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Competency with mathematical modelling is increasingly important for career and informed and 
engaged participation in personal, civic and work life. In this paper we report on an aspect of a 
three-year longitudinal study that aimed to identify and describe enablers of mathematical 
modelling. Teacher interview data has been drawn upon to exemplify key features of a typology 
for instructional enablers of mathematical modelling. Findings highlight the importance of the 
didactical contract and socio-mathematical norms in promoting students’ mathematical 
modelling competency, as well as teachers’ anticipatory capabilities.  

An inability to use mathematics limits an individual’s career aspirations, social well-being, 
and financial security (Paulos, 2000). Competency with mathematical modelling, the use of 
mathematics to deal with real world problems, is increasingly important for career aspirations 
(e.g., STEM, economics) and informed and engaged participation in personal, civic, and work 
life (Geiger et al., 2018; Maass et al., 2019). Recognition of this competency is reflected in the 
inclusion of mathematical modelling in school mathematics curricula in a growing number of 
countries, including Australia (Geiger et al., 2021).  

Research has provided insight into factors that influence the development of mathematical 
modelling competency, including: teachers’ and students’ mathematical and extra-
mathematical knowledge (e.g., Blum, 2011); dispositions and beliefs (e.g., Jankvist & Niss, 
2019); blockages between stage transitions (e.g., Galbraith & Stillman, 2006); use of digital 
technologies (e.g., Geiger, 2017); implemented anticipation (e.g., Niss, 2010); and the effective 
design and implementation of tasks (Geiger et al., 2022). Despite these and other studies, how 
to best develop students’ modelling competency and teachers’ instructional competency in 
relation to modelling remains an unresolved challenge in educational research and practice. 

We report on an aspect of a national project that aimed to identify, apply and refine teaching 
approaches that support secondary students’ competency development in mathematical 
modelling. In this paper, we address a dimension of this aim through a focus on mathematical, 
cognitive, social and environmental factors that enable students to implement the modelling 
process. Accordingly, we respond to the following research question:  

What specific mathematical, cognitive, social and environmental aspects of instruction are 
conducive for assisting secondary students to implement the mathematical modelling process? 

The theory/practice gap identified in this question involved collaboration with teachers and 
students. Our combined insights have resulted in the generation of a typology that consists of 
actions and conditions that foster productive activity when working on mathematical modelling 
tasks – both for learning and instruction. Limited space permits the presentation of findings 
related to instruction alone. To do so, we first present a concise synthesis of relevant research 
literature. Second, the methodological approach will be outlined. Third, the outcome of our 
analysis of data, in the form of an instructional enablers typology, will be described. Fourth, 
we will substantiate key aspects of the typology using illustrative comments from teachers. 
Finally, selected implications for practice and future research will be discussed. 
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The Nature of Mathematical Modelling 
The goal of mathematical is to understand or make predictions about real world 

phenomena, typically to inform decision-making or action. While there are differing 
perspectives on mathematical modelling in the literature, there is general consensus that the 
key phases consist of: (1) identifying and specifying a real-world problem; (2) developing a 
mathematical representation; (3) generating a mathematical solution; (4) interpreting the 
mathematical solution within the context of the real-world problem; and (5) evaluating validity 
of the solution relevant to the original context. While each of these stages, is separately 
important, the goal of instruction is to develop holistic competency with the total process. 

Mathematical modelling often requires iterations of this process to improve the model or 
refine solutions. Thus, it is typically depicted as cyclic in nature. While the representation is 
cyclic, associated diagrams are analytic reconstructions of the process and not depictions of the 
routes necessarily taken by actual modellers (Niss & Blum, 2020). In the representation below 
(Figure 1) (Galbraith, 2013), the heavy clockwise arrows (1 to 7) depict the flow of the 
modelling process (stages A to G). The double headed arrows indicate that intermediate 
transitioning/revisiting, within and between stages, are likely as metacognitive reflection both 
reviews and amends progress to date and anticipates moves yet to be enacted.   

