎢⎢⎣

8.80e−01 − 1.99e−03 4.81e−03 − 2.00e−05 8.76e−02 9.00e−05

−1.99e−03 8.79e−01 − 6.42e−03 − 8.72e−02 − 6.90e−04 1.80e−04

4.81e−03 − 6.42e−03 7.52e−01 1.02e−03 − 1.80e−04 7.40e−04

−2.00e−05 − 8.72e−02 1.02e−03 1.34e−02 7.00e−05 6.00e−05

8.76e−02 − 6.90e−04 − 1.8e−04 7.00e−05 1.34e−02 − 1.30e−04

9.00e−05 1.80e−04 7.40e−04 6.00e−05 − 1.30e−04 2.20e−04

⎤⎥⎥⎥⎥⎥⎥⎦

.

the viscosity we have used is always that of glycerol 
at room temperature ( � = 1.0 Pas) and the units of 
the coefficients are [ Nsm−1 ] for the � submatrix, [Ns] 
for the ℂ submatrix, and [Nsm] for the � submatrix.

(39)
�
𝕂 ℂ

ℂT 𝕎

�
=

⎡⎢⎢⎢⎢⎢⎢⎣

2.38e00 2.83e−02 6.30e−03 1.41e−03 1.73e−02 8.36e−05

2.83e−02 2.38e00 2.04e−03 − 1.29e−02 1.06e−03 3.43e−04

6.30e−03 2.04e−03 2.04e00 − 1.79e−04 5.47e−04 − 2.72e−05

1.41e−03 − 1.29e−02 − 1.79e−04 3.53e−02 5.41e−05 3.29e−06

1.73e−02 1.06e−03 5.47e−04 5.41e−05 3.54e−02 1.71e−05

8.36e−05 3.43e−04 − 2.72e−05 3.29e−06 1.71e−05 1.12e−02

⎤⎥⎥⎥⎥⎥⎥⎦

.



2441Meccanica (2022) 57:2431–2445 

1 3
Vol.: (0123456789)

Fig. 7  XZ plane projec-
tion of trajectories for 
left-handed single-helical 
propellers (left) and double-
helical ones (right)

Fig. 8  XZ plane projec-
tions of the body frame (the 
orthonormal triplet {�

i
(t)} , 

i = 1, 2, 3 represented by 
the colored arrows) for 
left-handed single-helical 
propellers (left) and double-
helical ones (right)

Fig. 9  Experimentally tested rotors: double helical tail and 
marine propeller from [14], geometric data in Table  1. Sur-
faces used for mesh generation (left) and a detail of the trace 
of the computational mesh on the propeller blades (right) are 
shown

Table 1  Geometric data for the propellers in Fig. 9

Rotor type Double helical tail Marine propeller

Total length (m) 8.00 × 10−2 2.00 × 10−2

External radius (m) 1.60 × 10−2 1.30 × 10−2

Filament radius (m) 1.75 × 10−3 /
Expanded area ratio / 0.30
Pitch / Diameter / 1
N blades / 3
Rake [deg] / 20
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Realistic geometries do not have perfect rota-
tional symmetries, and the corresponding matrices 
of hydrodynamic coefficients have less cancellations 
and fewer zero entries with respect to the ideal case 

(41)
�
𝕂p ℂp

ℂT
p
𝕎p

�
=

⎡⎢⎢⎢⎢⎢⎢⎣

1.78e + 00 − 3.82e−03 9.30e−04 − 1.00e−05 1.78e−01 1.40e−04

−3.82e−03 1.76e + 00 1.25e−03 − 1.75e−01 − 1.42e−03 4.00e−05

9.30e−04 1.25e−03 1.49e + 00 − 9.00e−05 1.00e−05 1.50e−03

−1.00e−00 − 1.75e−01 − 9.00e−05 2.69e−02 1.40e−04 − 1.00e−07

1.78e−01 − 1.42e−03 1.00e−05 1.40e−04 2.73e−02 2.00e−05

1.40e−04 4.00e−05 1.50e−03 − 1.00e−07 2.00e−05 4.40e−04

⎤⎥⎥⎥⎥⎥⎥⎦

discussed in Sect. 4. The lack of symmetry in the pro-
peller produces trajectories with more pronounced 
wobbling than in cases where the propellers have 
higher symmetry. This is true not only in the com-
parison with the ideal swimmers of Sect. 4, but also 
in going from the single-helix to the double-helix 
shape, as shown by the trajectories reported below. 
The trajectories corresponding to the two choices of 

