
12 August 2023

ISTITUTO NAZIONALE DI RICERCA METROLOGICA
Repository Istituzionale

Customizing a Python driver for IDS cameras under Raspberry Pi - Claudio Francese / Francese, Claudio. -
(2015).

Original

Customizing a Python driver for IDS cameras under Raspberry Pi - Claudio Francese

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic
description in the repository

Availability:
This version is available at: 11696/75185 since: 2023-01-12T14:49:41Z

Claudio Francese

Customizing a Python driver for IDS cameras

under Raspberry Pi

T.R. 16/2015 August 2015

I.N.RI.M. TECHNICAL REPORT

2

Abstract
IDS Cameras (www.ids-imaging.com) are widely used devices both in industrial and scientific applications

for their high resolution, framerate and expansion capabilities. Other features include the synchronization

of the image capture to an external trigger and turning on an external flash during the frame acquisition.

FIGURE 1 - IDS CAMERAS

The software and the drivers provided by the manufacturer are compatible with Windows ™, Linux for

Intel™ architecture and some Linux based embedded systems. One of the supported platforms is the

Raspberry Pi (www.raspberrypi.org).

FIGURE 2 - RASPBERRY PI 2 MODEL B

The Raspberry Pi embedded system is a small dimensions computer (85.6mm x 56mm x 21mm) running a

Linux operating system on a 900 MHz quad core CPU. The presence of USB and Ethernet connections and

an expansion connector (with SPI, I2C signals available) makes the device a good and low cost solution (less

than 50 €) for setting up a scalable, reliable network of distributed intelligent controllers for electronic

devices, digital integrated circuits (for example DDS signal generators, FPGAs, A/D and D/A converters) and

measurement instrumentation.

This document shows how to interface a USB IDS camera to a Raspberry Pi using the Python language and

how to modify a working Python wrapper to the IDS camera C library in order to fit the user’s needs.

http://www.raspberrypi.org/

3

The official IDS Camera driver and SDK for Raspberry Pi
At the time of writing, the driver and SDK for IDS Cameras can be downloaded for free from the

manufacturer’s website at the address https://en.ids-imaging.com/download-ueye-emb-hardfloat.html

The provided package consists of a gzipped tarball which has to be extracted in the root directory / of the

Raspberry Pi filesystem.

tar xvf uEyeSDK-[version number]-ARM_LINUX_IDS_[setup type].tar -C /

The software is then installed by means of the command

/usr/local/share/ueye/bin/ueyesdk-setup.sh

Interfacing the IDS driver to the Python language
Interfacing the C-style calls to the IDS driver to the Python-style calls of the user program is done by the

Python wrapper which can be downloaded from the NC State Aerial Robotics Club GitHub repository at the

address https://github.com/ncsuarc/ids

A model of the software layers calls is given in Figure 3.

FIGURE 3 – MODEL OF THE SOFTWARE LAYERS

IDS Camera

IDS driver

C functions (ids_core.so)

(calls to IDS driver)

Python module (ids.py)

(interface to C calls)

Python user application

(Python calls)

Raspberry Pi

Customization

USB connection

https://en.ids-imaging.com/download-ueye-emb-hardfloat.html
https://github.com/ncsuarc/ids

4

The project has been discontinued in 2013 so the implementation of the interface to the IDS C functions is

only partial, thus the wrapper has to be customized according to the users’s needs.

The IDS wrapper is installed in the Python module path by means of the command

python setup.py install

When the setup command is issued, the sources contained in the ids_core directory are compiled

ids.py

ids_core | ids_core_constants.c

 | ids_core.h

 | ids_core_methods.c

 | ids_core_Camera_methods.c

 | ids_core.c

 | ids_core_Camera.c

 | ids_core_color.c

 | ids_core_Camera_attributes.c

resulting in the build/lib.linux-armv7l-2.7/ids_core.so shared object and a Python file ids.py.

Properties and methods
The IDS module actually is a wrapper which acts as an interface between the Python language and the IDS

driver. Calling a camera object method (see Table 1) or reading/writing a camera property (see Table 2) in

Python, turns out into a call to the IDS driver (written in C). The relevant files for the user are the Python

file named ids.py and the shared object (.so) named ids_core.so which is built during the library installation.

