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Abstract—Passive multistatic radar networks localize a non-cooperative target exploiting the bistatic measurements
associated with signals emitted by several transmitters of opportunity and acquired by multiple receivers. However, in
realistic scenarios, it might happen that one or more receivers are damaged and/or under malicious attacks with a
consequent degradation of the system performance. This paper proposes a procedure to reveal sensors that return
anomalous measurements due to an attack or a failure. Specifically, we first detect such measurements by solving a
binary hypothesis test, then we cancel them and estimate the final delays as well as the target position. The performance
of the overall architecture is assessed using both synthetic data and real-recorded data.

Index Terms—Cross-cross-correlation, failure detection, passive coherent location, passive multistatic radar, transmitter of opportunity.

I. INTRODUCTION

Passive radar systems [1], [2] are widely used to detect, localize,
and track non-cooperative targets. In a multistatic radar network
[3], these tasks are accomplished by means of two antennas: one
antenna points towards the source of opportunity to record the
transmitted waveform, whereas the second is used to collect echoes
backscattered by the target. At the receiver side, the elliptic localization
is commonly performed by exploiting the classic cross-correlation
(CC) procedure for each bistatic measurement [4], [5]. In recent
years, many algorithms aimed at improving the accuracy in target
position estimate with a passive coherent location (PCL) system
under the ideal situation in which all receivers correctly work have
been developed [4]–[7]. However, in practice, one or more sensors
could return erroneous measurements due, for instance, to jamming
attacks, unintentional interference, or hardware failures [8]. Thus, the
set of measurements used for localization can contain outliers that, if
not properly handled, can lead to a severe localization performance
degradation. Even though there exist many studies considering the
problem of outlier identification within a set of time difference of
arrival (TDOA) measurements (see [9]–[11]), in the case of a complete
fault of a sensor, the rejection of such outliers could be not sufficient
to restore the performance. Similarly, even though during the data
association process, erroneous measurements can be eliminated, it
is necessary also to identify and discard a sensor whose behavior is
anomalous due to an internal failure or, remarkably, to an external
attack from a malicious platform. In fact, in above situations, to
guarantee a reliable localization performance it would be necessary
to perform a prior identification of the faulty sensor and reject all
measurements returned by it. In this respect, in [12] an architecture
based on the outlier distribution of the TDOA equations has been
designed to properly detect the faulty receiver in a passive radar
network that uses the signal emitted by the target.

In this paper, we extend the procedure proposed in [12] from
hyperbolic to elliptic localization using opportunity signals at different
portions of the available spectrum. Hence, the bistatic signal emitted
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by an independent source and reflected by the target towards the
receiver is exploited in the localization process. As a consequence,
the reflected signal has a very low signal to noise ratio (SNR).
Differently, the model in [12] uses the replicas of the signal directly
emitted by the target, that experience a possible higher SNR. For
these reasons, we introduce two levels of failure that are handled
to make more robust the new fault sensor detection procedure with
respect to that proposed in [12]. The main technical contributions
of this work can be summarized as:

• all the equation involved in the localization are clustered into
three nonoverlapped groups, i.e., strong outliers, weak outliers,
and normal, according to their impact on the Least Squares (LS)
problem;

• differently from [12], where outlier equations are sequentially
removed, in this paper not because of a lower dimension of
the related LS problem (in fact, in the PCL, the second-order
correlations are computed, at each node, only between the direct
opportunity signal and its bistatic counterpart). Then, only after
that a receiver is declared in failure, its corresponding equations
are removed and the final bistatic delays are estimated;

• the warning score associated to each sensor is weighted on the
basis of the cluster to which the returned measurements belong.
In this way, the impact of the outlier equations is diversified.

Finally, the detection of a faulty sensor is obtained from a binary
hypothesis test accounting for the warning score distribution as in
[12] (the warning score distribution differs from that in [12] in terms
of weights applied in the warning computation and number of sensors
involved in each equation). The illustrative examples are obtained on
both synthetic and real-recorded data and show the capability of the
proposed procedure in correctly identifying the faulty sensor with
consequent accurate bistatic delay estimates.

