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Abstract: Land use is one of the drivers of land-cover change (LCC) and represents the conversion of
natural to artificial land cover. This work aims to describe the land-take-monitoring activities and
analyze the development trend in test areas of the Basilicata region. Remote sensing is the primary
technique for extracting land-use/land-cover (LULC) data. In this study, a new methodology of
classification of Landsat data (TM–OLI) is proposed to detect land-cover information automatically
and identify land take to perform a multi-temporal analysis. Moreover, within the defined model,
it is crucial to use the territorial information layers of geotopographic database (GTDB) for the
detailed definition of the land take. All stages of the classification process were developed using
the supervised classification algorithm support vector machine (SVM) change-detection analysis,
thus integrating the geographic information system (GIS) remote sensing data and adopting free
and open-source software and data. The application of the proposed method allowed us to quickly
extract detailed land-take maps with an overall accuracy greater than 90%, reducing the cost and
processing time.

Keywords: land take; remote sensing; SVM algorithm; change detection analysis; geographic
information system

1. Introduction

Land take is represented by the growth of areas with artificial cover. It is associated
with soil loss, defined as a change from non-artificial to artificial soil cover. In literature,
soil change from natural to artificial cover is indicated in many ways, such as land take,
land consumption, soil sealing, impermeable soil, etc. [1–4]. Knowing the changes in land
use and land cover from natural to artificial is essential to understanding the interactions
between human activities and the environment. The characteristics and consequences of
land take are well known in the scientific literature [5–7]. In the European Union (EU),
most of the population lives in cities, towns, and suburbs, and further urbanization is
expected [8]. Built-up areas have mainly expanded to the detriment of agricultural land,
and in recent decades, urban expansion has not matched population growth [9–11]. The
National System of Environmental Protection (SNPA) monitors land take, and the Superior
Institute for the Protection and Environmental Research (ISPRA) every year elaborates a
study of the state of the art of land take in Italy [12]. The urban transformations of recent
years have changed the relationship between urban centers and rural areas with the increase
in territorial fragmentation [13–17]. In fact, in many territorial contexts, such as Basilicata
Region, urban sprawl is strongly present, with consequent extensive waterproofing of the
territory [18–20]. On a national scale, land take is constantly increasing; in fact, monitoring
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data show that artificial cover in Italy has been estimated at 21,430 km2 and about 316 km2

in Basilicata [12].
Nowadays, remotely sensed data with high spatial and spectral resolution have be-

come increasingly available to quantify and monitor land-use and land-cover change from a
local to a global and urban scale [21,22]. Remote sensing data provide detailed information
and an overview of landscape features and changes in urban and rural areas. Land-cover
mapping and assessment are among the main fields of remote sensing applications [23,24].
Numerous studies have addressed this issue using different applications, multispectral
data, and classification methods [25–27].

Appropriate classification techniques are essential to derive reliable information from
satellite data effectively. The careful choice of the classification method influences the
land-use/-cover mapping [28,29]. Several classification methods have been developed for
satellite image processing in recent years. A general overview of such methods includes
both non-supervised classification algorithms (i.e., K-means algorithms, Isodata, etc.) and
traditional supervised classification algorithms (i.e., maximum likelihood) and machine
learning algorithms, such as support vector machines (SVM), k-Nearest Neighbors (kNN),
decision trees (DT), and random forest (RF) [30,31]. Haydary et al. [32–34] used Landsat
images applying several classification algorithms (kNN, SVM, and Artificial Neural Net-
work) to compare the accuracy of results obtained using different classifiers’ and sampling
methods’ heterogeneity of images and distribution of classes in space [35].

This research concerns a practical study on land-take time series, carried out through
remote sensing data by the Landsat Mission, aiming to provide accurate information
for selected sample area in Basilicata Region from 1994 to 2014. Analyzing land take
starting from 2014 and then continuing backward in time is mainly related to updating the
cartography present on the regional geo-topographic database. The information layers of
the GTDB relating to urban/impermeable areas represent the ancillary reference data of our
work with which to compare, using map algebra, the map obtained from the classification
process.

