Degree Monotone Paths and Graph Operations

Yair Caro
Department of Mathematics
University of Haifa-Oranim Israel

Josef Lauri
Department of Mathematics
University of Malta
Malta

Christina Zarb
Department of Mathematics
University of Malta
Malta

Abstract

A path P in a graph G is said to be a degree monotone path if the sequence of degrees of the vertices of P in the order in which they appear on P is monotonic. The length of the longest degree monotone path in G is denoted by $m p(G)$. This parameter was first studied in an earlier paper by the authors where bounds in terms of other parameters of G were obtained.

In this paper we concentrate on the study of how $m p(G)$ changes under various operations on G. We first consider how $m p(G)$ changes when an edge is deleted, added, contracted or subdivided. We similarly consider the effects of adding or deleting a vertex. We sometimes restrict our attention to particular classes of graphs.

Finally we study $m p(G \times H)$ in terms of $m p(G)$ and $m p(H)$ where \times is either the Cartesian product or the join of two graphs.

In all these cases we give bounds on the parameter $m p$ of the modified graph in terms of the original graph or graphs and we show that all the bounds are sharp.

1 Introduction

Given a graph G, a degree monotone path is a path $v_{1} v_{2} \ldots v_{k}$ such that $\operatorname{deg}\left(v_{1}\right) \leq \operatorname{deg}\left(v_{2}\right) \leq \ldots \leq \operatorname{deg}\left(v_{k}\right)$ or $\operatorname{deg}\left(v_{1}\right) \geq \operatorname{deg}\left(v_{2} \geq \ldots \geq \operatorname{deg}\left(v_{k}\right)\right.$. This notion, inspired by the well-known Erdős-Szekeres Theorem [6, 7], was introduced in (5) under the name of uphill and downhill path in relation to domination problems, also studied in [3, 4, (9). In [5], the authors specifically suggested the study of the parameter $m p(G)$, which denotes the length of the longest degree monotone path in G. This parameter was first studied by the authors in [2]. Links between this parameter and other classical paramaters such as the chromatic number and clique number, using in particular the Gallai-Roy Theorem [11] were explored, and lower bounds and upper bounds for $m p(G)$ were established in [2]. The close relation to Turan numbers [1] was also studied and explained in 2 .

In this paper we consider another natural question related to the parameter $m p(G)$, that of the effect of graph operations on this parameter. We consider both operations on a single graph G which produce a new graph G^{\prime}, as well as operations applied to two graphs to produce a new single graph.

In the first section, we consider operations involving edges, namely edge addition and deletion, subdivision and edge contraction while in the second section vertex addition and deletion is discussed. For each operation we obtain sharp bounds on $m p\left(G^{\prime}\right)$, and give constructions which achieve these bounds. In some cases, we consider the operation for a particular family of graphs which gives more interesting results.

We then consider the Cartesian product and the graph join for two graphs G and H, where again we give sharp bounds and constructions which achieve these bounds.

Any graph theory terms not defined here can be found in [11].

2 Edge Operations

2.1 Edge Addition and Deletion

We now look at the concept of adding/deleting an edge to or from a given graph G, and consider the effect of these operations on $m p(G)$. We add an edge e by connecting two vertices in $V(G)$ which are non-adjacent, and the resulting graph is denoted by $G+e$, while when we delete an edge e, the resulting graph is denoted by $G-e$.

Theorem 2.1. Given a graph G,

1. $\frac{m p(G)+1}{3} \leq m p(G+e) \leq 3 m p(G)$.
2. $\frac{m p(G)}{3} \leq m p(G-e) \leq 3 m p(G)-1$.

In both cases, the bounds attained are sharp.
Proof. Let us first consider the right hand sides of both inequalities.

1. Let G be a graph with $m p(G)=k \geq 1$. If $k=1$ then G is the empty graph with no edges, hence $m p(G+e)=2 \leq 3=3 m p(G)$. So let us assume that $k \geq 2$.

Suppose that $m p(G+e)=t \geq 3 k+1$. Consider $P=v_{1}, v_{2}, \ldots, v_{t}$, a longest degree monotone path in $G+e$ in non-decreasing order. Observe that e must have at least one of its vertices in P, otherwise P was originally in G.

Case 1.1. Let us assume that $e=\left(v_{i}, z\right)$, where z is not on the path. If $i=1$, then clearly v_{1}, \ldots, v_{t} is also a degree monotone path in G and hence $t \leq m p(G)=k<3 k$, a contradiction.

If $i=t$ then v_{1}, \ldots, v_{t-1} is a degree monotone path in G and hence $t-1 \leq k$ which implies $t \leq k+1<3 k$.

So let us assume $1<i<t$. Let us consider the paths v_{1}, \ldots, v_{i-1} and v_{i}, \ldots, v_{t} - both are non-decreasing degree monotone paths in G and hence together they have length at most $2 k$, implying that $t \leq 2 k<3 k$.

Case 1.2. Now assume $e=\left(v_{i}, v_{j}\right), i<j$. Hence, in $G+e$, all vertices in P have the same degree as they have in G except for v_{i} and v_{j} whose degree has increased by one. Consider the paths $P_{1}=v_{1}, \ldots, v_{i}, P_{2}=v_{i}, \ldots, v_{j-1}$ and $P_{3}=v_{j}, \ldots, v_{t}$.
P_{3} is clearly a degree monotone path in G since $\operatorname{deg}_{G}\left(v_{j}\right)+1=\operatorname{deg}_{G+e}\left(v_{j}\right) \leq$ $\operatorname{deg}_{G+e}\left(v_{j+1}\right)$ (or $j=t$), hence $\left|V\left(P_{3}\right)\right| \leq k$. Similarly $\left|V\left(P_{2}\right)\right| \leq k$. So if $t \geq 3 k+1,\left|V\left(P_{1}\right)\right| \geq k+2$ since v_{i} is both in P_{1} and P_{2}. But v_{1}, \ldots, v_{i-1} is a degree monotone path of length $k+1$ in G, contradicting the fact the $m p(G)=k$. Hence $m p(G+e) \leq 3 k$.

