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Three-dimensional model of a split-crystal x-ray and neutron

interferometer

C. P. Sasso, G. Mana, and E. Massa
INRIM – Istituto Nazionale di Ricerca Metrologica,

strada delle cacce 91, 10135 Torino, Italy

Abstract

The observation of neutron interference by using a crystal interferometer having a separate analyser opens
the way to the construction and operation of interferometers with vast arm separation and length. Setting the
design specifications requires a three-dimensional dynamical-theory model of their operation. In this paper, we
develop the needed three-dimensional mathematical framework, which also comprises coherent and incoherent
illuminations, and apply it to study the visibility of the interference fringes.

1 Introduction

Since its first demonstrations by Bonse and Hart in 1965 [1] and Rauch and collaborators in 1974 [2], perfect-crystal
interferometry has been a powerful tool to perform experimental physics and metrology with x-rays and neutrons
[3, 4, 5, 6, 7].

Because of the short wavelength, the interferometer’s crystals require atomic-scale linear and angular alignments
and stability. These requirements prompted the consideration of monolithic arrangements, where the splitting and
recombining crystals are carved in a single block of a highly perfect silicon crystal. However, a monolith is not
compatible with large separations of the interferometer arms, where optics and samples might be inserted, and
extended arm-lengths, where weak interactions can be amplified. For instance, when using neutrons having 0.1 nm
wavelength, in a 1 m long arm there would be 1010 waves, so that any minute retardation should accumulates a
detectable phase shift.

A solution to these limitations are interferometers consisting of separated crystals. In the case of x-rays, the
separation allowed accurate determinations of the silicon lattice parameter [8, 9]. Also, it allowed extending the
sample area and volume in phase-contrast imaging [10]. Eventually, an interferometer composed of six separate
diffracting crystals allowed characterising the temporal coherence of 10 keV pulses from an x-ray free-electron laser
[11]. An attempt to operate a split-crystal interferometer with neutrons is reported in [12], but it did not succeed
in achieving the interference. Neutron interferometry with physically split gratings and cold or very cold neutrons is
reported in [13, 14, 15].

Recently, Lemmel and collaborators [16, 17] operated a neutron interferometer having a split analyser crystal
and achieved a proof-of-principle demonstration that split-crystal interferometry with neutrons is possible. This
demonstration opens the way to the realisation of skew-symmetric interferometers operating with neutrons and
having crystal separations up to the meter scale. In these interferometers, already operated with x-rays [18, 10],
the split crystal embeds also a mirror. They are insensitive to axial misalignments and allow long and spaced
interferometer arms, as well as scans of the arm length and Bragg angle alignment.

The object of this paper is to develop a mathematical framework by which the interferometers’ operation could be
modeled and analysed and design specifications provided. These goals require knowing the effect of three-dimensional
misalignments between the crystals splitting and recombining the neutron wave-function [18]. Therefore, we extended
the dynamical theory of neutron and x-ray diffraction [19, 20, 21, 22] to model crystal interferometers that operate
with both x-rays and neutrons in three dimensions.

Since the paraxial approximations of the (time independent) Schrödinger and Helmholtz equations – relevant to
neutron and x-ray propagations, respectively – are the same, we introduce Fourier-components of the periodic electric
susceptibility that mimic also the components of the periodic Fermi pseudo-potential seen by neutrons propagating
in perfect crystals. The spatial coherence of the incoming particles (photons or neutrons) limits the interference
visibility. Therefore, we studied both coherent and incoherent sources.

In this paper, we consider only a symmetric interferometer where the analyser is free to move with respect to the
splitter-mirror pair. In addition to the greater simplicity, since further improvements require a three-dimensional
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study of the systematic effects, this choice was also driven by the determination of the 28Si lattice parameter using an
x-ray interferometer having a separate analyser [8, 9]. A split-crystal skew-symmetric interferometer can be studied
along the same lines.

The paper is organised as follows. After reviewing the neutron and x-ray propagations in free-space, symmetrically-
cut crystals, and triple-Laue interferometers, the sections 2.5 and 2.6 introduce the Gaussian wave-packet and density-
matrix used to describe coherent and incoherent x-ray and neutron sources. The coherent and incoherent operation
of the interferometer are discussed in sections 2.7 and 2.8.

We describe the crystal fields as the components of a (quanto-mechanical) state vector [21]. This choice allows
us to use matrix descriptions of optical components and simplifies the study of the interferometer, the description of
which can be built by assembling simple elements. The x-rays and neutrons leaving the interferometer are described
by propagating a single-particle Gaussian wave-packet (coherent source case) and the density-matrix of a Gaussian
Schell-model of the beam (partially coherent source case) through the interferometer. Eventually, we quantify the
effect of the spatial coherence of the source on the visibility of the pendellösung, moiré, and travelling fringes observed
when rotating and translating the analyser crystal.

To model the propagation in misaligned and displaced crystals, we determine the linear operator that changes
the representations of the x-ray and neutron single-particle states from that used to propagate them through the
splitter and mirror crystals to that seen by a roto-translated analyser.

All the computations were carried out with the aids of Mathematica [23]; the relevant notebook is given as
supplementary material. To view and interact with it, download the Wolfram Player free of charge [24].

2 Dynamical theory of the interferometer operation

2.1 X-ray and neutron states inside a crystal

We assume symmetrically cut and plane-parallel crystal slabs. The normal ẑ to the slab surfaces and the reciprocal
vector h = 2πx̂

/
d (d is the spacing of the diffracting planes) defines the reference frame (see Fig. 1). The position

vector r = (x, z) is split in the x = (x, y) (lying in the crystal surface, with the y axis pointing up) and z (normal to
the crystal surface) components.

Monochromatic x-rays and neutrons inside a crystal behave like a quantum two-level system, a superposition of
two independent states spanning a two-dimensional Hilbert space V2. In this case, the basis, labelled as o and h, are
plane waves satisfying the Bragg condition. Their (complex) amplitudes, ψo,h(x; z), are slowly-varying and square-
integrable functions of the transverse coordinates, which are element of the L2(R2) Hilbert space. They propagate
along z, an optical axis that plays the role of fictitious time.

By using the Dirac bra-ket notation to ease the calculations [25], we introduce the single-particle state vector
[22, 26]

|ψ(z)〉 = |ψo(z)〉|o〉+ |ψh(z)〉|h〉, (1)

where, by setting n = o, h,

〈x|ψ(z)〉 = |ψ(x; z)〉 = ψo(x; z)|o〉+ ψh(x; z)|h〉,
〈x, n|ψ(z)〉 = ψn(x; z),

|o〉 = eiKo·r
(

1
0

)
, |h〉 = eiKh·r

(
0
1

)
.

(2)

It belongs to the tensor product L2(R2) ⊗ V2 of the L2(R2) space of the square-integrable two-variable functions
and the two-dimensional vector space V2. We use the plus sign for the phase of plane waves, the 2 × 1 matrix
representation of V2, and, in the x-ray case and if not otherwise specified, we consider only a polarisation state,
parallel or orthogonal to the reflection plane. In addition,

Ko,h = K(γẑ∓ αx̂) (3)

are the kinematical wave vectors satisfying the Bragg conditions Kh = Ko+h, |Ko| = |Kh| = K = 2π/λ, γ = cos(ΘB)
and ∓α = ∓ sin(ΘB) are the direction cosines of Ko,h, ΘB is the Bragg angle, and λ is x-ray (neutron) the wavelength.
We consider a coplanar geometry, that is, Ko,h,h, and ẑ are in the same (horizontal) reflection-plane.
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2.2 Free-space propagation

Neglecting gravity, by using the reciprocal-space representation 〈p|ψ(z)〉 (see the appendix A), the free space propaga-
tion of x-rays and neutrons, |ψ(z)〉 = F (z)|ψ(0)〉, is given by

〈p|F (z)|p′〉 = F (p; z)δ(p− p′),

where p = px̂ + qŷ is the variable conjugate to x,

F (p; z) = exp

(
− i(p2 + q2)z

2Kz

)(
exp [ipz tan(ΘB)] 0

0 exp [−ipz tan(ΘB)]

)
, (4)

and Kz = Kγ.
In (4), the ±pz tan(ΘB) phase contribution corresponds to geometric optics. According to it, in the horizontal

plane, the o and h states propagate in the Ko,h directions. Therefore, considering these terms alone, we have
ψo,h(x, y; z) = ψo,h(x± z tan(ΘB), y; z = 0), where the plus and minus signs apply the o and h components, respect-
ively.

