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ABSTRACT 

Professional athletes and organizations can face significant consequences as a result of injury 

incidents in sports. Therefore, an abundance of studies has been conducted to identify the risk 

factors in the hope of preventing injuries from occurring in the first place. Hamstring strain 

injuries (HSIs) are the most frequent injuries in Australian Football League (AFL). Many 

studies had shown that there are several prominent risk factors for HSIs. However, this finding 

cannot be identified with any consistency through assessing the risk factors at a single time 

point, typically the beginning of a season (e.g., in the pre-season) or more frequently 

throughout the season (e.g., in the pre-season, early in-season and late in-season). Nonetheless, 

these studies did not consider the potential variability of risk factors across the season. In light 

of this, it was hypothesised that risk factors may vary depending on the time of the season. 

 

This thesis aims to answer if the risk of hamstring strain injuries in Australian Football can be 

reduced through a better understanding of the changing risk factors over the course of the 

season. Despite the study, identifying HSI risk at individual-level remains a challenge. This 

study aims to explore whether the risk of HSI for individual players can be better understood 

by explaining the predictions of machine learning (ML) models. 

 

The study utilised recursive feature selection and cross-validation to provide a holistic 

understanding of important risk factors at different points. Subsequently, counterfactual 

explanations were effectively generated for players at risk of sustaining HSI. 

 

The study found that non-modifiable risk factors were primarily linked to pre-season injuries, 

whereas modifiable risk factors were mostly associated with early in-season injuries. 
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Counterfactual explanations and ML models offer a novel perspective in interpreting risk and 

finding potential solutions. 

 

Overall, this study provides new insights into risk factors associated with HSIs at different time 

points, as well as offers a solution for interpreting risk at individual-level using ML models 

and counterfactual explanations. The findings have important implications for researchers and 

practitioners who seek to mitigate the risk of HSI in the future. 
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CHAPTER 1: INTRODUCTION 

Injuries are common in professional sports. They can cause serious problems to an athlete’s 

well-being, along with financial implication [1, 2]. On average, a game missed by an Australian 

Football player costs $15,000. As few as 10 absences can cost $150,000 lost in performance 

value [2]. Normally, injuries require a recovery time of up to 4 weeks before a player can return 

to play (RTP) [3]. Not to mention any injury that could impact the performance of the athlete 

permanently [4]. 

 

Hamstring strain injuries (HSIs) are the most frequent non-contact injuries in Australian 

football, American football, professional soccer, and rugby union which often require players 

to perform high-speed running, jumping, acceleration and deceleration [5-10]. HSI occurs 

when the muscles at the back of the thigh (hamstrings) were stretched beyond their limit, which 

results in sharp pain in the posterior thigh [6]. 

 

Considering the pervasive occurrence and the adverse outcomes that HSI brings, an abundance 

of studies has been conducted to investigate the factors that lead to the increased risk of HSI. 

It was reported older age and a history of HSI are prominent risk factors [6, 11, 12]. Individuals 

with a prior incidence of HSI are 2.7 times more likely to experience a subsequent HSI 

compared to those who do not have a history of HSI [11]. Additionally, the risk of HSI 

increases by 1.3-fold for each additional year of age in Australian rules football players and by 

1.9-fold with each increasing year of age in soccer players [6]. Nonetheless, these risk factors 

cannot be altered, which limits their applicability for future prevention. Studies had shown 

several modifiable risk factors, which can be addressed through intervention, were associated 

with HSI. These include biceps femoris long head (BFlh) architectures and eccentric hamstring 

strength [13-15]. According to a study, hamstring strain injuries are more common in 
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professional soccer players who have short BFlh fascicles and weak eccentric knee flexor 

strength [15]. The study proposed that longer BFlh fascicles and stronger eccentric strength 

can help senior players who sustained HSI lower their risk of injury [15]. 

 

In spite of the aforementioned evidence, the findings cannot be identified with any consistency 

[10, 16, 17]. An earlier research on Australian Football came to the conclusion that the risk of 

future HSI cannot be predicted by age, history of HSI, and eccentric hamstring strength, despite 

various machine learning models being utilised to account for the complex interactions 

between these variables [16]. A subsequent study attempted to address this finding by assessing 

modifiable risk factors more regularly throughout the season came to the same conclusion that 

there were no advances in identifying the risk of future HSI [17]. 

 

The purpose of this thesis is to determine if the risk of HSI in Australian Football can be 

mitigated through a better understanding of the changing risk factors over the course of the 

season. Despite the study, it remains difficult to comprehend risk at individual-level. While 

previous studies attempted to explain risk factors that contribute to the prediction for individual 

athletes [18, 19]. Their studies did not identify the potential solution to mitigate risk. As a result, 

this study was extended to explore whether the risk of HSI for individual players can be better 

understood by explaining the predictions of machine learning (ML) models, as well as 

identifying the potential risk mitigation solutions.  

 

It was hypothesised that HSIs occurred in preseason, early in-season and late in-season were 

associated with different risk factors. This thesis consists of two studies. The first study 

(Chapter 3) aimed to identify a group of features that can optimise the predictive ability of 

HSIs in individual time points. Recursive feature elimination and cross validation (RFECV) 
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were utilised to identify important risk factors. The following study (Chapter 4) aimed to 

explain the model’s prediction for individual players at multiple time points. With modifiable 

risk factors, the use of counterfactual explanation and ML offers a solution for interpreting risk 

at individual-level, as well as identifying potential solutions to prevent HSI [20]. 

 

The study discovered that pre-season HSIs were strongly associated with age, history of HSI, 

and height, which are non-modifiable risk factors, whereas early in-season HSIs were 

significantly linked to modifiable BFlh fascicle length and pennation angle. Conversely, late 

in-season HSIs did not present any strong associations with either modifiable or non-

modifiable risk factors examined in this study. The magnitude of change in modifiable risk 

factors across pre-season did not improve the identification of in-season HSIs. To the best of 

my knowledge, this study is the first to demonstrate the effectiveness of counterfactual 

explanations in interpreting risk and discovering potential solutions to mitigate the risk of 

future HSI for high-risk players. 

 

Ethical approval 

Australian Football League data was used as a case study throughout this research [17]. The 

data were collected with the approval from ACU Human Research Ethics Committee (approval 

number: 2017-208H) and with written consent were provided by participating players. This 

dataset consists of both non-modifiable risk factor and modifiable risk factors collected from 

individual players over the period of 2018 and 2019 Australian Football League (AFL) seasons. 
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CHAPTER 2: LITERATURE REVIEW 

Injury risk factors 

Many studies have been undertaken to identify the potential risk factors of various sports 

injuries. The initial step for these studies is collecting data. This includes collecting data from 

athletes through specialised instruments or devices [14, 21], gathering demographic data 

(weight, height, age etc) from the participants, or conducting surveys on the wellness of athletes 

through a series of customized questionnaires [17, 22].  

 

There are numerous musculoskeletal injuries in professional sports, with some commonly 

reported ones including hamstring strain injuries (HSIs), injuries to the lower extremities, 

anterior cruciate ligament (ACL) injuries, and ulnar collateral ligament (UCL) injuries. The 

most frequent injury is the hamstring strain injury (HSI) [23]. Football, soccer, and running 

activities are common to experience this type of injury. Some studies had shown that age is a 

prominent risk factor for lower limb muscle injuries in sports that involved sprinting [6, 8, 24]. 

For example, older athletes have been found to be more susceptible to hamstring and calf strain 

injuries [8, 24]. Studies had suggested muscle atrophy and weaker muscle fibres in senior 

athletes are [25, 26] making them more prone to injury. This can also be triggered by muscle 

contractions when competing with younger athletes. Similarly, the presence of prior injuries is 

also a significant risk factor in many studies [6, 8, 24, 27]. Athletes with a history of injury on 

the muscle significantly increased risk of a number of muscle strains [24]. This may be due to 

changes in muscle proprioception, strength and kinematics which lead to the decrease in 

neuromuscular functions [27-29].  

 

Recent studies had shifted their focus to modifiable risk factors that can be addressed through 

exercise and intervention [13, 14]. The commonly reported factors are training loads, muscle 
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imbalance [30], muscle strength [15] and muscle architectures [15, 31]. Physical training helps 

athletes to improve their physical fitness and overall performance. However, the amount and 

intensity of external training loads may have an impact on the injury risk [32]. Heavy 

workloads may result in fatigue, which can lead to injury. Conversely, a light workload may 

reduce the fitness and preparedness of athletes and subsequently increase the risk of injury [33]. 

There is an abundance of studies investigating scientific approaches to monitoring training 

loads in various sport domains [32, 34, 35]. Furthermore, prior studies reported that high 

between-limb imbalance and eccentric weakness may have contributed to an increased risk of 

hamstring strain injuries (HSIs) in professional rugby teams [30] and elite Australian 

footballers [14]. The injury risk may be reduced by enhancing eccentric hamstring strength 

with the Nordic hamstring exercise (NHE) [36, 37]. Others claimed that having short biceps 

femoris long head (BFlh) fascicle length can elevate the risk of HSI in soccer players [15]. 

NHE was also reported as an effective method in lengthening the BFlh fascicles [38]. 

 

Injury modelling 

Machine learning (ML) models are known for discovering patterns and relationships in 

complex data. Recent years have seen a substantial surge in interest in leveraging machine 

learning (ML) models to identify athletes at risk of getting injured [16, 19, 21]. With the 

availability of data sourced from sensors and internet. Some studies have shown that complex 

ML models significantly outperformed traditional statistical modelling [21]. In another study, 

it was claimed that there is no significant improvement in predictive performance when the 

dataset is relatively small [16]. Nonetheless, logistic regression is the most widely used 

technique in predicting sport injuries [39]. This is likely due to its simplicity and transparency 

which can be understood by practitioners [40]. However, the model struggles to capture non-
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linear dynamics and complex interplay between risk factors, potentially leading to an 

inaccurate representation of the risk model [2].  

 

Sports injuries are known to be caused by the complex interactions of various risk factors and 

inciting events [41]. Many researchers have turned to machine learning models to predict injury 

risk at the individual-level [1]. One of the most predominantly used methods is tree-based 

ensemble technique. This is due in part to their ease of interpretation and the ability to improve 

predictive performance through boosting or bagging methods. [1]. In a particular study, 

XGBoost was employed to forecast the injury risk in the National Hockey League (NHL) for 

the upcoming season [19]. It was reported that XGBoost outperformed all other models with 

an average AUC of 0.948 for position players and a mean AUC of 0.956 for goalies [19]. A 

similar study was conducted to predict injury risk among middle-distance and long-distance 

professional runners. Although no other models were compared in this study, XGBoost showed 

promising results with an average AUC of 0.724 in predicting weekly injury events. It should 

be highlighted that these studies were carried out with substantially larger datasets that contain 

at least 6000 observations.  

 

Besides tree-based ensembles, a study proposed a deep-learning based method to predict 

various types of injuries in NBA basketball [42]. The injury prediction system drew inspiration 

primarily from a deep learning model known as Bidirectional Encoder Representations from 

Transformers (BERT), which is commonly used for natural language processing (NLP) tasks. 

Without any data balancing technique, the system performed significantly better than other 

models with a resulting AUC of 0.8. It was found that the contusion injury was associated with 

a number of muscle injuries. Similar research studies have utilized artificial neural networks 

(ANNs) to quantify the risk of injury in the Australian Rules Football [2, 16].  
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One of the challenges faced in injury prediction is highly unbalanced data [16, 43], where the 

number of healthy events significantly outnumbered injury events. This can introduce problems 

as the model only learns from the majority of healthy events. A common solution to this 

problem is data random over-sampling and under-sampling. Random Oversampling works by 

randomly increasing the injury events so that the number of both classes is equal [16, 21]. 