For sharpness of the bound, consider $P_{3 k}$, to which we add a leaf to vertices v_{2} up to $v_{3 k-2}$ except vertices v_{k+1} and $v_{2 k+1}$, and we connect $v_{3 k-1}$ to a new vertex z to which we add two leaves. Thus the resulting graph G_{1}^{+}has $6 k-2$ vertices. Figure 1 shows the construction for $k=4$. It is clear that $m p\left(G_{1}^{+}\right)=k$. Now if we add the edge $e=\left(v_{k+1}, v_{2 k+1}\right)$, these two vertices now have degree 3 also, and hence the path $v_{1}, v_{2}, \ldots, v_{3 k-1}, z$ is a degree monotone path so $m p\left(G_{1}^{+}+e\right)=3 k=3 m p\left(G_{1}^{+}\right)$.

Figure 1: G_{1}^{+}when $k=4$
2. Let G be a graph with $m p(G)=k \geq 1$. If $k=1$ then G is the empty graph with no edges, hence we cannot delete edges. Therefore assume $k \geq 2$ and suppose that $m p(G-e)=t \geq 3 k$. Let $P=v_{1}, \ldots, v_{t}$ be a degree monotone path of maximum length in non-increasing order. Observe that e must have at least one of its vertices in P, otherwise P was originally in G.
Case 2.1. Let us first assume that $e=\left(v_{i}, z\right)$, where z is not on the path. If $i=1$, then clearly v_{1}, \ldots, v_{t} is also a degree monotone path in G and hence $t \leq m p(G)=k<3 k$, a contradiction.

If $i=t$ then v_{1}, \ldots, v_{t-1} is a degree monotone path in G and hence $t-1 \leq k$ which implies $t \leq k+1<3 k$.

So let us assume $1<i<t$. Let us consider the paths v_{1}, \ldots, v_{i-1} and v_{i}, \ldots, v_{t} - both are non-increasing degree monotone paths in G and hence together they have length at most 2 k , implying that $t \leq 2 k<3 k$.

Case 2.2. Now assume $e=\left(v_{i}, v_{j}\right), i<j$. Hence, in $G-e$, all vertices in P have the same degree as they have in G except for v_{i} and v_{j} whose degree has decreased by one. Consider the paths $P_{1}=v_{1}, \ldots, v_{i}, v_{j}, P_{2}=v_{i}, \ldots, v_{j-1}$ and $P_{3}=v_{i}, v_{j}, \ldots, v_{t}$.
P_{3} is clearly a degree monotone path in G since v_{i} and v_{j} have a larger (by 1) degree in G and $\operatorname{deg}\left(v_{i}\right) \geq \operatorname{deg}\left(v_{j}\right)$. Similarly $\left|V\left(P_{2}\right)\right| \leq k$. So if $t \geq 3 k$, $\left|V\left(P_{1}\right)\right| \geq k+3$ since v_{i} and v_{j} are also on P_{2} and P_{3}. But v_{1}, \ldots, v_{i-1} is a degree monotone path of length $k+1$ in G, contradicting the fact the $m p(G)=k$. Hence $m p(G-e) \leq 3 k-1$.

For sharpness, let us construct the graph G_{1}^{-}as follows: we start with $P_{3 k-1}$ and add three leaves to v_{1} and a leaf to v_{2}; we then connect v_{k+1} to $v_{2 k+1}$ - we call this edge e. Figure 2 shows the construction for $k=4$. Clearly $m p\left(G_{1}^{-}\right)=k$ while $m p\left(G_{1}^{-}-e\right)=3 k-1$ with the path $v_{1}, \ldots, v_{3 k-1}$ and hence $m p\left(G_{1}^{-}-e\right)=3 m p\left(G_{1}^{-}\right)-1$.

Figure 2: G_{1}^{-}when $k=4$

Let us now turn to the lower bounds in both cases. These results are derived from those for the upperbounds.

1. Suppose for some graph $G, m p(G+e)<\frac{m p(G)+1}{3}$. Then if we take $H=G+e$ so that $G=H-e$, we have $m p(H)<\frac{m p(H-e)+1}{3}$, which implies that $m p(H-e)>3 m p(H)-1$, contradicting the righthand side of part 2.

For sharpness, let G_{2}^{+}be the graph G_{1}^{-}without the edge e. Then $m p\left(G_{2}^{+}+\right.$ $e)=k$ while $m p\left(G_{2}^{+}\right)=3 k-1$ giving $m p\left(G_{2}^{+}+e\right)=\frac{m p\left(G_{2}^{+}\right)+1}{3}$.
2. Suppose that for some graph $G, m p(G-e)<\frac{m p(G)}{3}$. Then let $H=G-e$ so that $G=H+e$ giving $m p(H)<\frac{m p(H+e)}{3}$ which implies $m p(H+e)>3 m p(H)$, contradicing the upper bound in part 1.

For sharpness of the bound, let G_{2}^{-}be the graph G_{1}^{+}with the added edge $e=\left(v_{k+1}, v_{2 k+1}\right)$. Then $m p\left(G_{2}^{-}\right)=3 k$ and $m p\left(G_{2}^{-}-e\right)=\frac{m p\left(G_{2}^{-}\right)}{3}$.

2.2 Subdivision

Given a graph G and $e=(u, v) \in E(G)$, the subdivision of e is the addition of a new vertex w such that (u, w) is an edge and (w, v) is an edge but (u, v) is no longer an edge. Note that the degree of u and v remains the same, and the degree of w is 2 . The graph obtained by subdividing e is denoted by G^{*}. Again, we look at the effect of this operation on the maximum length of a degree monotone path, $m p(G)$.

