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Abstract
Energy efficiency is a critical issue in the management and operation of cloud data centers, which form the backbone of

cloud computing. Virtual machine (VM) placement has a significant impact on energy-efficiency improvement for vir-

tualized data centers. Among various methods to solve the VM-placement problem, the genetic algorithm (GA) has been

well accepted for the quality of its solution. However, GA is also computationally demanding, particularly in the com-

putation of its fitness function. This limits its application in large-scale systems or specific scenarios where a fast VM-

placement solution of good quality is required. Our analysis in this paper reveals that the execution time of the standard GA

is mostly consumed in the computation of its fitness function. Therefore, this paper designs a data structure extended from a

previous study to reduce the complexity of the fitness computation from quadratic to linear one with respect to the input

size of the VM-placement problem. Incorporating with this data structure, an alternative fitness function is proposed to

reduce the number of instructions significantly, further improving the execution-time performance of GA. Experimental

studies show that our approach achieves 11 times acceleration of GA computation for energy-efficient VM placement in

large-scale data centers with about 1500 physical machines in size.

Keywords Genetic algorithm � Fitness function � Data center � Virtual machine placement � Energy efficiency

1 Introduction

Data centers are the backbone of cloud computing. The

increasing global availability of cloud services requires the

support of a massive number of data centers. As a result, an

increasing demand for electricity becomes inevitable to

power the data centers. Already, data centres use an esti-

mated 200 terawatt hours (TWh) per annum, accounting for

1% of global electricity demand [21]. According to the

Monthly Energy Review May 2016 from the U.S. Energy

Information Administration (EIA), in 2013, the total cost of

the energy consumption of the data centers in the U.S. was

$13 billion, representing 2.4% of the total electricity con-

sumption. Detailed statistics showed that about 26% of the

data center energy consumption were for servers and

storage [9]. At current efficiency levels of hardware
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servers, the dramatically increasing demand of energy

consumption in data centers would require to build 50

additional large power plants each year [22]. Thus,

improving the energy efficiency of data centers becomes

critical to the management and operation of data centers.

Cloud services are usually provisioned through virtual-

ization. Thus, effective management of virtual resources

such as virtual networks [37] and virtual machines (VMs)

[3, 7] is an essential requirement in cloud data centers.

Among a number of factors such as air cooling [15], VM

placement to physical machines (PMs) plays an important

role in the improvement of energy efficiency for large-scale

data centers [3, 7]. As a large portion of the energy cost of

data centers is to power PMs [4], it is beneficial to mini-

mize their energy consumption through optimized VM

placement [1, 20, 35]. Recent reports reveal that a signif-

icant energy saving of over 20% can be achieved from

improved VM placement for data centers [3, 5]. This

motivates our research and development of power-aware

VM-placement strategies for further reducing energy con-

sumption in data centers.

In spite of the improvement in the energy efficiency of

data centers, existing solutions to VM placement are mainly

derived from simple heuristic strategies, e.g., the First Fit

Decrease (FFD) Algorithm and meta-heuristic evolutionary

computation such as the Genetic Algorithm (GA) [5]. While

FFD runs very fast to deliver a feasible solution, GA solves

the VM-placement problem better in terms of the energy

efficiency of data centers. GA is computationally demand-

ing and runs too slowly, particularly for large-scale data

centers. This limits its application in large-scale systems

and scenarios where a fast VM-placement solution of good

quality is required. Consequently, the energy efficiency of

VM placement is compromized in the management and

operations of data centers.

Our work in this paper presents our progress in accel-

erating GA computation for energy-efficient VM placement

in data centers. The main contributions of the paper include:

(1) An insight is developed into the understanding where

the time is spent the most in the GA computation for

energy-efficient VM placement. It reveals that the

GA execution time is mostly spent on fitness

evaluation. Thus, the most effective way to acceler-

ate GA is to improve its fitness computation.

(2) A new data structure is designed, which extends our

previous study on GA acceleration [12], for energy-

efficientVMplacement.This reduces the complexity of

the fitness evaluation from quadratic to linear one with

respect to the input size of the VM-placement problem.

(3) An alternative fitness function is proposed to further

speed up GA computation without affecting the

energy efficiency results of VM placement. It

improves the execution-time performance of GA

through a significantly reduced number of instructions

in GA computation. Experimental results show that

our approach achieves 11 times acceleration of GA

computation for energy-efficient VM placement in

large-scale data centers with about 1, 500 PMs. This

makes GA more practical in data center applications.

The paper is organized as follows: Notations used in the paper

are listed in Table 1. Section 2 reviews related work and

motivates the research of this paper. Section 3 reveals thatGA

consumes most of its time in fitness computation. Extending

our previous study, Sect. 4 designs a new data structure for

complexity reduction in fitness computation. An alternative

fitness function is proposed in Sect. 5 for energy-efficient VM

placement. Section 6 compares various fitness functions the-

oretically in terms of required CPU instructions. Simulation

experiments are conducted in Sect. 7 to demonstrate our

approach. Finally, Sect. 8 concludes the paper.

2 Related work

The problem of energy-efficient VM placement is a com-

binatorial optimization problem, which can be described as

bin packing [3, 13]. Theoretically, an optimal solution to

such a problem can be derived through an exhaustive

search. However, such optimization problems are non-de-

terministic polynomial-time hard (NP-hard). They demand

a significant computing effort for an optimal solution when

the problem size is large. Consider placing 500 VMs to 100

PMs in a small-scale data center. The total number of

combinations is 100500. Assume 10 floating point opera-

tions are required in checking each of these combinations

for energy optimization. Then, a total number of 101;001

floating-point operations would be executed for an

exhaustive search. If one of the fastest supercomputers in

the world, the Sunway TaihuLight, is used for the com-

putation at its Linpack Performance (Rmax) of 93, 014.6

Tflops, we would have to wait for more than 3:4� 10976

years for a global optimal solution [13]. Thus, the

exhaustive search technique is not practically viable for

solving the energy-optimization problem, motivating vari-

ous heuristic strategies for VM placement.