Under-sampling is used less frequently as this may result in loss of information. Alternately, 

synthetic minority oversampling (SMOTE), which selectively creates synthetic samples from 

the minority class, can be utilised to remedy class imbalance. [16]. Another challenge in 

modelling sports injury is limited data. It was reported that most injury prediction studies were 

carried out on small datasets with a median sample size of 152 observations [39]. Almost all 

datasets used in these studies are not publicly available and cannot be cross-validated. 

Additionally, many of these data are expensive to collect, which requires special devices and 

consent from professional athletes. In real word, injuries occur because of complex reasons. 

These include environmental factors, inciting events and psychological factors that are not well 

captured by the data [33, 41]. Moreover, the risk factors and types of injuries differ across 

various sports. All these contributors add up to the challenge of predicting injuries accurately 

in the domain. 

 

Modelling metrics 

Most sports science datasets are highly imbalance [44]. It is crucial to understand the 

advantages and limitation of existing metrics prior making decision based on the trained 

classifier.   
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ROC AUC – Area under the ROC Curve 

AUC is a commonly used metric in the domain of predicting sports-related injuries. It is a 

threshold-independent metric that can be used to measure the performance of any classifiers 

without the need to define a cut-off threshold [45]. This feature of AUC makes it particularly 

useful in the field where the proportion of healthy events and injury events are imbalanced, as 

it evaluates the classifier across different thresholds, making it a more reliable metric for 

comparing different models. AUC evaluates the ability of the model to correctly discriminate 

between positive and negative classes [45]. The value ranges from 0 to 1, with a higher score 

indicating better performance. A perfect classification is indicated by an AUC of 1.0, while a 

value less than 0.5 suggests that the classifier is performing worse than random guessing. [46]. 

Another advantage of AUC is its scale in-invariant nature [47]. AUC score is not affected by 

changes in the scale of the scores and probabilities output by the model as it is calculated 

through ranking the prediction outputs of the model.   

 

Figure 2: An illustration of Receiver Operating Characteristic (ROC) curve and Area Under the Curve 
(AUC). Y-axis indicates true positive rate (TPR), also known as sensitivity. X-axis indicates false 

positive rate (FPR). The diagonal dotted line indicates a random guess where AUC = 0.5. The solid 
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line is the probability curve of the tested classifier, also known as the ROC curve. The shaded area 
indicates AUC. Label A and label B indicates different decision thresholds. 

 

True positive rate (TPR), also known as sensitivity and recall, is the proportion of injured 

events that were identified correctly. It is calculated as the number of injury events that were 

correctly identified (TP) divided by the actual number of positive samples (actual injury events 

= TP + FN) as shown in the equations below: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

False positive rate (FPR), also referred to as false alarm rate, is the proportion of healthy events 

that were incorrectly identified. It is calculated as the number of healthy events that were 

incorrectly identified (FP) divided by the actual number of negative samples (actual healthy 

events = FP + TN) as shown in the equations followed: 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁 

 

Figure 2 illustrates how AUC is calculated with the ROC curve. For a given prediction output 

from any binary classifier, TPR and FPR were calculated across all possible cut-off thresholds 

to obtain a probability curve, known as the ROC curve. The area under the ROC curve is known 

as ROC AUC. Ideally, a good classifier has high TPR and low FPR, which yields high AUC 

score.  

 

Since AUC only measures how well output predictions were ranked on every possible 

threshold, it neglects the importance of calibrated probability [48]. Furthermore, it was argued 

that AUC is not suitable in certain cases where the cost of false positive and false negatives 

should be treated differently [48]. When there is a large increase in false positives (amount of 
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injury events incorrectly classified as healthy events), the false positive rate is not sensitive 

enough [49]. This leads us to discuss an alternative metric in the following.  

 

PR Curve – Precision-recall curve 

Precision-recall curve was proposed to complement the limitation of the AUC [49]. PR curve 

measures the trade-off between precision and recall of a classifier across all possible thresholds. 

A high PR score means the classifier can correctly identify injury events while maintaining a 

low number of false positives (healthy events misclassified as injury events). The advantage of 

PR curve is when classes are highly imbalanced, it can reflect the minority class more 

accurately.   

 

Figure 3: An illustration of precision-recall curve. y-axis represents precision and x-axis represents 
recall. The solid black line is the precision-recall curve, and the shaded area is the PR score. 

 

Unlike ROC AUC, the aim of PR curve is to achieve the upper-right-hand corner [49]. As 

indicated in Figure 2, the y-axis indicates precision, it is calculated as the number of injury 

events that were correctly classified out of all predicted events. As opposed to false positive 
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rate in ROC AUC, precision can accurately capture the effect when there is an increase in 

healthy events [49]. Similar to the y-axis of ROC AUC, the x-axis measures how well the 

classifier can correctly identify injury events. A PR score of 1 indicates the classifier can 

identify injury events and healthy events perfectly. It is worth noting that high PR value 

indicates high precision and high recall, whereas a high ROC AUC indicates high recall and 

low false positive rate.  

 

Precision 

Precision measures the proportion of correctly identified injury events among all predicted 

events. It is calculated as the number of injury events that were correctly identified divided by 

all events that were predicted as injury (TP + FP).   

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

In real world, precision and recall often have a trade-off relationship. That is, increase one often 

reduce another.  

 

Sensitivity and specificity 

Sensitivity, also referred as recall, is the measure of how well a classifier can identify injury 

events. The value ranges between 0 and 1. High sensitivity value indicates the model can 

correctly identify large proportion of injury events. It is determined by dividing the number of 

correctly identified injury events (TP) by the actual number of injury events (TP + FN) as 

shown below: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
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On the other hand, specificity is the proportion of healthy events that were correctly classified. 

It is calculated by dividing the number of correctly identified healthy events (TN) by the actual 

number of healthy events (TN + FP). The equation is as followed: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 

 

Interpretable Machine Learning 

Interpretable machine learning methods help practitioners and clinicians to understand how a 

prediction is made by the machine. The degree to which a person can comprehend the logic 

behind a decision in machine learning is known as interpretability [50]. When people 

understand how a model is making decisions, they are more likely to trust and accept the 

decisions [51]. This is especially true in real world where decisions made by blind faith in 

domains such as healthcare and criminal justice may result in catastrophic consequences [51]. 

In addition, relying solely on the metrics (e.g. classification accuracy) is often inadequate in 

many real-world tasks [52]. As a result, many techniques were proposed to explain machine 

predictions.  

 

The scope of interpretability can be divided into two categories: Global and local. Global 

interpretation focuses on understanding the entire model [53]. For example, it is easier for 

humans to understand logistic regression than deep neural network. The positive coefficients 

in logistic regression indicate that an increase in the feature is associated with an increase in 

the probability of the positive class and the magnitude of coefficients reflects the strength of 

the relationship. The simplicity of some machine learning models can offer global 

interpretability, these models are often called white box. However, this is usually hard to 

achieve in practice. For instance, when the number of input features increases, the interaction 

of the features can only be understood by holding other feature values constant. On the contrary, 
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local interpretation aims to comprehend why did the model come up with a decision for certain 

or a particular instance. This was demonstrated by SHAPley value [54], which was initially 

proposed to measure the contribution of individual players from a cooperative game theory. 

The same theory was later used to explain the contribution of individual predictors that lead to 

the final prediction of an instance [55]. Few studies utilized SHAPley values to explain the 

individual risk predictions of ML models in professional basketball and soccer players [18, 19].  

 

The following sections discuss the difference between intrinsic and model-agnostic 

explanations and their respective methods. Table 1 summarised the advantages, drawbacks, 

and mechanisms of these techniques.  
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Table 1: The advantages and disadvantages of different interpretable machine learning methods. 

Type of 
interpretation Models Mechanism Scope of 

interpretability Advantages Disadvantages 

Intrinsic Logistic regression Feature weight Global 
Probabilistic output; highly 
interpretable for linear 
features 

Multicollinearity; Does not 
account for interaction between 
features; oversimplify complex 
relationship 

 Decision trees Cut-off threshold Global + Local Account for interaction 
between features 

Not suitable for linear and 
complex relationship between 
features 

 Naïve Bayes Class probabilities Global Robust to irrelevant features; 
probabilistic output 

Required all features to be 
independent of each other 

 RuleFit [56] Decision rules Global 
Account for interaction 
between features, Suitable for 
linear relationship 

Less interpretable for high 
dimensional data; May 
generate additional unhelpful 
features 

 Explainable Boosting 
Machine [57] 

GAM (Generalized 
additive model) Global + Local 

Account for pairwise 
interaction; State-of-the-art 
performance 

Require longer time to train 

Model-agnostic 

LIME (Local 
interpretable model-
agnostic explanations) 
[51] 

Local surrogate Local 

Compatible with diverse types 
of data (tabular, text, images); 
Simplify explanation for 
complex model 

Precision of explanation rely 
on surrogate models; different 
samplings may yield different 
explanations for the same data; 
Assume linearity for local 
model 

 
SHAP (SHapley 
Additive exPlanations) 
[55] 

Shapley values Global + Local Provide highly precise 
(faithful) explanation.  

Computationally expensive for 
high dimensional data; Assume 
all features have an equal 
contribution; Not suitable for 
non-tabular data 

 Counterfactual 
explanations [20, 58] Contrastive instance Local 

Does not require to access 
data and model; Provide good 
explanation for data with 
fewer features.  

Explanation may not be useful 
in high dimensional data.  
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 Anchors [59] Decision rules 
(anchors) Local 

Account for precision 
accuracy; Highly interpretable 
for layperson 

Required fine-tuning to obtain 
good explanation.   

 GraphLIME [60] Local surrogate Local 

Work well on graph data with 
intricate connections between 
features (molecular structures 
etc) 

It is computationally expensive 
to generate explanation for 
complex graph neural network. 

 

ASV (Asymmetric 
Shapley Values) [61] 
 
 

Shapley values Global + Local 

Improve explanation by 
considering unequal causal 
relationship between features; 
provide incremental 
explanations for time-series 
data 

Computationally expensive for 
high-dimensional data; 
Required expertise to create a 
causal graph;  

 SHAPley Flow [62] Shapley values Global + Local 

Provide a comprehensive 
view of a model by 
considering direct and indirect 
causal relationship.  

Require knowledge to generate 
explanations.  

 MMD-critic [63] Prototypes and 
criticisms  Global 

Effectively facilitate human 
on understanding model with 
complex data distribution.  
 

The optimal number of 
prototypes and criticism for 
explanation are not known.  

 Saliency maps [64] Gradients Local Easy to implement; Can be 
generated in almost real-time 

Hard to distinguish importance 
features from noise in saliency 
map (Saturation problem) 

Attribution method Integrated Gradients 
(IG) [65] Gradients Global + Local 

Worked on complex deep 
neural network architectures; 
Easy to implement; 

Only worked on neural 
networks and differentiable 
models; Unequal attributions 
may be given to features with 
same contribution; May suffer 
from gradient shattering 
problem. 
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Intrinsic models 

Intrinsic models are models that are explainable by itself. They are referred as white-box 

models, sometimes known as glassbox models. This review covers some common intrinsic 

models in sports injury prediction tasks. 

 

Logistic regression 

Logistic regression is the most used predictive model in sports injury prediction [39]. It is easy 

to understand and does not require complex hyperparameter tuning. Many studies use logistic 

regression to explain the significance of input variables on the outcome [66]. It works by 

extending linear regression with a logistic function, so that the output falls between the value 

of 0 and 1. Logistic regression is highly interpretable for a number of reasons. Firstly, the 

coefficient of a trained logistic regression, also known as weight, can provide global 

interpretation. Specifically, the exponential of its weight can be conveniently interpreted as an 

odds ratio [67]. For example, suppose the coefficient of age is 0.6, the odds ratio is 1.82 (=𝑒0.6). 

This indicates an increase in the age of an athlete increases the odds of injury by a factor of 

1.82, given all other variables are held constant. In addition, the output of logistic regression 

yields probability. This is useful as it is important to know that an athlete with a chance of 0.95 

sustaining an injury is riskier than a person with a chance of 0.6, even though both were 

classified as injury (≥ 0.5).  