The qzz = (p2 + q2)z/(2Kz) phase contribution makes ψ(x; z) spreading and the wavefront bending. In addition,
qz = (p2 + q2)/(2Kz) makes |Kn + (p, qz)| approximating K, as required by propagation in a vacuum.

The γ = cos(ΘB) factor takes the oblique propagation (with respect to the z axis) of the |o〉 and |h〉 states into
account. Therefore, z′ = z

/
γ is the propagation distance along the Ko,h directions.

2.3 Laue diffraction in a symmetrically cut crystal

Neglecting gravity, the Laue transmission by a symmetrically cut crystal, |ψ(z)〉 = U0(z)|ψ(0)〉, is given by the
scattering matrix [22, 26]

〈p|U0(z)|p′〉 = U0(p; z)δ(p− p′),

where

U0(p; z) = A(z)

(
T (p; z) R(p; z)
R(p; z) T (−p; z)

)
exp

(
− i(p2 + q2)z

2Kz

)
(5a)

A(z) = exp

(
−µ0z

2γ

)
exp

(
i(n0 − 1)Kz

γ

)
(5b)

R(p; z) =
iν sin(ζ

√
η2 + ν2)√

η2 + ν2
, (5c)

T (p; z) = cos(ζ
√
η2 + ν2) + ηR(p; z)

/
ν. (5d)

In these equations, Kz = Kγ, ζ = πz
/

∆e is the dimensionless propagation distance, η = ∆e tan(ΘB)p
/
π is the

dimensionless resonance error, ∆e = 2πγ
/
|Kχ±h| is the pendellösung length, and ν = χ±h

/
|χ±h|. A list of the main

symbols used is given in the appendix F.
By extending the dynamical theory terminology [27], we call p the resonance error. It encodes the distance of

the plane-wave components, ψ̃n(p; z) exp(ip · x), of the ψn(x; z) wave field from the resonance condition p/K = 0.
In fact, the reflection and transmission coefficients R(p; z) and T (p; z) do not depend on q and diffraction is two-
dimensional: it occurs in a plane, which is defined by the surface normal and h. Therefore, p/K = 0 is associated to
the plane waves fulfilling, at the first order, the Bragg condition. This is a consequence of the approximation made
when solving the Helmholtz (Schrödinger) equation for the x-ray (neutron) propagation in an infinite crystal, which
approximation implies p, q � K [26].

In (5a), the (p2 + q2)z/(2Kz) phase recovers the free-space propagation (4) when taking the χh → 0 limit (this
is equivalent to ∆e → ∞, see the supplementary material), which corresponds to neglect the interaction with the
crystal lattice. This term was neglected in the first-order approximations made in [26].

The coefficients of the Fourier expansion of the dielectric susceptibility are

χh = − 4πre
K2Vcell

∑
j

fje
−ih·rj ,

where the sum is over all the atoms in the unit cell, re is the (classical) electron radius, Vcell is the cell volume, and
fj the form factor of the j-th atom. They are linked by χh = −υh

/
K2 to the coefficients of the Fourier expansion
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Figure 1: Top and side views of a triple-Laue interferometer with a split analyser crystal, which is misaligned by a
tilt ρ about the z axis. S splitter, M1 and M2 mirrors, A analyser. The x axis is orthogonal to the diffracting planes.
Right. Red and blue rays indicate arms 1 and 2, respectively. ΘB is the Bragg angle, exp(iKo ·r) is the input o wave,
∆z is the defocus. ρ, θ, and u are the analyser pitch (the rotation about the z axis) and yaw (the Bragg rotation
about the vertical y axis) angles and displacement along the x axis, respectively (the arrows indicate the positive
rotations and displacement). Left. The red and blue rays are associated to the q/K = 0 plane-wave components of the
single-particle wave function. These rays leave the source collinearly, travel the arms 1 (red) and 2 (blue), interfere in
the o state, and have a yD = 2ρ(tA + zDA) tan(ΘB) offset at the detector, see section 2.7.3. The green ray leaves the
source at the ρ0 = 2ρ sin(ΘB) angle and yS = ρozA

/
cos(ΘB) distance, see section 2.7.3. It is associated to the q = hρ

components of the single-particle wave function, travels the 1-st arm, and interferes collinearly with the q/K = 0
components (blue). zA, tA + zDA, and zD are the source-to-analyser, analyser-to-detector, and source-to-detector
distances.

of the scaled periodic potential governing the time-independent Schrödinger equation for the neutron wave function
inside a crystal [3],

υh =
4π

Vcell

∑
j

bje
−ih·rj ,

where bj is the neutron (coherent) scattering length of the j-th atom and bSi = 4.15071× 10−6 nm [28, 29].
A translation u changes χh to χh exp(ih ·u), but propagation is independent of the reference-frame origin, which

we chosen so that χ+h = χ−h. In addition, since exp(±iπ) = −1, propagation is independent of the χ±h and ν signs.
The χ0 sign depends on the sign in the exponent of the plane wave functions.

2.4 Triple Laue interferometer

Let us consider an interferometer having the analysing crystal separated from the splitter-mirror pair, see Fig. 1. The
representation of the particle state (2) uses the kinematical plane waves defined in (3) as the |o〉 and |h〉 states. Since
the analyser crystal might be differently oriented and displaced to the splitter-mirror block, this representation cannot
be simultaneously used for both. Therefore, we need to change the (laboratory) state leaving the first crystal, |ψL(z)〉,

4



to that seen by a misaligned analyser, |ψA(z)〉. The linear operator M̂(z) that carries out the |ψA(z)〉 = M̂(z)|ψL(z)〉
transformation is given in the appendix B. Hence, the propagation through the interferometer is given by

|ψout〉 = X|ψin〉, (6a)

where

X = F (zDA)M̂−1(∆z + tA)U0(tA)M̂(∆z)

[
F (zA1)PhU0(tM1)F (zM1)Po + F (zA2)PoU0(tM2)F (zM2)Ph

]
U0(tS)F (zS),

(6b)

and we introduced the projectors Pn = |n〉〈n|, n = o, h. The symbol meanings are given in Fig. 1. The effect of the

M̂−1(∆z + tA)U0(tA)M̂(∆z) transformation is shown in the appendix B.

2.5 Coherent source.

Only one particle (photon or neutron) is inside the interferometer at any given time which, therefore, supposes
interference of single particles. We start describing each particle of the incoming beam by the same Gaussian
wave packet, 〈x|ψin〉 = 〈x|ψin〉〈y|ψin〉, monochromatic, separable, originating in (x0,−zS), and propagating at the
arctan(p0

/
K) angle to the Ko direction. Hence, at the source, at a zS distance from the splitter,

〈x|ψin〉 = ψin(x)|o〉 ∝ exp

(
−|x− x0|2

l20
+ ip0 · x

)
|o〉, (7)

where l0 is the radius, which we assumed the same for both the x and y factors; the extension to an elliptical wave
packet is trivial. A summary of the equations for the oblique propagation of a Gaussian wave-packet is given in
the appendix C. Here and in the following, the proportionality sign indicates that, to avoid non-essential algebraic
burdens, we omit any normalisation factor.