 

Figure 1. Representation of the modelling cycle (Galbraith, 2013) 

Developing Mathematical Modelling Competency 
Research into mathematics teacher competency has  tended to explore cognitive aspects of 

performance (Blömeke et al., 2014). There is, however, increasing recognition of the situated 
nature of teaching, highlighting the affective dimensions of competence (Schoenfeld, 2011). 
Similarly, research into how teachers assist or inhibit learners’ development of mathematical 
modelling competency has identified: a tendency to intervene and reduce cognitive challenge 
(de Oliveira & Barbosa 2010); disposition towards guiding students toward pre-determined 
solutions (Tan & Ang, 2016); ways to diagnose student difficulties as modelling competency 
develops (Jankvist & Niss, 2019); the importance of task authenticity (Galbraith, 2013); and 
advantages of openness to multiple solutions (Schukajlow et al., 2015).  

Borromeo Ferri and Blum (2010) developed a model for mathematical competency by 
defining the cognitive demands of task creation, quality instruction and assessment of 
modelling activity. While providing a multi-dimensional perspective of modelling 
competency, this model is restricted to cognitive considerations alone. To include other factors 
that may influence the teachers’ approaches to the development of mathematical modelling 
competency, we drew on Brousseau’s (1984) notion of a didactical contract which positions 
the actions students take to promote their own learning in the context of teacher expectations. 

https://link-springer-com.ezproxy1.acu.edu.au/article/10.1007/s10649-016-9713-8#ref-CR8
https://link-springer-com.ezproxy1.acu.edu.au/article/10.1007/s10649-016-9713-8#ref-CR44
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For example, what kind of activity will teachers expect students to complete and what is 
reasonable in terms of cognitive demand and time frame. Consistent with this perspective, we 
further considered the role of socio-mathematical norms (Yackel & Cobb, 1996) which define 
valued modes of reasoning and ways of working aimed at developing solutions to mathematical 
tasks. Socio-mathematical norms are seated within a didactical contract, which itself is shaped 
by these norms. Thus, if teachers are to change the established practices within a classroom, 
for example, introducing or placing greater emphasis on mathematical modelling, they must 
renegotiate the existing didactical contract as well as associated mathematical norms. 

Further to these perspectives, we also drew on the notion of anticipation (e.g., Niss, 2010) 
in enabling modelling competency, as this requires the capacity to look forward and backwards, 
when evaluating progress, in order to make decisions about future action. Niss (2010) coined 
the term implemented anticipation and outlined three key processes (Table 1). 

Table 1  
Niss’ (2010) Processes of Implemented Anticipation (adapted) 

Structuring of an extra-mathematical situation, to prepare it for mathematization, must be 
focused on features that are anticipated as essential in addressing a problem situation. 
Anticipation of mathematical representations that are suitable for capturing a situation must 
be familiar to the modeller and, ideally, the modeller would have had experience with their 
use in mathematizing simpler or similar situations.  
Anticipation of how the mathematization and resulting model will provide a mathematical 
solution to the questions posed. Thus, that the outcomes of applying selected mathematical 
procedures and problem-solving strategies must also be anticipated after mathematization. 

While these processes are vital to successful mathematical modelling, our study indicated 
that anticipation was also key for effective instruction as teachers must be capable of looking 
forward and backwards to evaluate the progress of students on a modelling task. This implies 
they must have a clear understanding of the task and how it may be solved, be capable of 
anticipating where students may encounter blockages, including the nature of these blockages, 
to their progress and have the capacity to make decisions about relevant advice in situ. 

Research Design and Implementation 
We adopted a design-based research approach (Cobb et al., 2003), a methodology suited to 

applied research that aims to develop contextualised theories of learning and teaching, The goal 
of such research is to address educational problems situated in a wide range of contexts.  

Participants included six teachers and their intact Year 8–11 classes drawn from schools in 
Queensland (Australia). Teachers were selected purposively (Burns, 2000), volunteering 
because of their interest in promoting student modelling competency. Their experience with 
teaching modelling varied from novice to highly experienced. The curriculum context in which 
teachers practiced required the inclusion of modelling assessment tasks in Years 11 and 12, 
although relevant documents provided little advice on how to promote students’ competency 
in this area, especially to inexperienced teachers in lower secondary.  