 

Logistic regression falls short when there are multiple correlated variables [66], which makes 

interpreting the effect of individual variables difficult [66]. Furthermore, logistic regression 

does not consider the interactions between features, these interactions need to be added 

manually to take effect [40]. Finally, logistic regression does not perform well when the 

relationship between variables and outcome is non-linear [40].  
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Decision trees 

Decision tree is a ML model favoured by many researchers in sport science domains [39, 68]. 

Besides it can provide interpretable results, it also has the ability to capture the interaction 

between variables [40]. A decision tree consists of nodes and branches. A node represents a 

condition while a branch represents the outcome of the condition. The tree is built by 

recursively splitting the data into subsets based on an optimal cut-off value. In classification, 

Gini index is used as a criterion for splitting nodes and creating branches (optimal cut-off value). 

A Gini index of 0 indicates the leaf node is complete pure, where only one class is present. 

Gini index is minimized during training until the tree reaches its maximum tree depth or the 

minimum number of instances in a leaf node. When using decision tree, cross validation is 

often required for hyperparameter tuning to prevent overfitting.  

 

In contrast to logistic regression, decision tree does not perform well when the relationship 

between independent variables and dependent variable is linear. Additionally, it is common for 

a minor alteration in the data to cause a significant variation in the sequence of splits, results 

in a completely different tree structure. This makes decision tree inherently unstable when it 

comes to explanation [40, 66]. A common solution to this problem is to use bagging to average 

predictions across multiple trees [66].  

 

Naïve bayes 

Naïve bayes is a probabilistic supervised ML algorithm that estimates the probabilities of each 

class using Bayes’ theorem. Despite it assumes the variables are independent of each other, it 

performs reasonably well in many real-world applications [69] and often outperforms many 

complex modelling methods [66]. The model can be trained in linear time [70]. The 

interpretability of Naïve Bayes stems from its ability to provide explanations on the impact of 
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individual variables [40]. To understand how this works, suppose an athlete with a height of 

175 cm and age of 23 years old. The maximum conditional probability of a class (injured / 

uninjured) can be estimated in the equation as followed: 

𝑦 = argmax𝑦⁡ [𝑃(𝑦) ∗∏  
𝑛

𝑖=1

𝑃(𝑥𝑖 ∣ 𝑦)]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

 

Where y is the maximum probability of all classes (injury / healthy), n is the number of 

variables (height, age), 𝑃(𝑦) is the probability for an athlete to be classified as y class (e.g. 

injury class) without considering its variables, this is usually derived from the training set. 

𝑃(𝑥𝑖 ∣ 𝑦) is the probability of 𝑥𝑖 given y. For instance, the probability value when height is 175 

cm, given an athlete is injured.  

 

Now, suppose there is a 50% chance for any given athlete to get injured (derived from the 

training dataset). The likelihood is 0.6 when the height is 175 cm given an athlete is injured 

𝑃(𝑥ℎ𝑒𝑖𝑔ℎ𝑡 = 175 ∣ 𝑖𝑛𝑗𝑢𝑟𝑒𝑑)  and the likelihood is 0.4 when the age is 23 years old given an 

athlete is injured 𝑃(𝑥𝑎𝑔𝑒 = 23 ∣ 𝑖𝑛𝑗𝑢𝑟𝑒𝑑)⁡(Calculated through discretization or probability 

density). The estimated conditional probability for the given athlete to get injured is calculated 

as equation: 

𝑃(𝑖𝑛𝑗𝑢𝑟𝑒𝑑|𝑋) = 𝑃(𝑋|𝑖𝑛𝑗𝑢𝑟𝑒𝑑) × 𝑃(𝑖𝑛𝑗𝑢𝑟𝑒𝑑)
= 0.5⁡ × ⁡0.6⁡ × ⁡0.4
= 0.12

 

The calculation is repeated similarly for healthy class 𝑃(ℎ𝑒𝑎𝑙𝑡ℎ𝑦|𝑋). The predicted class is 

determined by selecting the one with the highest conditional probability after comparing the 

probabilities of all classes. 
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The biggest limitation of naïve bayes classifier is it assumes all features are independent of 

each other. This is known as conditional independences, and it is unlikely to find this type of 

data in real world [71].  

 

Other interpretable models 

What if there is a model that has the advantage of linear model, at the same time consider the 

interactions between variables. RuleFit is the answer to this type of model [56]. RuleFit works 

by first training a decision tree model with input data. Later, the decision tree is decomposed 

into multiple decision rules. These decision rules are important as they served as additional 

features to the original dataset to form a dataset that contains interaction information between 

features. The final step is to train a sparse linear model (e.g. LASSO) with the dataset. The 

result is an interpretable linear model that has the effect of original variables, as well as 

interaction derived from decision rules. Since the final product of RuleFit is a linear model, 

many of its drawbacks are the same as linear model. Additionally, it may create many unhelpful 

features which makes explanation more difficult [40].   

 

In interpretable machine learning, there is often a trade-off between model interpretability and 

performance [72]. Powerful models like neural networks and XGBoost usually perform well 

by sacrificing interpretability. Recently years, some researchers have attempted to develop high 

performing models that do not compromise interpretability [57]. One example is EBM 

(Explainable Boosting Machine) [57]. It is an improved generalized additive model (GAM) 

which takes account of pairwise interactions. It works by training multiple tree models with 

individual features using a low learning rate. Each feature is compared against one another in 

a round-robin fashion to find the best function. This process is repeated for many iterations 

until individual features can be summarised in a graph. The outcome of the model is the 
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interpretation of the contribution of each feature in predicting the final outcome. However, the 

downside of this method is it requires significant computational resources and is time-

consuming to train multiple trees across many iterations. 

 

Local model-agnostic methods 

Model-agnostic methods are interpretability techniques that can be applied to explain any ML 

model.  

LIME (Local interpretable model-agnostic explanations) 

One of the pioneer studies in explaining any opaque ML model is LIME [51]. It is still widely 

used today due to its human-friendly explanation and compatibility with various forms of data, 

including text, tabular and images. While it is not always feasible to completely understand a 

complex model [51], LIME generates explanations that are locally faithful. Locally faithful 

explanations are explanations that are accurate in local region. The advantage of this type of 

explanation is high interpretability. To comprehend how a black-box model comes up with a 

decision for a particular instance, one does not need to understand how the model makes 

predictions for all kinds of data. To achieve this objective, LIME constructs a dataset centred 

around a selected instance (input data) and then trains a sparse linear model (white-box model) 

using the generated dataset. The resulting output is an interpretable model that can explain the 

instance locally, known as local surrogate model. This can be viewed as an optimization 

problem as followed: 

𝜉(𝑥) = argmin⁡
𝑔∈𝐺

ℒ(𝑓, 𝑔, 𝜋𝑥) + Ω(𝑔) 

Where x is an input data for explanation, f is any given trained black-box model, g is a subset 

of sparse linear models and its variants, they are referred as interpretable models. 𝜋𝑥 defines 

the size of local neighbourhood for any given x. The higher the value of 𝜋𝑥, the more dissimilar 

data would be generated. Lastly, 𝛺(𝑔) defines the complexity of selected linear model g. It is 
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used to balance the trade-off between faithfulness and interpretability. The first term aims to 

minimize the discrepancy between the output prediction from the complex model and the 

interpretable model in a defined local neighbourhood, this is referred to as the locality-aware 

loss [51]. The second term provides a regularization effect for the interpretable model g. For 

example, this can be the regularization parameter of Lasso model. Higher value can increase 

the number of zero-weighted input features and produce a simplified model. 

 

Since LIME uses simple linear models (e.g. decision trees and linear regression) as local 

surrogate models, the explanations are highly interpretable explanations for humans. LIME is 

also model agnostic, which can be utilized to provide explanations for any black-box model. 

However, there are numerous trade-offs that come with the flexibility and robustness it brings. 

Firstly, LIME is restricted to provide only local faithful explanations, it cannot provide global 

understanding for the underlying complex model. Secondly, LIME is a perturbation-based 

explainer, the explanation relied on the dataset it generates. The problem arises when the 

generated data used to extrapolate the black-box model falls within an area where the model 

was trained with limited or insufficient data, leading to deceptive explanations [73]. LIME uses 

an exponential kernel to calculate the distance between two data instances. The kernel requires 

a user-defined width to calculate the scope of data instances it generates to influence the 

surrogate model. However, it is unclear what is the optimal width to produce good explanations 

[40]. Moreover, whether the distance measure should be treated equally across all input 

features required further studies [40].  

 

SHAP (SHAPley additive explanations) 

Similar to LIME, SHAP is another model-agnostic explainer that is capable of explaining the 

predictions of any black-box model [55]. Unlike LIME, SHAP can also be used to provide 
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global interpretation by aggregating the contribution of individual predictions. Additionally, 

SHAP does not require training additional surrogate models. The idea of SHAP originates from 

the  SHAPley value, which was proposed back in 1951 [54] to calculate the contribution of 

individual players in a cooperative game theory so that the total payout can be distributed 

equally across all members. With regards to machine learning, the input features can be viewed 

as players and the objective is to determine the contribution of each feature to the prediction. 

 

Understanding the calculation of a SHAPley value is necessary to comprehend how SHAP 

explanation works. Shapley value determines the marginal contribution of a predictor. The 

calculation of SHAPley value is illustrated in the context of injury prediction as followed: 

 

Figure 4: Marginal contribution of age and height, f represents the number of features. 
 

Based on Figure 4, assumed age and height are potential risk factors of limb injury. Given a 

player aged 24 years with a height of 178 cm. A black-box model predicted the player with a 

0.85 chance of sustaining an injury. The steps to obtain the marginal contribution of age are 

described in the following equation: 

SHAPAge ⁡(𝑥0) = 𝑤1 × 𝑀𝐶Age,{Age}(𝑥0) + 𝑤2 × 𝑀𝐶Age,{Age, Height }(𝑥0)

=
1
2 × (0.7 − 0.5) +

1
2 × (0.85 − 0.6)

=
1
2 × (0.2) +

1
2 × (0.25)

= 0.1 + 0.125
= 0.225
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Where 𝑥0  is the given player, 𝑀𝐶𝐴ge ,{𝐴𝑔𝑒}  is the marginal contribution of age alone, 

𝑀𝐶Age,{𝐴𝑔𝑒, Height } is the marginal contribution of age when height is held constant. 𝑤1 and 𝑤2 

are the weights of the age when number of predictors are f=1 and f=2 respectively. The 

calculated value (=0.225) quantifies the marginal contribution of age (24 years) to the final 

prediction. Likewise, the steps were repeated to calculate the marginal contribution of height 

in the following equation: 

SHAPHeight ⁡(𝑥0) = 𝑤1 × 𝑀𝐶Height,{Height}(𝑥0) + 𝑤2 ×𝑀𝐶Height,{𝐴𝑔𝑒, Height }(𝑥0)

=
1
2 × (0.6 − 0.5) +

1
2 × (0.85 − 0.7)

=
1
2 × (0.1) +

1
2 × (0.15)

= 0.05 + 0.075
= 0.125

 

Once the shapley values of all predictors were obtained, summing the SHAPley values of age 

and height yields 0.35. This indicates how both predictors contribute to the final prediction of 

0.85. Without these two predictor variables, the initial prediction was 0.5, which is known as 

base value.  

 

There are a few advantages that make SHAP stands out. SHAP satisfied three properties that 

are important in interpreting the predictions of ML models [55]. Firstly, local accuracy ensures 

that the final prediction of the input data is equal to the sum of all feature contributions. Another 

property is missingness where missing input from original features has no impact on the 

outcome. Finally, consistency makes sure the explanation of an instance remains unchanged 

when the training data is increased with similar instances. The main drawback of SHAP is it is 

computationally expensive to calculate SHAPley values in high dimensional data. This is due 

to the number of calculations required will increase exponentially when the number of features 

increases. The author proposed TreeSHAP kernel to solve this problem for tree ensemble 
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models. However, it losses its model-agnostic property and may suffer from unintuitive feature 

attributions [40].  