Fig. 10  Trajectories for 
double left-handed (left) 
and marine (right) propel-
lers

Fig. 11  XZ plane projec-
tion of trajectories for dou-
ble left-handed (left) and 
marine (right) propellers
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propellers of Figs. 4 and 5 are compared below, both 
in a 3D spatial view with axes XYZ parallel to the axes 
of the triplet {�̂0, �̂0, �̂0} , and through projections 
of the trajectory on the XZ plane (see Figs. 6, 7 and 
8). From the plot of the projection on the XZ plane of 
the orthonormal triplet {�i(t)} , i = 1, 2, 3 defining the 
body frame it is possible to see that the swimmer with 
double-helical propeller advances with smaller oscil-
lations around the longitudinal axis. Rotations around 

the longitudinal axis �3 are, however, still present also 
in the more symmetric design.

Finally, two additional rotor geometries were con-
sidered, one shaped as a double right-handed heli-
cal tail and another one shaped as a marine propel-
ler, as shown in Fig.  9. These shapes included here 
for comparison, since they have been 3D-printed and 
their hydrodynamic coefficients have been computed 
on a HPC platform and validated experimentally, as 
reported in [14]. The grand resistance matrices for the 
two propellers shown in Fig. 9 are given by

(42)
�
𝕂p ℂp

ℂT
p
𝕎p

�
=

⎡⎢⎢⎢⎢⎢⎢⎣

4.16e−01 6.90e−04 − 3.32e−06 − 7.42e−06 1.61e−02 − 4.94e−08

6.90e−04 4.03e−01 2.06e−06 − 1.56e−02 5.20e−04 2.75e−07

−3.32e−06 2.06e−06 3.54e−01 3.83e−08 − 6.06e−08 − 5.70e−04

−7.42e−06 − 1.56e−02 3.83e−08 9.90e−04 − 2.16e−05 − 1.41e−08

1.60e−02 5.20e−04 − 6.07e−08 − 2.16e−05 1.01e−03 − 1.58e−09

−4.94e−08 2.75e−07 − 5.70e−04 − 1.41e−08 − 1.58e−09 1.20e−04

⎤⎥⎥⎥⎥⎥⎥⎦

(43)
�
𝕂p ℂp

ℂT
p
𝕎p

�
=

⎡⎢⎢⎢⎢⎢⎢⎣

1.81e−01 2.58e−06 4.73e−06 2.07e−05 1.96e−03 − 3.54e−07

2.58e−06 1.81e−01 − 1.64e−07 − 1.96e−03 2.07e−05 − 7.57e−08

4.73e−06 − 1.64e−07 1.78e−01 5.10e−07 2.24e−07 − 4.11e−05

2.07e−05 − 1.96e−03 5.10e−07 4.98e−05 3.51e−09 1.51e−09

1.96e−03 2.07e−05 2.24e−07 3.51e−09 4.98e−05 − 7.49e−09

−3.54e−07 − 7.57e−08 − 4.11e−05 1.51e−09 − 7.49e−09 2.10e−05

⎤⎥⎥⎥⎥⎥⎥⎦

Table 2  Hull velocities: translational velocities are normal-
ized by dividing by the body size (taken as the major semi-axis 
length, i.e. 0.15 m) and are in units of body-sizes per second; 

rotational velocities are expressed as turns per second (i.e. 
divided by 2 � ). Case (a): identical rotors, with the same rota-
tional speed �

i
= 1rad/s

Propeller type U1 U2 U3 Ω1 Ω2 Ω3

single helix 1.43e−02 9.68e−03 1.44e−02 2.68e−03 − 4.99e−03 4.47e−02
double helix 1.98e−03 1.41e−03 1.72e−02 3.59e−04 − 1.96e−04 8.50e−02
double helical tail − 6.90e−04 − 7.79e−04 − 1.69e−02 − 8.58e−04 8.42e−04 2.69e−02
marine propeller − 4.10e−05 − 4.90e−05 − 1.57e−03 − 8.81e−05 8.43e−05 4.73e−03