Landsat images were classified using an automatic classifier. All process steps were
developed integrating Geographical Information System (GIS) and remote sensing and
adopting free and open-source software QGIS [35]. This work aims to create and use
an expeditious methodology for classifying multitemporal Landsat imagery, using the
semi-automatic classification algorithm in a GIS environment for mapping land use. The
method developed has the potential of SVM based on machine learning theory to produce
a synthetic map of land take that provides valuable and detailed information to improve
the accuracy of land-cover mapping in complex landscapes and environments, such as
urban peri-urban areas. The rest of the paper is organized as follows: Section 2 describes
the study areas, datasets, and methodology. Section 3 demonstrates the results. The results
are discussed in Section 4, and the conclusions are presented in Section 5.

2. Materials and Methods
2.1. Study Area

The morphology of the Basilicata Region is predominantly mountainous and hilly,
with a single, more extended plain in the area of the Metapontum (Ionian coast) and four
valleys raising from the major rivers from the south to the northern part of the region.
Urban centers are mainly located in the higher areas of the region for historically defensive
reasons. They are generally surrounded by large uninhabited areas and sparse houses
or small civil or industrial aggregates. Thirty percent of the territory is affected by areas
subject to environmental constraints; these data further highlight the need for prudent and
more sustainable use of natural soil.

Basilicata is among the Italian regions with a high rate of depopulation; according
to the Italian National Statistical Office (ISTAT) [36], the resident population in the region
decreased from approximately 600,000 in 2000 to about 547,500 inhabitants in 2021. The
soil consumed per capita, which represents an essential indicator for estimating land take,
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in Italy in 2020 is about 359 m2 per inhabitant. In Basilicata, this value is about 571 m2 land
take per inhabitant [12].

In recent years, a slow transformation from rural areas to suburban and urban areas
occurred in all Italian regions. The Basilicata region was among those to show the most
significant changes.

The provinces of Potenza and Matera have the highest land-take per capita values.
Potenza has 626 m2 per inhabitant and Matera 470 m2 per inhabitant; the national average
is 359 m2 per inhabitant [12]. The first three municipalities with high land take based on
their surface are Potenza (10.7%), Melfi (8.6%), and Policoro (8.4%). In terms of absolute
values of land consumed in 2020, the municipalities with the highest values are Matera
(21,850 m2), Potenza (18,690 m2), and Melfi (17,590 m2) [12]. Considering the information
elaborated by ISPRA, the historical trend of land take in the municipalities with the highest
values was analyzed. The municipal areas investigated are Potenza and Matera and the
municipalities of Pignola, Melfi, Policoro, and Scanzano Jonico (Figure 1).

Figure 1. Location map of study areas.

Potenza is the main town located in the central-western part of the territory. The
municipal area has an extension of about 175 km2; the morphology is mainly mountainous.
The capital city, with about 65,000 inhabitants, is the political and administrative center
of the region. Despite being the fulcrum of the administrative and commercial life of the
region, it too suffers, like the whole region, from depopulation; the resident population
has decreased by about 3000 in the last seven years. Over the years, urban expansion has
taken place in a disorderly and uncontrolled way towards peripheral areas combined with
a decline in population density.

Pignola is a small municipality (approximately 56 km2 of territorial extension) of
about 7000 inhabitants and is close to Potenza. It is one of the municipalities with the most
significant interaction with the city, as the territorial development of the two municipalities
is often shared. Matera, the other provincial capital, is located in the region’s eastern part,
on the border with the Apulia Region. As it was invested with the role of European Capital
of Culture 2019, it is interesting to evaluate an increase in tourist flows and a potential
increase in accommodation facilities and infrastructures to outline a trend of land take. The
city is one of the few urban centers in the region to show a constant growth in a resident
population (in 2021, about 60,000 inhabitants). The morphology of the city of Matera is
purely hilly, characterized by the karst gorge carved into the limestone by the Gravina
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stream and the presence of evident surface karst forms; it is one of the largest municipalities
in the region (388 km2). Policoro (which is the third most populous municipality of the
Basilicata Region, with about 18,000) and Scanzano Jonico (about 7600 inhabitants) are
located in the Ionian area of Basilicata in the fertile plain of Metapontum Area; their
territorial extension is approximately 67 km2 and 71 km2. The coastal area, characterized
by solid tourist pressure, especially in the summer season with the opening of bathing
establishments, constitutes one of the most relevant areas to analyze land-use changes.
Indeed, both municipalities show significant touristic flows in the summer, with consequent
increase in land take linked to the construction of touristic infrastructures.