II. A BRIEF REVIEW OF THE DELAY ESTIMATION
PROBLEM

The operating scenario for a passive multistatic radar comprising a
non-cooperative target is shown in Fig. 1, where 𝑇 ∈ N transmitters,
occupying nonoverlapping frequency bands, and 𝑆 ∈ N receivers
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Fig. 1. Graphical illustration of a passive multistatic radar scenario.

are present. Let us denote by 𝑥𝑠,𝑡 (𝑛𝑡𝑠), 𝑠 = 1, . . . , 𝑆, 𝑡 = 1, . . . , 𝑇 ,
the bistatic signal received by the 𝑠th node and emitted by the 𝑡th
transmitter, sampled at𝑛𝑡𝑠 with 𝑡𝑠 the sampling time. The samples from
the reference direct signal recorded by the 𝑠th receiving antenna that
looks at the 𝑡th transmitter of opportunity is indicated by 𝑥0,𝑠,𝑡 (𝑛𝑡𝑠),
𝑠 = 1, . . . , 𝑆, 𝑡 = 1, . . . , 𝑇 . Applying the classic CC framework, the
relative delays 𝜏0,𝑠,𝑡 , 𝑠 = 1, . . . , 𝑆, 𝑡 = 1, . . . , 𝑇 , between the bistatic
and direct signals related to the 𝑠th receiver and 𝑡th transmitter can be
estimated by maximizing the modulus of the discrete-time CC estimate
(recall that the signals emitted by the transmitters are separable).
As an alternative, the delay estimation problem can be solved also
resorting to the cross-cross- and the flipped cross-cross-correlation
(CCC) between couples of receivers [13]. The new problem results
in an overdetermined system of equations of size 𝑄 = 𝑆(𝑆 − 1). The
above two methods can be further combined in order to exploit all
the possible equations in a more comprehensive system that can be
solved using the augmented least squares (ALS) approach.

III. FAILURE DETECTION ALGORITHM

In this section, we describe the proposed method to detect the
faulty sensors. To this end, in Figure 2 we show the block-scheme
of the entire localization system that comprises the part devoted to
the identification of the anomalous sensors. This part is contained
in the blue box and consists of a first stage aimed at labeling the
equations as possible outliers and a second stage responsible for the
computation of the so-called warning scores (this concept will be
better explained below) and the final detection of the faulty sensor.

Starting from the first stage, the procedure to label the equations
of the ALS system as possible outliers is similar to that developed
in [12] with the difference that three different labels can be assigned
to an equation according to the error deviation, whereas in [12] one
outlier level only is considered. Specifically, an outlier is declared
each time an entry in the vector containing the absolute errors of
each equation in the ALS system exceeds a specific threshold that
is set according to the median absolute deviation criterion [14]. The
threshold value is a function of a tuning parameter 𝜅 aimed at ruling
the deepness of outlier identification. Thus, differently from [12],
we use such a parameter to cluster all the equation into three not
overlapped groups. More precisely, the considered clusters are:

• strong outliers: the equations whose errors overcome the
threshold associated with 𝜅 = 3;

• weak outliers: the equations with errors belonging to the interval
for which 2 ≤ 𝜅 < 3;

• normal: all the other cases.

Fig. 2. Block scheme of the proposed algorithm for delays estimation
accounting for sensor failure.

The above choice is motivated by the fact that a high value of 𝜅 is
overcame by the “wrongest” equations, whereas with 2 ≤ 𝜅 < 3 all
equations that can be still considered erroneous but in a weak sense.

The second stage computes a warning score for each sensor to
decide whether or not this sensor is faulty. To this end, it exploits
the two levels of outlier returned by the previous stage by assigning
a corresponding weight. More in detail, we assign a weight equal
to 3 to the equations labeled as strong outliers and a weight equal
to 2 in the case of a weak outlier.1 Then, the warning score for
a given sensor is computed by accumulating the weights assigned
to the equations involving such a sensor. To this end, when the
outlier equation arises from the application of the CC method only
the measurement from 1 sensor are used, whereas in the case of
the CCC procedure, the equations involve data from 2 sensors. It
is evident that in the presence of a faulty sensor, several equations
should be marked as outliers with the warning score of the specific
sensor being much higher than the others. Conversely, in a normal
situation where all sensors are correctly working, the final warning
score for each sensor should be low and very close to the others
because of the noise impact only. Finally, for each receiver, the binary
hypothesis test is applied to declare that the receiver is in failure