 

Counterfactual explanations 

The counterfactual (CF) explanation method involves identifying the smallest possible 

modification to the input data that would cause an ML model to make a different or opposite 

prediction. [58]. Given an athlete who was classified as injured by the machine, understanding 

the underlying risk factors is crucial for clinicians. However, such an explanation cannot 

provide insights into what actions can be taken to avoid injury. Counterfactual explanations 

can fulfil this purpose by showing clinicians what can be done to make the athlete re-classified 

as healthy by the ML model. This is especially important in professional sports domains where 

coaches and physicians are interested in creating effective training programs and implementing 

targeted interventions [16].  

 

There are however challenges in seeking good counterfactual explanations. One of these 

challenges is prolixity, where a series of counterfactual explanations may be produced through 

random perturbations or search, which are not useful for interpretation [74]. For instance, 

increase or decrease the feature values in predetermined way to seek counterfactual explanation. 

One common approach to this problem is to identify the minimal changes (e.g., the nearest 

unlike neighbour) of the input features required in order to obtain a different prediction from 

the model [74]. Wachter et al. [58] proposed the following loss function to optimise this 

problem through gradient descent: 

𝐿(𝑥, 𝑥′, 𝑦′, 𝜆) = 𝜆 ⋅ (𝑓(𝑥′) − 𝑦′)2 + 𝑑(𝑥, 𝑥′) 

Where 𝑥 is the input instance, 𝑥′ is the counterfactual explanation instance, and 𝑦′ is the class 

of counterfactual instance (e.g. healthy class). The parameter 𝜆 controls the proximity between 
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counterfactual instance and input instance. A lower value of 𝜆 indicates a counterfactual with 

feature values that are similar to the input instance. Many counterfactual explanation methods 

followed this approach to minimise the loss with their proposed objectives [20, 75]. 

 

One major challenge of this explanation approach is sparsity, where a large number of features 

may be altered to create counterfactual explanations [20]. Such explanations can be unintuitive 

and hard to interpret for humans. Ideally, a sparse counterfactual explanation requires fewer 

features to obtain a different prediction. A recent study pointed out that a good counterfactual 

should not have changes in more than 2 features due to the constraint human had on category 

learning [16]. However, the same study found that this type of counterfactual is rare as it only 

accounts for less than 1 percent of the total explanations.  
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CHAPTER 3: Hamstring strain injury risk factors in Australian Football change over 

the course of the season 

NOTE: This chapter has been submitted to MSSE (Medicine & Science in Sports & Exercise) 

as a journal paper and is currently under review. 

 

Sim A, Timmins RG, Ruddy JD, Shen H, Liao K, Maniar N, Hickey J, Williams MD, Opar 

DA. Hamstring strain injury risk factors in Australian Football change over the course of the 

season. Under review. 
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Introduction 

The occurrence of hamstring strain injuries (HSIs) are widespread across several sports [23] 

including Australian Football [76] and significant work has been conducted to determine the 

factors that contribute to an elevated risk of future injury. [11]. These risk factors are often 

categorized as either modifiable or non-modifiable. Older age and a history of HSI are the two 

most frequently reported non-modifiable risk factors [11]. Modifiable risk factors, which can 

be addressed through intervention, are extensive, but biceps femoris long head (BFlh) fascicle 

length [13] and eccentric hamstring strength [14] are current prominent variables.  

 

Risk factors in most prospective cohort studies are assessed at a single time-point, typically at 

the start of a season (e.g., in the pre-season) [16]). This approach has limitations, as any changes 

in the measured variables leading up to injury, which may be many months after the pre-season 

assessment, are not accounted for. Limited studies have been conducted to determine if more 

frequent risk factor assessments can improve the ability to predict future HSI risk. It was 

recently reported that more frequent assessments of eccentric knee flexor strength and biceps 

femoris long head (BFlh) architecture did not improve the ability to predict new HSIs in 

Australian Football [17]. However, that study did not consider the possibility that risk factors 

may vary depending on the time of season, nor did it examine if changes in possible risk factors 

across time (e.g., an increase in eccentric strength from the start to the end of pre-season) at an 

individual level altered the ability to predict HSI. 

 

Therefore, the primary objective of this study was to identify which factors were most 

predictive of the risk of HSI during pre-season, early in-season and late in-season in 

professional Australian Football. The secondary objective was to determine if the magnitude 

of change in possible risk factors across pre-season was predictive of future in-season HSIs. 
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Methods 

The methods used in this study pertaining to the study design, participants, and data collection 

have been previously documented [17] but are included in detail here for the ease of the reader.    

 

Study design and participants 

Approval for this study was obtained from the ACU Human Research Ethics Committee  

(approval number: 2017-208H). The study was carried out across two Australian Football 

League seasons (November 2017 to August 2018 and November 2018 to August 2019, 

including pre-season but not including finals) across six teams. Written informed consent was 

acquired from all players before their participation in the study. 

 

Prior to pre-season, the medical staff of the team were responsible for providing details of 

individual players’ history of HSI in the past 12 months and if they had ever sustained an 

anterior cruciate ligament (ACL) injury. Eccentric knee flexor strength and BFlh fascicle 

length were assessed at the start of pre-season (November/December), end of pre-season 

(February/March), and middle of the competitive season (May/June), respectively. Due to 

scheduling constraints, the actual dates for assessments were not identical across the different 

teams. The medical staffs were required to complete a standardized injury report form for any 

player who experienced a HSI during the period of study.  

 

Eccentric knee flexor strength 

The evaluation of eccentric knee flexor strength was conducted during the Nordic hamstring 

exercise similar to previous studies using an instrument device (NordBord, VALD, Queensland, 

Australia) [13, 14, 76, 77]. The ankle hooks with uniaxial load cells were used to secure the 

players’ ankles immediately once they knelt on the cushioned board. Every player who 
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underwent this assessment was experienced in performing the Nordic hamstring exercise. The 

individuals were instructed to gradually move their body forward, using their knee flexor 

muscles to manage the descent. All players maintained their trunk and hips in a neutral position 

while holding their hands across the chest throughout the exercise. Players performed a single 

set of 1-3 maximal repetitions as determined by each team’s practices following their warm-

up routine. The highest peak force produced by each leg throughout the test was recorded as 

eccentric knee flexor strength. 

 

Biceps femoris long head architecture  

The assessment of BFlh architecture has been reported previously [27, 78-80]. Ultrasound 

imaging was used to obtain measurements of muscle thickness, pennation angle, and fascicle 

length of the BFlh. The images were taken along the muscle belly's longitudinal axis using a 

two-dimensional, B-mode ultrasound (frequency, 12 MHz; depth, 8cm; field of view, 14 x 

47mm) (GE Healthcare Vivid-i, Wauwatosa, U.S.A). The scanning site for the BFlh was 

identified as the midpoint of the line between the sitting bone and knee joint. The architecture 

assessments were conducted on players lying on a massage plinth after at least 5 minutes of 

inactivity. The assessor (RGT) adjusted the orientation of the probe accordingly. The reliability 

of the assessor has been previously established with an intraclass correlation > 0.90 reported 

for BFlh fascicle length. 

 

Offline analysis was undertaken after the images were collected (MicroDicom, Version 0.7.8, 

Bulgaria). Muscle thickness was determined by the distance between the superficial and 

intermediate aponeuroses of the BFlh. Pennation angle was determined by the angle between 

the intermediate aponeurosis and a fascicle of interest. The angles of superficial and 

intermediate aponeurosis were defined as the angle between the line marked as the aponeurosis 
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and an intersecting horizontal reference line across the capture image [81]. Due to part of the 

fascicle not being visible in the ultrasound probe’s field of view, the following equation from 

Blazevich and colleagues was used for estimation [81]: 

 

𝐹𝐿⁡ = ⁡𝑠𝑖𝑛(𝐴𝐴 + 90°)⁡× ⁡𝑀𝑇/𝑠𝑖𝑛(180° − (𝐴𝐴 + 180° − 𝑃𝐴)) 

 

where FL=fascicle length, AA=aponeurosis angle, MT=muscle thickness and PA=pennation 

angle. Fascicle length was reported in absolute terms (cm) and relative to muscle thickness 

from a single image. The same assessor (RGT) collected and analysed all scans. The assessor 

has evidenced reliability in determining measures of BFlh muscle architecture at rest with 

ICCs >0.95 and %TE <5.0% across the measurement of all architectural variables. 

 

Prospective hamstring strain injury reporting 

An HSI was diagnosed if a player experienced posterior thigh pain that prevented them from 

carrying out subsequent exercise and was verified through a physical examination by the team's 

doctor [82, 83]. A standard injury report form was filled out by the team's medical staff for 

each HSI, which gathered information on the affected limb, injured muscle, activity type 

performed when the injury occurred, and the duration of time required for the player to fully 

participate in training and competition. 

 

Statistical Analysis 

The Python 3.9.2 programming language (Python Software Foundation, 

https://www.python.org/) and the following packages were used to conduct statistical analyses: 

scikit-learn, statsmodel, panda, numpy, matplotlib and seaborn. 
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General Modelling Approach 

The general modeling approach applied to this study can be found in Figure 5a.  

 

Data pre-processing 

For all analyses, an observation was removed if it consisted of at least one missing value. 

Additionally, players who sustained an HSI in previous time points within a season were 

censored from building models to predict HSIs that occurred in later timepoints. For example, 

a player who sustained an HSI in pre-season was excluded from training models to predict 

HSIs that occurred in early in-season and later in-season. Likewise, players who sustained an 

HSI in early in-season were excluded from training models to predict HSIs occurring in late 

in-season.  

 

Correlation analysis was conducted on input predictor variables to identify redundant 

predictors. When the Pearson’s correlation coefficient between two predictors exceeded the 

threshold of 0.8, the predictor with the higher mean correlation among other predictor variables 

was eliminated. 

 

Following this, the remaining input predictor variables were normalized [43] into the range of 

0 and 1, using the following equation:  

𝑥norm =
𝑥 −𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) −𝑚𝑖𝑛(𝑥)
 

where 𝑥 is the value to scale, 𝑚𝑖𝑛(𝑥) is the smallest value of the predictor, and 𝑚𝑎𝑥(𝑥) is the 

largest value of the predictor. 
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Figure 5a: Adopted workflow process to identify important risk factors and build optimal models for performance evaluation.  

Figure 5b: The modelling approach for Analysis 1. d represents data assessment at different time points where d1 are data assessed at the start of pre-season; d2 are data 
assessed at the end of pre-season; d3 are data assessed in the middle of in-season. i represents hamstring strain injuries (HSIs) that occurred within individual assessment time 
frames where i1 are prospective HSIs that occurred in pre-season; i2 are prospective HSIs that occurred in early in-season; i3 are prospective HSIs that occurred in late in-
season. 

Figure 5c. The modelling approach for the Analysis 2. d represents data assessment in different time points where d1 are data assessed at the start of pre-season; d2 are data 
assessed at the end of pre-season, d2-d1 are magnitude of change of data in preseason. i represents hamstring strain injuries (HSIs) that occurred within individual assessment 
time frames where i2 are prospective HSIs that occurred in early in-season; i3 are prospective HSIs that occurred in late in-season; i2+i3 are prospective HSIs that occurred 
throughout in-season. 
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Predictor selection 

The aim of the predictor selection process in the current study was to eliminate redundant 

predictors and identify which subset of risk factors achieved the highest predictive performance 

across the different time points. A wrapper feature selection method, specifically recursive 

feature elimination, was used to search through different subsets of risk factors associated with 

HSI [84]. Recursive feature elimination, which is robust to overfitting [85], was conducted in 

this study by fitting a logistic regression with all input predictor variables and recursively 

eliminating predictors that were less important based on the coefficients. Once the predictor 

with the lowest coefficient was removed, the model was fitted with the remaining predictors to 

repeat the process. This process was repeated until there was only one remaining predictor, 

after which the importance of individual predictors was ranked. Preliminary analyses using this 

dataset showed that models built using recursive feature elimination outperformed models built 

using all predictors. Recursive feature elimination, however, does not identify the optimal 

number of predictors. 