Theorem 2.2. Let G be a graph and $e=(u, v)$ an edge in G such that G^{*} is the graph obtained by subdividing e with the vertex w. Then

$$
\left\lceil\frac{m p(G)+1}{2}\right\rceil \leq m p\left(G^{*}\right) \leq m p(G)+1
$$

and both bounds are sharp.
Proof. Let us first consider the upper bound. Let P be a degree monotone path of maximum length in G^{*}. We consider the following cases:
Case 1. If $w \notin P$, then P is a degree monotone path in G hence $m p\left(G^{*}\right) \leq$ $m p(G)$.

Case 2. If $w \in P$, then either u or v or both are in P otherwise $P=\{w\}$ which is not maximal. We consider these cases separately:

- If both u and v are in P then $P-\{w\} \cup(u, v)$ is a degree monotone path in G hence $m p\left(G^{*}\right) \leq m p(G)+1$.
- If only one of u or v, say u, is in P then $P-\{w\}$ is a degree monotone path in G and again $m p\left(G^{*}\right) \leq m p(G)+1$.

For sharpness of the bound, consider $G=P_{n}$ the path on n vertices - then $m p(G)=n-1$, and subdividing any edge gives $m p\left(G^{*}\right)=n=m p(G)+1$.

For the lower bound, let P be a degree monotone path of maximum length in G and let $P=v_{1}, v_{2}, \ldots, v_{t}, v_{t+1}, \ldots, v_{k}$, such that $u=v_{t}$ and $v=v_{t+1}$. Let us consider $e=(u, v)$ and the subdividing vertex w.
Case 1. If $e=(u, v)$ is not on the path P, then P is a degree monotone path in G^{*} hence $m p\left(G^{*}\right) \geq m p(G)$.
Case 2. If the edge $e=(u, v)$ is in P, then as w subdivides e, we get $P^{*}=v_{1}, \ldots, v_{t}, w, v_{t+1}, \ldots, v_{k}$ a path in G^{*}, where $v_{t}=u$ and $v_{t+1}=v$.

We assume without loss of generality that P is a non-decreasing monotone path, and hence $\operatorname{deg}(u) \leq \operatorname{deg}(v)$. The vertex w has degree 2 . Now if $\operatorname{deg}(u)>2$, the paths v_{1}, \ldots, v_{t} and the paths $w, v_{t+1}, \ldots, v_{k}$ are degree monotone in G^{*}, while if $\operatorname{deg}(u) \leq 2$, the path P^{*} is degree montone in G^{*}. Hence in G^{*} there is a degree monotone path of length at least $\left\lceil\frac{k+1}{2}\right\rceil=\left\lceil\frac{m p(G)+1}{2}\right\rceil$.

For sharpness of the lower bound, let us take the path P_{n} and add a leaf to the vertices v_{2} up to v_{n-1}. Hence $m p(G)=n-1$. If we subdivide the edge $\left(v_{\left\lceil\frac{n}{2}\right\rceil}, v_{\left\lceil\frac{n}{2}\right\rceil+1}\right)$, we get $m p\left(G^{*}\right)=\left\lceil\frac{n}{2}\right\rceil=\left\lceil\frac{m p(G)+1}{2}\right\rceil$.

2.3 Edge Contraction

In a graph G, contraction of an edge $e=(u, v)$ is the replacement of u and v with a single vertex w adjacent (without multiple edges) to all vertices in $N(u) \backslash v \cup N(v) \backslash u$. The resulting graph $G \cdot e$ has one less vertex than G. In case a vertex $z \in V(G)$ is adjacent to both u and v, the degree of z in $G \cdot e$ decreases by one - otherwise it remains the same as in G. In view of this we first consider triangle-free graphs, in which case the degrees of the neighbours of u and v remain unchanged in $G \cdot e$, and $\operatorname{deg}(w)=\operatorname{deg}(u)+\operatorname{deg}(v)-2$.

Theorem 2.3. Let G be a triangle-free graph. Let $e=u v$ be an edge of G which is contracted to form $G \cdot e$ with new vertex w. Then

$$
\frac{m p(G)}{3} \leq m p(G \cdot e) \leq 2 m p(G)
$$

Proof. Let us first consider the upper bound. Clearly $m p(G) \geq 2$ as if $m p(G)=$ 1, G has no edges and $G \cdot e$ is not defined. Let $P=v_{1} v_{2} \ldots v_{k}$ be a degree monotone path in non-decreasing order of maximum length in $G \cdot e$. We know that $\operatorname{deg}(w)=\operatorname{deg}(u)+\operatorname{deg}(v)-2$. Let us look at all the different possibilities.

Case 1: \quad Assume first that $\operatorname{deg}(u)=\operatorname{deg}(v)=1$ and hence $\operatorname{deg}(w)=0$. If this was the only edge in G, then $m p(G)=2$ while $m p(G \cdot e)=1$, and the upper bound holds. If there are other edges in G, then $m p(G \cdot e)=m p(G)$, and again the upper bound holds.

Case 2: \quad Now assume $1=\operatorname{deg}(u)<\operatorname{deg}(v) —$ then $\operatorname{deg}(w)=\operatorname{deg}(v)-1$ in $G \cdot e$. We consider the following cases:

- Clearly, if w is not a vertex in P, then P is degree monotone in G too, hence $m p(G \cdot e) \leq m p(G)$.
- If $w=v_{1}$ in P, then in $G, v_{2} \ldots v_{k}$ is a degree monotone path, and hence $m p(G \cdot e)-1 \leq m p(G)$ and hence $m p(G \cdot e) \leq m p(G)+1 \leq 2 m p(G)$.
- If $w=v_{k}$, then $v_{1} \ldots v_{k-1} v$ is degree monotone in G and hence $m p(G \cdot e) \leq$ $m p(G)$.
- If $w=v_{j}$ for $2 \leq j \leq k-1$, then $v_{1} \ldots v_{j-1} v$ and $v_{j+1} \ldots v_{k}$ are degree monotone in G, and $\min \{\max \{j, k-j\}\}=\left\lceil\frac{k}{2}\right\rceil$.
If k is odd, then $m p(G) \geq \frac{k+1}{2}$ and hence $m p(G \cdot e) \leq 2 m p(G)-1$.
If k is even, then $m p(G) \geq \frac{k}{2}$ and hence $m p(G \cdot e) \leq 2 m p(G)$.
Case 3: It remains to consider, without loss of generality, the case

$$
2 \leq \operatorname{deg}(u) \leq \operatorname{deg}(v) \leq \operatorname{deg}(w)=\operatorname{deg}(u)+\operatorname{deg}(v)-2
$$

Again we consider each possibility.

