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•  Background  Polyploids are common in flowering plants and they tend to have more expanded ranges of dis-
tributions than their diploid progenitors. Possible mechanisms underlying polyploid success have been intensively 
investigated. Previous studies showed that polyploidy generates novel changes and that subgenomes in allopolyploid 
species often differ in gene number, gene expression levels and levels of epigenetic alteration. It is widely believed that 
such differences are the results of conflicts among the subgenomes. These differences have been treated by some as 
subgenome dominance, and it is claimed that the magnitude of subgenome dominance increases in polyploid evolution.
•  Scope  In addition to changes which occurred during evolution, differences between subgenomes of a poly-
ploid species may also be affected by differences between the diploid donors and changes which occurred during 
polyploidization. The variable genome components in many plant species are extensive, which would result in exag-
gerated differences between a subgenome and its progenitor when a single genotype or a small number of genotypes 
are used to represent a polyploid or its donors. When artificially resynthesized polyploids are used as surrogates for 
newly formed genotypes which have not been exposed to evolutionary selection, differences between diploid geno-
types available today and those involved in the formation of the natural polyploid genotypes must also be considered.
•  Conclusions  Contrary to the now widely held views that subgenome biases in polyploids are the results of 
conflicts among the subgenomes and that one of the parental subgenomes generally retains more genes which are 
more highly expressed, available results show that subgenome biases mainly reflect legacy from the progenitors 
and that they can be detected before the completion of polyploidization events. Further, there is no convincing 
evidence that the magnitudes of subgenome biases have significantly changed during evolution for any of the allo-
polyploid species assessed.
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INTRODUCTION

Polyploidy is a process of forming new species by enveloping 
two or more genomes within a single nucleus. It is now widely 
believed that whole-genome duplication (WGD) has been a re-
current process in the evolution of flowering plants. Available 
results show that there are several WGDs in the early lineages 
leading to angiosperms (Alix et  al., 2017), and signals for 
WGDs have been reported among diverse groups of angio-
sperms (Vision et  al., 2000; Bowers et  al., 2003; Jiao et  al., 
2011). Lineage-specific WGDs are also common. For instance, 
signals for more than one WGD have been detected before 
the arabidopsis–Brassiceae split (Bowers et al., 2003), and a 
Brassiceae lineage-specific whole-genome triplication has 
been reported (Lysak et al., 2005; Wang et al., 2011; Liu et al., 
2014). Similarly, signals for a WGD before the divergence of 
the major cereals from one another were detected (Paterson 
et al., 2004; Tang et al., 2010), and WGD has also occurred in 

rice since its divergence from other cereals (Yu et al., 2005). As 
a result of these WGDs, genuine diploid flowering plant spe-
cies may not exist. All flowering plants, including Arabidopsis 
thaliana, are believed to be ancient polyploids (Blanc et  al., 
2000; Vision et al., 2000).

Polyploids can be divided into autopolyploids and allopoly-
ploids. The former contains multiple copies of the same genome 
in a single nucleus, and the latter contains two or more different 
(sub-)genomes within a single nucleus. As they contain dif-
ferent subgenomes, it is easier to identify which sequence be-
longs to which subgenome in an allopolyploid. Many important 
crop species, including bread wheat (Triticum aestivum), durum 
wheat (T.  durum), cotton (Gossypium arboretum) and oilseed 
rape (Brassica napus), are typical allopolyploids. Compared 
with their progenitor species, polyploids tend to have better 
ability to colonize new environmental niches and have ex-
panded ranges of distribution (Hegarty and Hiscock, 2008; te 
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Beest et  al., 2012). The positive correlation between ploidy 
level and success of a species is also exemplified by domesti-
cated wheat (Dubcovsky and Dvorak, 2007). In almost all areas 
where domesticated einkorn (T. boeoticum, diploid) and domes-
ticated emmer (T. dicoccum, tetraploid) were cultivated, it was 
the domesticated emmer that became dominant. Compared with 
both the diploid and tetraploid wheats, the hexaploid common 
wheat (T.  aestivum) expanded much further and it is grown 
from Norway and Russia at 65°N to Argentina at 45°S (Dvorak 
et al., 1998). Not surprisingly, the topic of understanding why 
polyploid species are so successful in evolution has attracted a 
great deal of attention in the scientific community, and possible 
underlying mechanisms have been proposed (Soltis and Soltis, 
2000; Hegarty and Hiscock, 2008; Alix et al., 2017; Van de Peer 
et al., 2021). For instance, Dubcovsky and Dvorak (2007) pro-
posed that polyploid genomes have better plasticity, which is a 
key factor in their success during evolution and selection. Some 
believe that newly generated variations in polyploids may pro-
vide them with improved evolutionary potential and adaptive 
capabilities (Soltis et al., 2014) and that regulation of meiotic re-
combination is closely related to polyploid success (Pelé et al., 
2018). Van de Peer et  al. (2021) hypothesized that stress re-
sponse in general is an important and even a determining factor 
in the establishment and success of polyploids.