 

Finding the optimal number of predictors 

Stratified k-fold cross validation was utilised to determine the optimal number of predictors. 

In this study, k = 5 was applied to divide data into 5 stratified folds. For each split, 1 fold of 

the data was assigned for testing, while and the rest of the data (k-1 folds) were used for training. 

The number of selected predictors resulting in the highest AUC averaged across 5 folds was 

chosen as the optimal number of predictors.  

 

Performance evaluation 

Once the optimal number of risk factors was determined, the final step was to evaluate the 

performance of logistic regression with selected risk factors. In practice, data is usually split 
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into training and testing sets with a ratio of 70%-80% and 20-30%, respectively [16]. Any split 

within this threshold has been shown to have an accurate estimation of the model’s 

performance [86]. A 20%/80% train-test split was used in this study. Stratified cross validation 

was utilised to preserve the percentage of injured and uninjured athletes for all iterations. Since 

the given dataset was relatively small (<455 observations), 1000 iterations of evaluation were 

performed. The metric used to evaluate predictive performance was area under the curve (AUC) 

[87]. AUC measures the ability of the models to correctly predict prospectively injured and 

uninjured players. A value of 0.5 for the AUC indicates the predictive performance is no better 

than guessing, whereas a value of 1.0 for the AUC indicates perfect prediction. 

 

Analysis 1 

The aim of Analysis 1 was to determine which risk factors best predicted HSIs at different time 

points throughout the season. 

 

The general modelling approach was applied to Analysis 1. The subset of data utilised for 

Analysis 1 has been illustrated in Figure 5b, where d1 are data assessed at the start of pre-

season, d2 are data assessed at the end of pre-season, and d3 are data assessed in the middle of 

in-season. i1 is the window following d1 during which prospective HSIs could have occurred 

throughout pre-season, i2 is the window following d2 during which prospective HSIs could 

have occurred early in-season, and i3 is the window following d3 during which prospective 

HSIs could have occurred during late in-season. 

 

Analysis 1 utilised all non-modifiable risk factors assessed at the start of pre-season and 

modifiable risk factors assessed at multiple time points (d1 or start of pre-season, d2 or end of 

pre-season, and d3 or middle of in-season) as predictor variables. Prospective HSIs that 
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occurred between individual assessment time frames (i1 or between the start and end of pre-

season, i2 or between the end of pre-season and the middle of in-season, and i3 or between the 

middle of in-season and the end of the in-season before the start of finals) were the target of 

the prediction models. (Refer to Table 2 for types of input predictor variables and target 

variables included in each of the individual models). 

 

Analysis 2 

Analysis 2 aimed to determine whether the magnitude of change in data between the start and 

end of pre-season, as well as more frequent assessment during pre-season, improved the ability 

to predict in-season HSIs, beyond the data collected at the start and end of pre-season alone. 

 

The general modelling approach was applied to Analysis 2. The subset of data utilised for 

Analysis 2 has been illustrated in Figure 5c, where d1 are data assessed at the start of pre-

season, d2 are data assessed at the end of pre-season, d2-d1 is the magnitude of change in the 

risk factors across pre-season. i2 is the window during which prospective HSIs could have 

occurred early in-season and i3 is the window during which prospective HSIs could have 

occurred during late in-season. 

 

Analysis 2 utilised all non-modifiable risk factors assessed at the start of pre-season and 

modifiable risk factors assessed at the start and end of pre-season as predictor variables. 

Prospective HSIs that occurred during the in-season periods (i2 and i3) were the target of the 

prediction models. Additionally, the magnitude of change in modifiable risk factors was 

determined as the absolute difference between values captured at the end of pre-season and 

values captured at the start of pre-season. (Refer to Table 2 for types of input predictor variables 

and target variables included in individual modelling approaches). 
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Table 2: Types of predictor variables and target variables included in individual models for Analysis 1 and Analysis 2. 

Model 

Input predictor variables Target variables 

Non-modifiable risk factors Modifiable risk factors HSIs 

d1 d1 d2 d3 d2-d1 i1 i2 i3 

 Analysis 1 

d1->i1 ✓ 
 

✓ 

 
   

✓ 

 
  

d2->i2 ✓ 
 

 
✓ 

 
   

✓ 

 
 

d3->i3 ✓ 
 

  
✓ 

 
   

✓ 

 

Analysis 2 

HSI occurred in early in-season (i2) 

d1 
✓ 

 

✓ 

 
   

 

 

✓ 

 
 

d2 ✓ 
 

 

✓ 

 
   

✓ 

 
 

d1&d2 
✓ 

 

✓ 

 

✓ 

 
   

✓ 

 
 

d2-d1 
✓ 

 
   

✓ 

 
 

✓ 

 

 

 

d1&d2&(d2-

d1) 
✓ ✓ ✓  ✓  ✓  

HSI occurred in late in-season (i3) 
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d1: data assessed at the start of pre-season, d2: data assessed at the end of pre-season, d3: data assessed in the middle of 
in-season, d1&d2: data assessed at start and end of pre-season, d2-d1: magnitude of change in data between start and 
end of pre-season; i1: HSIs occurred in pre-season, i2: HSIs occurred in early in-season; i3: HSIs occurred in late in-
season.  

 

 

 

 

d1 
✓ 

 

✓ 

 
     

✓ 

 

d2 
✓ 

 
 

✓ 

 
    

✓ 

 

d1&d2 
✓ 

 

✓ 

 

✓ 

 
    

✓ 

 

d2-d1 
✓ 

 
   

✓ 

 
  

✓ 

 

d1&d2&(d2-

d1) 
✓ ✓ ✓  ✓   ✓ 
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RESULTS 

During the 2018 and 2019 AFL seasons, a total of 311 male Australian Football players (aged 

23.7 ± 3.8 years, height 188.1 ± 7.6 cm, 86.5 ± 8.8 kg) were evaluated at least once, resulting 

in 455 player seasons. Among these player seasons, 74 (16.3%) resulted in an HSI while the 

remaining 381 (83.7%) did not. 

 

After the removal of missing values for Analysis 1, the total number of injured and uninjured 

player seasons during i1 was 14 and 339 respectively (d1->i1; Table 2). For i2, the total number 

of injured and uninjured player seasons with complete datasets assessed at d2 was 24 and 259 

respectively (d2->i2; Table 2). For i3, the total number of injured and uninjured player seasons 

(with complete datasets assessed at d3) was 11 and 225 respectively (d3->i3; Table 2).  

 

For Analysis 2, the total number of injured and uninjured player seasons with complete datasets 

during early in-season (i.e. i2) was 23 and 219 respectively (i2; Table 3). For late in-season (i.e. 

i3), the total number of injured and uninjured player seasons with complete datasets was 9 and 

210 respectively. 

 

Analysis 1 

The performance of the individual models in Analysis 1 can be found in Figure 6. Data that 

were assessed at the end of pre-season and used to predict HSIs that occurred early in-season 

displayed the best predictive performance (median AUC = 0.86, interquartile range (IQR) = 

16; Table 2) (d2->i2, Figure 6). The prediction of pre-season HSIs utilising data assessed at the 

start of pre-season (d1->i1; Figure 6) resulted in a median AUC of 0.83 and an interquartile 

range (IQR) of 0.16. In contrast, data assessed at the middle of the in-season period and used 
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to predict HSIs that occurred late in-season (d3->i3, Figure 6) resulted in the poorest predictive 

performance (median AUC = 0.46, interquartile range (IQR) = 0.25; Table 2).  

 

Pre-season HSI 

Players with history of HSI are more likely to sustain an HSI in pre-season (Figure 7a-c, p < 

0.01). Shorter players displayed a higher risk of sustaining HSI in pre-season (Figure 7a). A 

significantly increased risk of pre-season HSI was observed in older athletes (Figure 7b, p < 

0.05; Supplemental Material 1) and players who had thicker BFlh muscles were more 

susceptible to HSI in pre-season (Figure 7c).  

 

Early in-season HSI 

Players with a greater BFlh pennation angle and shorter fascicle length were at significantly 

increased risk of sustaining HSI during the early in-season period (Figure 7d, 3e; p < 0.05; 

Supplemental Material 1).  

 

Late in-season HSI 

Although height, age, history of ACL injury, BFlh pennation angle, fascicle length, relative 

eccentric knee flexor strength, as well as relative eccentric knee flexor strength imbalance were 

selected as predictive predictors (Figure 7f-k), the overall predictive performance of AUC was 

below 0.5 (median AUC = 0.46, interquartile range (IQR) = 0.25; Table 2).  
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Table 3: The results of Analysis 1. The performance of models built with selected predictors assessed and evaluated at start of pre-season and hamstring strain injuries (HSIs) 
that occurred in pre-season (d1->i1), end of pre-season and HSIs that occurred in early in-season (d2->i2), and middle of in-season and HSIs that occurred in late in-season 
(d3->i3). The descriptive summary is the outcome of 1000 iterations of train-test splits. 

Model Risk factors* 
Frequency AUC 

HSI Non-HSI Total Interquarti
le range 

Standard 
Deviation Minimum Lower 

quartile Median Upper 
quartile Maximum 

d1->i1 prior HSI, height, age, muscle 
thickness 14 339 353 0.16 0.12 0.40 0.73 0.83 0.89 0.99 

d2->i2 pennation angle, fascicle length 24 259 283 0.16 0.11 0.37 0.77 0.86 0.93 1.00 

d3->i3 

prior ACL, height, age, 
pennation angle, fascicle length, 
relative eccentric knee flexor 
force, eccentric knee flexor force 
imbalance 

11 225 236 0.25 0.17 0.02 0.33 0.46 0.58 0.91 

Performance is measured as area under the curve (AUC). 

*Risk factors were selected by recursive feature elimination and 5-fold cross validation. 
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Figure 6: The results of Analysis 1. The performance of models built with selected predictors assessed 
and evaluated at the start of pre-season and hamstring strain injuries (HSIs) that occurred in pre-
season (d1->i1), end of preseason and HSIs that occurred in early in-season (d2->i2), in the middle of 
preseason and HSIs that occurred in late in-season (d3->i3). 
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Figure 7a: The impact of change in height on hamstring strain injury (HSI) probability in pre-season with other factors 
set as mean constants (Age = 23.54 years, Muscle thickness = 2.64 cm).  

Figure 7b. The impact of change in age on hamstring strain injury (HSI) probability in pre-season with other factors set 
as mean constants (Height = 188.07 cm, Muscle thickness = 2.64 cm). 

Figure 7c. The impact of change in muscle thickness on hamstring strain injury (HSI) probability in pre-season with 
other factors set as mean constants (Height = 188.07 cm, Age = 23.54 years). 

Figure 7d. The impact of change in pennation angle on hamstring strain injury (HSI) probability in early in-season with 
fascicle length set as mean constant (Fascicle length = 10.72 cm). 

Figure 7e. The impact of change in fascicle length on hamstring strain injury (HSI) probability in early in-season with 
pennation angle set as mean constant (Pennation angle = 15.37 degrees). 

Figure 7f. The impact of change in height on hamstring strain injury (HSI) probability in late in-season with other factors 
set as mean constants (Age = 23.13 years, Pennation angle = 15.39 degrees, Fascicle length = 10.74 cm, Relative 
eccentric knee flexor force = 5.45 N/kg, Eccentric knee flexor force imbalance = 9.33%). 
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Figure 7g. The impact of change in age on hamstring strain injury (HSI) probability in late in-season with other factors 
set as mean constants (Height = 188.05 cm, Pennation angle = 15.39 degrees, Fascicle length = 10.74 cm, Relative 
eccentric knee flexor force = 5.45 N/kg, Eccentric knee flexor force imbalance = 9.33%). 