FFD is commonly used for heuristic VM placement. It is

effective in dealing with general bin-packing problems like

virtual resource management [30]. Recently, an advanced

FFD algorithm is implemented for VM placement [38].

Although it does not aim at the energy efficiency of data

centers, it can be easily adopted for energy-efficient VM

placement when PMs are sorted in terms of energy effi-

ciency. Similar to FFD, best-fit-decreasing (BFD) is

another heuristic algorithm effective in dealing with bin-
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Table 1 Notations and symbols
a A parameter to characterize the shape of Pcpu

aj a of the jth PM

d Hypothesized value for statistical tests

C The complexity of an algorithm

Calg1 Complexity of Alg. 1 (old fitness on old data struc.)

Calg2 Complexity of Alg. 2 (old fitness on new data struc.)

Calg3 Complexity of Alg. 3 (new fitness on new data struc.)

E The total energy consumption of a data center

f CPU frequency

i, j Indices for the ith VM and the jth PM, receptively

k Index to indicate the kth time slot

n The input size of a computing problem

Napm The number of active PMs

Nfit The total number of times to compute fitness function

Nfit1 The number of times of fitness computing in a generation

Ngen The number of generations

Nic�fit CPU instruction count on the fitness computation in GA

Nic�fit1 CPU instruction count in a single fitness

N̂ic�fit1 Estimated Nic�fit1

Nic CPU instruction count for calculation of a single fitness

Nic1 Instruction count for Alg. 1 (old fitness on old data structure)

Nic2 Instruction count for Alg. 2 (old fitness on new data structure)

Nic3 Instruction count for Alg. 3 (new fitness on new data structure)

Npm The total number of PMs

Npop Population size

Nslot The number of time slots (intervals)

Nvm The number of VMs

Nvm�1pm The average number of VMs on a single PM

P Power for a CPU

PðmaxÞ CPU power at full load

PðminÞ CPU power at idle state

Papmð0; kÞ Power of the last active PM in the kth time slot

PpmðjÞ Power for the jth PM

Ppmðj; kÞ Power of the jth PM in the kth time slot

p Probability value in statistical tests

T Value of t-distribution in t-tests

Tcrit Critical value in Wilcoxon’s test

Texec Execution time of a GA

Tfit Total computation time for the fitness function

tk The duration of the kth time slot (interval)

ucpu CPU utilization

upmðj; kÞ Utilization of of the jth PM in the kth time slot

upmðjÞ Utilization of the jth PM

uvmði; jÞ Utilization of the ith VM in the jth PM

upmði; j; kÞ Utilization of the ith VM on the jth PM in the kth time slot

V The set of all VMs, V ¼
SNvm

i¼1 vi

vi The ith VM, i ¼ 1; � � � ;m
w The minimum of the sums of positive and negative ranks in Wilcoxon’s test
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packing problems. It has been adopted in VM placement

for energy optimization [25]. Its implementation has been

based on a resource utilization ratio rather than real uti-

lization measures.

With meta-heuristics, GA has also been investigated for

optimized management of virtualized resources in data

centers [23, 36]. Searching a bigger space than FFD and

BFD in every step, GA gives a higher-quality solution than

either FFD or BFD at the cost of an increased execution

time. To improve the execution-time performance, the

computational demand of GA has been trimmed while still

maintaining the quality of solution [28].

As another meta-heuristic method, Ant Colony Opti-

mization (ACO) has been studied for multi-objective,

cloud-work flow scheduling [6]. Through an analysis of

five types of real-world work flows, ACO has been shown

to outperform Particle Swarm Optimization (PSO) and

Non-dominated Sorting Genetic Algorithm-II (NSGA-II).

Recently, ACO has also been investigated with a refined

formulation and new heuristics for energy-efficient VM

placement [2, 3]. As both ACO and GA belong to meta-

heuristic methods, they share many similar features. For

example, with iterations of many generations, both ACO

and GA calculate a fitness function to evaluate whether or

not a solution has improvement. Our work in this paper

focuses on GA as a typical example of meta-heuristic

optimization for energy-efficient VM placement.

Relevant to energy efficiency of data centers is VM

consolidation. The work presented in [16] indicates that

VM consolidation saves energy with the p-estimation

benchmark program running. However, such energy-aware

VM consolidation often changes the behaviors of task ex-

ecution and VM operations. It needs to be considered

together with Quality of Service (QoS) and Service Level

Agreements (SLAs). Our work in this paper does not

consider VM consolidation directly. The number of VM

migrations can be reduced through a profile-guided, three-

phase VM-placement framework [13].

2.1 Implementation of GA

GA is now implemented in multiple layers in the virtual

resource management of data centers [32, 33]. It is

designed for profile-guided application assignment to VMs.

Similar to VM placement to PMs, application assignment

to VMs is also a type of bin-packing problems. The con-

cepts of both profiles and the meta-heuristic GA help

reduce the energy consumption of data centers. Thus, GA

is a promising tool for energy optimization in data centers

through virtual resource management.

A critical problem of GA, however, is its slow execution

for a quality solution with improved energy efficiency of

data centers [14]. For example, GA runs much slowly than

FFD [10, 28]. For a VM-placement problem with Nvm

VMs, the computational complexity of FFD is OðNvm �
logNvmÞ [10]. In comparison, the initial sorting part of the

Non-dominated Sorting GA (NSGA) with a population size

Npop has the computational complexity of OðNvmN
3
popÞ [11].

