
 

1 

 

 
 

Abstract 
Guaranteeing safety and efficient traffic management in the railway network requires 

the correct execution of crucial and challenging tasks, such as localization, object 

detection, and obstacle avoidance. An increasing number of solutions are exploring 

the use of visual sensors to enhance accuracy without requiring a significant support 

at the infrastructure level. This paper proposes a simulation framework to generate 

LiDAR data for testing and validating novel algorithms in a railway scenario, where 

gathering these kinds of data in a real setting is impractical and time-consuming.  

Given a train trajectory, the framework exploits a graphic engine to generate the 

railway infrastructures in the surrounding area of the rail tracks, populating the virtual 

world with environmental objects. The point cloud of the LiDAR is generated through 

the ray-casting system of the graphic engine, taking into account the radiometric 

nature of the sensor, including the backscattered intensity for each point of the frame 

computed with the Lambertian–Beckmann model. Moreover, each LiDAR point 

comes with a semantic label that can be used to generate datasets for training and 

testing deep neural networks for object detection or segmentation tasks. The 

experiment results show the reliability of the LiDAR simulation to reproduce the 

sensor behaviour both in the distance measurements of the point cloud and in the 

backscattered intensity model. 
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1  Introduction 
 

Train navigation systems play a crucial role in traffic management and security for 

estimating the position of the train along the railroad in real time. Currently, the train 

position is estimated based on balises, i.e., transponders placed along the railroad that, 

when detected, provides the absolute position of the train, and on wheel sensors, i.e., 

devices that read the angular velocity of the train wheels [1]. The speed acquired from 

the wheel sensor is integrated to compute the distance travelled by the train between 

two consecutive balises. However, wheel odometry suffers from drift error mainly 

caused by models inaccuracy and slip and slide phenomena. The drift accumulated 

during travelling reduces the accuracy of the train position from one balise to another. 

Moreover, balises have high deployment and maintenance costs, and are exposed to 

bad weather conditions and vandalism. 
 

For these reasons, many sensors have been considered to increase the position 

estimation accuracy, such as inertial measurements units (IMUs), global navigation 

satellite system (GNSS), light detection and ranging (LiDAR), and camera, exploiting 

sensor fusion and deep learning methods to overcome the limitations of balises and 

wheel encoders [2]. Over the last decades, the scientific community primarily focused 

on the exploitation of visual sensors, creating accurate navigation systems and solving 

other tasks, such as object detection and tracking, obstacle avoidance, etc. 
 

Despite of its higher cost, the LiDAR sensor allows overcoming several camera 

drawbacks, since it is less prone to weather conditions, is not affected by ambient 

light, and directly detects object distance without further computation. Unfortunately, 

gathering data on different railway scenarios to test and validate LiDAR-based 

algorithms and methods is still impractical and time-consuming, especially in critical 

operating conditions. For instance, acquiring a large dataset with thousands or 

millions of labelled data in real environments, in different scenarios, to train and test 

a deep neural network would take several months. 
 

This paper presents a simulation framework based on Unreal Engine 4 (UE4) [3] 

to generate realistic railway scenarios semi-automatically and gather LiDAR labelled 

datasets to test and validate novel algorithms. Figure 1 presents a block diagram of 

the proposed simulation framework. It consists of two main components: the 

Environment Generation Tool, aimed at generating the environment surrounding the 

railroad and the environmental objects that populate the simulated world, and the 

Visualization Tool, aimed at creating the visual world, moving the train along a given 

trajectory, and exporting the obtained datasets. 
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2 Methods 

 

The Environment Generation Tool reads the given train trajectory to build the 

surrounding environment of the railway. The trajectory consists of evenly-time-

distributed positions and travelling directions of the train. 
 

The train trajectory is divided into railroad blocks, each one labelled to indicate its 

type (e.g., curve, straight, tunnel, station, or bridge) and its starting point. The tool is 

composed of three sub-modules as follows. 

1. The Auxiliary Track Generation sub-module loop-over the railroad blocks 

and generates auxiliary tracks parallel to the main trajectory, with a pseudo-

random algorithm.  

2. The Landscape Generation sub-module renders a heightmap based on the 

GeoGen application [4] that matches the height of the track waypoints in the 

surrounding, while the altitude of the farther area is obtained by modulating a 

Gaussian noise to attain a realistic scenario. Railroad blocks that represent 

bridge or station are explicitly treated, allowing the placement of rivers, 

stations, and buildings.  

3. The Object Position Generation sub-module randomly generates the position 

of trees and rocks alongside the straight and curve blocks, and the position of 

buildings and roads alongside the station blocks. 
 