The reciprocal-space representations of the |ψin〉 (see the appendix A and supplemental material) is

〈p|ψin〉 = ψ̃in(p)|o〉 ∝ exp

(
−|p− p0|2l20

4
− ip · x0

)
|o〉. (8)

2.6 Partially coherent source.

Owing to the limited spatial coherence of x-ray and neutron sources [30, 31], that is, the limited capacity to prepare
every particle always in the same state, we consider each incoming particle in a probabilistic superposition of the
(separable) single-particle Gaussian states

〈x|ψin(x0, φ0, p0)〉 ∝ exp

(
−|x− x0|2

l20
+ iφ0 + ip0 · x

)
|o〉. (9)

The probability density that the Gaussian state |ψin(x0, φ0, p0)〉 is centered in x0 and has φ0 phase and arctan(p0

/
K)

propagation angle is

p(x0, φ0, p0) ∝ exp

(
−2|x0|2

w2
0

− φ2
0

2σ2
φ

− |p0|2

2σ2
p

)
.

Hence, the x0, φ0, and p0 are uncorrelated normal variables having zero mean and w2
0

/
2, σ2

φ, and σ2
p variances,

where w0 � l0. Without loss of generality, we made the x0 mean and reference frame origins to coincide. Also here
we assumed circular profiles for both the single-particle states and their superposition. The extension to elliptical
profiles gives no problems.

This mixed state is characterised by the density matrix [32, 25]

jin = E
(
|ψin(xa, φa, pa)〉〈ψin(xb, φb, pb)|

)
, (10)

where E(.) indicates the ensemble average. In the limit as σφ →∞ and σp � 1/w0, the direct- and reciprocal-space
representations of the density matrix are (see the supplementary material)

〈x1|jin|x2〉 =

(
jin(x1, x2) 0

0 0

)
, (11a)

〈p1|jin|p2〉 =

(
j̃in(p1, p2) 0

0 0

)
, (11b)
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where

jin(x1, x2)∝ exp

(
−|x1|

2 + |x2|2

w2
0

− |x1 − x2|2

2`20

)
, (12a)

j̃in(p1, p2)∝ exp

(
−2(|p1|2 + |p2|2)`20 + |p1 − p2|2w2

0

8

)
, (12b)

are the mutual intensities of a Gaussian Schell-model of the particle beam [33, 34],

`20 =
l20

1 + l20σ
2
p

, (13)

and we neglected terms proportional to l0/w0 � 1.
It is easy to check that the density matrix (10) is positive definite, Hermitian (actually, in this case, symmetric),

and has unit trace (or equal to the particle number, depending on the chosen normalisation). Its diagonal elements
are the particle densities in the chosen basis. The off-diagonal elements give information about the interferences
between the relevant states, i.e., they represent the coherence of the superimposed states.

A diagonal density matrix with equal elements on the diagonal represents a completely incoherent superposition.
The density matrix associated to the pure state (7) and (8) can be obtained by taking the limits as `0/w0 → ∞ of
(12a) and (12b).

2.6.1 First order correlations.

The normalized first order correlations (see the supplementary material),

g
(1)
in (x1, x2) = exp

[
−|x1 − x2|2

2`20

]
,

highlight that `0 measures the (transverse) coherence lengths.

2.6.2 Free-space propagation.

The free-space propagation of the density matrix is given by jz = FjinF
† [35], where the dagger indicates the adjoint

and F and jin are given by (4) and (10), respectively. To exemplify, let us consider the

j̃z(q1, q2) = eiq21z
/

(2Kz)j̃in(q1, q2)e−iq22z
/

(2Kz)

factor. After transforming it back to the direct space, we obtain

jz(y1, y2) ∝ exp

[
−y

2
1 + y2

2

w2
z

− (y1 − y2)2

2`2z
− iK(y2

1 − y2
2)

2rz

]
,

where (see the supplementary material)

wz = w0

√
1 +

4z2

K2
zw

2
0`

2
0

=
w0`z
`0

, (14a)

`z = `0

√
1 +

4z2

K2
zw

2
0`

2
0

=
`0wz
w0

, (14b)

rz =
K2
zw

2
0`

2
0 + 4z2

4z
, (14c)

are the radius, spatial coherence, and radius of curvature at a distance z from the beam source, respectively.
The coherence length spreads like the radius of a coherent beam having `0 source radius and θ` = arctan[2/(Kzw0)]

divergence, see (14b). Therefore, propagation increases the beam coherence, which is the content of the van Cittert-
Zernike theorem. When `0/w0 → 0, that is, when the beam’s particles are completely incoherent, as the particles
propagate, the coherence length increases as 2z

/
(Kzw0)

6



2.6.3 Particle density.

The particle density of the propagated Gaussian Schell model,

S(x) = jz(x, x) ∝ exp
(
− 2|x|2

/
w2
z

)
,

behaves like the particle density of a coherent beam having w0 source radius and θw = arctan[2/(Kz`0)] divergence.
When the beam’s particles are completely incoherent, `0/w0 → 0 case, then Kwz →∞. Therefore, a finite divergence
is possible only if the source coherence is not null.

2.7 Interference signal: coherent source

When all the incoming particles are in the same state 〈p|ψin〉 = ψ̃in(p)|o〉, they leave the interferometer as

〈p|ψout〉 = exp

(
− i(p2 + q2)zD

2Kz

) ∑
n=o,h
i=1,2

A(ti)ψ̃ni(p)|n〉,

where ti = tS + tMi + tA is the total crystal thickness along the i-th arm and, by the application of (6a) (see the
supplementary material),

ψ̃o1(p) = R(p+ θKz − ρq; tA)R(p; tM1)T (p; tS)ψ̃in(p, q − hρ) exp [−i[px1 − qyS + h(u+ θ∆z)]] , (15a)

ψ̃o2(p) = T (p+ θKz − ρq; tA)R(p; tM2)R(p; tS)ψ̃in(p, q) exp(−ipx2), (15b)

ψ̃h1(p) = T (−p− θKz + ρq; tA)R(p; tM1)T (p; tS)ψ̃in(p, q) exp(−ipx1), (15c)

ψ̃h2(p) = R(p+ θKz − ρq; tA)R(p; tM2)R(p; tS)ψ̃in(p, q + hρ) exp [−i[px2 + qyS − h(u+ θ∆z)]] . (15d)

In the equations (15), see Fig. 1, ρ and θ are the analyser rotations about the z and y axis, respectively,

xi = ±(zAi − zMi) tan(ΘB),

are the horizontal offsets from the origin of the waves leaving the interferometer (the plus and minus signs refer to
the i = 1, 2 arms, respectively),

yS = 2ρzA tan(ΘB),

is the vertical offset at the source between the plane-wave components interfering collinearly, see section 2.7.3,

∆z = (zA1 − zM1)− (zM2 − zA2),

is the defocus, zA = zS+tS+zMi+tMi+zAi and zD = zA+tA+zDA are the source-to-analyser and source-to-detector
distances, respectively, and Kz = Kγ.

Free-space propagation leads to the spatial separation of the o and h states leaving the interferometer into two
spatially localised states, [ψ̃o1(x)+ψ̃o2(x)]|o〉 and [ψ̃h1(x)+ψ̃h2(x)]|h〉, whose i = 1, 2 components overlap and interfere.
In (15), unessential phases shared by the interfering o and h states and second order terms have been omitted.

The equations (15) chain together the particles’ reflections and transmissions along their way through the inter-
ferometer. The phases proportional to p and q take their horizontal and vertical shifts into account. Eventually,
as the analyser moves, the h(u + θ∆z) phase gives rise to travelling fringes, the period of which is equal to the
diffracting plane spacing. This is the foundation of the measurement of the Si lattice parameter and atomic-scale
length metrology by x-ray interferometry.

It is worth noting that 2∆z = (x1−x2)/ tan(ΘB) and h = 2K sin(ΘB). Therefore, the phase term hθ∆z in (15a)
and (15d) can be rewritten as hθ∆z = Kz(x1 − x2)θ. This formula shows that the hθ∆z phase originates in the
difference θ(x1 − x2) of the lengths of the particles’ paths through the interferometer.