- If in G, w is not a vertex in P, then P is degree monotone in G too, hence $m p(G \cdot e) \leq m p(G)$.
- If $w=v_{1}$, then in G, either u or v is adjacent to v_{2} - since $\operatorname{deg}(u) \leq$ $\operatorname{deg}(v) \leq \operatorname{deg}(w)$ then either $u v_{2} \ldots v_{k}$ or $v v_{2} \ldots v_{k}$ is a degree monotone path in G, and hence $m p(G \cdot e)+1 \leq m p(G)$ giving $m p(G \cdot e) \leq m p(G)-1 \leq$ $2 m p(G)$.
- If $w=v_{k}$, then $v_{1} v_{2} \ldots v_{k-1}$ is still a degree monotone path in G hence $m p(G \cdot e)-1 \leq m p(G)$ that is $m p(G \cdot e) \leq m p(G)+1 \leq 2 m p(G)$.
- If $w=v_{j}, 2 \leq j \leq k-1$, then let us consider the following cases:

1. If in G, u is adjacent to both v_{j-1} and v_{j+1}, and hence v is not adjacent to either of these vertices since G is triangle-free, then $v_{1} \ldots v_{j-1}$ and $u, v_{j+1} \ldots v_{k}$ are degree monotone paths of length $j-1$ and $k-j+1$ respectively in G. Again, $\min \{\max \{j-1, k-j+1\}\}=\left\lceil\frac{k}{2}\right\rceil$. If k is odd, then $m p(G) \geq \frac{k+1}{2}$ and hence $m p(G \cdot e) \leq 2 m p(G)-1$. If k is even, then $m p(G) \geq \frac{k}{2}$ and hence $m p(G \cdot e) \leq 2 m p(G)$.

Figure 3: G_{1} when $k=4$
2. If in G, u is adjacent to v_{j-1} and v is adjacent to v_{j+1}, then if $\operatorname{deg}\left(v_{j-1}\right) \leq \operatorname{deg}(u)$ then $v_{1} v_{2}, \ldots, v_{j-1}, u, v, v_{j+1}, \ldots v_{k}$ is degree monotone in G and hence $m p(G \cdot e)+1 \leq m p(G)$ implying that $m p(G \cdot e) \leq$ $m p(G)-1 \leq 2 m p(G)$.
If, on the other hand, $\operatorname{deg}\left(v_{j-1}\right)>\operatorname{deg}(u)$, then $\operatorname{deg}(u) \leq \operatorname{deg}(v) \leq$ $\operatorname{deg}(w) \leq \operatorname{deg}\left(v_{j+1}\right)$ and hence $v_{1} v_{2} \ldots v_{j-1}$ and $u, v, v_{j+1} \ldots v_{k}$ are degree monotone paths in G of length $j-1$ and $k-j+2$ respectively. In this case we consider $\min \{\max \{j-1, k-j+2\}\}$.
If k is even this is equal to $\frac{k+2}{2}$, and hence $m p(G \cdot e) \leq 2 m p(G)-2$. If k is odd, we get $\frac{k+1}{2}$, and hence $m p(G \cdot e) \leq 2 m p(G)-1$.
3. If in G, v is adjacent to v_{j-1} and u is adjacent to v_{j+1}, then $v_{1} v_{2} \ldots v_{j-1}$ and $u v_{j+1} \ldots v_{k}$ are degree monotone paths of length $j-1$ and $k-j+1$ respectively in G, and again $\min \{\max \{j-1, k-j+1\}\}=\left\lceil\frac{k}{2}\right\rceil$. If k is odd, then $m p(G) \geq \frac{k+1}{2}$ and hence $m p(G \cdot e) \leq 2 m p(G)-1$. If k is even, then $m p(G) \geq \frac{k}{2}$ and hence $m p(G \cdot e) \leq 2 m p(G)$.
4. If in G, v is adjacent to both v_{j-1} and v_{j+1}, and u is adjacent to neither since G is triangle-free, then $v_{1} \ldots v_{j-1}$ and $u, v, v_{j+1} \ldots v_{k}$ are degree monotone paths in G of length $j-1$ and $k-j+2$ respectively. In this case we consider $\min \{\max \{j-1, k-j+2\}\}$.
If k is even this is equal to $\frac{k+2}{2}$, and hence $m p(G \cdot e) \leq 2 m p(G)-2$. If k is odd, we get $\frac{k+1}{2}$, and hence $m p(G \cdot e) \leq 2 m p(G)-1$.

This bound is attained by the graph G_{1} constructed as follows: consider the path on $2 k+1$ vertices - we add a leaf to vertices v_{2} up to $v_{2 k}$, and to the vertices v_{k} and $v_{2 k}$ we add a second leaf. Then $m p(G)=k$. If we contract one of the edges joining v_{k} and a leaf, then vertex w has degree 3 and hence $v_{1} v_{2} \ldots v_{k-1} w v_{k+2} \ldots v_{2 k}$ is degree monotone in $G \cdot e$ and has length $2 k$, giving $m p(G \cdot e)=2 m p(G)$. Figure 3 shows the construction for $k=4$.

