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A new mixture copula model 
for spatially correlated multiple 
variables with an environmental 
application
Mohomed Abraj1,2*, You‑Gan Wang1,2 & M. Helen Thompson1,2

In environmental monitoring, multiple spatial variables are often sampled at a geographical location 
that can depend on each other in complex ways, such as non‑linear and non‑Gaussian spatial 
dependence. We propose a new mixture copula model that can capture those complex relationships 
of spatially correlated multiple variables and predict univariate variables while considering the 
multivariate spatial relationship. The proposed method is demonstrated using an environmental 
application and compared with three existing methods. Firstly, improvement in the prediction of 
individual variables by utilising multivariate spatial copula compares to the existing univariate pair 
copula method. Secondly, performance in prediction by utilising mixture copula in the multivariate 
spatial copula framework compares with an existing multivariate spatial copula model that uses a 
non‑linear principal component analysis. Lastly, improvement in the prediction of individual variables 
by utilising the non‑linear non‑Gaussian multivariate spatial copula model compares to the linear 
Gaussian multivariate cokriging model. The results show that the proposed spatial mixture copula 
model outperforms the existing methods in the cross‑validation of actual and predicted values at the 
sampled locations.

Many environmental sampling is often observed multiple spatially correlated variables at a given geographical 
location. For instance, multiple topsoil heavy metal concentrations, such as cadmium, zinc, and copper, are 
sampled from the soil sample at a field location. In forestry, multiple biomass variables, such as bole, foliage, 
stump, branch, and root biomass, are sampled in a tree. Also, the spatial distribution of forest biomass variables 
may use to understand wildfire behaviour. These variables can depend on each other in complex ways, such as 
non-linear and non-Gaussian spatial dependence. The spatial modelling by considering these complex multi-
variate spatial dependence may increase the prediction accuracy of individual variables, which may help forest 
managers to minimise risk and save lives. This article focusses on the copula-based spatial modelling of spatially 
correlated multiple variables and predicts the individual variables while utilising multivariate spatial dependence 
of spatially correlated variables.

Gaussian-based linear kriging method is widely used to model spatial variables and provides a weighted aver-
age measure of linear spatial dependence. The kriging weights do not depend on the different values of samples 
and also assume linear Gaussian spatial dependence over the spatial  domain1–6. However, spatial interpolation 
(prediction or simulation) based on a spatial model expects to behave differently for different values of samples. 
That is, spatial correlation between samples varies for the different quantiles of samples. Thus, Bárdossy7 intro-
duced spatial copula method that can capture the spatial dependence of a spatial variable by considering the 
different values of samples. In the non-spatial setting, copula method is used to model the dependence between 
two or more non-spatial variables, which has widely applied in many fields, such as environmental science, 
finance, economics, medicine and  engineering8–14. Bárdossy’s7 spatial copula method divides the distance over 
which spatial dependence exists into equally spaced intervals, also referred to as distance classes or spatial bins, 
and requires the same family of copulas to be fitted across all of the spatial bins. Gräler and  Pebesma15 proposed 
a more flexible spatial copula model that permits copulas from different families to be fitted across the distance 
classes. The added flexibility of Gräler and Pebesma’s model, over Bárdossy’s model, permits increased accuracy 
in modelling and prediction. The spatial copula concept proposed by Bárdossy, Gräler and Pebesma has used in 
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mining, forestry, soil sampling, hydrology, and other environmental  applications8,16–24. However, these spatial 
copula methods enable modelling and predicting a univariate spatial variable without considering the multivari-
ate dependence of spatially correlated multiple variables. Recently, Gnann et al.25 improved Bàrdossy’s7 method 
to interpolate a primary spatial variable while considering a secondary correlated spatial variable. However, 
Gnann et al.25 assumed that the joint distribution of primary and secondary variables follows Gaussian copula.