Before generating and analysing large quantities of genome 
sequences became practical, studies on changes between 
subgenomes during and following polyploidization were con-
ducted using small numbers of genes or sequences. Results from 
some of these studies showed that allopolyploidy is accompanied 
by rapid and non-random gene loss as well as silencing and ac-
tivation of DNA sequences (Feldman et al., 1997; Ozkan et al., 
2001; Shaked et al., 2001; Kashkush et al., 2002; Gaeta et al., 
2007; Jiao et al., 2018). It was believed that such rapid changes 
should be expected as previously separate genomes must adjust 
and coexist with one another in a single nucleus of a polyploid 
genotype. However, such changes do not seem to be universal as 
they were not detected in the formation of some allopolyploid 
species including cotton (Liu et  al., 2001; Page et  al., 2016) 
and Arabidopsis (Wang et  al., 2006; del Pozo and Ramirez-
Parra, 2015). In any case, due to the limited numbers of genes 
or sequences assessed, results from such studies should not be 
extrapolated to represent the existence of subgenome dominance 
as the numbers of assessed genes or sequences were too small 
to alter the overall difference between genomes or subgenomes.

Since analysing large numbers of sequences became feas-
ible, subgenome biases in genome size, contents of transpos-
able elements, gene number, gene expression level or epigenetic 
alteration have been reported for many allopolyploid species 
(e.g. Hendrix and Stewart, 2005; Flagel and Wendel, 2010; Guo 
and Han, 2014; A.  Li et  al., 2014; Edger et  al., 2017; Ding 
and Chen, 2018; VanBuren et  al., 2020). Some hypothesized 
that genetic incompatibilities among subgenomes probably 
contribute to these differences, resulting in one of the parental 
subgenomes in a polyploid generally retaining more genes 
which are more highly expressed. This phenomenon is termed 
subgenome dominance, and some believe that the magnitude 
of subgenome dominance increases over time (Fig. 1A) (Edger 
et al., 2017; Alger and Edger, 2020).

Recent studies reveal that an individual genotype does 
not possess all the genes of a species. Genes present in all 

individuals of a species are termed the core genome compo-
nent, and those not present in all individuals are termed the dis-
pensable (DGC) or variable genome component (VGC) (Wing, 
2015). Available analyses suggest that VGC accounts for at 
least 20 % of the genomes in soybean (Glycine soja) (Y.H. Li 
et al., 2014) and Brassica oleracea (Golicz et al., 2016), >36 
% in bread wheat (T. aestivum) (Liu et al., 2016; Montenegro 
et al., 2017; Walkowiak et al., 2020), 38 % in barley (Ma et al., 
2019; Jayakodi et al., 2020), 50 % in maize (Zea mays) (Hirsch 
et al., 2014; Jin et al., 2016) and 43 % in rice (Oryza sativa L.) 
(Sun et al., 2017). Importantly, these large estimates of VGC 
were obtained by evaluating from a few to a few dozen geno-
types in each species and the estimated VGC will become larger 
when additional genotypes are included in such assessments.

The existence of VGC means that some of the practices rou-
tinely followed inevitably lead to biases in studying differences 
between subgenomes. One of the examples is the practice of 
aligning genomic or RNA sequences obtained in a study against 
the reference genome of the species of concern (F. Li et  al., 
2014; Jiao et al., 2018; Bird et al., 2021). While there are good 
reasons for such a routine practice, it would result in the loss 
of all those sequences not present in the reference genome. 
Similarly, the existence of VGC means that differences be-
tween a subgenome and its donor would probably be exagger-
ated when sequences from only a single genotype or a small 
number of genotypes are used to represent a polyploid or one 
of its progenitors.