Thus, the computation of GA components, e.g., crossover

and mutation, over many generations for an energy-effi-

cient VM placement in a data center is very time-con-

suming. Therefore, GA needs to be accelerated for its

applications in more realistic data center scenarios.

Efforts have been made for decades to tune GAs

[17, 29]. Reference [17] has discussed the control param-

eters of GA, e.g., population size, crossover rate, mutation

rate, generation gap, scaling window, and selection strat-

egy. The settings of these parameters are optimized for

better performance [29], leading to an adaptive GA (AGA)

with strengthened crossover and mutation. This inspires us

to conduct a deep investigation into crossover and mutation

for an accelerated GA in energy-efficient VM placement.

The population size of GA and its relationships with

selection rate and chromosome length are investigated for

the performance improvement of GA [18, 19]. From the

analysis of these relationships, a compact GA is

designed [19], which saves computational resources with a

compressed selection rate and population size. These find-

ings have been embedded into general GA implementations.

A recent work on GA-based virtual resource manage-

ment of data centers focuses on GA’s computational per-

formance [28]. With energy cost as the fitness function, it

uses the results from FFD as an initial (feasible) solution.

Then, it employs the concept of decrease-and-conquer to

simplify the GA computation. This leads to improved

execution-time performance of GA for energy-efficient

VM placement.

2.2 Technical gaps and motivation

GA has been applied to the VM-placement problem for

energy-efficient data centers. Efforts have been made to

enhance GA’s performance, particularly in optimizing its

parameters and choosing a better initial feasible solution.

When a GA runs faster, an improved solution with more

energy savings will be derived within a given period of

time. However, a deep understanding about where the

execution time is spent the most in the whole process of

GA computation is yet to be developed. Such an under-

standing will enable further research and development of

computationally efficient GA for energy-efficient VM

placement to PMs in cloud data centers.

Our work in this paper reveals that the execution time of

standard GA is mostly consumed in fitness computation.

Therefore, our work focuses primarily on the computation
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of fitness function. It is embedded with a new data structure

extended from our previous study [12] to reduce the

complexity of the fitness computation. Then, incorporating

with this data structure, an alternative fitness function is

proposed with much less computational demand. As a

result, the execution-time performance of GA is signifi-

cantly improved.

3 Insights into GA computation for energy-
efficient VM placement

This section focuses on profiling the computation of stan-

dard GA, in terms of execution time, for energy-efficient

VM placement. Through the profiling, we aim to develop

some insights into how GA can be accelerated effectively.

3.1 The profiling of GA’s execution time

For energy-efficient VM placement, standard GA consists

of a number of components. Some of these components

execute sequentially, while some others run repeatedly. A

general flowchart of standard GA is illustrated in Fig. 1. It

is seen from this flowchart that GA starts with an initial-

ization module, which includes data input, task assignment,

and initial population. Then, it runs the selection module as

tournament selection. If two parents are chosen success-

fully, go ahead to the crossover module, otherwise repeat

the selection process. The crossover process is followed by

mutation and individual validation. After that, check fitness

value and population, and decide to go back to the popu-

lation module or evaluation module. After evaluation,

either go back to the population module for the next GA

generation, or output results and terminate GA

computation.

For the purpose of profilling GA’s execution time, the

GA flowchart in Fig. 1 is simplified into Fig. 2. It is seen

from Fig. 2 that the population component executes only

once in the initialization of GA computation. The other

three components, i.e., selection with crossover, mutation,

and evaluation, execute repeatedly until the algorithm ter-

minates with a satisfactory solution. Among these three

components, Selection with Crossover, and Evaluation

(SCE) are infused with a fitness function.

To understand where GA spends most of its time in its

computation, we have profiled GA computation in terms of

execution time for energy-efficient VM placement in data

centers. For a typical scenario, which will be discussed

later in our simulations, we have obtained the results

depicted in the leftmost bar of Fig. 3.

A quantitative analysis of the results in the leftmost bar

of Fig. 3 indicates that about 80% of the total execution

time of GA are spent on SCE computation. Mutation

consumes about 10% of the total execution time. Popula-

tion consumes less than 10% of the total execution time.

Within SCE, fitness function-infused computation is

dominant, consuming about 60% of the total execution

time of GA as graphically indicated in leftmost bar of

Fig. 3. Therefore, in order to improve the computational

performance of GA in energy-efficient VM placement, we

should focus on the simplification of fitness computation.

From this understanding, we conduct a detailed analysis of

fitness computation in GA.

Fig. 1 The flowchart of implementing a standard GA for VM

placement

Fig. 2 The GA architecture infused with fitness function in Selection

with Crossover, and Evaluation (SCE)
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3.2 Analysis of fitness computation

From the above analysis of GA profiling in terms of exe-

cution time, fitness computation dominates the computa-

tion in standard GA for energy-efficient VM placement.

Let us investigate in detail how much computational effort

the GA requires for fitness computation in the whole pro-

cess of GA computation. Let Npop denote GA’s population

size. Then, for a new generation from Npop individuals,

2Npop parents need to be selected. If we use a tournament

selection for crossover parents, each parent has to be

selected among Npop=4 randomly-chosen individuals from

its previous generation. Each of the Npop=4 individuals

needs to calculate its fitness value. Therefore, the total

number of fitness evaluations in the crossover of one

generation is:

Nfit1 ¼ 2Npop � Npop=4 ¼ N2
pop=2 ð1Þ

Thus, for Ngen generations of GA, the total number of fit-

ness evaluations in crossover is:

Nfit ¼ Ngen � Nfit1 ¼ Ngen � N2
pop=2 ð2Þ

For example, in a specific scenario, Npop is set to be 64, and

Ngen is about 500 on average. Then, Eq. (2) gives:

Nfit ¼ 500 � 642=2 ¼ 1; 024; 000

This is over a million fitness evaluations!