As a solution to model non-Gaussian multivariate spatial dependence in spatial copula framework, Musafer 
et al.26 proposed a multivariate spatial copula model, whereby the correlated spatial variables were transformed 
into spatially uncorrelated factors using non-linear principal component analysis (NLPCA). Then, Gräler and 
Pebesma’s univariate spatial copula model was used to model and predict spatially uncorrelated factors. Subse-
quent back transformation is required to transform predicted values to the scale of the original variables and to 
re-inject correlation. However, Musafer et al.’s26 method indirectly models the joint dependence between spatial 
variables through a black-box transformation. We directly extend Gräler and Pebesma’s univariate spatial copula 
to multivariate setting that jointly models spatially correlated multiple variables via a white-box mixture  copula24. 
The mixture copula is a joint distribution function of multiple copulas that offers a more flexible framework 
for parametric statistical modelling and analysis. Also, a single copula family may not be able to capture tail 
dependencies but the mixture copula capture the tail dependencies as  well24. The mixture copula has used in the 
non-spatial setting for modelling multivariate genomic  data27, and modelling wave height and  period28,29. We 
adapt the mixture copula in the spatial setting that offers a more flexible multivariate spatial copula framework 
for spatially correlated multiple variables.

Methods
The methodology for modelling spatially correlated multiple variables consists of two essential components:         
modelling each spatial variable separately using Gräler and Pebesma’s15 univariate spatial copula; then joining 
the univariate spatial copulas using the idea of mixture  copula24. We also use the proposed spatial mixture model 
to predict individual variables using inverse conditional approach in a bivariate  context30. However, the method 
can be used to predict more than two variables with a trivial generalisation of the bivariate setting.

Modelling. Let Z(x) = [Z1(x),Z2(x), . . . ,Zm] be the second-order stationary multivariate spatial ran-
dom field Z with m spatial variables that are sampled at the same two-dimensional location x ∈ X  , and let 
X = (x1, x2, . . . , xn) be the set of existing locations in the given spatial domain X .

A spatial  copula15 describes the joint spatial dependence of a univariate spatial variable at any two spatial 
locations x and x + h , where h is the separation distance between two locations. Hence, spatial copulas model 
dependence of one spatial location relative to another spatial location, rather than modelling dependence using 
absolute locations.

The methodology for modelling spatially correlated multiple variables is simply shown in Fig. 1, and a detail 
procedure for the model development is provided in steps 1–4.

Step 1: For each spatial variable Zl , l = 1, 2, . . . ,m , models the marginal cumulative distribution functions 
(CDFs), such as Gamma, Weibull, Normal, Log-normal, and obtain the best fitted CDFs. Let Fl denote the best 
fit CDF of Zl , which is assumed to be same at each location x, i.e., Fl(Zl(x)) = Fl(Zl(x + h)).

The proposed method is based on the concept of distance dependent spatial  copula15,31. Hence, the distances 
between every pair of locations are calculated. Suppose, x1 , x2 , x3 and x4 are four sampled locations of Z.

As given in Fig. 2, the distances are calculated for each location pair {xi-xj = h} as 
√

(ai − aj)2 + (bi − bj)2 , 
where (ai , bi) and (aj , bj) are the coordinates of xi and xj , for i  = j , ∀i, j = 1, 2, . . . , n , respectively. Also, n(n+ 1)/2 

Figure 1.  A diagram for spatial mixture copula construction.
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number of pairs are obtained with n sampled locations. The next important step of the methodology is spatial 
binning.

The spatial dependence of copula-based spatial models depends on the distance between locations. As the 
distance between two points increases, spatial dependence between points decreases until it is independent or 
negligible enough to be considered independent. The distance at which independence occurs is referred to as 
the cut-off distance and is determined empirically using a correlogram. The correlogram plots the Kendall’s tau τ 
correlation coefficient for each spatial bin, and a curve is fitted through the plotted points. Similar to a variogram 
in Kriging, the cut-off distance is visually determined as the distance at which the curve plateaus.

Step 2: Based on the distance between pairs, place each sample pair {Fl(Zl(x), Fl(Zl(x + h))} into K equally 
spaced spatial bins as follows: [0, h1), [h1, h2), . . . , [hK−1, hK ) , where hK is the cut-off distance. A correlogram is 
used to determine the cut-off distance as a plot of τ against the mean distance of each bin, which is calculated 
using the pairs belonging to relevant spatial bin. Figure 3 depicts an example correlogram.

Given the pairs of points for each spatial bin, spatial copula that describes the dependence of spatial variable 
Zl at any two locations can be calculated as,

where k = 1, 2, . . . ,K  is the index of the spatial bin, u and v are any selected quantiles of the corresponding 
univariate CDF of Zl at locations x and x + h.