Figure 7h. The impact of change in pennation angle on hamstring strain injury (HSI) probability in late in-season with 
other factors set as mean constants (Height = 188.05 cm, Age = 23.13 years, Fascicle length = 10.74 cm, Relative 
eccentric knee flexor force = 5.45 N/kg, Eccentric knee flexor force imbalance = 9.33%). 

Figure 7i. The impact of change in fascicle length on hamstring strain injury (HSI) probability in late in-season with 
other factors set as mean constants (Height = 188.05 cm, Age = 23.13 years, Pennation angle = 15.39 degrees, Relative 
eccentric knee flexor force = 5.45 N/kg, Eccentric knee flexor force imbalance = 9.33%). 

Figure 7j. The impact of change in relative eccentric knee flexor force on hamstring strain injury (HSI) probability in 
late in-season with other factors set as mean constants (Height = 188.05 cm, Age = 23.13 years, Pennation angle = 15.39 
degrees, Fascicle length = 10.74 cm, Eccentric knee flexor force imbalance = 9.33%). 

Figure 7k. The impact of change in eccentric knee flexor force imbalance on hamstring strain injury (HSI) probability 
in late in-season with other factors set as mean constants (Height = 188.05 cm, Age = 23.13 years, Pennation angle = 
15.39 degrees, Fascicle length = 10.74 cm, Relative eccentric knee flexor force = 5.45 N/kg). 
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Analysis 2 

The performance of the individual models in Analysis 2 can be found in Figure 4a and 4b. 

Neither the predictions of early in-season HSIs (median AUC = 0.67, interquartile range (IQR) 

= 0.15; Table 4) nor late in-season HSIs (median AUC = 0.67, interquartile range (IQR) = 0.26; 

Table 5) were improved by assessing the magnitude of change in data across preseason. For 

HSIs occurring early in-season, the model with the best predictive performance utilised BFlh 

fascicle length and pennation angle, which were assessed at the end of pre-season. The resulting 

median AUC was 0.84 and the interquartile range was 0.16 (Table 4). Predicting late in-season 

injuries utilising the absolute change in BFlh pennation angle and fascicle length across pre-

season, as well as history of ACL displayed the best predictive performance (median AUC = 

0.67, interquartile range (IQR) = 0.26; Table 5). However, the predictive performance was not 

significantly improved when compared to relative BFlh fascicle length and fascicle length, 

which were assessed at the start of pre-season only (median AUC = 0.65, interquartile range 

(IQR) = 0.25; Table 5). 
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Table 4: The results of Analysis 2. The performance of models built with selected predictors assessed at start of pre-season (d1), end of pre-season (d2), start and end of pre-
season (d1, d2), the magnitude of change of data in pre-season (d2-d1), data assessed at the start and end of pre-season and the magnitude of change of data in pre-season (d1, 
d2, (d2-d1)) as predictor variables, and hamstring strain injuries (HSIs) occurred in early in-season (i2) as target variable. 

Models Risk factors* 
  

Frequency AUC 

HSI Non-HSI Total Interquart
ile range 

Standard 
Deviation Minimum Lower 

quartile Median Upper 
quartile 

Maximu
m 

d1 fascicle length (d1), relative 
fascicle length (d1) 23 219 242 0.15 0.11 0.29 0.60 0.68 0.75 0.96 

d2 pennation angle (d2), 
fascicle length (d2) 23 219 242 0.16 0.11 0.44 0.75 0.84 0.91 1.00 

d1&d2 pennation angle (d2), 
fascicle length (d2) 23 219 242 0.16 0.11 0.44 0.75 0.84 0.91 1.00 

d2-d1 

prior HSI, pennation angle 
(c1), fascicle length (c1), 
eccentric knee flexor force 
imbalance (c1) 

23 219 242 0.15 0.11 0.25 0.59 0.67 0.74 0.98 

d1&d2&(d2-d1) pennation angle (d2), 
fascicle length (d2) 23 219 242 0.16 0.11 0.44 0.75 0.84 0.91 1.00 

Performance is measured as area under the curve (AUC). 

*Risk factors were selected by recursive feature elimination and 5-fold cross validation. 

d1&d2; models built with non-modifiable risk factors assessed at the start of pre-season and modifiable risk factors assessed at the start and end of pre-season. 

d2-d1; models built with non-modifiable risk factors assessed at the start of pre-season and magnitude of change of modifiable risk factors between start and end of pre-season. 

c1; magnitude of change of specific risk factor between start and end of pre-season. 
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Table 5: The results of Analysis 2. The performance of models built with selected predictors assessed at start of pre-season (d1), end of pre-season (d2), start and end of pre-
season (d1, d2), the magnitude of change of data in pre-season (d2-d1), data assessed at the start and end of pre-season and the magnitude of change of data in pre-season (d1, 
d2, (d2-d1)) as predictor variables, and hamstring strain injuries (HSIs) occurred in late in-season (i3)  as target variable. 

Models Risk factors* 
  

Frequency AUC 

HSI Non-HSI Total Interquart
ile range 

Standard 
Deviation Minimum Lower 

quartile Median Upper 
quartile 

Maximu
m 

d1 fascicle length (d1), relative 
fascicle length (d1) 9 210 219 0.25 0.16 0.20 0.54 0.65 0.79 0.98 

d2 eccentric knee flexor force 
imbalance (d2) 9 210 219 0.23 0.16 0.17 0.44 0.55 0.67 0.93 

d1&d2 prior ACL, pennation angle 
(d1), fascicle length (d1) 9 210 219 0.29 0.18 0.12 0.45 0.58 0.74 0.98 

d2-d1 prior ACL, pennation angle 
(c1), fascicle length (c1) 9 210 219 0.26 0.19 0.17 0.50 0.67 0.76 1.00 

d1&d2&(d2-d1) fascicle length (c1) 9 210 219 0.27 0.20 0.14 0.46 0.64 0.73 1.00 

Performance is measured as area under the curve (AUC). 

*Risk factors were selected by recursive feature elimination and 5-fold cross validation. 

d1&d2; models built with non-modifiable risk factors assessed at the start of pre-season and modifiable risk factors assessed at the start and end of pre-season. 

d2-d1; models built with non-modifiable risk factors assessed at the start of pre-season and magnitude of change of modifiable risk factors between start and end of pre-season. 

c1; magnitude of change of specific risk factor between start and end of pre-season. 
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Figure 8a: The performance of models built with selected predictors assessed at start of pre-season (d1), 
end of pre-season (d2), start and end of pre-season (d1, d2), the magnitude of change of data in pre-
season (d2-d1), data assessed at the start and end of pre-season and the magnitude of change of data in 
pre-season (d1, d2, (d2-d1)) as predictor variables, and hamstring strain injuries (HSIs) that occurred in 
early in-season (i2) as target variable. AUC = area under the curve. 

Figure 8b. The performance of models built with selected predictors assessed at start of pre-season (d1), 
end of pre-season (d2), start and end of pre-season (d1, d2), the magnitude of change of data in pre-
season (d2-d1), data assessed at the start and end of pre-season and the magnitude of change of data in 
pre-season (d1, d2, (d2-d1)) as predictor variables, and hamstring strain injuries (HSIs) that occurred in 
late in-season (i3) as target variable. AUC = area under the curve 
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Discussion 

This study aimed to assess whether the factors associated with HSI in professional Australian 

Football changed across the season. The current study found that the subset of risk factors that 

best predicted the occurrence of HSI was different between the pre-season and in-season 

periods. This study also aimed to assess whether the magnitude of change in HSI risk factors 

across the pre-season period improved the prediction of HSIs sustained in-season beyond using 

measures taken at the start or end of pre-season alone. The magnitude of change in eccentric 

knee flexor strength and BFlh muscle architecture variables across the pre-season period 

generally displayed poorer predictive performance than the absolute measures themselves 

(particularly those taken at the end of pre-season).  

 

Did more frequent assessment of risk factors improve the prediction of future HSI? 

The model that showed the best performance in this study used BFlh fascicle length and 

pennation angle measured at the end of pre-season to predict HSIs occurring only in the first 

half of the in-season period. This model predicted prospective HSIs with a median AUC of 

0.86. An earlier study aimed to predict HSIs among elite Australian Football players, using 

data on age, history of HSI, and eccentric hamstring strength obtained during two AFL seasons  

[16]. When attempting to predict HSIs occurring during the same season, the median AUC 

values for the 2013 and 2015 AFL seasons were 0.58 and 0.57, respectively [16]. In this 

previous study, the median AUC for predicting HSIs that occurred during the 2015 AFL season 

using data from the 2013 AFL season was 0.52 [16]. It was suggested that more frequent 

measures of the risk factors examined may have improved predictive performance. However, 

another study showed that taking assessments of modifiable risk factors more frequently did 

not improve the ability to identify athletes with a high risk of HSI beyond data collected at a 

single timepoint [17]. In support of these previous findings [17], it was observed that more 
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frequent measurements did not improve the ability to predict the occurrence of HSI. However, 

the assessment of different risk factors at different timepoints did improve predictive 

performance. In addition, recursive feature elimination was utilised to optimise predictive 

performance and improve the interpretability of built models. Results from preliminary 

analyses suggest that the selected predictors are likely to deliver better predictive performance 

than utilising all predictors. The findings of this study suggest that a subset of risk factors, as 

opposed to all risk factors, used in previous studies, may have been more effective in predicting 

prospective HSIs. 

 

Does the magnitude of change in risk factor data across pre-season improve the ability to 

predict HSI throughout the season beyond the absolute values? 

In addition to suggesting that more regular measures of the risk factors examined may improve 

predictive performance [16], prior work has also noted that assessing risk factors at the start of 

pre-season alone assumes that these factors will remain unchanged throughout the season (or 

prior to HSI). It has been suggested that changes in HSI risk factors could have a more 

significant effect on injury risk compared to the absolute values of such factors at a specific 

time [16, 88]. AUC values of 0.7 and above are regarded as having significant impacts in sport 

science domains [21]. In the current study, models built with the magnitude of change in risk 

factors across pre-season were less optimal when attempting to predict HSIs during early in-

season, or i2 (median AUC of 0.66), as well as HSIs during late in-season, or i3 (median AUC 

of 0.63). Conversely, models built using the absolute values measured at the end of pre-season, 

or d2, performed better when predicting HSIs during early in-season, or i2 (median AUC of 

0.83). However, the performance of all models attempting to predict late in-season HSIs, or i3, 

were the poorest. 
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The current results suggest that risk factor data assessed at the end of pre-season provides the 

strongest performance when predicting in-season HSIs. Despite the magnitude of change in 

modifiable risk factor data performing poorly from a prediction standpoint, it is important to 

acknowledge that significant adaptations in eccentric knee flexor strength and BFlh muscle 

architecture can be elicited in as little as two weeks [31]. Given this, it is likely that athletes 

saw significant adaptations across the pre-season period and that modifiable risk factor data 

assessed at the end of pre-season provided a better indication of athletes' physical status during 

the in-season period compared to data collected at the start of pre-season. In contrast to this, 

data collected at the midpoint of the in-season period displayed the worst predictive 

performance when used to predict injuries that occurred during the second half of the in-season 

period. This suggests that despite this data being more aetiologically relevant, there may exist 

other factors that influence the risk of HSIs occurring during the latter half of the season to a 

greater extent than those examined in this study. 

 

In which phase of the season was the predictive performance for HSI best? 

The best performing model aimed to predict HSIs during the first half of the in-season period 

and was built using data collected at the end of pre-season (median AUC of 0.86; Table 3). In 

contrast, the poorest performing model was built using data collected at the midpoint of the in-

season period and aimed to predict HSIs in the second half of the in-season period (median 

AUC of 0.46; Table 3). A study conducted earlier reported that there is a noticeable increase 

in BFlh fascicle length among all players in the early in-season period [27]. However, it was 

observed that players with a history of HSI saw greater decreases in BFlh fascicle length during 

the latter part of the in-season period when compared to players without a history [27]. This 

may, to an extent, explain why BFlh fascicle length assessed at the end of pre-season did not 
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present strong association with late in-season HSIs, when compared to early in-season HSIs 

[27]. 