The study utilised an iterative process of design-implement-reflect to facilitate 
researcher/teacher collaboration that informed the identification of instructional enablers, or 
dis-enablers, of mathematical modelling. This process was operationalised through three 
whole-day researcher/teacher meetings and two classroom observation visits per year over 
three years. Classroom visits took place between researcher/teacher meetings. Iterations of 
these activities (Figure 2) took place in each year of the project (see Figure 2). 
Researcher/teacher meetings focused on task development and planning for implementation as 
well as the identification of factors that enabled or dis-enabled mathematical modelling. This 
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facilitated the trialling of tasks and pedagogies informed by identified enablers during 
classroom visits, leading to the refinement of tasks and elaboration of instructional enablers.  

In this paper, we draw on data from teacher pre- and post-lesson interviews to substantiate 
elements of the instructional enablers of a mathematical modelling typology. Enablers 
identified in early stages of the project, were used as the basis for initial coding of data. This 
process led to the refinement of code definitions and the identification of additional enablers. 
Further iterations of identification and refinement were continued until definitions stabilised. 
 

 
 

 
 

 
Figure 2. Yearly cycle of researcher/teacher meetings and classroom observation visits. 

In the next section we describe a typology of instructional enablers and illustrate key 
features via reference to teacher commentary.  

A Typology for Enablers of Mathematical Modelling Instruction  
A typology for instructional enablers of mathematical modelling is presented in Table 2. Space 
limitations means that only selective aspects of the typology can be illustrated here. 
Table 2  
Typology for Enablers of Mathematical Modelling Instruction 

Overarching enablers Generic and specific enablers of mathematical modelling 
Impact of learning 
goals – 
external/internal/ 
personal 

Generic enablers 
Aligns teaching/learning with broader educational goals (e.g., 
promoting 21st century skills) 
Specific enablers 
Links task to formal curriculum/syllabus (e.g., addresses a specific 
content goal)  

Classroom 
expectations/ways of 
working 

Generic enablers 
Encourages diverse approaches and risk taking  
Encourages questioning  
Encourages student collaboration 
Provides opportunity for reporting findings 
Specific enablers 
Shapes the physical environment to support modelling  
Few restrictions on the use of digital technologies 

 
 

Managing the learning 
process  

Generic enablers 
Manages the learning process in an active manner 
Specific enablers 
Makes explicit reference to the modelling process 
Utilises/generates their own resources to support learning in 
modelling (e.g., representation of modelling process) 

 
 

*Teacher pre-interview 
 

*Lesson observation 
 

*Teacher post-
interview 
 

*Student post interview 

*Teacher pre-interview 
 

*Lesson observation 
 

*Teacher post-
interview 
 

*Student post interview 
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/Teacher 
meetings 

Researcher
/Teacher 
meetings 

Student 
video 
stimulated 
recall  

Researcher
/Teacher 
meetings 

Student 
video 
stimulated 
recall  
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Supports the development of a mathematical question 
Measured Responsiveness 
-Provides measured guidance in relation to aspects of the task 
-Provides measured guidance in relation to students’ initial ideas      
-Provides measured in relation to students’ proposed directions 
-Direct Responsiveness 
-Provides direct clarification of aspects the problem 
-Provides direct clarification of new terms and ideas  

Teacher anticipation Generic enablers 
Demonstrate knowledge of capabilities/needs/experiences  
Notice and respond to emerging issues  
Specific enablers 
Understands and makes explicit reference to the modelling process  
Identifies possible barriers to solving the problem through reference 
to the stages of the modelling process 

The typology consists of four overarching enablers, each inclusive of both generic enablers 
relevant to mathematics instruction and enablers specific to mathematical modelling. The 
overarching enablers are: impact of learning goals – external/internal/ personal; classroom 
expectations/ways of working; managing the learning process; and teacher anticipation. These 
overarching enablers are associated with specific actions or expectations teachers employ, or 
classroom conditions they manage, to enable the development of students’ mathematical 
modelling competency. We now elaborate on each of these over-arching enablers and describe 
actions/expectations/conditions that researchers/teachers identified as enablers of 
mathematical modelling activity. In addition, their absence was noted as a dis-enabler. 