In Eq. (2), once selected, Npop is a constant. Thus, Ngen

is the only adjustable parameter to reduce Nfit. A faster

convergence of GA is beneficial to reducing Nfit.

Next, we investigate how much computational effort the

standard GA needs for fitness computation in terms of CPU

instruction count Nic�fit , i.e., the number of CPU instruc-

tions. Let Tfit denote the total execution time of the fitness

computation in crossover. Also, denote the frequency and

utilization of the CPU as f and ucpu, respectively. Then,

Nic�fit of the overall fitness computation is:

Nic�fit ¼ f � Tfit � ucpu ð3Þ

The CPU instruction count in each fitness evaluation is:

Nic�fit1 ¼ Nic�fit=Nfit ð4Þ

It follows from Eqs. (2) and (3) that:

Nic�fit1 ¼
2 � f � Tfit � ucpu

Ngen � N2
pop

ð5Þ

From Eq. (5), Tfit can be expressed as:

Tfit ¼
1

2
� Ngen �

N2
pop

f � ucpu
� Nic�fit1 ð6Þ

In Eq. (6), the value of the term
N2
pop

f�ucpu is determined by

system configuration and hardware settings. Thus, Ngen and

Nfit1 are dominant factors for fitness computation. A faster

convergence helps reduce Ngen, as mentioned previously.

Another effective way to improve the computational per-

formance is to reduce Nfit1. Consequently, the total exe-

cution time Texec of GA can be reduced.

3.3 Insights into the GA computation

From the profiling of the GA computation in terms of

execution time, it is understood that GA consumes the most

of its computation time in fitness evaluation. Thus, the

improvement of GA’s computational efficiency should

focus on fitness computation. A simpler fitness function

that is a good indicator of the energy efficiency of VM

placement will help accelerate the GA computation.

Meanwhile, an improved data structure that enables sim-

plified GA computation will also help improve the com-

putational efficiency of GA for energy-efficient VM

placement.

Therefore, in the following, a new data structure that we

recently proposed [12] is embedded into GA to reduce the

complexity of fitness computation. Then, incorporating

with this data structure, an alternative fitness function is

proposed to reduce the CPU instruction count Nfit1. As a

result, the GA computation is significantly accelerated for

energy-efficient VM placement in data centers.

4 Embedding a new data structure into GA

4.1 Fitness computation in standard GA

In Standard GA for energy-efficient VM placement in data

centers, the energy cost of a VM-placement plan is defined

as the fitness function [13]. It is calculated from a power

model of CPU with respect to CPU utilization [34]. The

CPU power model is mathematically formulated as:

Fig. 3 An example of standard GA’s execution-time profiling, as

shown in the leftmost bar. The data comes from a standard GA run of

our experiments in Sect. 7. SCE means selection and crossover, and

evaluation
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P ¼ PðmaxÞ � PðmaxÞ � PðminÞ

expða � ucpuÞ
ð7Þ

where Pmax represents the maximum power when the CPU

is fully loaded (i.e., 100% utilization), Pmin represents the

minimum power when the CPU is idle (i.e, 0% utilization),

ucpu represents the CPU utilization, and a is a constant that

defines the shape of the power model curve. Figure 4 is a

graphical demonstration of this power model [34].

For the energy efficiency of data centers, we aim to

minimize the total energy consumption E over a certain

period of time, subject to the constrains of CPU and

memory capacity. Consider placing Nvm VMs to Napm

active PMs. For the kth time slot with length tk, it follows

from Eq. (7) that the power of the jth PM in the time slot is:

Ppmðj; kÞ ¼ PðmaxÞ
pm ðjÞ � P

ðmaxÞ
pm ðjÞ � P

ðminÞ
pm ðjÞ

expðaj � upmðj; kÞÞ
ð8Þ

Thus, the constrained optimization problem over Nslot time

slots is expressed as:

min
vm

E ¼
XNslot

k¼1

XNapm

j¼1

Ppmðj; kÞ � tk

s.t. upmðj; kÞ ¼
PNpm

i¼1 upmði; j; kÞ;
upmði; jÞ 2 fuv1 ; uv2 ; :::; uvmg;

0�8upmðjÞ� 100%;

Memory constraints,

8
>>>>>>>>>><

>>>>>>>>>>:

ð9Þ

where index j refers to each active PM (j ¼ 1; � � � ;Napm);

v1; v2; � � � ; vm refer to m VMs; and uj is the CPU utilization

of the jth PM.

In standard GA, the fitness function of this constrained

optimization for the set V ¼
SNvm

i¼1 vi of VMs hosted in Napm

active PMs over Nslot time slots is formulated as:

E ¼
XNslot

k¼1

XNapm

j¼1

Ppmðj; kÞ � tk ð10Þ

The data structure currently used in the computation of

standard GA is shown in Fig. 5. In this data structure, the

PM list is used to directly collect VMs. Therefore, if we

need to traverse all VMs, we have to traverse all PMs as

well as the VMs within each PM. This leads to Algo-

rithm 1. With two nested loops, Algorithm 1 has quadratic

complexity.

4.2 Fitness update embedded with a new data
structure

We design a new data structure that is extended from our

recent study [12] to help reduce the (quadratic) complexity

and problem size of traditional fitness computation in

standard GA. The data structure is depicted in Fig. 6 [12].

In this data structure, VMs are linked with their addresses

in PMs along with time and resource conditions. This VM-

based data structure strictly matches the data structure of

gene chromosome in GAs for VM-placement problems.

In the deployment of this data structure in GA, a VM

placement plan is the gene of its relevant individual, and

each VM with its corresponding address stands for a

nucleotide of the gene. Then, during the crossover or

mutation of a GA integrated with the this data structure, the

program simply updates the address of each VM. There-

fore, it becomes much more straight-forward and faster

when deploying to a GA with this data structure than the

standard data structure.