Method Description

capture_status Get internal camera and driver errors

alloc Allocates a single memory location for storing images

free_all Frees all allocated memory for storing images

close Closes open camera

next_save Saves next available image

next Gets the next available image from the camera as a Numpy array

TABLE 1 -CAMERA OBJECT METHODS

Property name Description

info Camera info

name Camera manufacturer and name

width Image width

height Image height

pixelclock Pixel Clock of camera

color_mode Color mode of images

gain Hardware gain (individual RGB gains not yet supported)

exposure Exposure time

auto_exposure Auto exposure

auto_exposure_brightness Auto exposure reference brightness (0 to 1)

auto_speed Auto speed

auto_white_balance Auto White Balance

color_correction IR color correction factor

continuous_capture Enable or disable camera continuous capture (free-run) mode

TABLE 2 - CAMERA OBJECT PROPERTIES

5

The code snippet in Figure 4 shows how the library can be used.

FIGURE 4 - PYTHON ID CAMERA MODULE EXAMPLE

The simple API of the IDS wrapper, and the ease of use of the library allow the user to focus on the solution

of his/her research problem forgetting the technical details of the camera communication. This encourages

the author of this report to extend the capabilities of the wrapper thus hiding to the user many useless

programming details.

import ids

cam = ids.Camera()

cam.color_mode = ids.ids_core.COLOR_RGB8 # Get images in RGB format

cam.exposure = 5 # Set initial exposure to 5ms

cam.auto_exposure = True

cam.continuous_capture = True # Start image capture

while True:

img, meta = cam.next() # Get image as a Numpy array

process(img) # Process acquired frame

6

Extending the IDS C wrapper capabilities
Given the sources of the Python wrapper, the module capabilities can be extended by adding new

properties and methods to the camera object.

Changing the camera resolution
Among the properties given in Table 2, the IDS python module defines the two properties width and height

which are supposed to be used to change the resolution of the acquired image.

Unfortunately the actual implementation is missing as the authors of the original library did not code it as

shown in the source in Figure 5.

FIGURE 5 - UNIMPLEMENTED ATTRIBUTES IN IDS_CORE_CAMERA_ATTRIBUTES.C

This way, calling the setter of either the property width or height has no effect but an error message.

Browsing the IDS SDK documentation at

https://en.ids-imaging.com/manuals/uEye_SDK/EN/uEye_Manual/index.html (login required)

shows that a direct call to a function which sets only one of the two parameters is missing but the function

INT is_ImageFormat (HIDS hCam, UINT nCommand, void *pParam, UINT nSizeOfParam)

which sets both width and height could be used instead.

A set of 30 resolutions configurations is supported by our camera (UI-149x)

Code Width Height Code Width Height

1 3264 2448 16 352 288

2 3264 2176 17 288 352

3 3264 1836 18 320 240

4 2592 1944 19 240 320

5 2048 1536 20 1600 1200

6 1920 1080 21 3840 2748

7 1632 1224 22 1920 1080

8 1280 960 23 2560 1920

9 1280 720 24 768 576

10 - - 25 1280 1024

11 960 480 26 2448 2048

12 800 480 27 1024 768

13 640 480 28 1024 1024

14 640 360 29 800 600

15 400 240 30 1360 1024

TABLE 3 - CAMERA RESOLUTIONS

…

static int ids_core_Camera_setheight(ids_core_Camera *self, PyObject *value, void *closure) {

 PyErr_SetString(PyExc_NotImplementedError, "Changing image height not yet supported.");

 return -1;

 }

…

static int ids_core_Camera_setwidth(ids_core_Camera *self, PyObject *value, void *closure) {

 PyErr_SetString(PyExc_NotImplementedError, "Changing image width not yet supported.");

 return -1;

 }

…

PyGetSetDef ids_core_Camera_getseters[] = {

 …

 {"width", (getter) ids_core_Camera_getwidth,

 (setter) ids_core_Camera_setwidth, "Image width", NULL},

 {"height", (getter) ids_core_Camera_getheight,

 (setter) ids_core_Camera_setheight, "Image height", NULL},

 …

};

https://en.ids-imaging.com/manuals/uEye_SDK/EN/uEye_Manual/index.html

7

where the code of the resolution is stored in the pParam element which is passed to the function. This

suggests to add a new property named imageformat to the Camera object defined in the IDS wrapper.

It should be noted that changing the resolution has the side effect of changing also the size of the buffer

needed to store the current grabbed frame, for this reason the buffer needs to be reallocated.

It should be noted that a property with a similar side effect already exists in the wrapper, the colormode

property. When the color mode is changed also the size of the image changes accordingly.

For this reason, the implementation of the colormode property will be used as a starting point to code the

imageformat property. For this reason the source code for both the functions will be similar.