In recent years, the resident population has shown a positive trend, probably due to
increased commercial activities linked to the strong tourist presence. The municipality
of Melfi (about 204 km2) is located in the northern part of the region, on the border
with the Puglia Region. The city is another critical urban center of great interest for the
territorial evolution linked to the construction of the Stellantis industrial cars district,
whose production started in 1994. It is characterized by a settlement structure based on
two main components: the historic town surrounded by post-Second World War residential
expansion and a vast industrial area where the most important Italian Stellantis production
plant was established. A series of supporting activities have developed around the plant,
leading to a significant increase in land take in recent decades. The rest of the municipal
territory is characterized by a solid agricultural vocation and diffuse areas of high natural
and environmental value already fragmented by three railway lines and a high-speed road.
After undergoing a slight increase in the decades 1990–2000, the resident population has
recorded a negative trend with a slight decrease in inhabitants.

2.2. Data Set and Preprocessing

Highly appropriate for the evaluation and monitoring of land take is the use of mul-
tispectral and multitemporal satellite images with medium and high spatial resolution.
Landsat 4-5 TM and Landsat 8 OLI images, for the years 1994, 2004, and 2014, were used
for classifying the LULC classes and for deriving urban land use. The historical Landsat
(years 1994, 2004, and 2014) dataset was downloaded from the United States Geological
Survey (USGS) [37,38], and images were selected based on cloud-cover conditions. The
scan line error of Landsat ETM+ sensors affected data availability in the 2000s. Orthophoto
produced by aerial images were made available by the national geoportal of the Ministry
of the Environment and the Italian Military Geographic Institute (IGMI) [39]. These images
were used as a dataset for defining the classification training areas and the accuracy assess-
ment. Geo-topographic regional database (GTDB) of Regional Spatial Data Infrastructure
Basilicata Region (RSDI) [40] represents ancillary data used for the implementation of
urban areas. These data sources are open and generally provide basic information; this
approach enables the study’s replicability in other territorial contexts. The processing and
analysis of the collected data were carried out in QGIS software [35].

The satellite images used in this research come from Landsat 4–5 and Landsat 8
missions-based, cloud-free data. The chosen images concern the month of May in 1994,
2004, and 2014. The downloaded remote sensing images were provided as L2-level data and
were clipped with the mask of the municipal boundaries of each test area, and then, a check
was made to realign any saturated pixels. The reference system used is UTM projection
(zone 33 N). Landsat data provide thirty-year time-series data, helpful in achieving an
accurate temporal analysis. Landsat-4 and Landsat-5 Missions equipment a multi-spectral
scanner and a Thematic Mapper, with spatial resolution at 30 m, while the Landsat-8 has
an OLI sensor and a thermal sensor, the first with a resolution of 30 m and the second at
100 m. The bands used for this study are summarized in the following table (Table 1).
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Table 1. Landsat 4–5 and Landsat 8 bands used.

Landsat 4–5 TM Landsat 8 OLI

Band1—Blue (0.45–0.52 µm) Band2—Blue (0.450–0.51 µm)
Band2—Green (0.50–0.60 µm) Band3—Green (0.53–0.59 µm)
Band3—Red (0.63–0.69 µm) Band4—Red (0.64–0.67 µm)
Band4—Near Infrared (NIR) (0.76–0.90 µm) Band5—Near Infrared (NIR) (0.85–0.88 µm)
Band5—Shortwave Infrared (SWIR)
(1.55–1.75 µm)

Band6—Shortwave Infrared (SWIR)
(1.57–1.65 µm)

Band6—Mid-Infrared (MIR) (2.08–2.35 µm) Band10—Thermal Infrared (TIR)
(10.6–11.19 µm)

The images for each year are then prepared by layer stacking the relevant bands
of Landsat images and further cropped to the study areas for image classification using
Semi-automatic Classification Plugin (SCP) [41].