2.7.1 Triple Laue rocking curve.

Figure 2 shows the triple Laue rocking curves [36, 37],

IRRR(θ, ρ) ∝
∫ +∞

−∞

∣∣R(p+ θKz − ρq; tA)R(p; tM2)R(p; tS)
∣∣2∣∣ψ̃in(p, q + hρ)

∣∣2 dp dq, (16)
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Figure 2: Triple Laue rocking curves of a crystal neutron-interferometer having a split analyser, see (16) and table
1. The abscissa is the Bragg misalignment of the analyser to the splitter-mirror pair. l0 is the (vertical) source size
of the single-particle wave-function, see (7), ρ is the pitch misalignment of the analyser.

Table 1: Parameters used in the numerical simulations.
χ0 = χh = −2.382× 10−6 ν = −1
n0 = 1− 1.191× 10−6 µ0 = 0
λ = 0.190 nm d = 192 pm
K = 33.1 rad/nm h = 32.7 rad/nm
∆e = 69.3 µm ΘB = 0.518 rad
tS = tA = 15.75∆e ≈ 1.092 mm tM1 = tM2 = 15.5∆e ≈ 1.074 mm

of a neutron interferometer having different analyser pitch-angles and illuminated by Gaussian wave functions having
different source radii. The simulation parameters are given in table 1; ψ̃in(p, q) is given by (8), where p0/K = q0/K =
0 and both the horizontal and vertical radii are equal to l0. The crystal thicknesses were chosen so that – when
η = 0, see Eqs. (5c) and (5d) – the mirror reflectivity is maximum and the reflectivity and transmissibility of the

splitter-analyser pair are equal. The IRRR(θ) symmetry about the θ = 0 rad axis originates from R(p; z) and ψ̃in(p, q)
– because of the p0/K = 0 choice – being even functions of p.

The ρq offsets of the null resonance-error, see the argument of R(p+ θKz − ρq; tA) in (15-d), shifts the analyser’s
Bragg alignment, that, otherwise, occurs at θ = 0 rad. It makes the Bragg alignment dependent on q, i.e., on the
out of reflection-plane propagation of the plane-wave components of the particle wave-function.

The averaging of out-of-phase pendellösung fringes – generated by the plane waves propagating at different vertical
angles to the reflection plane – jeopardises their visibility. For any given spread of the (vertical) momentum q, see (8),
the pitch angle reduces the fringe visibility, which visibility can be recovered by improving the vertical collimation.
In the Kl0 → ∞, i.e., a cylindrical wave-function having a perfect vertical collimation (approximated in Fig. 2 by
the l0 = 100 nm case), the rocking curve is insensitive to the pitch misalignment.

2.7.2 Defocus.

As shown in Fig. 1, the interfering waves ψn1(x) are sheared by x0 = x1 − x2 = 2∆z tan(ΘB) with respect to ψn2(x).
We recall that xi is the horizontal distance from the origin of the beam leaving the interferometer after travelling
the i-th arm.

This shear is reflected in the appearance of the extra phases pxi in ψ̃ni(p), see the equations (15). In fact,

transforming, for instance, ψ̃o1(p) and ψ̃o2(p) back to the direct space, and recalling the ”time-shifting” property of
the Fourier transform, we obtain ψo1(x, y) = ψo2(x− x0, y).

With a plane wave illumination, the offset between ψn1(x)|n〉 and ψn2(x)|n〉 develops only an unessential phase
difference. Contrary, with a point source the interfering wavefronts are curved and their offset recombines plane-
wave components that left the source at different angles and yields a pattern of vertical fringes. In this respect, the
interferometer operation is related to the wavefront shearing in light optics. A detailed geometric-optics study is in
[38].

The first-order effect of defocus on the phase of the travelling fringes – encoded by the pxi phases in the waves (15)
leaving the interferometer – and, consequently, on the lattice parameter measurement was investigated analytically
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and experimentally in [39, 40, 41].
The present analysis brings into light an additional phase term, hθ∆z, associated with the simultaneous existence

of the analyser defocus and misalignment. In the split-analyser case here considered, the travelling fringes are visible
only if ∆z/∆e ≈ 0 [39]. Therefore, it is a second-order effect.

2.7.3 Moiré fringes.

The analyser pitch angle ρ tilts the reflected waves by ρ0 = hρ
/
K = 2ρ sin(ΘB). As shown in Fig. 1, the q’s plane-

wave components of the single-particle wave function superimposing collinearly after travelling the interferometer
have an yS = ρ0zA

/
cos(ΘB) offset at their start. This offset stems from the qyS phase of ψ̃o1(p) and ψ̃h2(p) in the

same way as discussed in section 2.7.2.
For example, from the equations (15) (where the qρ offset of the analyser Bragg alignment is neglected), the virtual

wave ψ̃′in(p) = ψ̃in(p, q − hρ) exp(iqyS) overlaps collinearly ψ̃o2(p) when leaving the interferometer. Transforming

ψ̃′in(p) back to the direct space, we obtain ψ′in(x, y) = ψin(x, y−yS) exp
[
+ihρ(y−yS)

]
, whose origin and propagation

direction are changed by yS and ρ0, respectively.
The misalignment of the interfering waves yields a pattern of horizontal fringes. Let us neglect the qρ offset of

the analyser Bragg alignment. Hence, considering only the q factor and the o state, the interfering waves are

ψ̃out
o1 (q) ∝ ψ̃in(q − hρ) exp

(
− iq2zD

2Kz
+ iqyS − ihρ∆y

)
,

ψ̃out
o2 (q) ∝ ψ̃in(q) exp

(
− iq2zD

2Kz

)
,

(17)

where yS = 2ρzA tan(ΘB) and zA and zD are the source-to-analyser and source-to-detector distances, respectively.
Also, we assumed a rotation axis vertically displaced by ∆y from the origin. Hence, the analyser is displaced by ρ∆y
and the hρ∆y term appears in the ψ̃o1(p, q) phase.

By using the ψin(q) factor of (8), where q0/K = 0, and transforming (17) back to the direct space, we obtain (see
the supplementary material)

ψout
o1 (y) ∝ exp

(
− (y − yD)2

l2D
+

iKzy
2

2rD
+

2πiy

Λρ
− ihρ∆y

)
,

ψout
o2 (y) ∝ exp

(
−y

2

l2D
+

iKzy
2

2rD

)
,

(18)

where yD = 2ρ(tA + zDA) tan(ΘB) is the offset between the interfering plane-wave components at the detector,

Λρ =
d

ρ

K2
zz

2
D tan4(ϑ0) + 4

K2
zzAzD tan4(ϑ0) + 4

, (19)

d is the diffracting-plane spacing and ϑ0, lD, and 1/rD are the beam (vertical) divergence and the beam radius and
wavefront curvature at the detection plane z = zD (see the appendix C).

Fringe spacing.

The superposition of the waves given in the equations (18) yields interference fringes parallel to the x axis and having
Λρ spacing. When zD = zA (that is, the detector is located at the analyser) or ϑ0 → 0 (that is, the incoming wave
is plane), the fringe spacing is

Λρ
∣∣zD=zA
ϑ0→0

= d
/
ρ. (20a)

Also, if ϑ0 → π
/

2 (that is, the incoming wave is spherical), the fringe spacing is

Λρ
∣∣
ϑ0→π/2

=
d

ρ

zD
zA
. (20b)
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Fringe contrast.

By using the equations (18), the contrast of the fringe pattern is (see the supplementary material)

Γ =
2
∣∣ψo1(y)ψ∗o2(y)

∣∣
|ψo1(y)|2 + |ψo2(y)|2

= sech

[
yD(2y − yD)

l2D

]
, (21)

where lD is the vertical radius of the beam at the detector. Figure 3, where lD must substitute for wD, shows how
the contrast depends on y and yD (see also the section 2.8.2).

When yD/lD = 0 (that is when the analyser is aligned to the splitter/mirror pair or the detection plane is at the
exit surface of the analyser) and when y = yD/2, we achieve the maximum contrast. If the analyser is misaligned
and the detection plane is far from the analyser, that is, if yD/lD 6= 0, as |y − yD/2| increases the fringe contrast
decays approximately like a Gaussian having 3l2D

/
(5yD) standard deviation.