8

Implementation of the C function in ids_core_Camera_attributes.c

The interface of the attribute imageformat to the manufacturer’s driver must be implemented in the C file

ids_core_Camera_attributes.c

When the user program accesses the attribute imageformat in the Python language, the ids.py module

actually passes the arguments to or gets the results from some functions in ids_core_Camera_attributes.c

What is needed is the implementation of the functions which will be called when the property is accessed

in read or write mode. This is done by defining the setter and getter functions in the PyGetSetDef object at

the end of the C file.

In this case the property imageformat will have the two getter/setter functions associated

PyGetSetDef ids_core_Camera_getseters[] = {

{"imageformat", (getter) ids_core_Camera_getimageformat,

 (setter) ids_core_Camera_setimageformat,

 "Change the image format", NULL},

…

};

The 1st string in the dictionary is the name of the property, the 2nd and 3rd elements are the getter and

setter functions of the property and the 4th element is the help string which will be shown to the user when

requested.

Figure 6 shows the implementation of the attribute setter and getter functions.

FIGURE 6 - IMPLEMENTATION OF THE ATTRIBUTE SETTER AND GETTER FUNCTIONS

…

static int ids_core_Camera_setimageformat(ids_core_Camera *self, PyObject *value, void *closure)

{

int formatcode = (int) PyLong_AsLong(value);

int nRet;

UINT count;

UINT bytesNeeded = sizeof(IMAGE_FORMAT_LIST);

nRet = is_ImageFormat(self->handle, IMGFRMT_CMD_GET_NUM_ENTRIES, &count, 4);

bytesNeeded += (count - 1) * sizeof(IMAGE_FORMAT_INFO);

void* ptr = malloc(bytesNeeded);

// Create and fill list

IMAGE_FORMAT_LIST* pformatList = (IMAGE_FORMAT_LIST*) ptr;

pformatList->nSizeOfListEntry = sizeof(IMAGE_FORMAT_INFO);

pformatList->nNumListElements = count;

nRet = is_ImageFormat(self->handle, IMGFRMT_CMD_GET_LIST, pformatList, bytesNeeded);

IMAGE_FORMAT_INFO formatInfo;

formatInfo = pformatList->FormatInfo[formatcode];

nRet = is_ImageFormat(self->handle, IMGFRMT_CMD_SET_FORMAT, &formatInfo.nFormatID, 4);

self->width = formatInfo.nWidth;

self->height = formatInfo.nHeight;

return nRet;

}

…

PyGetSetDef ids_core_Camera_getseters[] = { …

9

Implementation of the Python function in ids.py
The implementation of the setter of the imageformat property is very similar to the colormode one as at

the end of the function the buffer must be reallocated.

Thus when the property is written, not only the corresponding setter function will be called but the

memory reallocation functions have to be called. This is done by overriding the property handler, adding

the explicit call to the setter and then calling the self.free_all() and self._allocate_memory() functions.

Figure 7 shows the overridden properties accessors for color_mode and imageformat

FIGURE 7 - PROPERTIES IN IDS.PY

…

Override color_mode to reallocate memory when changed

@property

 def color_mode(self):

 return ids_core.Camera.color_mode.__get__(self)

 @color_mode.setter

 def color_mode(self, val):

 if self.continuous_capture:

 raise IOError("Color cannot be changed while capturing images")

 ids_core.Camera.color_mode.__set__(self, val)

 # Free all memory and reallocate, as bitdepth may have changed

 self.free_all()

 self._allocate_memory()

…

 # Override imageformat to reallocate memory when changed
 @property

 def imageformat(self):

 return ids_core.Camera.imageformat.__get__(self)

 @imageformat.setter

 def imageformat(self, val):

 if self.continuous_capture:

 raise IOError("Image format cannot be changed while capturing images")

 ids_core.Camera.imageformat.__set__(self, val)

 # Free all memory and reallocate, as resolution has changed

 self.free_all()

 self._allocate_memory()

10

Code example and results
The resolution can be changed on the fly by calling the following code

camera = ids.Camera()

…

camera.continuous_capture = False # Stop image capture

camera.imageformat = code

camera.continuous_capture = True # Restart image capture

…

Python code Image result

camera.imageformat = 18

320 pixels X 240 pixels

camera.imageformat = 15

400 pixels X 240 pixels

TABLE 4- CODE EXAMPLES AND RESULTS

Online resources

www.ids-imaging.com IDS Imaging Development Systems GmbH

art1.mae.ncsu.edu NC State Aerial Robotics Club

www.raspberrypi.org Raspberry Pi Foundation

www.python.org Python Software Foundation

http://www.ids-imaging.com/
http://art1.mae.ncsu.edu/
http://www.raspberrypi.org/
http://www.python.org/