2.3. Support Vector Machine (SVM) and Classification Methodology

The satellite images classification process allows identifying pixels with similar spec-
tral responses and grouping them into categories representing the classes recognized on the
soil. The techniques of classification can be divided into supervised and non-supervised.
The non-supervised classification does not require the a priori knowledge of the elements
to be discriminated. Still, it is based only on the reflectance of the image pixels. In contrast,
supervised classification implies the role of the operator who chose an a priori number
of test areas (“training areas”) representative of the “regions of interest.” Input spectra
can be obtained from region of interest (ROIs) carefully identified with the help of GIS
techniques from technical or thematic cartography of the investigation area in the same
reference system and superimposed on the image. Support vector machines (SVM) is a
supervised automatic algorithm based on machine learning theory for data analysis [42].

The DZETSAKA plug-in is a powerful classification plugin for QGIS software [35] that
supports several classification algorithms (e.g., Random Forest, kNN) and SVM [43].

The SVM classifier was selected for the land-cover classification of Landsat time-series
data. This algorithm has proven to be a potent tool to handle a segmented raster input, or a
standard image SVM can map the original data input into a higher-dimensional feature
space. The algorithm finds the optimal hyperplanes: subspace capable of identifying
distinct classes with minimum classification errors [44]. For this purpose, the training
sample was selected at the class distribution margins in an n-dimensional space [45]. It
is possible to use SVM to achieve high classification accuracy using a small number of
training areas. Several previous studies showed that SVM could generalize unseen data
with a small training dataset [31,46]. Therefore, using the SVM algorithm allows managing
high-dimensional data with a limited training area set [46]. A detailed description of the
SVM algorithm can be found in Burges [47].

Many aspects allow evaluating the classification result of a satellite image, e.g., the
visualization of the map output, the query of the data on the GIS desktop, and the use
of accuracy algorithms. The analytical procedure adopted in this work is oriented to
discriminate the change detection of land take based on differences in territorial patches
at different dates. The overall methodology of the study is described in Figure 2. The
Landsat images were classified using an SVM algorithm to derive land-use and land-cover
maps of 1994, 2004, and 2014. The training areas mainly include four typical classes: built-
up (including roads, buildings, quarry, dump, and artificial areas), vegetation (including
cultivated areas, forest, etc.), bare soils, and water. To facilitate the identification of the ROIs,
ancillary data from the GTDB (Geo-Topographic Database) of the Basilicata Region [40]
and orthophotos were used. GTDB is composed of different classes of information layers
in shapefile format. Informative layers related to traffic (roads, railways, cycle paths,
etc.), buildings, and artificial areas (buildings, quarries, support works, landfills, etc.)
were adopted in this study. All the elements present in these informative layers were
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merged in a single vector layer and then converted into a binary raster with a spatial
resolution of 30 × 30 m, whose pixels represent the artificial areas. The analytical approach
is characterized by a backward process starting from the 2014 data (available in Basilicata
Region GTDB and considered the most accurate datasets on urbanized features) and
comparing it with previous information ranging from 2004 and 1994.

Figure 2. Flowchart of classification methodology.
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3. Results
3.1. Land-Use/Land-Cover (LULC) Classification

Applying supervised classification with the integration of ancillary data (orthophotos,
ground truth data), we created the land-cover map subsequently used as inputs for esti-
mating land consumption in test areas. The land-cover map was finalized to obtain four
classes: built-up, vegetation, bare soil, and water (Figure 3, Table 2).

Figure 3. Landsat 8 OLI image with ROIs and LULC map 2014 obtained with the SVM (support
vector machine) algorithm (Example of classification referred to Matera Municipality).

Table 2. Class definition for training areas.

MC_ID Definition Description

1 Urban Built-up, Streets, Industrial Buildings
2 Vegetation Forest, Cultivated Areas, Grassland
3 Bare Soil Rocks
4 Water Lake, River

The ROIs were defined by identifying these four macro-categories, called macro-
classes/identifier (MC_ID), associated with them (Table 2). The geographical areas under
consideration are particularly large; therefore, it was necessary to define a large number of
homogeneously distributed ROI on the entire image to obtain a better response in terms of
classification.