The copulas for each bin are selected using maximum log-likelihood values of competing copulas, such as 
Gaussian, Student’s t, Clayton, Frank, Gumbel, and  Joe30, which represent variety of dependence structures. 
Then, a mixture copula is used to determine the multivariate spatial dependence across bins as a weighted linear 
combination of copula.

Step 3: For each spatial bin k, use the spatial copulas in Eq. (1) to construct the mixture copula Cm
k,h as,

(1)
Cl,k,h(u, v) = P[Fl(Zl(x)) ≤ u, Fl(Zl(x + h)) ≤ v],

= Ck(Fl(Zl(x)), Fl(Zl(x + h))),

Figure 2.  Example plot to show the possible pairs with four locations.

Figure 3.  An example correlogram. The blue dashed line indicates the upper limit of cut-off distance at which 
pairs of points are no longer considered to be spatially dependent. Empirical τ values (black dots) overlaid with 
theoretical cubic smooth line.
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where, wl is the mixture weight, 
∑m

l=1 wl = 1 , and 0 < wl < 1.
An equal weight can be used in Eq. (2) if the correlogram of each variable is not significantly different. 

Otherwise, compare different weight combinations across bins and obtain the optimal weight combination. 
Moreover, for small distances, pairs of points will become extremely strong dependent and modelled using a 
comonotonic copula M(u, v). For large distances, pairs will become independent and modelled using a product 
copula �(u, v)32, as follows

The mixture copula in Eq. (2) only describes the multivariate spatial dependence across individual bins. 
However, a spatial model should be able to capture spatial autocorrelation between  bins15. For instance, points 
near the upper bound of the first bin and the lower bound of the second bin may have similar features; points near 
the upper bound of the second bin and lower bound of the third bin; and so on. Thus, the spatial dependence is 
incorporated using the distance dependent parameter �k that determines spatial dependence while incorporat-
ing spatial autocorrelation.

In practical situations, the first bin is modelled using the best fit copula for that bin, and subsequent bins are 
modelled using the convex linear combination of copulas with parameter �k15. Further, pairs that fall above the 
cut-off distance are often omitted and not incorporated into the convex combination, assumed as an independ-
ent copula.

Step 4: Use Eq. (2), construct the distance dependent spatial mixture copula of Z as the convex linear com-
bination of mixture copulas of each spatial bin as follows,

where �k =
h̄k−hk−1

hk−hk−1
 for k = 2, 3, . . . ,K  , h̄k is the mean distance, and h1, h2, . . . , hK denote upper limits of the 

chosen distances for the spatial bins.

Prediction. Prediction of individuals spatial variables at sampled locations based on the spatial mixture 
copula is described in a bivariate context. That is m = 2 , then Cm

h  is the spatial mixture copula of Z1 and Z2 . The 
prediction method demonstrates the advantage of using a secondary correlated spatial variable in the prediction 
of a primary spatial  variable25. Thus, an inverse conditional prediction approach is  proposed30,[pp. 40–42] where 
a secondary correlated spatial variable is known when predicting the primary spatial variable .

Suppose Z1 is the primary variable of interest, then Z2 is correlated secondary variable. The prediction of Z1 at 
location x conditional on the known given value of Z2 can be generated at the same location x, using the copula 
CDF of Cm

h  . The procedure of the inverse conditional approach is given in steps 5-8,
Step 5: Obtain the joint CDF values of Z1 and Z2 using Cm

h  , and let T be the vector with joint CDF values.
Step 6: Obtain the marginal CDF values of Z2 using F2 , and let R be the vector with marginal CDF values.
Step 7: Derive the conditional distribution of T, given R = r , using the partial derivative of Cm

h  as follows,

let s = (Cm
h,r)

−1(T|R = r) be the conditional predicted value of Z1 at location x.

Step 8: Take, Z1 = F−1
1 (s).

The prediction of Z2 , given Z1 , can be described by simply switching the subscripts 1 and 2 in the steps 5–8. 
The proposed method can be validated against actual values at sampled locations by cross-validation, and three 
scenarios are considered with the existing methods.

• Can any improvement in the prediction of individual variables be gained by utilising the multivariate spatial 
dependence using mixture copula over the univariate pair  copula15?

• Can any improvement in the prediction of individual variables be gained by utilising the mixture copula over 
the NLPCA transformation based spatial  copula26?

• Can any improvement in the prediction of individual variables be gained by utilising the non-linear non-
Gaussian multivariate spatial dependence (spatial mixture copula) over the linear Gaussian multivariate 
spatial dependence (cokriging)33?