Findings 

Impact of Learning Goals: External/internal/ personal 
Teachers indicated that external factors, for example, curriculum requirements or 

expectations of approaches employed for instruction in schools influenced the way they 
implemented modelling. Some teachers saw modelling as aligned with relevant curriculum 
documents or their own broader educational goals, for instance, 21st century skills.  

I like the modelling. It fits into the Scientific Method and Scientific Process and it’s a big thing that we 
should actually be doing in 7, 8, 9, 10 … The kids are doing all the work. They’re coming up with the 
pathway to solve it and everything … so it ticks all of the boxes for [local curriculum authority]. 

There were others, however, who were influenced by perceived restrictions related to 
curriculum requirements or school expectations about instruction, for example, the need to 
ensure each student acquired a high degree of fluency with set material within limited time. 

We’ve got a nine-week term plus all the disruptions ... kids are going off on this excursion … or whatever 
else, photo days. There’re just constant disruptions. So, you don’t have your kids there …  

These are examples of conditions that can act as enablers or dis-enablers of mathematical 
modelling instruction which can shape the didactical contract and classroom mathematical 
norms (Brousseau, 1984; Yackel & Cobb, 1996). 

Classroom Expectations/ways of Working 
This over-arching enabler is concerned with: what teachers expect students to do; how they 

work; and valued modes of reasoning and forms of student/student/teacher interaction. Thus, 
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this enabler, consistent with the notions of the didactical contract and classroom mathematical 
norms (Brousseau, 1984; Yackel & Cobb, 1996), relates to the supportive classroom culture 
necessary for the development of modelling competency. Specific enablers that were 
supportive of such a culture included encouraging: diverse approaches to tasks (risk taking); 
questions/queries; student collaboration within and across groups; and reporting of findings to 
the whole class. There were instances where teachers supported modelling by shaping the 
physical environment to support modelling. Few restrictions were placed on the use of digital 
technologies. Illustrative examples of each of these actions/conditions follow.  

In the following instance, a teacher noticed an approach that was different to what they had 
anticipated. The task had required students to determine the optimal approach to refuelling a 
car, given petrol stations were at different instances from their starting points and offered 
different prices. The teacher was comfortable with students solving the task in different ways. 

They were looking at having the most fuel in the car ... So, they were looking at a full tank is better than 
losing fuel when going to cheap one as it's further away. I didn't think they would come up with that but 
with these … problems there’s a few points of view and that’s a valid point to if you’re looking at having 
the most or to have the tank full. So that’s another avenue that you’d have to factor into your scheme. 

In a different task related to construction, a question was welcomed by the teacher. 
Importantly, they linked their response to a key aspect of modelling – making assumptions. 

That was an excellent question, so you might need to decide what kind of concrete. And that’s part of 
defining the problem … remember, once we make a decision, we need to include that in our assumptions. 

A typical comment related to collaboration as an element of modelling can be seen in the 
following quote. The caution, however, is a salient reminder that not all collaborative work is 
productive, and teachers have a key role in guiding students modelling activity. 

Two-heads are better than one. Although you need to be clear what you're talking about. It’s easy to get 
people on the same page when they’re looking at the same information. 

Students often reported their findings at the end of a lesson or wrote a report in order to 
receive feedback from the teacher. One teacher provided additional scaffolding to this end by 
way of a booklet in which they recorded their work in a structured fashion.  

And after we’ve finished the two lessons, we’re going to write a little report ... So, the more you write 
in the booklet, the easier that report’s going to be because you'll just go back to the start of the booklet 
and start typing what you’ve actually written … And the report is going to be our assessment. 

Teachers also made use of the physical environment of the classroom or other resources. 
This was highlighted during a lesson in which desks designed to be written on were available. 
Students had no hesitation in writing notes, diagrams and other prompts that helped them 
share their ideas with members of their group. It was clear this was a regular occurrence. 