Once the classification was obtained, to assess the accuracy of the classification, the
“Accuracy” tool of the SCP plug-in was used in a GIS environment [41]. In the SCP plug-in,
several statistics are calculated: overall accuracy, user’s accuracy, producer’s accuracy,
and kappa hat coefficient. In particular, these statistics are calculated according to the
area-based error matrix, where each pixel represents the estimated area proportion of each
class. This allows for evaluating the user’s accuracy and producer’s accuracy, the unbiased
area of classes according to reference data, and the standard error of area estimates. The
confusion matrix confirms the results’ reliability with overall accuracy values greater than
92% and K coefficient just below 0.93 (Table 3). Accuracy indicates the number of correctly
classified pixels according to the soil classes. The accuracy matrix is generally composed of
overall accuracy, user accuracy, producer accuracy, and kappa coefficient. Overall accuracy
indicates the number of correctly classified pixels divided by the total number of pixels
analyzed.
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Table 3. Example of accuracy statistics for the pixel-based classification algorithm of Matera LULC
Classification (2014).

Overall
Accuracy (%)

Kappa Hat
Coefficient Classes User Accuracy

(%)
Producer

Accuracy (%)

94.28% 0.9281

Class 1 (Built-up) 89.213 92.989
Class2 (Vegetation) 94.237 95.660
Class 3 (Bare Soil) 93.434 91.735

Class 4 (Water) 100 99.759

User’s accuracy is the ratio between correctly classified pixels in the considered class
and the total number of pixels assigned to that class. The user accuracy indicates the
probability that a pixel assigned to a given class corresponds to that class. Producer’s
accuracy is the ratio between the number of pixels correctly classified in the considered
class and the total number of reference pixels in that class. The kappa coefficient provides
a parameter that considers that the correct part of the classification is due to chance or
compares the error generated by the classification obtained with that of a classification
performed in a completely random manner. The kappa coefficient has a value between 0
and 1; the more significant the agreement between real data and classified data, the closer
the value of the coefficient will be to the value 1 [48].

The image classification was achieved with an overall classification accuracy of about
90% during 1994 and 2004 and >92% during 2014. Usually, in literature, an overall classifi-
cation accuracy of 85% is considered acceptable for scientific use [49]. Image classification
accuracy depends on the methodology classification, the quality of the data, the spatial
resolution of the satellite images, and the study’s aim. The urban landscape of the six
areas studied is more heterogeneous, and our methodology satisfies our objective and is
suitable for the 30-m spatial resolution of Landsat images. Overall, Landsat OLI data had a
better performance compared to Landsat ETM + data and achieved satisfactory land-cover
classification results in this study.

The LULC images consist of four classes, such as agricultural land, built-up land,
vegetation, bare soil, and water bodies. The area of each land-use class is displayed in
Figure 3 based on the SVM algorithm.

Subsequently, the 2014 land-cover map thus classified was analyzed and compared
with ancillary data, orthophotos, etc., paying particular attention to class 1 (built-up).

The GTDB of the Basilicata Region (dated 2014) comprises multiple information layers
(urban areas, buildings, roads, and other anthropic objects) in vector format, representing
important ancillary data used to validate the built-up class in the maps obtained. GTDB
vector layers relating to urban/impermeable areas were rasterized in a binary map 0—1
(1, impermeable soil; 0, rest of land) (Figure 4). To compare the binary map thus obtained
with the LULC map obtained from identifying the training areas, both maps must have
the same spatial resolution; for this reason, the GTDB vector layers’ rasterized map was
assigned the same spatial resolution as the LULC map of 30 m.

This map is essential to identify and eliminate, using map algebra, any class 1 pixels
that are incorrectly classified by the SVM. In this way, the 2014 map represents the footprint
of land take that delimits the area within which to develop analyses for previous years.

The classification system used by ISPRA and SNPA [12] provides a subdivision of
land take into two categories: permanently land take and reversibly land take. The classes
of irreversible land take are linked to the soil-sealing processes, such as constructing new
buildings, streets, airports, etc. The chosen method assumes that sealed soil does not
change into permeable soil over the years. This concept is not always true because this can
happen in some rare cases. Starting from this concept, from 2014, we proceeded backward
in analyzing 2004 and 1994, comparing this information with previous cartography and
orthophotos. This comparison with the orthophotos, available as Web Map Service (WMS)
on the National Geoportal of the Ministry of the Environment [39], allowed us to construct
the spatial time-series analysis based on the aero-photogrammetric surveys.
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Figure 4. Example of rasterization process of GTDB vector layers relating to urbanized areas (built-up
areas).