Now, the original two-dimensional data structure in

Fig. 5 is replaced by two one-dimensional vectors in

Fig. 6: a VM list whose elements are linked with PM IDs,

and a PM list whose elements are linked with PM utiliza-

tion. With this data structure, the process of fitness evalu-

ation in GA is demonstrated in Algorithm 2.
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Algorithm 2 has two sequential loops. The first loop

calculates each PM’s utilization from all VMs that the PM

hosts. The second loop computes the total energy cost from

all active PMs. With these two sequential loops, the com-

plexity of the algorithm is linear to the problem size.

It is worth mentioning that the calculation in Algo-

rithm 1 includes all PMs in the data center (referring to

Npm). In comparison, the calculation in Algorithm 2 only

includes active PMs (referring to Napm), ignoring all idle

PMs that are proposed to be powered off. In data centers,

not all PMs are always kept on as Napm �Npm. Thus, the

problem size is reduced, especially when we can switch off

a large number of idle PMs for energy savings.

Consequently, Algorithm 2 reduces the complexity of

Algorithm 1 from quadratic to linear one, and also reduces

the problem size, adding the straight-forward deployment

for genes, thus accelerating GA computation. This will be

further discussed later in Sect. 6 from the theoretical

perspective.

5 An alternative fitness function

General requirements for alternative fitness functions have

been analyzed theoretically in a recent report [20]. Our

work presented in this paper considers the requirements for

an alternative fitness function from a different perspective:

(1) First of all, an alternative fitness function is expected

to be simpler in its expression than the standard one

in Eq. (10);

(2) Also, it should be a good indicator of the actual

energy cost calculated from Eq. (10); and

(3) Finally, it should be easily calculable from the

adopted data structure shown in Fig. 6.

With these requirements in mind, let us start to search for a

candidate of such an alternative fitness function.

We have observed from our comprehensive experiments

that GA often pushes active PMs into high utilization (e.g.,

well above 95%) so that fewer active PMs are used, thus

saving energy. The only exception is the last PM, which

may not be fully filled with VMs. Fig. 7 depicts a plot of

typical VM placement to over 1, 000 PMs. From this fig-

ure and Eq. (7), we have developed the following heuristic

rule:

Heuristic Rule 1: In an optimized VM-placement plan,

all active PMs are almost fully loaded, i.e.,

PpmðjÞ � PðmaxÞ
pm ðjÞ; j 2 f1; � � � ;Napmg ð11Þ

Fig. 4 A CPU power model for an Intel Xeon system with turbo boost

on [34]

Fig. 5 Standard data structure for GA computation, in which VMs are

stored in PMs
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Substituting Eq. (11) in Heuristic Rule 1 into Eq. (10)

yields:

E �
XNslot

k¼1

XNapm�1

j¼1

PðmaxÞ
pm ðj; kÞ þ Ppmð0; kÞ

" #

� tk ð12Þ

where Ppmð0; kÞ refers to the power of the last active PM

that may not be fully loaded.

When all active PMs are almost fully loaded, the

resulting E from Eq. (12) is less related to the actual uti-

lization of each PM. It is well characterized by the number

of active PMs. In other words, E is not strongly affected by

actual P(j, k) of each PM. Therefore, we have our second

heuristic rule:

Heuristic Rule 2: In an optimized VM-placement plan,

the resulting E is characterized by the number of active

PMs:

E/
�
Napm ð13Þ

Using Napm in Expression (13) as an alternative fitness

function satisfies the three requirements stated at the

beginning of this section: its expression is much simpler

than the standard one in Eq. (10); it is a good indicator of

the energy cost from Eq. (10); and finally it can be easily

calculated from the adopted data structure shown in Fig. 6

simply by counting the number of active PMs.

With Napm as the alternative fitness, Algorithm 3 is

designed for fitness evaluation based on the embedded data

structure in Fig. 6. We have the following observations:

– As in Algorithm 2, Algorithm 3 has two sequential

loops. Thus, its complexity is also linear to the problem

size.

– However, Algorithm 3 simply counts the number of

active PMs. It uses much fewer CPU instructions than

Algorithm 2, which calculates energy consumption

from a nonlinear expression in Eq. (10).

Therefore, the execution-time performance of GA using

our alternative fitness function with the adopted data

structure is expected to be significantly improved. This

improvement will be further analyzed in the next section. It

will also be verified later through simulation experiments.

Fig. 6 New data structure extended from our previous study [12] for

fitness computation, in which VMs are linked with their addresses in

PMs along with time and utilization conditions

Fig. 7 A plot of typical GA VM placement to over 1, 000 PMs, all of

which are almost fully loaded
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6 Theoretical comparisons of fitness
functions

This section provides theoretical comparisons among three

types of fitness evaluations from Algorithms 1, 2 and 3:

(1) The fitness evaluation from Algorithm 1 corresponds

to traditional fitness in Equation (10) using the

standard data structure shown in Fig. 5;

(2) With the same traditional fitness in Eq. (10), Algo-

rithm 2 uses the data structure in Fig. 6 adopted from

[12]; and

(3) The fitness computation from Algorithm 3 uses our

alternative fitness Napm in Eq. (13) and the adopted

data structure in Fig. 6.

The two nested loops of Algorithm 1 imply quadratic

complexity. Let Npm denote the total number of all PMs.