FACTORS AFFECTING ESTIMATION OF 
SUBGENOME BIASES

As VGC can be substantial in a species, some differences be-
tween a subgenome and its progenitor should be expected 
even if true differences between them do not exist. With this 
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Fig. 1.  A diagram illustrating two possible scenarios of subgenome biases 
in polyploid formation and evolution as discussed herein, one being that the 
degree of increases of subgenome biases over time (A) and the other that 
subgenome biases mainly reflect differences between diploid donors (B). Each 
of the four oval shapes contained in each of the nuclei (circles) represents a hap-
loid gamete produced by a diploid individual. Darker colours represent higher 

degrees of subgenome biases.
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understanding, we re-examined available publications on 
subgenome dominance and asymmetric evolution in polyploid 
species. As discussed below, our examinations found no strong 
evidence showing either that one subgenome in a polyploid re-
tained more genes in polyploid formation or that the magnitudes 
of subgenome biases have changed much during allopolyploid 
formation and evolution (Fig. 1B). To facilitate the explanation 
of our arguments, we would like to emphasize the key stages in 
polyploid formation and evolution that should be considered in 
evaluating subgenome biases (Fig. 2). It is of note that allopoly-
ploids may also derive from the union of unreduced gametes 
(Ramsey and Schemske, 1998), in which the di-haploid hybrid 
stage does not exist. However, all artificial allopolyploids used in 
previous publications on subgenome biases are generated from 
interspecific hybridization (e.g. Feldman et al., 1997; Liu et al., 
2001; Gaeta et al., 2007; Guo and Han, 2014; Edger et al., 2017; 
El Baidouri et al., 2017; Bird et al., 2021). For these reasons, we 
do not intend to use the diagram to reflect the genuine relation-
ships among the different classes of genotypes. Rather, it is in-
tended to highlight key comparisons that need to be considered 
in estimating contributions of polyploid formation and evolution 
to subgenome biases. They include the followings:

Differences between progenitors and allopolyploids derived 
from them

Available results show beyond any doubt that differences 
between the subgenomes of a polyploid probably reflect, at 
least to a large degree, those between their donors. This is the 
case in all studies where differences between progenitors and 

allopolyploids derived from them were compared. For example, 
Bird et al. (2021) analysed gene expression in six resynthesized 
B.  napus allopolyploid lines and found that subgenome ex-
pression bias is consistent over the first ten generations. They 
showed that gene expression favoured the same subgenome in 
all resynthesized allopolyploid lines and generations, and that 
the majority of the biased gene pairs showed the same domin-
ance patterns across all lines and in an in silico hybrid of the 
parents. Similarly, the relative gene diversity among the three 
subgenomes of the various allopolyploid species of Brassica 
correlate well with those among their diploid donors (Ye et al., 
2021). Results from previous studies also show that the large 
differences in both genome sizes and the contents of transpos-
able elements between the two subgenomes of tetraploid cotton 
(Zhang et al., 2015) also exist between the genomes of the two 
putative donor species (Hendrix and Stewart, 2005; F. Li et al., 
2014). These results provide further evidence showing the im-
portance of parental legacies in alloploid formation and evolu-
tion (Fig. 1B) as described by Gottlieb and colleagues (Roose 
and Gottlieb, 1980; Gottlieb, 2003; Buggs et al., 2014).

Clearly, differences between a subgenome and its donor must 
be considered when assessing subgenome biases. It is also im-
portant to remember that only a single individual, not the whole 
species, of the donor species was involved in forming a poly-
ploid genotype. Thus, the possible impact of VGC also needs to 
be considered when the exact individuals involved in forming a 
polyploid of concern are unknown.

Difference between a transit F1 hybrid and the allopolyploid 
from it

Several studies compared subgenome biases between allo-
polyploids and their respective F1 hybrids. Without exception, 
results from these studies all show that F1 hybrids and the poly-
ploids derived from them always share the same ‘dominant’ 
subgenomes with similar magnitudes of subgenome biases. 
Examples include the studies on wheat (Ozkan et al., 2001; Ye 
et al., 2021), Solanum lycopersicum or monkeyflower (Edger 
et al., 2017) and B. napus (Bird et al., 2021). Results from these 
studies show clearly that subgenome biases are not the products 
of polyploidization.