The built-up areas extracted from the 2014 LULC layer (Figure 5) were used as the
impermeable base map and used as a comparison and reference in the analyses carried out
for 1994 and 2004 for Landsat.

Figure 5. Correlation between LULC Map representative of all classes identified in 2014 in the
Municipality of Matera and the Binary Map regarding impermeable areas (built-up).
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3.2. Land Take Classification

The results show that the growth of impermeable areas (built-up areas) occurred
mainly in areas away from the city center, mostly near industrial and rural areas.

In the six municipalities described above, the historical evolution of land take due to
increased impermeable surfaces (built-up/urbanized) was analyzed. A gradual intensifica-
tion process of urbanized areas has emerged by analyzing and comparing the binary maps
of land take obtained in the three different reference years (1994, 2004, and 2014). The results
show that the municipalities analyzed underwent an evident territorial transformation in
the twenty years considered, characterized by a steady increase in land take.

The graph in Figure 6 represents the increasing growth rate of the overall built-up
municipalities analyzed. The most significant amount of land take occurred between 2004
and 2014 in all municipalities investigated, suggesting that both the socio-economic and
natural features drive the urbanization of these areas.

Figure 6. Observed built-up growth in square kilometers in the studies areas from 1994 to 2014.

The municipalities of Potenza, Pignola, and Melfi show slow growth in land take.
Potenza and Pignola have a relevant settlement spread characterized by disordered urban
sprawl. Specifically, during the twenty years analyzed, the land take in the capital city
involved expanding commercial and residential areas near the historic center. It is also
relevant to note the development and construction of new infrastructures and roads. In the
area of the municipality of Pignola, the significant increase in land take occurred mainly
with the construction of residential structures along the main provincial road that connects
the town with the capital and neighboring municipalities (Figure 7a,b).
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Figure 7. (a) Observed built-up growth in square kilometers in the studies areas from 1994 to 2014 in
the Municipalities of Potenza and Pignola. (b) In green, land take in 1994; in pink, land take in 2004;
and in blue, land take in 2014.

The land take in the area of the municipality of Melfi is closely linked to industrial
and urban expansion; as shown in Figure 8, the areas that have more significant growth of
impermeable soil are located in the industrial area of the Stellantis plant and its induced
factories and in the urban area, where there has been a growth of the city. In addition,
several roads connecting the urban center with the peripheral and industrial areas have
been built and expanded (Figure 8a,b).

Policoro and Scanzano Jonico municipalities, such as Potenza and Pignola, have a
solid territorial and socio-economic relation; they present a substantial settlement diffusion
on the whole municipal territory, but the land take follows the territorial road structure
(Figure 9a,b). The growth of the land-take phenomenon in the two municipalities on the
Ionian coast could be linked to the increase in tourist flows in the area in recent decades.
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Figure 8. (a) Observed built-up growth in square kilometers in the studies area from 1994 to 2014 in
the Municipality of Melfi. (b) In green, land take in 1994; in pink, land take in 2004; and in blue, land
take in 2014.

Figure 9. Cont.
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Figure 9. (a) Observed built-up growth in square kilometers in the studies area from 1994 to 2014
in the Municipalities of Scanzano and Policoro. (b) In green, land take in 1994; in pink, land take in
2004; and in blue, land take in 2014.

Furthermore, in this case, indeed, most of the impermeable soil is located near the
inhabited centers that have developed close to the main road that connects the area with
the neighboring regions (Puglia and Calabria). The area of the two municipalities is
characterized by a solid anthropic tourism pressure along the coasts, occurring in recent
years, following the construction of tourist infrastructure; this has resulted in an essential
waterproofing of the entire Ionian coast. The area considered is also intensively cultivated
by different crops ranging from vegetables to crops of valuable fruits; over the years, we
have witnessed the gradual construction of greenhouses and roads of relevance that have
contributed to the increase of land take in agricultural and rural areas.