The Environment Generation Tool produces three outputs containing the 

waypoints of the trajectory and the auxiliary tracks with the railroad division, the 

landscape heightmap, and the positions of the environmental objects. These are passed 

to the Visualization tool built on top of UE4, which consists of three main blocks: 

1. Train Movement System: given the main trajectory, it moves the train to each 

waypoint, producing one frame for each waypoint. This method allows 

Figure 1: Block diagram of the proposed simulation framework. 
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generating consistent data from different sensors  (e.g., IMU, LiDAR, and 

camera) with respect to the same train position; 

2. Environment Placement System: given the landscape heightmap and the 

environmental object positions, it physically places the landscapes in the 

virtual world and builds the whole scenario exploiting the Train Template UE4 

plugin [5]. 

3. LiDAR Simulation: given the LiDAR specification, it emulates the LiDAR 

working principle by exploiting the ray-casting system of UE4. In particular, 

UE4 allows generating rays that return the first object hit in a given direction. 

Thus, the LiDAR is emulated spreading different rays accordingly with the 

scanning pattern of the sensor. The procedure also returns the type of object 

hit by the ray, which is used to compute the backscattered intensity of the ray. 
 

3 Results 
 

The proposed tools allows the generation of realistic railway scenarios, starting from 

the waypoints of the trajectory and the blocks' information. Figure 2 shows two 

examples of railway environment generated from a simulated train trajectory. 

 

 
Figure 2: Example of railway environments generated by the simulation framework. 

 

The final output is a dataset ready to be used in different contexts. For example, 

Figure 3 shows a visualization from RViz [6] of a simulated LiDAR frame. 
 

  
Figure 3: Simulated point cloud of a generated railway environment visualized with 

RViz. 
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To validate the accuracy of the simulation, two experiments have been performed. 

Following the approach presented in [7], a Velodyne LiDAR VLP-16 [8] was used in 

a scene with a cubic object with low specular reflection. Table 1 shows the main 

characteristic of the sensor. 
 

Table 1: VLP-16 LiDAR specification. 
 

In the two experiments the distance between the LiDAR and the object has been 

set to 70 cm and 150 cm, respectively. The scene was reproduced in the simulation 

environment, and the RMSE was computed between the positions returned by the 

real LiDAR and those computed by the simulator. As shown in Figure 4 and 5, the 

RMSE resulted to be ~1 cm, which is comparable with the precision of the VLP-16.  

 

 

 

 

Horizontal 

resolution 

Vertical 

resolution 

Wavelength Beams Precision 

0.2° 2° 905 nm 16 ±3 cm 

Figure 4: Experiment at 70 cm, showing the distances acquired by the LiDAR 

central beam (green crosses) and those computed by the simulator (red dots). 
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To evaluate the intensity model, another experiment has been performed by placing 

a sheet of aluminium on a rough wall at 75°, and comparing that acquired data with 

those computed by simulation in a similar setting. The backscattered intensity of each 

point is computed using the Lambertian–Beckmann model as a function of the 

characteristics of the object and the incidence angle, using the constants of wood for 

the wall and the coefficients of car shell for the aluminium sheet defined in [9]. Figure 

6 shows both point clouds coloured with the intensity values. 
 

 
Figure 6: Intensity coloured point clouds. 

 

Note that the central aluminium sheet shows how the backscattered intensity 

system follows the Lambertian–Beckmann model, where the highest intensity 

corresponds to a lower incidence angle. 
 

4 Conclusions and Contributions 
 

This paper presented a graphic simulation framework to generate LiDAR frame 

datasets, for testing and validating new navigation solutions, as well as object 

detection and tracking algorithms. The tool allows reproducing different train 

operating conditions, generating railway environments in a pseudo-random manner, 

and simulating critical case studies in the railway environment. The framework is 

Figure 5: Experiment at 150 cm, showing the distances acquired by the LiDAR 

central beam (green crosses) and those computed by the simulator (red dots). 
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focused on the generation of LiDAR datasets exploiting the ray casting system of 

UE4. 
 

The preliminary experiments carried out to compare the simulated data with the 

real ones were encouraging, reporting a difference of 1 cm between the two 

measurements, which is comparable with the error of the Velodyne VLP-16 LiDAR 

used in the tests. Also, the reflection model implemented in the system allows 

simulating the LiDAR ray-dropping behaviour, thus enhancing the realism of the 

obtained point clouds.  Furthermore, the ray casting system directly provides the label 

of the object for each point in the point cloud, thus simplifying the creation of datasets 

for training deep neural networks in tasks such as object detection and segmentation. 
 

As a future work, we aim at enhancing the LiDAR model, comparing it with real 

gathered datasets to adjust the reliability of the ray-dropping system and the distance 

error model. We also plan to add the possibility to simulate different weather 

conditions, in order to test and stress novel algorithms in multiple operating 

conditions. At last, the simulation framework will include the possibility to gather 

datasets from cameras that can be directly acquired from the graphic engine. 
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