Table 3  Hull velocities: translational velocities are normal-
ized by dividing by the body size (taken as the major semi-axis 
length, i.e. 0.15 m) and are in units of body-sizes per second; 

rotational velocities are expressed as turns per second (i.e. 
divided by 2 � ). Case (b): opposite rotors with opposite chiral-
ity and equal and opposite rotational speed �

i
= ±1rad/s

Propeller type U1 U2 U3 Ω1 Ω2 Ω3

Single helix 7.82e−03 7.13e−03 7.94e−03 2.69e−04 − 2.67e−03 − 1.05e−03
Double helix 1.03e−03 9.08e−04 9.92e−03 2.64e−04 − 1.64e−04 1e−08
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The geometric data for the helical tail and the 
marine propeller of Fig.  9 are reported in Table  1. 
The resulting 3D trajectories are shown in Fig.  10 
while their projection onto the plane XZ are shown in 
Fig. 11.

The swimming performance of the marine pro-
peller is not good in terms of distance covered 
along the Z-axis, as expected. This is due to the fact 
that at low Reynolds numbers inertia is negligible, 
and thus the rotating blades are not able to generate 
significant lift. Hence, they produce small propul-
sive forces. This kind of propeller would fare bet-
ter in a comparison at moderate Reynolds numbers, 
as is done in [14]. Such a study however is outside 
of the scope of the present work. For the single and 
double helix propellers, simulations are performed 
for each of the two configurations shown in Fig. 2, 
and the numerical values of the computed velocities 
are reported in Table  2 and Table  3. For the dou-
ble helical tail and marine propellers, only case a) 
is considered since geometries of opposite chiral-
ity have not been studied yet with experiments. In 
case (b) the velocity of rotation Ω3 is never exactly 
zero as in the ideal case of Sect. 3, but it is substan-
tially reduced with respect to case (a), for a propel-
ler of equivalent geometry. For propellers shaped as 
double-helices this rotational velocity is negligible, 
leading to good performance in applications requir-
ing an on-board camera housed in the hull, and 
pointing along the direction of the longitudinal axis.

7  Discussion and perspectives

In conclusion, we have formulated and solved the 
problem of predicting velocities and trajectories of 
composite swimmers made of an ellipsoidal head and 
multiple eccentric rotors, as a consequence of pre-
scribed rotation rates of the propellers (direct swim-
ming problem). Conversely, we have discussed how to 
find the rotation rates of the propellers to best approx-
imate desired translational and rotational velocities 
and, ultimately, target trajectories (inverse swimming 
problem). We have obtained analytical solutions for 
ideal swimmers with high symmetry, and numerical 
solutions for more realistic swimmers which do not 
exhibit full rotational symmetry. Future extensions 
of this work will examine the role of hydrodynamic 
interactions. To resolve them, the hydrodynamic 

coefficients in (3) must be evaluated directly for the 
whole composite swimmer, along the lines discussed 
in [13, 14], and cannot be obtained by simply adding 
the individual contributions of the various parts of 
the composite swimmer, as in Eqs.  (4)–(6). Another 
possible extension is to consider the presence of 
surrounding walls and the effect of inertial forces, 
similarly to what has been done in [14] for a robotic 
swimmer with a single non-eccentric rotor. The HPC 
code described in the previous section was developed 
with the aim of investigating these possible exten-
sions of our work. A further direction worth explor-
ing is to address optimal control problems for best 
matching of desired (target) trajectories, similarly to 
what is discussed in [32].
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