2.7.4 Travelling fringes.

The analyser displacement u retards or advances by hu the phase of the waves reflected by the analyser. As a result,
a scanning analyser gives rise to travelling fringes, the period of which is equal to the spacing of the diffracting
planes. This is the foundation of the measurement of the silicon lattice parameter by combined x-ray and optical
interferometry [8].

If the detectors do not resolve the interference pattern, but counts the total particle count, integrations are
necessary to obtain the observed signals In. Hence,

In =

∫ +∞

−∞
|ψ̃n1(p) + ψ̃n2(p)|2 dp = Jn

[
1 + Γn cos(Φn)

]
, (22)

where we assumed an infinite detector aperture and carried out the integration in the reciprocal space.
In the x-ray case, since photons by conventional sources have any polarisation, with equal probability, we add

the σ and π polarisations incoherently, which is unnecessary in the neutron case. Therefore, in (22),

Jn =
∑
β=σ,π
i=1,2

|A(ti)|2
∫ +∞

−∞
|ψ̃βn,i(p)|2 dp, (23a)

Ξn = A(t1)A∗(t2)
∑
β=σ,π

∫ +∞

−∞
ψ̃βn,1(p)ψ̃β∗n,2(p) dp, (23b)

Γn = 2|Ξn|
/
Jn, (23c)

Φn = arg(Ξn), (23d)

where the star indicates complex conjugation and the hu phase yielded by the analyser displacement is included
in Φn. The first order systematic errors in the measurement of the silicon lattice parameter by scanning x-ray
interferometry were investigated in [39].

By using the ψin(q) factor of (8), where q0/K = 0, considering the leaving o state, ideal geometry (i.e., tA = tS ,
tM1 = tM2, θ = 0 rad), neglecting the qρ offset of the analyser Bragg alignment, and carrying out the integrations
over q, we obtain (see the supplementary material)

Γ =
2|Ξo|
Jo
∝ exp

(
− y

2
S

2l20
− h2l20ρ

2

8

)
exp

(
−h

2ρ2l2A
8

)
, (24)

where lA is the (vertical) beam size at the analyser. In (24), the y2
S/(2l

2
0) term originates from the different intensities

of the interfering rays, whereas the h2l20ρ
2/8 term originates from the tilt of the interfering wavefronts.

2.8 Interference signal: partially coherent source

When the beam particles are in the mixed state jin, calculating the densities of the leaving particles,

S̃n(p) = 〈p, n|jout|n, p〉 = j̃nn(p, q), (25a)

Sn(x) = 〈x, n|jout|n, x〉 = jnn(x, y) =
1

4π2

∫ +∞

−∞
j̃nn(p, p′)e+ip·xe−ip′·x dpdp′,

10



requires propagating jin through the interferometer.
This propagation is given by jout = XjinX

†, where the dagger indicates the adjoint and X is given by (6a) or,
by using the reciprocal-space representation,

〈p1|jout|p2〉 =

∫ +∞

−∞
〈p1|X|p′〉〈p′|jin|p′′〉〈p′′|X†|p2〉dp′dp′′ =

∫ +∞

−∞
〈p1|XPo|p′〉j̃in(p′, p′′)〈p′′|(XPo)†|p2〉dp′dp′′, (26)

where 〈p′|jin|p′′〉 is given by (11b), we took P 2
o = Po and P †o = Po into account, and the scalar-valued function

j̃in(p′, p′′) is given by (12b). The representations of XPo and (XPo)
† are

〈p|XPo|p′〉 =

(
X̃o(p, p

′) 0

X̃h(p, p′) 0

)
, (27a)

and

〈p′′|(XPo)†|p〉 =

(
X̃∗o (p, p′′) X̃∗h(p, p′′)

0 0

)
, (27b)

where, omitting unessential shared phases,

X̃n(p, p′) = exp

(
− i(p2 + q2)zD

2Kz

) ∑
i=1,2

A(ti)X̃ni(p, p
′), (28)

and X̃ni(p, p
′) are given in the appendix D. The nm elements of (26) are

j̃nm(p1, p2) =

∫ +∞

−∞
X̃n(p1, p

′)X̃∗m(p2, p
′′)j̃in(p′, p′′) dp′dp′′ = exp

(
− i(|p1|2 − |p2|2)zD

2Kz

) ∑
i=1,2
j=1,2

A(ti)A
∗(tj)j̃

(ij)
nm (p1, p2).

(29)

By introducing p− = p1 − p2 and q− = q1 − q2, the diagonal terms j̃
(ij)
nn (p1, p2) needed to calculate the particle

densities are (see the supplementary material)

j̃(11)
oo (p1, p2) = T (p1; tS)R(p1; tM1)R(p1 + θKz − ρq1; tA)T ∗(p2; tS)R∗(p2; tM1)R∗(p2 + θKz − ρq2; tA) (30a)

×j̃in(p1, q1 − hρ, p2, q2 − hρ) exp [−i(p−x1 − q−yS)] ,

j̃(22)
oo (p1, p2) = R(p1; tS)R(p1; tM2)T (p1 + θKz − ρq1; tA)R∗(p2; tS)R∗(p2; tM2)T ∗(p2 + θKz − ρq2; tA) (30b)

×j̃in(p1, q1, p2, q2) exp(−ip−x2),

j̃(12)
oo (p1, p2) = T (p1; tS)R(p1; tM1)R(p1 + θKz − ρq1; tA)R∗(p2; tS)R∗(p2; tM2)T ∗(p2 + θKz − ρq2; tA) (30c)

×j̃in(p1, q1 − hρ, p2, q2) exp {−i [p1x1 − p2x2 − q1yS + h(u+ θ∆z)]} ,
j̃(21)
oo (p1, p2) = j̃(12)∗

oo (p2, p1), (30d)

j̃
(11)
hh (p1, p2) = T (p1; tS)R(p1; tM1)T (−p1 − θKz + ρq1; tA)T ∗(p2; tS)R∗(p2; tM1)T ∗(−p2 − θKz + ρq2; tA) (30e)

×j̃in(p1, q1, p2, q2) exp(−ip−x1),

j̃
(22)
hh (p1, p2) = R(p1; tS)R(p1; tM2)R(p1 + θKz − ρq1; tA)R∗(p2; tS)R∗(p2; tM2)R∗(p2 + θKz − ρq2; tA) (30f)

×j̃in(p1, q1 + hρ, p2, q2 + hρ) exp [−i(p−x2 + q−yS)] ,

j̃
(12)
hh (p1, p2) = T (p1; tS)R(p1; tM1)T (−p1 − θKz + ρq1; tA)R∗(p2; tS)R∗(p2; tM2)R∗(p2 + θKz − ρq2; tA) (30g)

×j̃in(p1, q1, p2, q2 + hρ) exp {−i [p1x1 − p2x2 − q2yS + h(u+ θ∆z)]} ,
j̃

(21)
hh (p1, p2) = j̃

(12)∗
hh (p2, p1). (30h)

We remember that t1,2 are total crystal thickness along the 1 and 2 arms, zD is the detector distance from the source,
x1,2 are the horizontal distances from the origin of the beams leaving the interferometer, and yS is the start offset
between the wave packets interfering collinearly, see Fig. 1.
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2.8.1 Triple Laue rocking curve.

The triple Laue rocking curve is given by

IRRR(θ, ρ) ∝
∫ +∞

−∞

∣∣j̃(22)
hh (p, q)

∣∣2 dp dq ∝
∫ +∞

−∞

∣∣R(p+ θKz − ρq; tA)R(p; tM2)R(p; tS)
∣∣2j̃in(p, q + hρ) dp dq, (31a)

where, see (12b),

j̃in(p, q) ∝ exp

[
− (p2 + q2)`20

2

]
. (31b)

Since j̃in(p, q) equals |ψ̃in(p, q)|2 (see (8), where p0 and q0 are set to zero), the rocking curves shown in Fig. 2
hold true also for an incoherent neutron source. However, the visibility of the pendellösung fringes is not ruled by
the source size w0, but by the coherence length `0; the smaller, the lesser the fringe visibility.