Differences between newly synthesized and natural polyploid 
genotypes

Importantly, the existence of subgenome dominance cannot 
be determined by analysing natural polyploid genotypes solely, 
although such results have been used as evidence of subgenome 
dominance in many studies (Schnable et  al., 2011; Feldman 
and Levy, 2012; Guo and Han, 2014; El Baidouri et al., 2017; 
Edger et al., 2019; Chen et al., 2021). As is well known, several 
steps separate natural polyploid genotypes from their diploid 
progenitors (Fig. 2). Artificial polyploids have been generated 
and used as surrogates for the ‘original’ polyploids in some 
studies. This practice assumes that, like the original poly-
ploids, artificial polyploids have hardly been exposed to evo-
lution and selection. Without exception, all published research 
shows that these two different types of polyploids always share 

AA BB

AABB

AABB

AB

Populations of
diploid donors

Di-haploid

Original tetraploid

Population of
natural tetraploids

(1) Interspecific 
hybridization

(2) Whole genome 
duplication

(3) Evolution & 
selection

Fig. 2.  A diagram showing the major steps, thus factors that need to be con-
sidered, in studying subgenome biases in the formation and evolution of allo-
polyploids. Six individuals are used to represent each of the populations for 

both the diploid donors and the natural polyploids derived from them.
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the same ‘dominant’ subgenome with similar magnitudes of 
subgenome biases. For example, comparing genome-wide gene 
expression changes between artificial and natural allohexaploid 
wheat genotypes found that subgenome biases favour the same 
subgenome between these two types of allopolyploid genotypes 
(Chagué et al., 2010). An analys of five different allotetraploid 
cotton species found that homoeologue expression biases fa-
vour the D subgenome in each of them (Flagel and Wendel, 
2010). Ye et al. (2021) compared differences between natural 
and artificial allopolyploid genotypes for six different allo-
polyploid species, namely cotton, wheat, arabidopsis and three 
different allotetraploid Brassica species (B. napus, B. carinata 
and B. juncea). These assessments also found no significant dif-
ferences in the levels of subgenome biases between the artificial 
and natural allopolyploid genotypes for any of these species.

It is of note that some of the publications cited above 
claimed that subgenome dominance increases in magni-
tude over time. For instance, Edger et al. (2017) compared 
gene expression differences among a di-haploid hybrid, an 
artificial allopolyploid and a natural genotype of Minulus 
peregrinu, and claimed that subgenome dominance at the 
gene expression level increased over subsequent generations 
in this polyploid species. This publication was also cited by 
Alger and Edger (2020) when proposing that subgenome 
dominance increases over time. Similar to results from other 
species described above, the percentages of homoeologues 
with biased expression were found to be higher in the same 
subgenome from the two different polyploids and the transit 
F1 hybrid. Further, some reported differences may not be 
statistically significant. Biased expression of homoeologues 
between the two assessed subgenomes among the three 
genotypes is one of them (Box 1). Clearly, these results do 
not support that subgenome biases at the gene expression 
level increased over subsequent generations in this species. 
The subtle differences detected in the above study can be 
caused by any of the following factors: (1) differences be-
tween the diploid donors; (2) possible impact of VGC as 
only a single genotype was used for each of the three dif-
ferent types of materials; (3) even for those allopolyploid 
species for which their exact progenitor species are known, 
the genotypes of the progenitor species available today are 
different from those involved in the formation of the initial 
polyploid genotypes from which the currently available nat-
ural polyploid genotypes were derived. Like the polyploid 
derived from them, these modern-day diploid progenitor 
genotypes are also the product of evolution and selection; 
(4) it is well known that both gene expression and epigenetic 
alteration are tissue specific. Results from previous studies 
showed unambiguously that, depending on tissues or time 
tested, ‘dominant’ subgenomes may vary for a given allo-
polyploid species (A. Li et al., 2014; Hu et al., 2015; Wang 
et al., 2016; Colle et al., 2019; Kryvokhyzha et al., 2019). 
The concept of ‘a spatiotemporal-specific subgenome’ was 
used to describe such inconsistent results in a recent publi-
cation arguing for subgenome dominance (Alger and Edger, 
2020). However, the tissue- and time-specific nature of such 
results means that such results are not strong evidence for 
either subgenome dominance or asymmetric evolution.