Also, let Nvm�1pm denote the average number of VMs in

each PM. Then, the complexity of Algorithm 1 is expres-

sed as:

Calg1 �OðNpm � Nvm�1pmÞ ð14Þ

The two sequential loops of Algorithm 2 mean linear

complexity. The first loop applies to Nvm VMs, while the

second loop is for Napm active PMs. Thus, the complexity

of Algorithm 2 is expressed as:

Calg2 �OðNapm þ NvmÞ ð15Þ

Algorithm 3 also has two sequential loops, each with the

same purpose as that in Algorithm 2. Therefore, it has the

same complexity as Algorithm 2, i.e.,

Calg3 �OðNapm þ NvmÞ ð16Þ

Considering Calg1;Calg2 and Calg3, we have:

Calg1 [Calg2 � Calg3 ð17Þ

Both Algorithms 2 and 3 reduce the complexity of Algo-

rithm 1 significantly from quadratic to linear one. A further

analysis will show that Algorithm 3 is much simpler than

Algorithm 2 in terms of the required number of CPU

instructions.

For a single fitness evaluation, the instruction count is

Nic�fit1. Thus, the instruction count Nic for an algorithm

with complexity C is approximately:

Nic / Nic�fit1 � C ð18Þ

Both Algorithms 1 and 2 need to execute a long list of CPU

instructions for the floating-point computation of the non-

linear energy function (10), while Algorithm 3 simply

counts active PMs. Thus, conceptually, the Nic�fit1 in

Algorithm 3 is much smaller than those from Algorithms 1

and 2.

Further considering the relationship in (17), we have the

following relationships between instruction count Nic1 from

Algorithm 1, Nic2 from Algorithm 2 and Nic3 from

Algorithm 3:

Nic3\\Nic2\Nic1 ð19Þ

Expression (19) clearly indicates that Algorithm 3 executes

much faster than Algorithm 2 does. It also shows that both

Algorithms 3 and 2 are faster than Algorithm 1, which is

the Standard GA for energy-efficient VM placement. These

results will be validated later with experimental simula-

tions. Our simulations also show that, with Algorithm 3,

the number Ngen of generations in GA is reduced, further

speeding up GA computation.

7 Simulation experiments

Our experiments will test GA for energy-efficient VM

placement under three types of fitness evaluations:

– Algorithm 1 for the Standard GA with the original

fitness computation and data structure,

– Algorithm 2 for original fitness with the data structure

adopted from [12], and

– Algorithm 3 for our alternative fitness embedded with

this new data structure.

We give a VM-placement plan for each of the evaluated

experimental scenarios. For each scenario, we evaluate the

resulting energy consumption of the data centers with all

idle PMs being powered off. We also record the execution

time of the corresponding GA on our computation plat-

form. Other parameters related to Nic�fit1 and Ngen are

evaluated as well.

An an example, we take Google’s Cluster-Usage Traces

[8, 27] for our experimental tests. Because the data set is

considerably huge, we extract a small part of the logs from

the traces for demonstration. All data configurations are

listed in Table 2.

Table 2 The input configuration from Google’s data set

Scale Input configuration

Start Time Initial Job ID Initial Task ID #Items

Small 9 � 108 6251539840 379 680

Medium 3:717 � 1011 6289303978 424 2242

Large 1:8 � 109 4028922835 429 5365
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Three scales of data centers are tested in our experi-

ments: small, medium, and large scales. Our small-scale

data input refers to an private, enterprise-level cloud data

center running hundreds of VMs on 100 PMs. Our med-

ium-scale data input represents a private, university-level

cloud data center running about two thousand VMs on 500

to 600 PMs. Our large-scale data input simulates a sector of

a large, public cloud data center running thousands of VMs

on over 1, 000 PMs. All three scales of data inputs are

extracted from Google’s cluster-usage traces.

It is worth mentioning that Google’s cluster traces only

record tasks, not VMs. To use Google’s data set for VM-

placement research, we assign these tasks to VMs prior to

VM placement to PMs [26]. The task-assignment Algo-

rithm 4 is taken from our previous work [12, 13]. It assigns

each incoming task to a VM of proper size. The VMs in our

experiments are designed with fixed sizes, which are listed

in Table 3. Fixing VM sizes is a common practice in the

management of data centers, as in Amazon’s cloud.

After all tasks are assigned into VMs, we execute our

GA for VM placement to PMs. Our GA implies a tourna-

ment selection strategy with a randomly-chosen 1/4 of the

total population for each parent. It terminates when no

further improvement is observed over 50 generations.

Other GA parameters follow standard and popular config-

urations. For example, the GA population size is 64 indi-

viduals. The crossover and mutation rates are 50% and

0:15%, respectively. In addition, we use an First-Fit solu-

tion as an individual in the first generation of GA for a

better initialization [28].

Our simulation experiments are conducted on a desktop

computer. The computer is equipped with Intel Core 2

Q6700, 3.4 GHz CPU, and 16 GB DDR4 2666 MHz RAM.

It runs Windows 10 Professional operating system. The

input of our experiments is a comma separated-value

(CSV) file extracted from Google’s Cluster-usage Traces as

discussed previously. The outputs of our experiments

include a VM-placement plan, the energy consumption of

the data center, the number of GA generations, GA

Table 3 Six types of VMs with normalized CPU capacity

CPU type Huge Large Medium Normal Small Tiny

CPU capacity 0.45 0.30 0.15 0.10 0.045 0.015

Fig. 8 The average execution time of GAs from Algorithm 1

(GA_std), Algorithm 2 (GA_E) and Algorithm 3 (GA_#PM) for

small-, medium- and large-scale data centers

Fig. 9 The average energy-consumption performance in an hour from

Algorithm 1 (GA_std), Algorithm 2 (GA_E) and Algorithm 3

(GA_#PM) together with FFD for small-, medium- and large-scale

data centers
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execution time, and the average execution time for each

GA generation.

7.1 Execution-time performance

Figure 8 shows the execution-time performance of Algo-

rithms 1, 2 and 3 in VM placement for small-, medium-

and large-scale data centers, respectively. The Standard

GA with Algorithm 1 using the original data structure

consumes much more time than our improved Algo-

rithms 2 and 3. For the simulated large-scale data center,

our improved Algorithms 2 and 3 are about 5.5 times faster

and about 11 times faster, respectively, than Algorithm 1.