11

Appendix – Patching and building the source files
Only two files of the Python wrapper have been modified with respect to the original version (Release date

13 dec 2013) so modifying the wrapper as described in this report can be done by patching the sources of

the two files ids.py and ids_core/ids_core_Camera_attributes.c

In order to patch the files and install the modified python wrapper, please download and uncompress the

IDS wrapper from https://github.com/ncsuarc/ids/archive/master.zip

Enter the directory of the uncompressed files then copy the following text 1 and then paste and execute it

in a bash session in that directory (for example /home/pi/ids-master on a Raspberry system)

FIGURE 8 - BASH COMMANDS TO PATCH AND BUILD THE LIBRARY

1
 For typographical and space reasons the patch code has been compressed and coded into ASCII before being added

to this report. The commands below decode the data and apply the patch to the original sources

cat <<ENDOFFILE | base64 -d | gunzip | patch -r ids.py

H4sIAACwxFUAA41TW2vCMBR+91cc6osOLYhONhlDkA2EQcE/ULL0tA3k4k5Sh/9+iW01isjydpJz

+S4ncz4fvMFwMJ1OB+8whMFswWeLm6vl82T28lrMluGhPxZlmZaEmDMpR+Pbl3BrOHOYK1SGjqeM

LmkI2QGJRIEgFKuwNKSYA2eAsC+Dtgx+a9TAa6YrLLry9Z7MHskdu7jAMu4zCvPHqwhQkiRRtDHS

ECjjpzcWC/BVwNneNSR01Tay6QVsOJlGMH5IYXNuCNNN9pXt8ifgRlvHtLMpwDYUnlELKeEbIz5F

1I6VDqklFUbyM6AJMAuuPrch/GkEoUI/AhQ7dkLcoNsxYdHGhMPZZh9EhlYxX860Ni4A6xT18gqJ

d+nfF4/QJ+pICaaQWBrJn+Z5hS7PWxsuSNdxjkXnJXjg3wQOTF6ZKMp2sbzmTujGNB7BCTbeMqeg

R89/lLTGdDv2XwWS8bXGjwnbM+EW93XtED79NwG/Cb2vTBfRapxcJ7RGNk4YDbUP+43/A6joKTeg

AwAA

ENDOFFILE

cd ids_core

cat <<ENDOFFILE | base64 -d | gunzip | patch -r ids_core_Camera_attributes.c

H4sIAOCxxFUAA7VU227aQBB9Dl8x4qEy1CQkqbgoKVJEgFgCE3FRH6pq5dgDuLJ30e6Slkb5987a

BhtIpCpSQZa8u2fOOTPemav6tX9Vvy7dgvk9bntSsinqqZYhX1q0/u0zV2gnXkcYI9cYEEJIG8rd

lceXBIIw9pYIKwyXKw1caNiiBrVZr4Uk+Dk8osQ1/cuVm1KtVit1/puUUWg22naz3QqajRYlpbSn

Q5/Exk8/0ddQDQPFfCGRdb0YpceWqBPShZCxp62jY6gqjBY2PIswgKofCbWRWIGXrFwS9UZyYh8K

vmR9KWLzYl22Gy1ycguv9OQmQq7hWF79k3xu/9mLNvimnzNDn9L4IkD4ChbtVHbm7lRiLYlPvJ3t

YvgEdbIxd9wZ+GLDC8unrUblIgYYEKMK/6BYWM7obtBj/fFkdDdjQ2c6SwkNEYFCxRyTUj9NyWRQ

69AHDCIy7owG/cloxrqjezbozZg7H7GeO5s4vakNnxJxG76kfEXtz5ROcgo1uKxA9U0rjtsfp6Gm

PlVYa0l+Yi+KhG8V2FKM+TJnFxfQlehpBDIIizCKIAqVNkcnWRJhWt8hIUx9TxEVo5mwF6C1Dp+S

2/HCLHpcy+07pcz9H0a7mzgJTdtCUXT+lT5SdGPVLiZjw3F1TgpgvGXXy+ELkWjnS3JwYLm/P/me

X8kfHzI8JcOpB7ogueI5zzTu9/fFPCnPrzDQKxIpwr+ZvZsckw2RQ9BDspmgst7edUfWyqVWvU6j

pW0QL+VC65ZtsGiWaJSVkyY/nDEEVO8A1REwHXwIeoXZ6NuLufPh8NUu/QV8YnYdvwUAAA==

ENDOFFILE

cd ..

sudo python setup.py install