The cross-validation study is illustrated using mean absolute error (MAE), root mean square error (RMSE), 
mean absolute percentage error (MAPE). The MAE, RMSE and MAPE can be calculated using the actual and 

(2)Cm
k,h(u, v) =

m
∑

l=1

wlCl,k,h,

M(u, v): = min{u, v} when h → 0, �(u, v): = uv when h → ∞.

(3)Cm
h (u, v) =



























Cm
1,h(u, v), 0 ≤ h < h1,

(1− �2)C
m
1,h(u, v)+ �2C

m
2,h(u, v), h1 ≤ h < h2,

.

.

.
.
.
.

(1− �K )C
m
K−1,h(u, v)+ �KC

m
K ,h(u, v), hK−1 ≤ h < hK ,

uv, hK ≤ h,

Cm
h,r(T|R = r) = P[T ≤ t|R = r],

=
∂

∂r
Cm
h (t, r),
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predicted values at the sampled  locations26. Also, accuracy in the reproduction of the bivariate relationship of 
Z1 and Z2 is evaluated based on the mean square error from the kernel density estimation (KDE MSE). The KDE 
MSE can be calculated by taking the mean of the squared differences between the bivariate KDEs of the actual 
and predicted  data26.

Application
The proposed method was applied to model real forest data that was taken from georeferenced forest inventory 
plots in the US Department of Agriculture Forest Service Bartlett Experimental Forest (BEF) in Bartlett, New 
 Hampshire34. The variables of interest were forest-wide biomass estimations within the area of 1053 hectares 
(measured in mg/ha). In this study, only foliage biomass ( Z1 ) and bole biomass ( Z2 ) were used that sampled at 
335 two-dimensional locations.

The prediction of bole biomass can be used for carbon accounting purposes, and the prediction of foliage 
biomass can be used to identify regions with high values of foliage biomass. Also, the behaviour of wildfires 
depends on pools of biomass  variables26,35.

Table 1 gives the summary statistics of the data. Figure 4a,b show the spatial distributions of Z1 and Z2 at 
observed locations. Figure 4c shows a strong bivariate non-linear relationship between Z1 and Z2 . The best mar-
ginal distributions were selected based on the maximum log-likelihood (ML) values. The Weibull distribution 
was achieved as the best distribution for Z1 based on the ML values, 65.03, 69.43, 33.26, 44.03, and the Gamma 
distribution was achieved as the best distribution for Z2 based on the ML values, 378.86, 378.28, 250.20, 377.51, 
of Gamma, Weibull, Normal, Log-normal distributions respectively. Then, the CDF values of Z1 and Z2 were 
calculated using the corresponding CDFs. The following steps for the modelling is only incorporated the CDF 
values of Z1 and Z2 (Step 1).

The cut-off distance was selected as 800 m using the correlograms of variables, and ten equally spaced (80 m) 
spatial bins were created (see Table 2). Table 3 shows the best fit copulas and the estimated copula parameters, 
where C1,k,h and C2,k,h are the fitted univariate spatial copulas of Z1 and Z2 respectively (Step 2). The correlation 
across bins almost similar for each variable (see Table 2), and then equal weights were used. Table 4 shows the 
mixture copulas of each bin (Step 3).

The mixture copulas in Table 4 were used to develop the distance dependent convex combination of mixture 
copulas as given in the Eq. (3), which is the proposed spatial mixture copula of the spatially correlated Z1 and 
Z2 (Step 4), is given by

where �2 = 105−80
160−80

 = 0.31, �3 = 0.61,. . . , �10 = 0.48.
The proposed spatial mixture copula method was used to predict Z1 and Z2 using the inverse conditional 

approach as described in the steps 5–8. Figure 5 shows the bivariate relationship of Z1 and Z2 . Table 5 shows the 
model validation results with the existing methods.

According to Table 5 almost all the RMSE, MAE, and MAPE values are the lowest for the Z1 and Z2 predictions 
based on the spatial mixture copula. The MAPE value of cokriging method is the smallest for the Z1 prediction 
that is very close to the spatial mixture copula. Thus, it can be seen that the proposed method outperformed in 
the prediction of Z1 and Z2 across the observed locations. Also, the proposed method accurately reproduces the 
bivariate relationship in terms of the minimum value of KDE MSE.