We now consider the lower bound. Let $P=v_{1} \ldots v_{k}$ be a degree monotone path in non-decreasing order of maximum length in G. Let $e=u v$ be the edge contracted to vertex w in $G \cdot e$, and without loss of generality, we assume $\operatorname{deg}(u) \leq \operatorname{deg}(v)$. Clearly, if the vertices u and v are not on P, then P is still degree monotone in $G \cdot e$ and hence $m p(G \cdot e) \geq m p(G)$. So let us assume that u and v are on P, and hence $k=m p(G) \geq 2$. If $k=2$, that is $P=u v$, then $m p(G \cdot e) \geq 1 \geq \frac{m p(G)}{2}$. So let us assume that $k \geq 3$ and hence $\operatorname{deg}(v) \geq 2$. So let us assume that u and v are on P and $m p(G) \geq 3$.

Case 1. We first consider the case in which either u or v, but not both, are on P. Without loss of generality, Let $u=v_{j}$ be on P. Then in $G \cdot e, w$ is on P, and $v_{1} \ldots v_{j-1}$ and $v_{j+1} \ldots v_{k}$ are degree montone in $G \cdot e$, of length j and $k-j$ respectively. Now $\min \{\max \{j, k-j\}\}=\left\lceil\frac{k}{2}\right\rceil$.

If k is even then $m p(G \cdot e) \geq \frac{m p(G)}{2} \geq \frac{m p(G)}{3}$.
If k is odd then $m p(G \cdot e) \geq \frac{m p(G)+1}{2} \geq \frac{m p(G)}{3}$.
Case 2. We now consider the case in which u and v are in P but $e=u v$ is not in P. Let $u=v_{i}$ and $v=v_{j}$ in P; in all cases $j-i \geq 3$, otherwise we have a copy of K_{3} in G - we consider the following cases:

- If $i=1$ and $j=k$, then $v_{2} \ldots v_{k-1} w$ is degree monotone in $G \cdot e$, hence $m p(G \cdot e) \geq m p(G)-1 \geq \frac{m p(G)}{3}$ since $m p(G) \geq 2$.
- If $i=1$ and $4 \leq j<k$, then $v_{2} \ldots v_{j-1} w$ and $v_{j+1} \ldots v_{k}$ are degree monotone in $G \cdot e$. Hence we need $\min \{\max \{j-1, k-j\}\}=\left\lfloor\frac{k}{2}\right\rfloor$. Then $m p(G \cdot e) \geq\left\lfloor\frac{m p(G)}{2}\right\rfloor \geq \frac{m p(G)}{3}$.
- If $i>1$ and $j=k$, then $v_{1} \ldots v_{i-1}$ and $v_{i+1} \ldots v_{k-1} w$ are degree monotone in $G \cdot e$. Hence we need $\min \{\max \{i-1, k-i\}\}=\left\lfloor\frac{k}{2}\right\rfloor$. Then $m p(G \cdot e) \geq$ $\left\lfloor\frac{m p(G)}{2}\right\rfloor \geq \frac{m p(G)}{3}$.
- If $1<i<j<k$, then $v_{1} \ldots v_{i-1} w, v_{i+1} \ldots v_{j-1} w$ and $v_{j+1} \ldots v_{k}$ are degree monotone in $G \cdot e$, of lengths $i, j-1$ and $k-j$ respectively. Let $k=3 t+r$ where $0 \leq r \leq 2$.
If $k-j>t$, then $k-j \geq t+1 \geq \frac{k}{3}$, and hence $m p(G \cdot e) \geq \frac{m p(G)}{3}$.
So let us assume that $k-j \leq t$ and hence $j \geq k-t=2 t+r$. Now $\max \{i, j-1\} \geq \frac{2 t+r}{2}=t+\frac{r}{2}$. If $r=0$ then $k \geq 3 t$ hence $\max \{i, j-1\}=$ $t=\frac{k}{3}$. If $r=1$, then $k=3 t+1$, then $\max \{i, j-1\} \geq t+1=\frac{k+2}{3}>\frac{k}{3}$ since $\max \{i, j-1\}$ must be an integer. Finally, if $r=2$, then $\max \{i, j-1\} \geq$ $t+1=\frac{k+1}{3}>\frac{k}{3}$.
Hence, in each case, $m p(G \cdot e) \geq \frac{m p(G)}{3}$.
Case 3. Finally, we consider the case in which $e=u v$ is in P. We may assume that $m p(G) \geq 3$ since if $m p(G)=2$ then clearly $m p(G \cdot e) \geq 1 \geq \frac{m p(G)}{3}$. This results in the following cases:
- If $u=v_{1}$ and $v=v_{2}$, then in $G \cdot e, v_{3} \ldots v_{k}$ is degree monotone, and hence $m p(G \cdot e) \geq m p(G)-2 \geq \frac{m p(G)}{3}$ for $m p(G) \geq 3$.
- If $u=v_{k-1}$ and $v=v_{k}$, hence $2 \leq \operatorname{deg}(u) \leq \operatorname{deg}(v) \leq \operatorname{deg}(w)$, then in $G \cdot e, v_{1} \ldots v_{k-2} w$ is degree monotone since $\operatorname{deg}(u) \leq \operatorname{deg}(v) \leq \operatorname{deg}(w)=$ $\operatorname{deg}(u)+\operatorname{deg}(v)-2$. Hence $m p(G \cdot e) \geq m p(G)-1 \geq \frac{m p(G)}{3}$ for $m p(G) \geq 3$.
- If $u=v_{j}$ and $v=v_{j+1}$ for $2 \leq j \leq k-2$ (so $k \geq 4$ otherwise we have one of the previous two cases), then in $G \cdot e, v_{1} \ldots v_{j-1} w$ and $v_{j+2} \ldots v_{k}$ are degree monone paths of lengths j and $k-j-1$ respectively - hence we must consider $\min \{\max \{j, k-j-1\}\}=\left\lceil\frac{k}{2}\right\rceil$. Hence $m p(G \cdot e) \geq\left\lceil\frac{k}{2}\right\rceil \geq \frac{m p(G)}{3}$ as required.