2.8.2 Moiré fringes.

The moiré pattern yielded by the analyser rotation ρ is encoded by the particle density (25b). Let us neglect the qρ

offset of the analyser Bragg alignment. Considering only the o state and q-factor, the addenda of j̃oo(q1, q2), see (29)
and (30), are

j̃(11)
oo (q1, q2) ∝ j̃in(q1 − hρ, q2 − hρ)eiq−yS−

i(q21−q22)zD
2Kz , (32a)

j̃(22)
oo (q1, q2) ∝ j̃in(q1, q2)e−

i(q21−q22)zD
2Kz , (32b)

j̃(12)
oo (q1, q2) ∝ j̃in(q1 − hρ, q2)eiq1yS−

i(q21−q22)zD
2Kz , (32c)

j̃(21)
oo (q1, q2) = j̃(12)∗

oo (q2, q1), (32d)

where j̃in(q1, q2) is the q factor of (12b), yS = 2ρzA tan(ΘB) is the start offset between the particles interfering
collinearly (see Fig. 1), and we included the (q2

1 − q2
2)z/(2Kz) phase picked from (29).

The results of the integrations (25b) are (see the supplementary material)

j(11)
oo (y) ∝ exp

[
−2(y − yD)2

w2
D

]
, (33a)

j(22)
oo (y) ∝ exp

(
−2y2

w2
D

)
, (33b)

j(12)
oo (y) ∝ exp

[
− y2

D

2`2D
− y2 + (y − yD)2

w2
D

+
2πiy

Λρ

]
, (33c)

j(21)
oo (y) = j(12)∗

oo (y). (33d)

where `D and wD are the correlation length and the beam size at the detection plane, respectively,

Λρ =
d

ρ

K2
zz

2
D tan2(ϑ`) tan2(ϑw) + 4

K2
zzAzD tan2(ϑ`) tan2(ϑw) + 4

, (34)

is the spacing of the moiré fringes, tan(ϑ`) = 2/(Kz`0), and tan(ϑw) = 2/(Kzw0).

Fringe contrast.

Putting (25b) and the equations (33) together, the y-factor of the (o state) particle density is

So(y) ≈ 2e−2y2
/
w2

D
[
1 + Γ cos(2πy

/
Λρ)
]
, (35)

where

Γ =
2|j(12)

oo |
j

(11)
oo + j

(22)
oo

= exp

(
− y2

D

2`2D

)
sech

(
yD(2y − yD)

w2
D

)
, (36)

which, apart from the exp
[
− y2

D

/
(2`2D)

]
factor, is the same as (21) and tends to it as `0/w0 →∞.
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Figure 3: Normalised contrast Γ, see (21), or exp
[
y2
D

/
(2`2D)

]
Γ, see (36), of the moiré fringes due to the pitch angle

of the analyser calculated for a Gaussian wavefunction [see (21)] or a Gaussian Schell-model of the source [see (36)].
The color scale is from red, 1, to blue, 0.27. `D, wD, and yD are the coherence length, radius, and offset of the
interfering beams at the detector, respectively (see Fig. 1).

The contrast of the fringe pattern is shown in Fig. 3. The maximum, which is equal to

Γmax = exp
[
− y2

D

/
(2`2D)

]
, (37)

occurs when y = yD
/

2, that is, when y is midway between the interfering-beam spots, wD/yD →∞, and yD = 0, in
which case (and only in this last case) it is one.

According to (37), the maximum contrast is set by the coherence length `D at the detection plane. Because of
the van Cittert-Zernike theorem, the coherence length increases with the detector distance from the source. For
instance, when `0/w0 → 0 (that is, the source is completely incoherent), the coherence length at the detection plane
is `D = 4z

/
(Kzw0), see (14b). Therefore, reducing the source radius w0 increases the contrast, as it is reported in

[16, 42].
We can qualitatively understand the effect of the source coherence as follows. According to (17) and the therein

discussion, the phase difference of fringe patterns originated by any pair of point-like sources vertically spaced by ∆y
is hρ∆y. If zD = zA (that is, the detection plane is the analyser), the patterns’ spacing is ∆y and their phases run
as hρy. Therefore, the fringes overlap in phase and their contrast is one, as predicted by (36). Contrary, if zD 6= zA,
according to (20b), the patterns’ spacing increases to ∆y + yD and their phases run as hρzAy/zD. Therefore, the
fringes overlap out of phase and we lose contrast.

2.8.3 Travelling fringes.

The integration of the particle densities (25a) over p,

In =

∫ +∞

−∞
S̃n(p) dp = Jn

[
1 + Γn cos(Φn)

]
, (38)

gives the counts of total particle. By noticing that j̃
(ii)
nn (p, p) are reals and j̃

(21)
nn (p, p) = j̃

(12)∗
nn (p, p), we obtain (the

sums over the σ and π polarisations are irrelevant in the neutron case)

Jn =
∑
β=σ,π
i=1,2

∫ +∞

−∞
j̃(ii)β
nn (p, p) dp, (39a)

Ξn =
∑
β=σ,π

∫ +∞

−∞
j̃(12)β
nn (p, p) dp, (39b)
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Γn = 2|Ξn|/Jn, and Φn = arg(Ξn). The expressions of j̃
(i)
nn(p, p) and j̃

(ij)
nn (p, p) are given in the appendix E. It is

worth noting that they are the equivalents of |ψ̃n,i(p)|2 and ψ̃βn,1(p)ψ̃∗n,2(p), respectively, in the equations (23).
The joint effect of the analyser pitch angle and incoherent source on the fringe visibility can be investigated

observing that the density matrix jin is separable, see the section (2.6). Considering the leaving o state, ideal
geometry (i.e., tA = tS , tM1 = tM2, θ = 0 rad), neglecting the qρ offset of the analyser Bragg alignment, and
carrying out the integrations over q, we obtain (see the supplementary material)

Γ = exp

(
− y

2
S

2`20
− h2ρ2w2

0

8

)
= exp

(
−h

2w2
Aρ

2

8

)
, (40)

where wA is the (vertical) size of the particle density at the analyser location, see (14a).
This visibility is the same as (24). In the same way as in (24), the y2

S/(2`
2
0) term originates from the different

intensities of the rays interfering coherently, whereas the h2w2
0ρ

2/8 term originates from the tilt of the interfering
wavefronts. If h`0 → 0, then hwA → ∞ and Γ → 0. Consequently, if the particles’ source is completely incoherent,
the interferometer operates only with a perfectly aligned analyser.

3 Conclusions

The proof-of-principle demonstration that the alignment and operation of a split-crystal interferometer with the
accuracy required for neutron interference are technically possible [16, 17] prompts the design of split-crystal skew-
symmetric interferometers operating with both x-rays and neutrons and having the potential of crystal separations
up to the meter scale.

Quantifying the effect of the misalignments between the crystals on the visibility and phase of the interference
signals is essential to identify the specifications necessary to successful manufacture and operate the interferometer.
Three dimensional operation and spatial coherence play an important role in determining the interference visibility.
Therefore, otherwise from previous studies, the paper novelty is a formalism to model split-crystal interferometers
in three dimensions and operating both with coherent and partially coherent x-rays and neutrons.

For the sake of algebraic simplicity, we considered a symmetric geometry and only the analyser free to move with
respect to the splitter-mirror pair. A split skew-symmetric geometry, where one of the two mirrors is integral with
the analyser and free to move with respect to the other, which is integral with the splitter, can be studied along the
same lines and will be the subject matter of future investigations.

We quantified the dependence of the pendellösung-fringe phase on the out-of-reflection-plane propagation of
the plane-wave components of the particles travelling through the interferometer. If the analyser’s pitch angle is
misaligned, the averaging of the out-of-phase pendellösung fringes associated with different plane-wave components
reduces the fringe visibility, which reduction can be used to approach the right alignment. Eventually, the visibility
of the pendellösung and moiré fringes as a function of the analyser pitch angle delivers information about the source
coherence.