𝑥 (𝑖)
𝐻𝐹,1
>
<

𝐻𝐹,0

𝜂𝐹 , (1)

where 𝑥 (𝑖) is the warning score computed for the 𝑖th sensor, 𝐻𝐹,0

is the null hypothesis of normal working, 𝐻𝐹,1 is the alternative
hypothesis of faulty receiver, and 𝜂𝐹 is the detection threshold set
according to the probability of false failure detection. The pseudo-
code of the failure detection procedure is reported in Algorithm 1,
where 𝑁𝑜

𝑝 , 𝑝 = 1, 2 and 𝑜 = 𝑠, 𝑤, is the number of strong (𝑠) or
weak (𝑤) outlier equations associated with 1 or 2 sensors.

As to the threshold computation, notice that, under 𝐻𝐹,0, in the
case of strong outliers (with weights equal to 3), the warning score
is modeled as a binomial random variable with parameters 𝑁𝑠

𝑝 and
𝑝/𝑇𝑆 taking on values 0, 3, 6, . . . , 3𝑁𝑠

𝑝 , i.e., 𝑥𝑠𝑝 ∼ B(𝑁𝑠
𝑝 , 𝑝/𝑇𝑆). In

the same way, in the case of weak outliers (with weights equal to 2),
the warning score is modeled as a binomial random variable with
parameters 𝑁𝑠

𝑤 and 𝑝/𝑇𝑆 taking on values 0, 2, 4, . . . , 2𝑁𝑤
𝑝 , i.e.,

𝑥𝑤𝑝 ∼ B(𝑁𝑤
𝑝 , 𝑝/𝑇𝑆). The total number of warning scores for a given

receiver is obtained by summing the four above-defined warnings,
i.e., 𝑥 = 𝑥𝑠1 + 𝑥𝑠2 + 𝑥𝑤1 + 𝑥𝑤2 . Assuming a fully random model for the

1Note that, differently from here, in [12], because of the sequential cancellation,
all warnings were computed with a weight equal to 1 for all considered outliers.



Algorithm 1 Proposed failure detection algorithm.
Input: Indices of the equations labeled as outliers.
Output: Indices of detected faulty sensors.

1: Count 𝑁𝑠
1 , 𝑁𝑠

2 , 𝑁𝑤
1 , and 𝑁𝑤

2 ;
2: Compute the warning scores 𝑥 (𝑖) , 𝑖 = 1, . . . , 𝑆;
3: Set the threshold 𝜂𝐹 that ensures the desired nominal false failure

rate for the parameters 𝑁𝑠
1 , 𝑁𝑠

2 , 𝑁𝑤
1 , and 𝑁𝑤

2 ;
4: Test 𝑥 (𝑖) , 𝑖 = 1, . . . , 𝑆, through (1).
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(b) real-recorded data

Fig. 3. Geometric configuration of the passive multistatic system for
(a) simulated data and (b) real-recorded data.

warning scores and also statistical independence between 𝑥𝑠1 , 𝑥𝑠2 , 𝑥𝑤1 ,
and 𝑥𝑤2 , the probability mass function (pmf) of the random variable
𝑥 can be computed through the convolution of the pmfs of each
component. This pmf can be used to select the detection threshold.

IV. STUDY CASES

In this section, we prove the effectiveness of the proposed
framework, referred to as estimation with failure detection (EFD),
in comparison with the positioning algorithm that a priori knows
the faulty sensors. It is important to stress that the method devised
in [12] for TDOA is not reported in this paper since it completely
fails because of the low number of equations in the ALS problem
of the multistatic system. Tests are performed by considering the
bidimentional (2D) localization scenario illustrated in Fig. 3.

A. Tests using simulated data

For simulation purpose, we make use of standard Monte Carlo
simulations to estimate the root mean square error (RMSE) of the
estimated target position over 102 independent trials. Moreover,
the detection threshold is set to guarantee a nominal false failure
detection probability of 10−2. The parameters refer to three frequency
modulated frequency modulated (FM) transmitters of opportunity,
whereas receivers and target are set as in [15]. Specifically, the
effective radiated power is 125 kW, the bandwidth is 50 kHz, the
operating wavelength is 3 m, the receiver gain is −10 dBi, the noise
figure is 25 dB, target radar cross section is 1 dBsm. To emulate a
faulty sensor, all signals received at that specific receiver are enforced
to have the noise component only.