The bound is attained by the following construction to give graph G_{3} : let us take the path on $3 k+3$ vertices - we add a leaf to the vertices v_{2} up to $v_{3 k+2}$ except for v_{k+1} and $v_{2 k+2}$, and we connect these two vertices by an edge e. We also attach three leaves to each of the leaves attached to v_{k+2} and $v_{2 k+1}$. Finally we add 3 leaves to vertex $v_{3 k+3}$. Thus $\operatorname{deg}\left(v_{1}\right)=1, \operatorname{deg}\left(v_{2}\right)=\operatorname{deg}\left(v_{3}\right) \ldots=$ $\operatorname{deg}\left(v_{3 k+2}\right)=3$ and $\operatorname{deg}\left(v_{3 k+3}\right)=4$, hence $m p(G)=3 k+3$. Now let us contract the edge e. Then $\operatorname{deg}\left(v_{1}\right)=1, \operatorname{deg}\left(v_{2}\right)=\operatorname{deg}\left(v_{3}\right) \ldots=\operatorname{deg}\left(v_{k}\right)=\operatorname{deg}\left(v_{k+2}\right)=$ $\ldots=\operatorname{deg}\left(v_{2 k+1}\right)=\operatorname{deg}\left(v_{2 k+3}\right)=\ldots=\operatorname{deg}\left(v_{3 k+2}\right)=3$ and $\operatorname{deg}\left(v_{3 k+3}\right)=4$. Vertex w has degree 4. Hence the possible degree monotone paths in $G \cdot e$ are $v_{1} \ldots v_{k} w, v_{k+2} \ldots v_{2 k+1} w$ and $v_{2 k+3} \ldots v_{3 k+3}$ - all these are of length $k+1$ and therefore $m p\left(G_{3} \cdot e\right)=\frac{m p\left(G_{3}\right)}{3}$. Figure 4 shows the construction for $k=3$.

Figure 4: G_{3} when $k=4$

The following proposition shows that if we consider contraction in graphs which are not triangle-free, the situation is very different.

Theorem 2.4. There exist arbitrarily large K_{4}-free graphs G on n vertices such that $m p(G)=4$ while $m p(G . e)=|V(G \cdot e)|=n-1$.

Proof. Consider the following construction: G is the graph constructed by taking a path $P=v_{1} \ldots v_{4 k}$ on $4 k$ vertices where $k \geq 2$, and another edge $e=u v$. We connect the vertices $v_{2 i} \in P, 1 \leq i \leq 2 k$ to both u and $v-$ we then connect $v_{2 i-1} \in P$ for $1 \leq i \leq k$ to u, and $v_{2 i-1} \in P$ for $k+1 \leq i \leq 2 k$ to v. Finally we connect v_{1} to $v_{4 k}$. Figure 5 gives the construction for $k=2$. G is not triangle-free, but it is K_{4}-free. One can see that in P, the vertices with even index have degree 4 , while the vertices with odd index have degree 3 , and $\operatorname{deg}(u)=\operatorname{deg}(v)=3 k$. Hence it is clear that $m p(G)=4$ for any value of $k \geq 2$. Now if we contract $e=u v$ to a vertex w, all vertices in P have degree 3, while $\operatorname{deg}(w)=4 k \geq 3$, and therefore $m p(G \cdot e)=4 k+1$.

3 Vertex Addition and Deletion

Given a graph G, we can add a vertex v and connect it to at least one vertex in G to give the graph $G+v$. On the other hand, given a graph G and a vertex $v \in V(G)$, the graph $G-v$ is obtained by deleting the vertex v and all its

Figure 5: G when $k=3$
incident edges. The effect on the maximum length of a degree monotone path can be seen through the following observations.

Proposition 3.1. Given a graph G and $v \in V(G)$,

1. $2 \leq m p(G+v) \leq|V(G)|+1$
2. $1 \leq m p(G-v) \leq|V(G)|-1$

Proof.

1. Consider the complete bipartite graph $G=K_{n, n+1}$ so that $m p(G)=2$. We add a vertex v_{1} and connect it to all the vertices in the larger part, to give $H=G+v_{1}=K_{n+1, n+1}$ - now $m p\left(G+v_{1}\right)=m p(H)=|V(G)|+1$. Now if we add another vertex v_{2} and connect it to all the vertices in one part of the partition, we get $H+v_{2}=F=K_{n+1, n+2}$ and again $m p\left(H+v_{2}\right)=m p(F)=2$.
2. For the upperbound, consider the graph $G=K_{n}$ - then $m p(G)=n$, and $G-v=K_{n-1}$ hence $m p(G-v)=n-1=|V(G)|-1$.

For the lower bound consider $G=K_{1, m}, m \geq 1$. Then deleting the vertex of degree m gives $m p\left(K_{1, m}-v\right)=m p(G-v)=1$.

In view of this general result, we consider vertex addition and deletion for the family of trees. The following example shows that if one adds non-leaf vertices, the effect on $m p(G)$ can be quite drastic. Consider the tree T constructed by taking a path on $2 k+1$ vertices $\left(v_{1} v_{2} \ldots v_{2 k+1}\right), k \geq 1$, and adding a leaf to the vertices $v_{2 i}, 1 \leq i \leq k$. Clearly this tree has $m p(T)=2$. Let us add a vertex v and connect it to the vertices $v_{2 i+1}, 0 \leq i \leq k$. So now all the vertices on the path have degree 3 except for v_{1} and $v_{2 k+1}$, and vertex v has degree $k+1 \geq 2$. Hence there is now a degree monotone path of length $2 k+1$, that is $m p(T+v)=2 k+1$. Hence, in the sequel, we only consider the addition of leaves, so that the resulting graph is another tree.