Our formalism will also allow the effects of parasitic pitch rotations – associated with the analyser axial dis-
placement – on the phase of the travelling fringes to be quantified. This quantification, which is integral to the
investigation of systematic effects in the measurement of the 28Si lattice parameter, will be the subject matter of a
future investigation.

Eventually, the developed formalism opens new possibilities to study gravitationally-induced interference in a
neutron interferometer from first principles [43, 44, 45].

A Reciprocal space representation

According to the sign convention adopted in the propagation of electromagnetic waves, the direct space representation
of the state |ψ〉 is the plane-wave superposition

〈x, n|ψ(z)〉 = ψn(x; z) =
1

2π

∫ +∞

−∞
ψ̃n(p; z)eip·x dp,

where

〈p, n|ψ(z)〉 = ψ̃n(p; z) =
1

2π

∫ +∞

−∞
ψn(x; z)e−ip·x dx
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is the reciprocal space representation. We also use the orthogonality and completeness (in the Dirac sense) of the

〈x|p〉 = e+ip·x/(2π)

and

〈p|x〉 = e−ip·x/(2π)

bases, which are expressed by the integral representations of the delta distribution

〈p|p′〉 = δ(p′ − p) =
1

4π2

∫ +∞

−∞
ei(p′−p)·x dx

and

〈x|x′〉 = δ(x− x′) =
1

4π2

∫ +∞

−∞
eip·(x−x′) dp.

B Laue diffraction in a displaced crystal

Since the analyser might slip and orient differently from the splitter-mirror block, we need representing the (quantum)
state of the incoming particles in a roto-translated basis.

Any misalignment is described by a rotation about an arbitrary point plus a translation. Vertical displacements
(along the y axis) are irrelevant because the analyser is symmetrically cut and plane-parallel. Displacements along
the z axis are encoded by the crystal spacings. Eventually, it is timely that, in the rotation centre, the o and h
bases have the same phase. Consequently, the interferometer focus, rF = (xF , 0, zF ), is the optimal choice and the
displacement u along the x axis is the only additional degree of freedom (see Fig. 1). Since the interferometer is
insensitive to the roll angle, which plays a role only if it is macroscopic, we neglect it.

After translating the interferometer and analyser origins in rF , the interferometer position-vector rL (relative to
rF ) is seen from the analyser as

rA = MrL = R(rL) + ux̂L,

where

R =

 1 −ρ θ
ρ 1 0
−θ 0 1

 ,

and θ and ρ indicate yaw (the Bragg’s rotation about the vertical, y, axis) and pitch (the rotation about the z axis)
angles, respectively. Accordingly, the analyser, first, rotates about rF and, then, translates by −ux̂L. From the
analyser viewpoint, the splitter-mirror block counter-rotates about rF and translates in the ux̂A direction.

We indicates by M̂ the linear operator associated to M that changes the abstract single-particle state leaving
the first crystal, |ψL(zL)〉, to that seen by the analyser, |ψA(zA)〉, that is, |ψA(zA)〉 = M̂ |ψL(zL)〉. Since the wave-
function value at any given point is unchanged despite the change of the reference frame, rA = MrL, the operator
M̂ that we are seeking can be found by explicit construction. Therefore, by using (2),

|o〉L = eiKo·rL
(

1
0

)
L

= eiKo·(M−1rA)

(
1
0

)
L

and, since the analyser does not see Kn rotations,

|o〉A = eiKo·rA
(

1
0

)
A

= eiKo·rAM̂

(
1
0

)
L

Since|n〉L = |n〉A, the M̂ restriction to V2 is

L〈m|M̂ |n〉L = exp[iKn · (M−1rA − rA)]δmn,

where, by using (3),

Ko,h · (M−1rA − rA) = θKzx
′
A ± h(u− ρyA + θzA)

/
2, (B.1)
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Kz = K cos(ΘB), Kx = K sin(ΘB) = h
/

2, and xA − s has been redefined as x′A.

Similarly, since 〈rL|ψLn 〉 = 〈rA|ψAn 〉 = 〈rA|M̂ |ψLn 〉, to find the M̂ restriction to L2, we observe that

〈rA|ψAn 〉 = 〈rA|M̂ |ψLn 〉 = 〈M−1rA|ψLn 〉 = ψLn (M−1rA).

Consequently,

〈rA|M̂ |ψLn 〉 =

∫ +∞

−∞
〈rA|M̂ |rL〉〈rL|ψLn 〉drL =

∫ +∞

−∞
〈rA|M̂ |rL〉ψLn (rL) drL = ψLn (M−1rA)

and

〈rA|M̂ |rL〉 = δ(M−1rA − rL) ≈ δ(x′A − xL − θzA + ρyA, yA − yL − ρx′A, zA − zL + θx′A), (B.2)

Owing to small horizontal extensions of ψAo,h(rA) about xA2,1−xAF , we can approximate xA as xA2 −xAF (o beam) and

xA1 − xAF (h beam), see Fig. 1. Therefore, since the interferometer operation requires (xA2,1 − xAF )/∆e ∝ ∆z/∆e � 1
[39], θx′A is a second-order term and will be neglected from now on. Hence,

〈rA|M̂ |rL〉 = M̂(xA, xL; zA)δ(zA − zL).

Putting it all together and setting z = zA = zL (see the supplementary material), the direct- and reciprocal-space

representations of M̂ are

M̂(xA, xL; z) = eiKzθx
′
A

(
eih(u−ρyA+θz)/2 0

0 e−ih(u−ρyA+θz)/2

)
δ(x′A − xL + ρyA − θz, yA − yL − ρx′A), (B.3)

M̂(p′, p; z) =

∫ +∞

−∞
〈p′|x′〉〈z, x′|M̂ |x, z〉〈x|p〉dx′dx

=

(
e+ih(u+zθ)/2δ(q − q′ − hρ/2) 0

0 e−ih(u+zθ)/2δ(q − q′ + hρ/2)

)
δ(p− p′ − ρq′ + θKz), (B.4)

where p′ = (p′, q′) and p = (p, q) are the variables conjugate to (x′A, yA) and (xL − xF , yL − yF ), respectively, we
neglected the second-order terms proportional to pθ and pρ, and approximated ρq = ρq′±hρ2

/
2 by ρq′. The analyser

representation of |ψL(z)〉 is (see the supplementary material)

ψ̃A(p′; z) = 〈p′|ψA(z)〉 = 〈p′|M̂(z)|ψL(z)〉 =

∫ +∞

−∞
〈p′|M̂(z)|p〉〈p|ψL(z)〉dp

=

∫ +∞

−∞
M̂(p′, p; z)ψ̃L(p; z)〉dp =

(
ψ̃Lo(p

′ + ρq′ − θKz, q
′ + hρ

/
2; z)e+ih(u+θz)/2

ψ̃Lh(p′ + ρq′ − θKz, q
′ − hρ

/
2; z)e−ih(u+θz)/2

)
.

After propagating the state |ψA(∆z)〉 = M̂(∆z)|ψL(∆z)〉 (where |ψL(∆z)〉 is the particle state at the z = zF + ∆z
plane, see Fig. 1) by the scattering matrix U0(tA), the laboratory representation of |ψA(∆z+ tA)〉 = U0(tA)|ψA(∆z)〉
is (see the supplementary material)

ψ̃L(p; ∆z + tA) = 〈p|M̂−1(∆z + tA)U0(tA)|ψA(∆z)〉 =

∫ +∞

−∞
M̂−1(p, p′; ∆z + tA)U0(p′; tA)ψ̃A(p′; ∆z)〉dp′

=


[
T (p− ρq + θKz; tA)ψ̃Lo(p, q; ∆z) +R(p− ρq + θKz; tA)ψ̃Lh(p, q − hρ; ∆z)e−ih(u+θ∆z)

]
e−i(Kzθ−qρ)tA tan(ΘB)[

R(p− ρq + θKz; tA)ψ̃Lo(p, q + hρ; ∆z)e+ih(u+θ∆z) + T (−p+ ρq − θKz; tA)ψ̃Lh(p, q; ∆z)
]

e+i(Kzθ−qρ)tA tan(ΘB)


× exp

[
− i(p2 + q2)tA

2Kz

]
,

where M̂−1(∆z + tA) is obtained by the substitutions ρ→ −ρ, θ → −θ, and u→ −u.
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C Gaussian beam propagation

Let us consider a separable Gaussian beam that propagates in the x− z plane at the ΘB angle with respect to the z
axis. Its divergence θ0, radius lz and wavefront radius of curvature rz at the distance z from the source are (see the
supplementary material)

tan(θ0) = 2/(Kzl0),

l2z = l20

(
1 +

4z2

K2
z l

4
0

)
,

rz =
K2
z l

4
0 + 4z2

4z
=
K2
z l

2
0l

2
z

4z
,

where l0 is the source radius measured in the x− y plane and we omitted the indexes labelling the beam’s x and y
axes.