Matera has an evident urban sprawl similar to the case of Policoro and Scanzano
Jonico: new buildings are mainly located along the main roads. The construction of
new buildings has been haphazard both close to the urban center and in the suburbs.
Additionally, in the case of Matera, an essential percentage of the increase of impermeable
soil is linked to the presence of infrastructures. Matera, in 2019, was the European Capital of
Culture. Consequently, in previous years, many services and infrastructures were realized
throughout the municipality, increasing the phenomenon of soil sealing (Figure 10a,b).

Figure 10. Cont.



Remote Sens. 2022, 14, 1692 14 of 19

Figure 10. (a) Observed built-up growth in square kilometers in the studies area from 1994 to 2014 in
the Municipality of Matera. (b) In green, land take in 1994; in pink, land take in 2004; and in blue,
land take in 2014.

The analysis of the maps shows the pixels that have changed over the past decades,
highlighting an expansion of the area urban to areas that once belonged to the open territory.
This confirms that the part of the municipalities analyzed and their neighborhoods have
undergone substantial changes in recent decades.

4. Discussions

This study presents an innovative supervised classification approach to detect land-use
and land-cover change from natural to impervious areas.

The classification results for Landsat TM and Landsat OLI, presented with SVM,
exhibit an accuracy performance more significant than 92%. The land-use and land-cover
maps obtained from the classification were validated with an overall accuracy greater than
92% and a kappa hat coefficient greater than 0.90 (Table 3) and represent the evolution of
land take in the areas considered.

The results of this study are in line with those of previous studies [22,28,31,45,46,50–54].
SVM algorithm maintains the spatial features of such landscapes, such as fragmentation,
and is the most appropriate algorithm in classifying the land-cover analysis of an urban
environment.

Ghayour et al. [25] used and evaluated several algorithms, such as like Support Vector
Machine (SVM), Artificial Neural Network (ANN), Maximum Likelihood Classification
(MLC), Minimum Distance (MD), and Mahalanobis (MH), and compared them to generate
a LULC map using data from Landsat 8 satellites. They assessed that the SVM classifier
produced the highest overall accuracy of 94%, with performance better than other methods.
Agapiou [55], for his study on the city of Larnaca (Cyprus), used the CORONA satellite
image and performed, using the SVM, a land-cover classification. It selected five main
land-cover classes: land, water, salt lake, vegetation, and urban areas. The results show
classification accuracy > 85 and kappa coefficient of 0.91. In another study, Adam et al. [56]
used two machine learning algorithms, SVM and Random Forest, to create the LULC map
of a region on the East African coast using the high-resolution RapidEye image. Using
the training data, they ranked the region with an overall SVM accuracy of 91.80%. Jia
et al. [30] classified land cover in Beijing by comparing Landsat 7 and Landsat 8 images
using supervised MLC and SVM algorithms. With an overall accuracy of 91.03% and kappa
coefficient of 0.89, the SVM algorithm is more accurate than the MLC algorithm. Therefore,
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the SVM algorithm performs better than other algorithms applied in other studies because
it requires fewer training areas, reducing the possibility of classification error. The values of
the overall accuracy of each classification are always greater than 92%. The satellite image
classification process can produce errors. These classification errors are mainly due to the
detection of water (lake, reservoir) or bare soil (rocky outcrops with the perennial absence
of vegetation cover). On the contrary, the errors of omission correspond to some mixed
urban and vegetational models, such as residential subdivisions, where the vegetation is
particularly dense, or even to the different types of vegetation present.

These limitations are mainly due to the spatial and spectral resolution of the Landsat
OLI and TM sensors. Both have a spatial resolution of 30 m; each pixel has, therefore, an
extension of 900 m2. Moreover, both sensors are multispectral and not hyperspectral, which
involves limitations in detecting some spectral signatures.

In Figure 11, the observed changes are mainly identified as pixel blocks in urban areas
representing urban growth.

Figure 11. Change Detection (1994 to 2014) of Land Take in Matera. Overview of the whole area and
zoom view of black-squared area.