Theorem 3.2. Let T be a tree and $v \in V(T)$,

1. If we add a vertex v such that $T+v$ is also a tree, then

$$
\frac{m p(T)}{2} \leq m p(T+v) \leq 2 m p(T) .
$$

2. If $v \in V(T)$ such that $T-v$ is a tree, then

$$
\frac{m p(T)}{2} \leq m p(T-v) \leq 2 m p(T)
$$

In both cases, the bounds attained are sharp.
Proof. Let us first consider the upper bound for each case.

1. If $T+v$ is a tree then clearly v is a leaf otherwise it would form a cycle. Let $P=v_{1}, v_{2}, \ldots, v_{k}$ be a degree monotone path of maximum length in $T+v$ in non-decreasing order. Observe that $k \geq 2$ as $T+v$ contains at least one edge. So we consider all possible cases.

- If v is not adjacent to any vertex in P then P is a degree monotone path in T hence $m p(T+v) \leq m p(T)$.
- If v is adjacent to v_{1}, then v, v_{1}, \ldots, v_{k} is a degree monotone path in $T+v$ contradicting the maximality of P.
- If $v=v_{1}$ then v_{2}, \ldots, v_{k} is a degree monotone path in T of length $k-1$ so $k-1 \leq m p(T)$ and hence $2 m p(t) \geq 2 k-2 \geq k=m p(T+v)$ since $k \geq 2$.
- If v is adjacent to v_{k}, then v_{1}, \ldots, v_{k-1} is a degree monotne path in T, hence again $2 m p(t) \geq 2 k-2 \geq k=m p(T+v)$ since $k \geq 2$.
- If $v=v_{k}$, this implies that $\operatorname{deg}(v)=1$ and that $k=2$, and since T is not $K_{1}, m p(T) \geq 2$ hence $2 m p(T) \geq 4>2=k=m p(T+v)$. (If $T=K_{1}$ then trivially $T+v=K_{2}$ so $m p(T+v)=2=2 m p(T)$.)
- Let v be adjacent to some v_{j} for $2 \leq j \leq k-1$. Note that v can only be v_{1} or v_{k} in P since it is a leaf. Consider v_{1}, \ldots, v_{j-1} which is a degree monotone path in T hence $j-1 \leq m p(T)$. Similarly v_{j}, \ldots, v_{k} is also a degree monotne path in T with length at most $m p(T)$ hence by adding we get $m p(T+v) \leq 2 m p(T)$ as required.

For sharpness, consider the tree T_{1}^{+}constructed as follows: take the path on $2 k+1$ vertices $v_{1}, \ldots, v_{2 k+1}$, where $k \geq 2$ - we add a leaf to all the vertices except v_{1}, v_{k+1} and $v_{2 k+1}$. Then $m p\left(T_{1}^{+}\right)=k$. If we add a vertex v and connect it to vertex v_{k+1}, then $m p\left(T_{1}^{+}+v\right)=2 k=2 m p\left(T_{1}^{+}\right)$. Figure 6 shows the construction for $k=4$.

Figure 6: T_{1}^{+}when $k=4$
2. Let $P=v_{1}, v_{2}, \ldots, v_{k}$ be a degree monotone path of maximum length in $T-v$ in non-decreasing order. Not that if $k=1$ then $T-v$ has no edges which imples that $T=K_{1, m}$ for some $m \geq 1$, and so $m p(T)=2=2 m p(T-v)$.

So let us assume that $k \geq 2$. If in $T v$ is not adjacent to any vertex of P, then P is also a degree monotone path in T, hence $m p(T-v)=k \leq m p(T)<$ $2 m p(T)$.

So we consider the case in which v is adjacent to exactly one vertex in P. We consider the different scenarios.

- If v is adjacent to v_{1} in T, then v_{2}, \ldots, v_{k} is a degree monotone path of length $k-1$ in T hence $m p(T-v)=k \leq 2(k-1) \leq 2 m p(T)$ since $k \geq 2$.
- If v is adjacent to v_{k} in T then v_{1}, \ldots, v_{k} is also a degree monotone path in T, hence again $m p(T-v)=k \leq m p(T)<2 m p(T)$.
- If v is adjacent to some v_{j} for $2 \leq j \leq k-1$, then consider in T the path v_{1}, \ldots, v_{j} - this is degree monotone hence $j \leq m p(T)$. Now v_{j+1}, \ldots, v_{k} is also a degree monotone path in T and has length at most $m p(T)$. Adding, we get $m p(T-v) \leq 2 m p(T)$ as required.

For sharpness consider the graph T_{1}^{-}constructed as follows - we take a path on $2 k+1$ vertices for $k \geq 2$ and we add a leaf to vertex v_{k} and to vertex $v_{2 k}$. Then $m p\left(T_{1}^{-}\right)=k$, while if v is the leaf attached to $v_{k}, m p\left(T_{1}^{-}-v\right)=2 k=2 m p\left(T_{1}^{-}\right)$. Figure 7 shows the construction for $k=4$.

Figure 7: T_{1}^{-}when $k=4$

We now consider the lower bounds.

1. Assume $m p(T+v)<\frac{m p(T)}{2}$. Let $T^{\prime}=T+v$ hence $T=T^{\prime}-v$ - then $m p\left(T^{\prime}\right)<\frac{m p\left(T^{\prime}-v\right)}{2}$ implying that $m p\left(T^{\prime}-v\right)>2 m p\left(T^{\prime}\right)$, contradicting the upper bound in part 2 .