Cm
h (u, v) =



































































Cm
1,h, 0 ≤ h < 80,

0.69Cm
1,h + 0.31Cm

2,h, 80 ≤ h < 160,

0.39Cm
2,h + 0.61Cm

3,h, 160 ≤ h < 240,

0.45Cm
3,h + 0.55Cm

4,h, 240 ≤ h < 320,

0.40Cm
4,h + 0.60Cm

5,h, 320 ≤ h < 400,

0.55Cm
5,h + 0.45Cm

6,h, 400 ≤ h < 480,

0.51Cm
6,h + 0.49Cm

7,h, 480 ≤ h < 560,

0.42Cm
7,h + 0.58Cm

8,h, 560 ≤ h < 640,

0.52Cm
8,h + 0.48Cm

9,h, 640 ≤ h < 720,

0.52Cm
9,h + 0.48Cm

10,h, 720 ≤ h < 800,

uv, 800 ≤ h,

Table 1.  Summary statistics of Z1 and Z2.

Statistics Z1 Z2

n 335 335

Mean 0.334 0.119

Standard deviation 0.219 0.115

Minimum 0.200 0.010

First quartile Q1 0.140 0.030

Median 0.300 0.090

Third quartile Q3 0.510 0.160

Maximum 0.820 0.560
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In Fig. 5, the univariate pair copula method does not reproduce the tail values of both variables. Cokriging 
is unable to predict tail values and follows a strictly linear relationship. Although the NLPCA spatial copula 
method reproduces the non-linear relationship, it cannot reproduce upper tails, specifically for Z2 . The prediction 
of individual variables using the novel spatial mixture copula method accurately predicts both upper and lower 
tail values, and conditional values of the variables reproduce the non-linear relationships between them. Thus, 
using mixture copula in the multivariate spatial copula framework is improved the accuracy in the univariate 
prediction.

Conclusions
This article proposed a new mixture copula method for modelling spatially correlated multiple variables. The 
proposed method models multiple spatial variables without any normalisation of the original variables, such 
as NLPCA transformation. The method was applied to model bivariate non-linear spatial variables Z1 (foliage 
biomass) and Z2 (bole biomass). The model performance was assessed in the cross-validation of actual versus 
predicted values at sampled locations. The use of multivariate spatial dependence in the univariate prediction, the 
strength of the mixture copula in the univariate prediction, and utilising non-linear non-Gaussian multivariate 

Figure 4.  BEF data. Spatial distributions of (a) Z1 , (b) Z2 , and (c) scatter plot between Z1 and Z2.

Table 2.  BEF data: spatial binning.

Bins Mean distance

Kendall’s 
tau

Z1 Z2

0–80 68 0.31 0.23

80–160 105 0.20 0.18

160–240 209 0.11 0.10
.
.
.

.

.

.

.

.

.

.

.

.
720–800 758 0.03 0.03
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spatial dependence in the univariate prediction, were compared with the existing univariate pair copula, NLPCA 
spatial copula and cokriging methods, respectively. The results showed that the proposed spatial mixture copula 
model outperformed the existing methods in terms of the minimum values of RMSE, MAE, MAPE, and KDE 
MSE.

The method also applied to non-linear simulated bivariate correlated variables (see  Supplementary online), 
where the spatial mixture copula outperformed the existing methods, in terms of predicting individual simu-
lated variables and their bivariate relationship. The proposed method used equal weights for each variable for 
both BEF application and simulation study. However, further improvement to the spatial mixture model is the 
optimal weights selection of each variable in the mixture copula modelling. For instance, one spatial variable 
may have a strong spatial dependence across locations than the other variable, and the optimal weights selection 
may increase the prediction accuracy of each variable across locations. The prediction method is explained for 
the bivariate case (m = 2), however, it can be extended to multivariate setting. Also, the proposed spatial mixture 
copula can be extended to multivariate spatial sampling design methodology for optimally selecting additional 
sampling to reduce prediction uncertainty by leveraging spatially correlated multiple variables. Moreover, the 
proposed method assumes isotropic spatial dependence of spatial variables but can be extended to model spatially 
correlated anisotropic variables, which can be present in  mining36 and soil  variables37, for example.