Importantly, we are not questioning that polyploidy gener-
ates novelties, a phenomenon which has been known for a long 

time (Levin, 1983). Profiles of dimeric enzymes (Roose and 
Gottlieb, 1976; Liu and Gale, 1989) serve as a good example 
for such novelties. When two or more different genomes come 
together in an allopolyploid, novel enzymes that do not exist in 
any of the progenitor genotypes would be produced from inter-
locus interactions (Soltis et al., 2014). However, such novelties 
do not favour a given subgenome and thus should not alter the 
overall differences among them in a polyploid.

Results on subgenome dominance from studying ‘ancient 
polyploids’

With the belief that WGDs or polyploidization have occurred 
in the evolution of most, if not all, flowering plant species (e.g. 
Bowers et al., 2003; Lysak et al., 2005; Jiao et al., 2011; Wang 
et  al., 2011), results from some typical diploid species have 
also been used in arguing for subgenome dominance or asym-
metric evolution. For example, when reporting the genome se-
quence of the now typical diploid B. oleracea, Liu et al. (2014) 
claimed evidence of asymmetrical evolution. Another example 
is the report by Zhao et al. (2017) who analysed difference be-
tween maize and soybean in many features including gene ex-
pression, rates of transposable element accumulation, levels of 
small interfering RNAs and DNA methylation around genes, and 
rates of gene loss. Based on these differences, the authors specu-
lated that, compared with those of maize, the two subgenomes 
of soybean were more distinct prior to the allotetraploidization 
event. Clearly, both maize and soybean were treated in these 
studies as the products of ancient allopolyploidization. However, 
even assuming that these species are indeed the products of an-
cient polyploidization, the results described in these publications 
still cannot be treated as evidence for subgenome dominance or 

Box 1.

 THE SIGNIFICANCE TEST

The null hypothesis is p1 = p2= p3, or d1 = p2 − p1 = 0 and 
d2 = p3 − p2 = 0. The approximate χ2 test statistic (2 degrees 
of freedom) is

d1 d2

∑−1
Ç

d1

d2

å
,

where Σ is the covariance of the estimates (d1,d2), and

Σ =

( p1(1−p1)
n1

+ p2(1−p2)
n2

p2(1−p2)
n2

p2(1−p2)
n2

p3(1−p3)
n3

+ p2(1−p2)
n2

)

The numbers of homoeologs with biased expression 
for the three genotypes obtained by Edger et  al. (2017) 
were n1  =  388  +  336  =  724, n2  =  329  +  348  =  677, and 
n3 = 341 + 380 = 721, respectively: and the gene ratios be-
tween the two subgenomes for the three genotypes were 
52% (p1), 51% (p2), and 53% (p3), respectively. The p-value 
based on these numbers is 0.179, indicating that there are no 
significant differences among the three ratios.
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asymmetric evolution. This is because the original states of such 
‘polyploid’ species or their progenitors are not known. These un-
knowns make it impossible to work out how much of the dif-
ferences between the ‘subgenomes’ of such ‘polyploids’ reflect 
those between their donor species, or what proportions of the 
‘changes’ have been accumulated during subsequent evolution. 
Thus, speculation derived from studying such ancient polyploid 
species on either subgenome dominance or asymmetric evolu-
tion should only be treated as such.

CONCLUSION

We do not dispute that rapid and non-random gene loss, silen-
cing and activation of DNA sequences can occur following 
allopolyploidization in at least some species. We also do not ques-
tion that novelties occur in allopolyploid formation and evolu-
tion. However, strong evidence showing either the existence of 
subgenome dominance or the increase of its magnitude in poly-
ploid formation and evolution does not seem to exist. Available 
results show that differences between subgenomes of a poly-
ploid reflect, at least to a large degree, the legacy from its diploid 
progenitors. The existence of VGC and the differences between 
modern day donors and those involved in forming the polyploid 
species under investigation are two additional factors that must 
be considered in studying subgenome biases. As pointed out by 
Dubcovsky and Dvorak (2007), genome plasticity due to their 
polyploid nature can be the key factor underlying the success 
of such species. There are no reasons to rule out the possibility 
that the success of a polyploid can also be influenced by a small 
number of genes and that such genes may differ for the same 
polyploid species among different environments.
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