 

Absolute risk factor data assessed at the end of pre-season may provide practitioners with the 

most insight regarding HSI risk, and that additional assessments of the studied variables 

throughout the in-season period may not add further value. The relatively poor performance of 

the models built to predict late in-season HSIs suggests that there may be additional factors 

that influence the risk of injury to a greater extent in the latter stages of the season. 

 

Limitations 

Due to the length of BFlh fascicles exceeding the ultrasound field of view (14x4.7mm), 

extrapolation methods were used to calculate BFlh fascicles [89]. Although the extrapolation 

method was proven to be highly reliable in an earlier study (ICC>0.97) when validated against 

cadaveric data [81], the drawback is that it may overestimate BFlh fascicle length [90]. Due to 

the lack of a standardised classification system [91], information about the muscle that was 

injured was not provided for all HSIs reported in this study. Further subgroup analysis may be 

conducted if more injury data of the injured muscle were recorded. Due to the absence of player 

exposure data in this study, the reported incidence of HSIs did not take into account the duration 

of training and competition. In addition, the use of athlete tracking technologies to account for 

high-speed running and strength training exposure may offer more insights regarding HSI risk. 

Warm up procedures were not standardised for strength assessments. Future studies should 

consider standardising warm-up practices to limit the impact it may have on the strength 

outcomes. The use of logistic regression in this study assumes linearity between target variable 

and risk factors. Complex non-linear models may be utilised with proper hyperparameter 

tuning practice. Although previous studies showed the use of non-linear models outperformed 
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logistic regression in injury prediction [21, 92], these studies were conducted on a larger dataset. 

Earlier work showed no improvements in predictive performance when complex modelling 

approach was used [16]. The absence of a standardised fine-tuning process on small and 

imbalanced dataset may be the cause, which result in overfitting. Despite this study recording 

a high number of prospective HSIs in comparison to previous research [93], the relatively low 

injury rates and the class imbalance problem that this presents remains a limitation of this study 

and as well as most prospective sports injury studies in general. It is unclear whether predictive 

performance would be improved if class imbalance was addressed. Furthermore, the presence 

of missing data results in reduced numbers of player seasons used for the analysis in this study. 

Although AUC is used in many studies [16, 17, 19], other metrics should be considered 

thoroughly when evaluating the generalisation of binary classifiers. In addition, future studies 

should utilise interpretability methods in machine learning to help experts better understand 

the decisions of trained models beyond predictive performance. Finally, previous work 

suggests that HSI risk factors are not transferable to different sporting populations [94] so 

applications of the current findings to other sports (e.g., soccer, rugby) should be done with 

caution. 

 

Conclusion 

This study has demonstrated that the risk factors most associated with prospective HSIs change 

throughout an Australian Football season. Non-modifiable risk factors (History of HSI, age 

and height) demonstrated a strong association with pre-season HSIs, whereas early in-season 

HSIs were better explained by modifiable risk factors. Conversely, late in-season injuries did 

not present any strong associations with either modifiable or non-modifiable risk factors 

examined in this study.  The magnitude of change in modifiable risk factors across pre-season 

did not improve the prediction of in-season HSIs. The results of this study suggest that 
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assessing the same risk factors at multiple time points throughout the season may not be the 

best approach when identifying athletes at an increased risk of HSI. Instead, assessing different 

risk factors at specific time points with aetiological relevance may provide practitioners with 

more insight. 
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CHAPTER 4: Explanation of risk predictions with machine learning in Australian 

football 

 

Introduction 

Previous chapter had shown that the risk factors of HSI may vary depending on the time of 

Australian Football season, where non-modifiable risk factors were mostly associated with pre-

season HSIs and modifiable risk factors were mostly associated with early in-season HSIs. 

While it is useful to understand what risk factors are important at a particular time point, 

however, it cannot explain the risk of injury for individual athletes based on their specific 

conditions. Individual-level explanation allows practitioners to inform counselling and take 

preventive measures for injury-prone athletes [19].  

 

Followed by the surge of machine learning models used in predicting sport injuries [21, 42]. 

Some studies had shown how to explain the risk of injury at individual-level. A recent study 

conducted on National Basketball Association (NBA) athletes utilised Shapley Additive 

Explanations (SHAP) to identify the factors that contribute positively and negatively to the 

prediction of lower extremity muscle strain (LEMS) [19]. Similarly, a study conducted on elite 

soccer players explained the risk contribution from individual’s blood sample features with 

SHAP [18]. However, the required change of risk factors for a particular athlete to significantly 

reduce the risk of future injury remains unclear. In real world, practitioners would like to know 

how to reduce the risk of injury for an athlete who attends the consultation. For example, 

knowing the optimal range of training load for an athlete to decrease the risk of being classified 

as injured is important for practitioners to provide advice.   
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This study aimed to improve injury prevention in Australian Football through explaining 

machine’s prediction. Counterfactual explanations can identify the minimal change in 

modifiable risk factors required for an athlete to reduce the risk of HSI. 

 

Methods 

The modelling pipeline is shown in figure 9. The steps are discussed as followed: 

 

Dataset 

The dataset used in this study is Australian Football League (AFL) [17]. 311 Australian 

Football players were involved in this study. The value range of individual risk factors assessed 

in preseason, early in-season and late in-season are shown in Table 6. 
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Figure 9: The modelling pipeline to generate counterfactual explanations. 
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Table 6: The range of individual risk factors across multiple time points in this study. 

Factors Unit 
Range [min, max] 

Pre-season Early in-
season 

Late in-
season 

Prior HSI Yes/no [0, 1] [0, 1] [0, 1] 

Prior ACL Yes/no [0, 1] [0, 1] [0, 1] 

Height Centimetre [171, 208] [171, 208] [171, 208] 

Weight Kilogram [65, 114] [65, 111] [65, 114] 

Age Years [17.877, 
34.490] 

[17.877, 
32.411] 

[17.877, 
34.403] 

BFlh muscle thickness Centimetre [1.985, 
3.500] [2.041, 3.442] [1.883, 

3.575] 
BFlh pennation angle  
 Degrees [12.300, 

19.500] 
[12.320, 
19.260] 

[11.310, 
19.540] 

BFlh fascicle length 
 Centimetre [8.625, 

11.830] 
[9.220, 
12.166] 

[9.630, 
12.086] 

BFlh relative fascicle 
length 
 

fascicle 
length/muscle 
thickness 
 

[3.072, 
4.890 [3.044, 4.990 [3.065, 

5.346] 

Eccentric knee flexor 
force Newton [237.500, 

638.500] 
[277.000, 
785.000] 

[275.375, 
801.500] 

Relative eccentric knee 
flexor force 
 

Newton/Kilogram [2.306, 
7.323] [3.044, 8.820] [3.400, 

8.808] 

Eccentric knee flexor 
force imbalance 
 

Percentage [0, 119.583] [0, 67.730] [0, 65.299] 
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Data pre-processing 

Prior to splitting input data into training and testing sets, any row that consists of at least one 

missing value was removed. In sport science domains, certain features may be engineered from 

other features, which can produce highly intercorrelated features [17]. Additionally, some 

regression models (e.g. Logistic regression) require intercorrelated features to be removed for 

better predictive performance. For these reasons, the option of removing intercorrelated 

features with given threshold is provided. Most sports injury datasets had few injury events  

[16]. 80/20 stratified shuffle split was performed to randomly select 80% of data for training 

and 20% testing sets while preserving the percentage of non-injury and injury classes. Similar 

to other studies [16, 21], continuous variables (except prior HSI and prior ACL) were 

standardized to eliminate the effect of differing scales in variables to make sure they are treated 

equally by the model during training. This involves scaling individual variables so that it has a 

mean value of 0 and a standard deviation value of 1 using the equation below: 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝜇
𝜎  

Where 𝑥 is the input value to scale, 𝜇 is the mean of the variable and 𝜎 is the standard deviation 

of the variable. 

 

Modelling 

Once the training and testing data were standardized, the training data were input to the 

following models: 

• Logistic regression 

• Random forest 

• XGBoost (eXtreme Gradient Boosting) [95] 
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logistic regression was chosen for its popularity in sports injury prediction domains [39]. It is 

also robust against overfitting. Overfitting occurs when a model performs well in the training 

data but is unable to generalize on unseen data. In order to capture the potentially complex 

interactions between input features, two additional models were chosen: random forest and 

XGBoost [95]. These models had demonstrated to be effective at modelling non-linear 

relationships and interactions in the data [19, 21], which can be useful in predicting sports 

injuries where many factors may be involved. To address the class imbalance issue in which 

the number of healthy events significantly outweighs the number of injury events [16], all three 

models were configured to have equal class weights. This enabled the models to give equal 

importance to both classes during training and prediction, thereby mitigating the potential bias 

towards the majority class. This is similar to over-sampling and under-sampling methods [16, 

21] in other studies except no modifications were made to the training data. Due to limited 

injury events, the models employed in this study were not fine-tuned, all hyperparameters are 

by default. 

 

After evaluating the predictive performance of all models with the allocated testing data, the 

model with the best discrimination ability measured in AUC was chosen as the final model for 

individual-level prediction explanation. This is to ensure the explanation of the prediction are 

reliable and accurate. The classification threshold is 0.5, instance predicted with a value below 

0.5 was classified as healthy and instance predicted with a value above 0.5 was classified as 

injury. 

 

Counterfactual explanation 

Once the model is determined, the final step is to generate actionable counterfactual (CF) 

explanations [20]. This is an optimization problem where the input is a trained model 𝑓 and a 
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randomly selected injured player 𝑥 . The objective is to produce counterfactual examples 

{𝑐1, 𝑐2, 𝑐𝑘}, which result in a decision different from the input 𝑥. Good counterfactual examples 

must satisfy a few important properties as followed: 

• Proximity 

• Sparsity 

• Diversity 

Proximity defines the similarity between input instance 𝑥 and the counterfactual examples 

{𝑐1, 𝑐2, 𝑐𝑘} . This is important as it defines the quality of the generated counterfactual 

explanations. For instance, it is not helpful to produce a counterfactual explanation where the 

height of the player is 300 cm. Proximity aims to find the minimal change in input features that 

leads to an opposite decision. It can be calculated with the equation as followed: 

Proximity : = −
1
𝑘∑  

𝑘

𝑖=1

dist⁡(𝒄𝑖, 𝒙) 

For continuous features, 𝑑𝑖𝑠𝑡 is the 𝑙1-distance, also known as Manhattan distance between 

the counterfactual example and the input instance. For categorical variables, it is calculated as 

the number of categorical features that is not equal to the input instance’s categorical features. 

 

The second property is sparsity, it defines the number of input features required to change in 

order to obtain an opposite prediction. This requires identifying a small set of features that are 

most relevant to the explanation. Fewer features are better understood by human [58]. It was 

suggested the number of feature changes should not be more than three due to the constraints 

human have in category learning [74]. Sparsity can be calculated with the equation as followed: 

Sparsity : 1 −
1
𝑘𝑑∑  

𝑘

𝑖=1

∑  
𝑑

𝑙=1

1[𝑐𝑖𝑙≠𝑥𝑖𝑙] 
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where 𝑑 is the number of features. When the value of the same feature is different between 

counterfactual example and input instance. The sparsity was decreased. 

 

The third property is diversity. Diversity encourages the generated counterfactual examples to 

be significantly different from each other. It is not informative if multiple counterfactual 

explanations are similar. Diversity can be measured as followed: 

Diversity : Δ =
1
𝐶𝑘2

∑  
𝑘−1

𝑖=1

∑  
𝑘

𝑗=𝑖+1

dist⁡(𝒄𝑖, 𝒄𝑗) 

Similar to the proximity property, the distance metric is measured as the 𝑙1-distance between 

continuous features in the counterfactual examples. 