The proposed method assumes that the spatial random field is stationary. However, the method can be 
extended to non-stationary spatial processes. For example, a non-stationary spatial process can be divided into 
several locally stationary processes. A univariate spatial copula can be modelled to each stationary process, and 
then a global non-stationary spatial copula can be constructed as a mixture of locally stationary spatial copulas. 
Furthermore, the proposed method assumes that all data points are known and collected at the same set of 
locations. However, measurements could be unavailable or difficult to sample at some locations, which is quite 

Table 3.  The univariate spatial copulas for each bin.

Bins C1,k,h − Z1 C2,k,h − Z2

0–80 C1,1,h = Joe (1.71) C2,1,h = Joe (1.48)

80–160 C1,2,h = Gumbel (1.31) C2,2,h = Gaussian (0.29)

160–240 C1,3,h = Gumbel(1.16) C2,3,h = Frank (1.12)

240–320 C1,4,h = Gumbel (1.10) C2,4,h = Clayton (0.19)

320–400 C1,5,h = Gumbel (1.06) C2,5,h = Clayton (0.13)

400–480 C1,6,h = Joe(1.09) C2,6,h = Joe (1.08)

480–560 C1,7,h = Joe (1.07) C2,7,h = Gumbel (1.03)

560–640 C1,8,h = Clayton (0.09) C2,8,h = Clayton (0.06)

640–720 C1,9,h = Clayton(0.08) C2,9,h = Clayton (0.05)

720–800 C1,10,h = Joe (1.05) C2,10,h = Gumbel (1.03)

Table 4.  The mixture copulas of each bin with w1=w2=0.5.

Bins Mean distance ( ̄hk) Mixture copula ( Cm

k,h
)

0–80 68 C
m

1,h
= 0.5C1,1,h + 0.5C2,1,h

80–160 105 C
m

2,h
= 0.5C1,2,h + 0.5C2,2,h

160–240 209 C
m

3,h
= 0.5C1,3,h + 0.5C2,3,h

240–320 284 C
m

4,h
= 0.5C1,4,h + 0.5C2,4,h

320–400 368 C
m

5,h
= 0.5C1,5,h + 0.5C2,5,h

400–480 436 C
m

6,h
= 0.5C1,6,h + 0.5C2,6,h

480–560 518 C
m

7,h
= 0.5C1,7,h + 0.5C2,7,h

560–640 606 C
m

8,h
= 0.5C1,8,h + 0.5C2,8,h

640–720 678 C
m

9,h
= 0.5C1,9,h + 0.5C2,9,h

720–800 758 C
m

10,h
= 0.5C1,10,h + 0.5C2,10,h
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common in functional spatial data analysis. Thus, the proposed method can be extended for modelling and 
predicting complex functional spatial data.

Data availability
In implementing the proposed model in this paper, R software version 3.6.3 (R Development Core Team 2020) 
was used. Specifically, R package “spcopula” version 0.2-4 of Gräler was entirely used in this study (see http://r- 
forge.r- proje ct. org/ proje cts/ spcop ula/), including key dependent packages, such as “copula”, “VineCopula” ver-
sion 2.1.8, “sp”, “spBayes” “MASS”,“fitdistrplus”. The data is available in “spBayes” package, where only non-zero 
values of biomass were considered in this study. For simulation study, “gstat” package was mainly used that 
facilitated the unconditional prediction of Gaussian random fields. Moreover, in comparing the proposed model 
with the most relevant NLPCA spatial copula model, MATLAB software was used, specifically “Nonlinear PCA 

Figure 5.  Reproduction of bivariate relationship using various methods. Actual (red), predicted (black), Z1 
given Z2 (green), and Z2 given Z1 (blue).

Table 5.  Model validation in prediction of Z1 and Z2. Significant values are in [bold].

Method Z1 Z2 KDE

RMSE MAE MAPE RMSE MAE MAPE MSE

Pair copula 0.20 0.17 1.12 0.11 0.08 1.98 3.61

Cokriging 0.19 0.16 0.54 0.11 0.08 0.75 3.71

NLPCA 0.29 0.24 1.64 0.14 0.10 2.21 12.40

Mixture copula 0.14 0.13 0.56 0.06 0.05 0.63 1.34

http://r-forge.r-project.org/projects/spcopula/
http://r-forge.r-project.org/projects/spcopula/
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toolbox” of Scholz (see http:// www. nlpca. org/ matlab. html)38. Data for developed method can be found in Drop-
box: https:// www. dropb ox. com/s/ cdbmx 89fgj ul9cg/ bef_ data. csv? dl=0.
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