I think the set-up of the room, having particularly some shared information, is really valuable. So, I 
noticed the groups with the whiteboard tables are quite good because they can write, and they can see 
what each other are doing. And I think that enhances the collaboration straight away ....  

The use of digital technologies was encouraged with few restrictions. Teachers saw such 
resources as supportive of students’ thinking and in mediating collaboration. 

… they had graphs up and they were sharing them so that they could see them on their own computers 
... So again, I think that real shared information is important, particularly when working in a group. 

Managing the Learning Process 
Learning was managed in an active fashion through preparatory and developmental phases. 

Key to preparatory phase was the identification of an extra-mathematical question that would 
lead to a mathematical question—a statement that encompassed the goals of students’ activity 
expressed in a mathematical sense. The generation of this question was begun in groups but 
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then opened-up to public scrutiny by peers. This question was the foundation for other aspects 
of the modelling process, such as the identification of assumptions. 

… so, I’m just going to get you to write them there when they come up in your group … feel free to chat 
amongst your group … What’s the mathematical question we need to answer from this real-life situation?  

During the developmental phase (body of a lesson), teachers employed a balance of direct 
and measured responsiveness to students’ requests for assistance. In the case of new terms or 
ideas within a task, clarification was provided in a direct fashion. For example, one task was 
concerned with replacing the foundations of a building. An activity with which students were 
unfamiliar. In this case, teachers provided a direct explanation so that progress was not 
limited by factors unrelated to the use of mathematics to solve the problem.  

By contrast, fostering students’ modelling development often requires measured 
responsiveness (Geiger et al., 2022). This involves providing only enough information for 
students to make progress without directing them towards a pre-determined solution (Tan & 
Ang, 2016).  Support in this circumstance was in the form of questions aimed at assisting 
students to clarify their thinking or by referring to stages of the modelling process. 

So, the question is, in a foundation, are there multiple blocks or one big block? So, what do you think? 
Have you seen foundations before? Is a foundation made of blocks? It’s made of concrete. Is it made 
of concrete blocks or poured concrete? Well, you might need to decide before you do this activity.  

While teachers understood the value of this approach, they also admitted that, at times, it 
was hard to let students lead the work. 

So, I knew once we got to that stage that they would be right. It’s very hard to take that step back … I 
mean, I trust them, and I know how good they are and it’s still hard to take that step back. 

Teacher Anticipation 
To provide effective instruction about mathematical modelling teachers needed to have a 

clear understanding of the modelling process themselves and ensured a task was worked 
through before implementation in the classroom. This preparation informed instructional 
anticipation—providing insight into where students may encounter difficulties, and why.  

… once we were looking for the prices of concrete. Not every student managed to take in all the 
information I gave them ... So, they didn’t look on the OneNote where I provided a couple of links. 

Knowledge of the modelling process also informed teachers’ advice to students about 
possible ways forward when an unexpected difficulty or blockage occurred, taking into account 
students’ previous experiences and individual students’ current capabilities. 

The ones working with the cycle have a better grasp of where they are in terms of arriving at a reasonable 
solution. And so, you're seeing, “Here’s an initial solution but, actually, I might need to think about these 
other assumptions that I haven’t yet made. How is that going to affect the solution?” 

Discussion and Conclusion 
In this paper, we have provided insight into some of the important mathematical, cognitive, 

social and environmental aspects of instruction that enable students’ mathematical modelling. 
Our analysis has identified generic and specific instructional enablers of modelling in the form 
of a typology. It is important to note that the absence of these enablers represent dis-enabling 
factors in modelling activity. The findings of this study confirm the results of previous research 
in relation to instructional factors that promote or constrain productive modelling activity, 
while providing, at the same time, insight into how teachers can manage the learning processes. 
In particular, the outcomes of the study indicate that attention to the didactical contract, socio-
mathematical norms, and teacher anticipation are key to successful student outcomes in 
modelling and is thus an important area for future research in the field. 
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