D Propagation of the density matrix

The matrix elements necessary to propagate the density matrix through the interferometer are given below (see the
supplementary material). Unessential phases shared by the interfering o1, o2 and h1, h2 elements and second order
terms have been omitted.

X̃o1(p, p′) =R(p+ θKz − ρq; tA)R(p; tM1)T (p; tS)δ(p′ − p, q′ − q + hρ) exp {−i [px1 − qyS + h(u+ θ∆z)]} ,
X̃o2(p, p′) =T (p+ θKz − ρq; tA)R(p; tM2)R(p; tS)δ(p′ − p, q′ − q) exp(−ipx2),

X̃h1(p, p′) =T (−p− θKz + ρq; tA)R(p; tM1)T (p; tS)δ(p′ − p, q′ − q) exp(−ipx1),

X̃h2(p, p′) =R(p+ θKz − ρq; tA)R(p; tM2)R(p; tS)δ(p′ − p, q′ − q − hρ) exp {−i [px2 + qyS − h(u+ θ∆z)]} .

E Particle densities

The diagonal elements of the propagated density matrix necessary to calculate the particle densities of the o and h
states leaving the interferometer are (see the supplementary material)

j̃(11)
oo (p, p) =

∣∣T (p1; tS)R(p; tM1)R(p+ θKz − ρq; tA)
∣∣2j̃in(p, q − hρ, p, q − hρ)

j̃(22)
oo (p, p) =

∣∣R(p; tS)R(p; tM2)T (p+ θKz − ρq; tA)
∣∣2j̃in(p, q, p, q)

j̃(12)
oo (p, p) = T (p; tS)R(p; tM1)R(p+ θKz − ρq; tA)R∗(p; tS)R∗(p; tM2)T ∗(p+ θKz − ρq; tA)

×j̃in(p, q − hρ, p, q) exp
[
− i[px0 − qyS + h(u+ θ∆z)]

]
j̃(21)
oo (p, p) = j̃(12)∗

oo (p, p)

j̃
(11)
hh (p, p) = T (p; tS)R(p; tM1)T (−p− θKz + ρq; tA)

∣∣2j̃in(p, q, p, q)

j̃
(22)
hh (p, p) =

∣∣R(p; tS)R(p; tM2)R(p+ θKz − ρq; tA)
∣∣2j̃in(p, q + hρ, p, q + hρ)

j̃
(12)
hh (p, p) = T (p; tS)R(p; tM1)T (−p− θKz + ρq; tA)R∗(p; tS)R∗(p; tM2)R∗(p+ θKz − ρq; tA)

×j̃in(p, q, p, q + hρ) exp
[
− i[px0 − qyS + h(u+ θ∆z)]

]
j̃

(21)
hh (p, p) = j̃

(12)∗
hh (p, p).

F List of the main symbols

ẑ normal to the crystal surface
x = (x, y) r component orthogonal to ẑ
h = 2πx̂

/
d reciprocal vector

d diffracting plane spacing
Ko,Kh = Ko + h kinematical wave vectors
2K sin(ΘB) = h Bragg law
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ΘB Bragg angle
γ = cos(ΘB) Ko’s z direction-cosine
α = sin(ΘB) Kh’s x direction-cosine
Kz = Kγ z component of Ko,h

p = (p, q) variable conjugate to x
p resonance error
χ0,h x-rays: Fourier components of the

periodic electric susceptibility
υ0,h = −K2χ0,h neutrons: Fourier components of the

periodic Fermi pseudo-potential
n0 = 1 + <(χ0)

/
2 refractive index

µ0 = =(χ0)K absorption coefficient
ν = χh

/
|χh|

∆e = λγ
/
|χh| pendellösung length

η = ∆e tan(ΘB)p
/
π dimensionless resonance error

ζ = πz
/

∆e dimensionless propagation distance
tS , tM1, tM2, tA crystal thicknesses
zA, zD analyser and detector distances

from the source
x0 = x1 − x2 shear of the interfering beams
∆z defocus
yS start separation of the rays

ending collinearly
yD end separation of the rays

starting collinearly
u analyser displacement along x̂
θ analyser yaw angle, rotation about ŷ
ρ analyser pitch angle, rotation about ẑ
n = o, h particle state components (label)
i = 1, 2 interferometer arm (label)

References

[1] U. Bonse and M. Hart, “An x-ray interferometer,” Applied Physics Letters, vol. 6, no. 8, pp. 155–156, 1965.

[2] H. Rauch, W. Treimer, and U. Bonse, “Test of a single crystal neutron interferometer,” Physics Letters A,
vol. 47, no. 5, pp. 369–371, 1974.

[3] H. Rauch and S. A. Werner, Neutron Interferometry: Lessons in Experimental Quantum Mechanics. Oxford
series on neutron scattering in condensed matter, Oxford: Clarendon Press, 2000.

[4] T. Klein, “Neutron interferometry: a tale of three continents,” Europhysics News, vol. 40, no. 6, pp. 24–26,
2009.

[5] G. Pignol, D. A. Pushin, M. G. Huber, M. Arif, C. B. Shahi, J. Nsofini, C. J. Wood, D. Sarenac, and D. G.
Cory, “Neutron interferometry at the national institute of standards and technology,” Advances in High Energy
Physics, vol. 2015, p. 687480, 2015.

[6] E. Massa, C. P. Sasso, and G. Mana, “The measurement of the silicon lattice parameter and the count of atoms
to realise the kilogram,” MAPAN, vol. 35, no. 4, pp. 511–519, 2020.

[7] S. Sponar, R. I. P. Sedmik, M. Pitschmann, H. Abele, and Y. Hasegawa, “Tests of fundamental quantum
mechanics and dark interactions with low-energy neutrons,” Nature Reviews Physics, vol. 3, no. 5, pp. 309–327,
2021.

[8] E. Massa, G. Mana, U. Kuetgens, and L. Ferroglio, “Measurement of the {2 2 0} lattice-plane spacing of a 28si
x-ray interferometer,” Metrologia, vol. 48, no. 2, pp. S37–S43, 2011.

[9] E. Massa, C. P. Sasso, G. Mana, and C. Palmisano, “A more accurate measurement of the 28si lattice parameter,”
Journal of Physical and Chemical Reference Data, vol. 44, no. 3, p. 031208, 2015.

18



[10] A. Yoneyama, A. Momose, I. Koyama, E. Seya, T. Takeda, Y. Itai, K. Hirano, and K. Hyodo, “Large-area
phase-contrast X-ray imaging using a two-crystal X-ray interferometer,” Journal of Synchrotron Radiation,
vol. 9, no. 5, pp. 277–281, 2002.

[11] T. Osaka, T. Hirano, Y. Morioka, Y. Sano, Y. Inubushi, T. Togashi, I. Inoue, K. Tono, A. Robert, K. Yamauchi,
J. B. Hastings, and M. Yabashi, “Characterization of temporal coherence of hard X-ray free-electron laser pulses
with single-shot interferograms,” IUCrJ, vol. 4, no. 6, pp. 728–733, 2017.

[12] H. Uebbing, Aufbau und Messungen mit dem Zweikristall-Röntgen-Neutronen-Interferometer. PhD thesis, Uni-
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