In Fig. 4, the RMSE values evaluated for all points in the observed
map are plotted to describe the accuracy reached by our algorithm
for each possible target location in three different scenarios with 1,
2 and 3 sensors under failure, respectively. Precisely, considering a
received signal of duration 1 ms, we focus on 𝑉 = 10 sub-blocks
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(a) proposed EFD algorithm
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(e) proposed EFD algorithm
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Fig. 4. RMSE (m) of the target position for Fig. 3. Sensors (marked
with the red circle) are in failure.

of 0.1 ms each, and for each of them the localization process is
performed. Once the 𝑉 position estimates are obtained, their median
value is computed and used as the final estimate. By doing so, we
ensure to reject final outliers in the measurements due to possible
missed failures. The RMSE maps of the target position in Fig. 4
indicate that the proposed EFD almost reaches the same performance
as its benchmark (i.e., the algorithm knowing the fault sensors) with
1 and 2 sensors under failure, while in the case of 3 anomalous
sensors RMSE values of the target position are slightly higher than
the considered benchmark.

To provide a quantitative measure of the achieved results, the
following metric is evaluated

𝑑RMSE (algorithm, benchmark) =
∥RMSEalgorithm − RMSEbenchmark∥𝐹

∥RMSEbenchmark∥𝐹
,

(2)
with ∥ · ∥𝐹 the Frobenius norm. Moreover, RMSEalgorithm and
RMSEbenchmark denote the RMSE maps of the algorithm under
consideration and the benchmark. The 𝑑RMSE values are hence
evaluated for the EFD and for its competitor not performing a failure
detection, referred to as no failure detection (noFD). The respective
results, reported in Table 1, show that the EFD error values exhibit
shorter deviations from the benchmark performance than the noFD.



TABLE 1. 𝑑RMSE values for the scenarios of Fig. 4.

1 failure 2 failures 3 failures

𝑑RMSE (EFD, benchmark) 0.81 0.74 0.71
𝑑RMSE (noFD, benchmark, ) 5.85 7.83 6.76
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Fig. 5. RMSE (m) of the target position for Fig. 3 using real-recorded
FM data. A sensor (marker with the red circle) is in failure.

B. Tests using real-recorded data

In this subsection, we test the EFD method in a partially simulated
environment with the received signals acquired using a real system.
More specifically, data are collected using the software defined radio
(SDR) device "R820T2 RTL2832U RTL-SDR MCX" [16] and drawn
from three different FM channels obtained setting the sample rate
to 1.024 MHz. Hence, these data are used to emulate the signals
from the transmitters of opportunity of Fig. 3(b), and the replicas
for the receiving sensors are derived by adding white Gaussian
noise in order to rule the specific value of SNR. To reduce the
computational burden, 1000 samples are extracted from the acquired
data that are in turn divided into 𝑉 = 4 sub-blocks. Results in
terms of RMSE are reported in Fig. 5 for the procedure repeated
over 100 Monte Carlo trials.2 As before, comparisons are performed
using as benchmark the positioning algorithm a priori knowing the
fault sensor. From the RMSE maps of the target position, it can be
observed that the proposed method is capable of effectively rejecting
the faulty sensor obtaining position estimation errors comparable to
the benchmark. In fact, 𝑑RMSE (EFD, benchmark) = 1.15, whereas
𝑑RMSE (noFD, benchmark) = 14.80.

V. CONCLUDING REMARKS

A procedure to identify possible faulty sensors in a passive
multistatic radar network has been proposed. Starting from the bistatic
measurements, the method performs the detection of a faulty sensor
exploiting the outlier distribution in the time delay measurements.
The method groups the measurement equations into three clusters
that quantify specific weights used to compute the warning scores
of each sensor. Such scores are then used to declare whether or not
each sensor is in failure. The sensors classified as faulty are removed
from the set used to localize the target. Numerical results have shown
the capability of the devised processing chain to correctly handle
situations that includes anomalous sensors with localization errors
close to the benchmark. In future works, it would be of interest the
classification of the sensor failure by identifying the causes.

2In the simulation performed using real-recorded data, the same parameter
setting as in the previous analyses is applied.
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