 

Based on these important properties which define a ‘good’ counterfactual, counterfactual 

explanations can be formulated into an optimization problem by combining these properties 

into a loss function. This study utilised DiCE (Diverse Counterfactual Explanations) for its 

efficiency and advantage in considering diversity. For more details on generating 

counterfactual explanations in this study, please refer to the original paper [20]. Injury players 

were randomly selected in the testing dataset for counterfactual explanation. The top three 

counterfactual explanations were selected for interpretation. 

 

Results 

The predictive performance of individual models are displayed in Table 7. AUC measures the 

level of discrimination. 
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Table 7: The predictive performance of individual models. The model with the highest AUC is selected 
to generate counterfactual explanations with DiCE. 

Models 
AUC 

Preseason Early in-season Late in-season 

Logistic regression 
(feature selection) 0.838 0.670 0.608 

Logistic regression (all 
features) 0.500 0.648 0.588 

Random forest 0.400 0.726 0.392 

XGBoost 0.608 0.804 0.510 

 

 

Figure 10: Confusion matrices of the best predictive models in preseason, early in-season and late in-
season respectively. 
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Table 8: The counterfactual explanations for player A and player B who sustained HSIs in pre-season. 

Player Prior HSI Height Age Muscle thickness HSI 
A 1 198 30.071 2.782 1 
A1 - - - 2.69 0 
A2 - - 23.307 - 0 
A3 - - 19.752 3.040 0 

 

Player Prior HSI Height Age Muscle thickness HSI 
B 0 176 25.767 2.835 1 
B1 - - 23.327 - 0 
B2 - - - 2.700 0 
B3 - - 29.405 2.490 0 

 

 



 80 

Table 9: The counterfactual explanations for player C and player D who sustained HSIs in early in-season. 

Player 
Prior 
HSI 

Prior 
ACL 

Height Weight Age 
BFlh 

muscle 
thickness 

BFlh 
pennation 

angle 

BFlh 
fascicle 
length 

BFlh 
relative 
fascicle 
length 

Eccentric 
knee 

flexor 
strength 

Relative 
eccentric 

knee 
flexor 

strength 

Eccentric 
knee flexor 

force 
imbalance 

HSI 

C 1 0 188 87 21.822 2.539 15.235 9.981 3.932 481 5.529 11.894 1 
C1 - - - - - - - 10.416 - - - - 0 
C2 - - - - 29.315 - - - - - - - 0 
C3 - - - - - - - - - - - 10.026 0 

 

Player 
Prior 
HSI 

Prior 
ACL 

Height Weight Age 
BFlh 

muscle 
thickness 

BFlh 
pennation 

angle 

BFlh 
fascicle 
length 

BFlh 
relative 
fascicle 
length 

Eccentric 
knee 
flexor 

strength 

Relative 
eccentric 

knee 
flexor 

strength 

Eccentric 
knee flexor 

force 
imbalance 

HSI 

D 0 0 185 83 31.455 2.754 16.055 10.261 3.726 349.500 4.211 17.757 1 
D1 - - - - - - - 10.623 - - - - 0 
D2 - - - - - - - - - - - 11.711 0 
D3 - - - - - - - - 3.832 - - - 0 
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Table 10: The counterfactual explanations for player E who sustained HSI in late in-season.   

Player 
Prior 
ACL 

Height Age 
BFlh 

pennation 
angle 

BFlh 
fascicle 
length 

Relative 
eccentric 

knee 
flexor 

strength 

Eccentric 
knee flexor 

force 
imbalance 

HSI 

E 0 186 18.712 17.540 11.511 5.750 13.692 1 
E1 - - - - 10.084 - - 0 
E2 - - - 11.96 - - - 0 
E3 - - - - - 8.240 - 0 
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Preseason HSI 

The model with the best predictive performance for pre-season HSIs is logistic regression with 

risk factors identified in the previous study. The resulting AUC is 0.838 (Table 7). These risk 

factors were history of HSI, height, age and muscle thickness. In the testing dataset, there are 

68 healthy players and 3 injured players (Figure 10a). 67% of injury players (2 out of 3) were 

correctly classified. 

 

Based on Table 8, Player is 198 cm tall and has a history of HSI. It was suggested that player 

A could reduce his muscle thickness by about 0.1 centimetres to be classified as non-injury 

(Table 8, A1). Although younger age (Table 8, A2) can reduce the risk of HSI, it is not 

modifiable. Similarly, despite younger age and having thicker muscles (Table 8, A3) can 

compensate the risk of HSI, they are not modifiable for player A. 

 

In contrast to player A, player B is younger, shorter in height and without a history of HSI. It 

was suggested player B could reduce his muscle thickness by 0.135 cm to mitigate the risk of 

HSI (Table 8, B2). Likewise, being younger can reduce the risk of HSI in pre-season but it is 

not alterable (Table 8, B1). Counterfactual example B3 (Table 8) suggests when player B is 

29.4 years old, having muscle thickness reduced to 2.49 cm can mitigate the risk of HSI in 

preseason (Table 8, B3). 

 

Early in-season HSI 

XGBoost with all risk factors displayed the best predictive performance in early in-season HSIs. 

The resulting AUC is 0.804 (Table 7). Based on Figure 10b, 40% of players (2 out of 5) were 

correctly classified by the XGBoost model. 

 



 83 

According to Table 9, given the condition of player C who sustained an HSI in early in-season. 

It was suggested that player C could increase his BFlh fascicle length to 10.416 cm to prevent 

HSI (Table 9, C1). It was also suggested that player C could reduce his eccentric knee flexor 

force imbalance by 1.868% to avoid HSI (Table 9, C3). Although older age could reduce the 

risk of sustaining HSI in early in-season, age is not modifiable. (Table 9, C2). 

 

Unlike player C, player D is older and does not have a history of HSI. Counterfactual 

explanation (Table 9, D1) suggested that player D could increase his BFlh fascicle length to 

10.623 cm for reduced risk of HSI. Alternatively, player D can increase his BFlh relative 

fascicle length to 3.832 or improve his eccentric knee flexor force imbalance to 11.711% (Table 

9 D2, D3) to avoid HSI. 

 

Late in-season HSI 

Although it was suggested that player E could have shorter BFlh fascicle length or a reduced 

BFlh pennation angle, or having a greater relative eccentric knee flexor strength to prevent HSI 

in late in-season (Table 10, E1, E2, E3). It is inconclusive as the best predictive performance 

of HSIs occurred in late in-season remains poor (Table 7, AUC = 0.608). 

 

Discussion 

How trustworthy are counterfactual explanations for clinical studies? 

Based on the study conducted, there are a few constraints when generating counterfactual 

explanations for players who sustained HSIs at different time points. The primary constraint is 

the predictive ability of ML models, even though counterfactual explanations can be generated 

for HSIs occurred in late in-season. The level of discrimination remains low (AUC = 0.608, 

Table 7). It is recommended that counterfactual explanations must be interpreted together with 
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predictive performance. Practitioners should validate the model thoroughly before relying on 

counterfactual explanations to make decisions. This study tried to mitigate this issue by training 

multiple ML models and selecting the model with the best discrimination ability for 

explanations. 

 

When does counterfactual explanation work best? 

Counterfactual explanations work best when the dimension of the dataset is relatively low. It 

is challenging when multiple risk factors were changed to obtain counterfactual explanations. 

A study stated that “good” counterfactual explanations should have no more than 2 changing 

features [74]. However, this is very unlikely in many datasets, as most counterfactuals involved 

at least more than 5 changing features. As a result, counterfactual explanations should be used 

in a controlled environment where the risk factors were thoroughly studied and identified. 

 

Conclusion 

This study has demonstrated that the application of counterfactual explanations on machine 

learning models can offer valuable and practical insights for practitioners. By generating 

counterfactual explanations, practitioners and clinicians not only gain deeper understanding of 

the factors that contribute to the risk of HSI for injury-prone players, but also identifying 

potential solutions for risk mitigation. In the future, this study serves as a stepping stone for 

clinicians to develop a custom risk intervention program for vulnerable athletes based on their 

conditions. 
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CHAPTER 5: CONCLUSION 

The aim of this research was to identify if risk factors of HSI vary across multiple time points 

of Australian football season. Chapter 3 has found that preseason HSIs were strongly associated 

with age, history of HSI, height and muscle thickness (median AUC = 0.83). This finding 

partially supports previous studies which concluded age and history of HSI are prominent non-

modifiable risk factors [11]. Subsequently, multivariate logistic regression had shown that 

early in-season HSIs were strongly associated with BFlh fascicle length and pennation angle 

(median AUC = 0.86).  This finding also partially supports a previous study which concluded 

shorter fascicle length were associated with increased risk of HSI [15]. It was found out HSIs 

in late in-season were not associated with any risk factors in this study and the underlying 

reasons remained unclear. The investigation was taken further by examining whether the 

magnitude of change in modifiable risk factors (BFlh muscle architecture and eccentric knee 

flexor strength) were useful in predicting in-season HSIs (early in-season and late in-season). 

The result revealed that in-season HSIs did not demonstrate any association with the change of 

data in preseason.  

 

Chapter 4 aimed to interpret the prediction of machine learning models, so that the risk of HSI 

can be better understood at individual-level. It has been demonstrated that counterfactual 

explanation is an effective and novel approach in understanding risks, as well as facilitating 

practitioners in identifying potential solutions. 

 

Limitations and future directions 

Although this research has discovered significant findings. It also comes with several major 

limitations. Primarily, the dataset in this study is relatively small and consists of missing values. 

This is also the general limitation in the domain as a recent study stated the average sample 
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size used to develop musculoskeletal injury prediction models is less than 200 [39]. This is a 

bottleneck when it comes to developing highly accurate ML models, as these models require a 

lot of data to discover complex patterns and relationships. This may explain why logistic 

regression is widely used in the field [39] and why hyperparameter tuning practices are not 

made known in most studies. Secondly, the dataset in the study is highly imbalanced. The 

number of healthy events significantly outweighs the number of injury events. Common 

techniques are bagging, over-sampling and under-sampling [16, 21]. However, fewer injury 

events mean the models may learn insufficient information from the injury class and outliers 

can impact the results significantly. When it comes to modelling, the injury outcome is binary 

and does not account for the severity of injury. It is unclear whether including the severity of 

injury would improve the overall predictive performance and provide more findings. Due to 

limited risk factors conducted in this study, the reason for the poor predictive performance of 

late in-season HSIs remains unclear. Future research may investigate further. Finally, the 

reliability of counterfactual explanations heavily relies on the predictive performance of 

machine learning models. Practitioners should evaluate the models thoroughly before making 

any clinical decision. 
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SUPPLEMENTAL MATERIALS 

Table 11: Supplemental Material 1 - The p-value of individual risk factors determined by multivariate 
logistic regression models in Analysis 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Risk factors were selected by recursive feature elimination and 5-fold cross validation. 

Prior HSI: prior hamstring strain injury (HSI), 

Prior ACL: prior anterior cruciate ligament (ACL) injury,  

d1->i1: data assessed at start of pre-season and hamstring strain injuries (HSIs) that occurred in 
preseason, d2->i2: data assessed at end of pre-season and hamstring strain injuries (HSIs) that occurred 
in early in-season, d3->i3: data assessed in the middle of in-season and hamstring strain injuries (HSIs) 
that occurred in late in-season. 

 

 

Model Risk Factors* p-value 

d1->i1 Prior HSI < 0.01 

Height 0.112 

Age 0.047 

Muscle thickness 0.267 

Intercept 0.948 

d2->i2 Fascicle length < 0.001 

Pennation angle < 0.001 

Intercept 0.226 

d3->i3 Prior ACL 0.999 

Height 0.809 

Age 0.322 

Pennation angle 0.316 

Fascicle length 0.322 

Relative eccentric knee 
flexor force 

0.348 

Eccentric knee flexor 
force imbalance 

0.293 

Intercept 0.448 