Furthermore, compared to Algorithm 2 (the standard fit-

ness and the adopted new data structure), our improved

Algorithm 3 (our alternative fitness embedded with the

adopted new data structure) executes about 2 times faster.

Recalling the GA profiling in terms of execution time

from Sect. 3, we have recorded the time consumption for

each of the GA computation components for a specific

experimental scenario in one GA run (see Fig. 3 in

Sect. 3). A quantitative analysis of these results reveals that

the SCE computation time has been significantly com-

pressed from 52% to 23% by switching from Algorithm 1

(the Standard GA, GA_std) to Algorithm 2 (the standard

fitness with the adopted new data structure, GA_E). This

23% is further reduced by about half by switching to

Algorithm 3. This dramatic reduction in execution time

verifies that the computation of GA for energy-efficient

VM placement can be significantly accelerated through

compressing the time consumption in SCE-infused

computation.

7.2 Energy consumption performance

With significant improvement in the execution time of GA

from our accelerated algorithms embedded with the adop-

ted new data structure and/or our alternative fitness func-

tion, we would like to check whether or not the resulting

energy consumption in data centers is also satisfactory. For

small-, medium- and large-scale data centers, Fig. 9 shows

the performance of energy consumption in an hour from

Algorithms 1, 2, and 3. For comparison, the figure also

depicts the energy consumption from FFD for each of the

three data center scales.

Understandably, FFD leads to the largest energy con-

sumption, as the other three algorithms start their iterations

from the FFD solution (see Fig. 9). Also, Algorithm 1

(GA_std), Algorithm 2 (GA_E), and Algorithm 3

(GA_#PM) all give similar energy-consumption perfor-

mance, indicating that the adopted new data structure and

alternative fitness function achieve significant acceleration

of GA computation without sacrifices in the energy-con-

sumption performance.

7.3 The number of active PMs

Fig. 10 compares the average numbers of active PMs

resulting from Algorithms 1 (GA_std), 2 (GA_E), and 3

(GA_#PM) in VM placement for small-, medium- and

large-scale data centers. FFD’s results are also shown in the

figure. For each of the three scales of data centers, FFD

gives a VM-placement plan that requires the largest

Fig. 10 The average numbers of PMs planned from Algorithm 1

(GA_std), Algorithm 2 (GA_E) and Algorithm 3 (GA_#PM) together

with FFD for small-, medium- and large-scale data centers

Fig. 11 Average Ngen (upper plot) and estimated N̂ic�fit1 (lower plot)

from Algorithm 1 (GA_std), Algorithm 2 (GA_E), and Algorithm 3

(GA_#PM) for small-, medium-, and large-scaled data centers
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number of active PMs, implying the worst energy con-

sumption performance. For small- and medium-scale data

centers, Fig. 10 shows that all three algorithms (GA_std,

GA_E and GA_#PM) lead to similar numbers of active

PMs. The difference is about one PM only. For the simu-

lated large-scale data center, the VM placement from

GA_std and GA_E requires almost the same number of

PMs (1099), while GA_#PM gives a plan of 1103 active

PMs, indicating 0.36% more PMs than GA_stad and GA_E

do. However, this small sacrifice in the number of active

PMs leads to an acceleration of 11 times in GA computa-

tion with the execution time being reduced from over 54

min ( 3270 s) to about 5 min (300 s) as shown in Fig. 8.

7.4 Nic - fit1 and Ngen

To better understand how the adopted new data structure

and alternative fitness accelerate GA computation for

energy-efficient VM placement, we draw two bar graphs in

Fig. 11 on average Ngen and estimated N̂ic�fit1 from

GA_std, GA_E, and GA_#PM for small-, medium-, and

large-scale data centers, respectively.

From many runs of GAs under simulated scenarios, the

upper bar graph of average Ngen in Fig. 11 shows that

GA_std and GA_E require similar numbers of generations.

In comparison, GA_#PM uses an obviously smaller num-

ber of generations to get its solution.

The lower bar graph of Fig. 11 is N̂ic�fit1, which is

estimated from the average duration of each generation. It

shows that the adopted new data structure in GA_E reduces

the CPU instruction count significantly from GA_std, and

our alternative fitness in GA_#PM further reduces the CPU

instruction count in fitness evaluation. For example, in the

large-scale data center that we simulated, GA_E reduces

the average N̂ic�fit1 from 21.35 (the result with GA_std) to

4.16, which is about a third of the original value. GA_#PM

further reduces the average N̂ic�fit1 from 4.16 (the result

with GA_E) to 1.83, which is a compression of over 50%.

From the original GA_std, our GA_#PM compresses the

average N̂ic�fit1 by over 91% from 21.35 down to 1.83.

7.5 Statistical analysis of results

For a deeper understanding of the GA acceleration pre-

sented in this paper, some quantitative simulation results

are summarized in Table 4, which has been partially

visualized in previous subsections. It is seen from this

table, and also shown previously in Fig. 11, that the

number of GA generations Ngen is reduced considerably in

our GA_#PM over G_E, leading to a noticeable accelera-

tion of GA computation (Fig. 8). It is also expected to

know that this computational acceleration does not affect

the energy efficiency of the resulting VM placement in data

centers.

To verify that the accelerated GA computation presented

in this paper with our new fitness function does not affect

the energy efficiency of the VM-placement results, statis-

tical tests are conducted on the simulation results from our

GA_#PM and GP_E methods. The null hypothesis of the

statistical tests between our GA_#PM and GP_E methods

is:

H0 The energy efficiency from GA_#PM and GA_E has

no obvious difference.