The change detection analysis showed an increase in impermeable areas and a decrease
in other natural areas from 1994 to 2014. Although the land-take process is generally non-
reversible, rare cases of reversibility can be recognized. Therefore, the model is suitable to
detect such areas; an example of this reverse transformation process was identified from
impermeable land (housing and roads) in 1994 to permeable land in 2014, following a
landslide event (Figures 12 and 13).

Figure 12. In reverse transformation: from impermeable soil to permeable. In red, in 1994 and 2004,
it is possible to see the urban agglomerate destroyed in 2013 due to a landslide (Bosco Piccolo Street,
Potenza Municipality).
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Figure 13. Detail of the urban agglomeration (Bosco Piccolo Street, Municipality of Potenza) destroyed
by the 2013 landslide. In blue are the information layers of the GTDB of the Basilicata region regarding
the waterproof areas.

In this study, both TM and OLI images were acquired in the same month to obtain a
low margin of error in classification. The month of May, in fact, at these latitudes represents
the period of the year when the vegetation is at its maximum vegetative development. Thus,
using the Landsat OLI images, the methodology presented here provided the most accurate
spatial shape and conformity of the classes regardless of the input classification settings.
The algorithm achieved better accuracy for Landsat OLI images for the same classes and the
same training and validation data. In contrast, Landsat TM image classification maps were
less accurate and required more ROIs. Some confusion between the classes also existed in
OLI results but not as much as in the case of TM. At the same time, the separation of bare
soil and impermeable areas (artificial vs. natural) was performed with greater precision. It
should be highlighted that the aim of the work is not to monitor the changes in land cover
in the area but to identify the waterproofed areas in the years analyzed. In conclusion, by
analyzing medium-resolution imagery provided by Landsat TM and OLI using advanced
methods, such as SVM and change-detection analyses, it is possible to achieve highly
accurate classification maps.

The layers of the impermeable areas present in the dataset used in this work are
updated to 2014, and no future updates are expected. This represents a limitation for
studying the historical evolution of land take in Basilicata, as this dataset constitutes the
fundamental reference data of the impermeable areas in the classification process.

5. Conclusions

Nowadays, land-use and land-cover maps and the use of the information contained
in them are crucial for territorial planning. The use of satellite imagery and appropriate
classification algorithms, such as SVM, applied in this work, represent the most appropriate
strategy for creating land-take maps at detailed scales.

Satellite data have proven to help edit an accurate, diachronic analysis of land take
and impermeable soils. The integration between remote sensing and spatial data allows for
detailed monitoring of anthropic territorial transformation.
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The methodology here presented allowed synthesis maps helpful in analyzing the
land-use changes and interpreting the evolution of urbanized areas (in terms of growth)
and the natural and semi-natural surfaces (generally decreasing in extension). The use of
satellite imagery (Landsat TM 4-5 and Landsat OLI 8) and remote sensing techniques in a
GIS environment allowed to define of spatial parameters through supervised classification
to discriminate urban areas from other land-use classes.

This work confirmed that the SVM algorithm and the exposed methodology are the
proper LULC classification instrument. Analyzing and comparing different years, the
process of urban intensification was observed, and the increase of urbanized areas was
revealed.

The methodology adopted highlights a possible way to check land take using free data
and software. The great advantage is that such a methodology can enormously improve
planning processes at any scale. The information obtained in this work for the analysis of
built-up development defines a fragmented picture of the study area. Though applied to
urban areas, the methodology can be used in any other land-cover-classification topic.

Landsat data are notoriously suitable for historical mapping and diachronic analyses
of land take, as they present a vast historical availability of images at a spatial resolution of
30 m. In the future, the use of Sentinel 2 data is indicated for monitoring urbanized areas
and for estimating urban areas as a more detailed classification of the LULC to reduce uncer-
tainty in the survey of urban areas and estimation of impermeability. Future developments
will also concern hyperspectral images, such as PRISMA ones [57]. Hyperspectral remote
sensing is very promising and significant in the remote sensing community in recent times.
In hyperspectral data, hundreds of contiguous bands provide detailed spectral information
for each pixel, which is helpful for mapping and classification studies, which are more
accurate. Practical applications of hyperspectral imaging also include urban processes
land-cover mapping.
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