The alternative hypothesis is that the results of energy

efficiency from GA_#PM and GA_E are statistically

different.

Two types of statistical tests have been conducted:

(1) two sample paired t-tests, and

(2) Wilcoxon’s signed-rank tests.

These tests are carried out because the performance results

from each of the two GA methods are evaluated using the

same simulated data [24, 31]. For all statistical tests, the

significance level is 0.05. To support the null hypothesis, it

is required to have p-values greater than the significance

level, and Wilcoxon’s tests additionally require that

w[ Tcrit, where w stands for the minimum of the sums of

Table 4 Featured results for GA_E and GA_#PM

Performance Scale Fitness Max Min Avg SD

E (kWh) Large E 237.7 233.8 236.0 0.853

#PM 238.2 234.0 236.0 0.885

Medium E 123.2 121.1 122.1 0.487

#PM 123.2 121.3 122.4 0.405

Small E 22.3 21.4 21.8 0.158

#PM 22.3 21.6 21.9 0.166

#PM Large E 1109 1090 1099.0 4.10

#PM 1111 1091 1103.0 4.26

Medium E 575 565 569.9 2.355

#PM 575 566 571.2 1.956

Small E 104 100 102.0 0.768

#PM 104 101 102.4 0.808

Ngen Large E 940 405 569.0 106.93

#PM 669 370 473.4 56.38

Medium E 738 234 393.0 103.61

#PM 439 227 296.6 43.93

Small E 464 154 257.1 68.44

#PM 264 148 184.4 24.55
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positive and negative ranks, and Tcrit is the critical value in

Wilcoxon’s tests.

Test samples in our statistical analysis are derived from

the quotient of GA_E and GA_#PM. The quotient is

denoted by d. Test results from the t-tests and Wilcoxon’s

tests are tabulated in Table 5.

It is seen from Table 5 that all p values are greater than

the significance level 0.05. Additionally, it is also observed

from the table that the relationship w[ Tcrit holds in

Wilcoxon’s tests. Therefore, the results from both t-tests

and Wilcoxon’s tests support the acceptance of the null

hypothesis, i.e., the results of energy efficiency from our

GA_#PM and GA_E methods have no obvious difference.

Actually, they also show that the numbers of PMs #PM

from both GA_#PM and GA_E have no obvious difference.

It is concluded that the accelerated GA computation with

our new fitness function does not affect the energy effi-

ciency of the resulting VM placement.

7.6 Convergence speed

When both Ngen and Nic�fit1 are reduced, the convergence

of GA computation becomes faster. Our quantitative

analysis of the experimental results shows that, for the

simulated large-scale data center, GA_#PM converges over

20 times faster than GA_E does. Figure 12 shows that

GA_#PM from Algorithm 3 (the green line) terminates

earlier than GA_E from Algorithm 2. This further verifies a

smaller Ngen value and an earlier termination from

GA_#PM than GA_E.

In summary, according to Eq. (6) and Figs. 8 and 11,

our improved Algorithm 2 (GA_E) reduces Nic�fit1 from

their values in the Standard GA in Algorithm 1 (GA_std).

Since Npop, f, and ucpu are not the focus of this paper, they

are set as constants in our simulation experiments. Our

improved Algorithm 3 further compresses Ngen and Nic�fit1

from their values in GA_E using Algorithm 2. As a result,

the computation of GA is significantly accelerated for

energy-efficient VM placement in data centers.

8 Conclusion

To make GA practically feasible for energy-efficient VM

placement in large-scale data centers, this paper has

investigated how to accelerate GA computation without

sacrificing the quality of solution in terms of energy sav-

ings. Our analysis has revealed that fitness-related com-

putation consumes most of the execution time in standard

GA. Therefore, this paper has focused on speeding up the

fitness evaluation in GA computation for energy-efficient

VM placement. The speedup has been achieved from two

main aspects: a new data structure for complexity reduc-

tion, and an alternative fitness function for instruction

count reduction. The new data structure extended from our

previous study reduces the complexity of the GA compu-

tation from quadratic to linear one with respect to the input

size of the VM-placement problem, thus speeding up the

GA computation. Along with this data structure, an alter-

native fitness function has been proposed, which is simply

associated with the number of active PMs. It leads to a

dramatic reduction in the number of instructions required

in each instance of fitness evaluation, further accelerating

the GA computation. Experimental studies have demon-

strated that our accelerated GA under the alternative fitness

function incorporating with the new data structure is about

11 times faster than the standard GA for energy-efficient

Table 5 Results of t-tests and
Wilcoxon’s signed rank tests

with alpha level 0.05 for GA_E

and GA_#PM by using d
calculated from the quotient of

GA_#PM and GA_E

Performance Scale d t-tests Wilcoxon’s tests

t critical T p w Tcrit p

E (kWh) Large 1.002 1.98 0.515 0.696 2303 1955 0.445

Medium 1.002 1.98 0.152 0.560 2447 1955 0.789

Small 1.004 1.98 0.296 0.384 2276 1955 0.392

#PM Large 1.002 1.98 0.643 0.739 2303 1955 0.445

Medium 1.002 1.98 0.288 0.613 2447 1955 0.789

Small 1.004 1.98 0.170 0.567 2276 1955 0.392

Fig. 12 A zoom-in of the convergence of GA_E from Algorithm 2

and GA_#PM from Algorithm 3
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VM placement in large-scale data centers of about 1, 500

PMs without compromising energy efficiency performance

of the data centers.

Our work presented in this paper focuses on accelerating

GA computation through a new data structure and an

alternative fitness function. It does not consider the impact

of QoS and SLA requirements on the energy efficiency of

data centers. However, QoS and SLAs are important in

practical management and operations of real data centers.

How to embed QoS and SLA requirements into the energy-

efficient VM-placement problem deserves further research

in the future.
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