For sharpness, let T_{2}^{+}be the path on $2 k+1$ vertices, $k \geq 2$, with a leaf added to vertex $v_{2 k}$. Then $m p\left(T_{2}^{+}\right)=2 k$. We add a vertex v and connect it to the vertex $v_{k}-$ then $m p\left(T_{2}^{+}+v\right)=k=\frac{m p\left(T_{2}^{+}\right)}{2}$.
2. \quad Assume $m p(T-v)<\frac{m p(T)}{2}$. Let $T^{\prime}=T-v$ hence $T=T^{\prime}+v-$ then $m p\left(T^{\prime}\right)<\frac{m p\left(T^{\prime}+v\right)}{2}$ implying $m p\left(T^{\prime}+v\right)>2 m p\left(T^{\prime}\right)$, contradicting the upperbound in part 1.

For sharpness, we construct the graph T_{2}^{-}as follows: take the path on $2 k+1$ vertices for $k \geq 2$ and add a leaf to every vertex except the first and the last so that $m p\left(T_{2}^{-}\right)=2 k$. Consider the leaf v connected to v_{k+1} - if we delete this vertex, $m p\left(T_{2}^{-}-v\right)=k=\frac{m p\left(T_{2}^{-}\right)}{2}$.

4 Operations involving two graphs

4.1 Cartesian Product

The Cartesian product $G \square H$ of graphs G and H is a graph such that the vertex set of $G \square H$ is the Cartesian product $V(G) \times V(H)$ and any two vertices $\left(u, u^{\prime}\right)$ and $\left(v, v^{\prime}\right)$ are adjacent in $G \square H$ if and only if either

- $u=v$ and u^{\prime} is adjacent with v^{\prime} in H, or
- $u^{\prime}=v^{\prime}$ and u is adjacent with v in G.

Theorem 4.1. Let G and H be two connected graphs. Then

$$
m p(G)+m p(H)-1 \leq m p(G \square H) \leq m p(G) m p(H)
$$

and both bounds are sharp.
Proof. Let us first consider the lower bound. Let $v_{1} \ldots v_{t}$ be a longest degree monotone path in G, and let $u_{1} \ldots u_{s}$ be a longest degree monotne path in H, both in non-decreasing order.

Consider the path in $G \square H$ with vertex coordinates

$$
\left(v_{1}, u_{1}\right)\left(v_{1}, u_{2}\right) \ldots\left(v_{1}, u_{s}\right)\left(v_{2}, u_{s}\right)\left(v_{3}, u_{s}\right) \ldots\left(v_{t}, u_{s}\right) .
$$

This is clearly a degree monotone path in $G \square H$ with $t+s-1$ vertices, and hence $m p(G \square H) \geq m p(G)+m p(H)-1$.

Now let us consider the degree monotone path in in $G \square H$ of maximum length $r=m p(G \square H)$ with vertices z_{i} for $1 \leq i \leq r$. Let us label $z_{i}=\left(v_{a_{i}}, u_{b_{i}}\right)$. So consider the vertices from z_{1} to $z_{i}=\left(v_{a_{i}}, u_{b_{i}}\right)$: for vertex z_{i+1}, either the v coordinate or the u coordinate will change but not both.

If the v coordinate changes, then $z_{i+1}=\left(v_{a_{i+1}}, u_{b_{i+1}}\right)$ where $a_{i+1}>a_{i}$ and $b_{i+1}=b_{i}$, hence it follows that $\operatorname{deg}\left(v_{a_{i+1}}\right) \geq \operatorname{deg}\left(v_{a_{i}}\right)$.

If the u coordinate changes, then $z_{i+1}=\left(v_{a_{i+1}}, u_{b_{i+1}}\right)$ where $a_{i+1}=a_{i}$ and $b_{i+1}>b_{i}$, hence it follows that $\operatorname{deg}\left(u_{b_{i+1}}\right) \geq \operatorname{deg}\left(u_{b_{i}}\right)$.

Now let us consider those vertices in which the index $a_{i+1}>a_{i}$, which implies that the corresponding vertices in G are distinct - it is clear that these vertices form a degree monotone paths in G. Hence if the number of such vertices is $t, t \leq m p(G)$.

Similiarly, if we consider the vertices in which the index $b_{i+1}>b_{i}$, the corresponding vertices in H are distinct and form a degree monotone path in H - if the number of such vertices is s, then $s \leq m p(H)$.

Now since for each move from z_{i} to z_{i+1}, only one coordinate changes, we have at most st coordinates, hence $m p(G \square H) \leq m p(G) m p(H)$.

Now we look at construction which achieve these bounds. Firstly, let $G=$ $H=K_{1, m}$, where $m \geq 2$, and hence $m p(G)=m p(H)=2$. In $G \square H$ there is one vertex of degree $2 m, 2 m$ vertices of degree $m+1$ which are independent, and m^{2} vertices of degree 2 which are independent. Hence the longest degree monotone path has three vertices so $m p(G \square H)=2=m p(G)+m p(H)-1$.

Now for the upper bound, let G be a connected regular graph on t vertices and let H be a graph such that $m p(H)=s$. Let the vertices of G be v_{1}, \ldots, v_{t}, and let the vertices u_{1}, \ldots, u_{s} in H be vertices on a longest degree monotone path in H.

Now in $G \square H$, consider the path

$$
\left(v_{1}, u_{1}\right),\left(v_{2}, u_{1}\right), \ldots,\left(v_{t}, u_{1}\right),\left(v_{t}, u_{2}\right),\left(v_{t-1}, u_{2}\right), \ldots,\left(v_{1}, u_{2}\right),\left(v_{1}, u_{3}\right), \ldots\left(v_{t}, u_{3}\right), \ldots
$$

and we carry on in this fashion until we have used all the st vertices. This path is degree monotone and hence $m p(G \square H)=m p(G) m p(H)$.

4.2 Graph join

The graph join $G+H$ of two graphs G and H with disjoint vertex sets, $V(G)$ and $V(H)$ and disjoint edge sets $E(G)$ and $E(H)$ is the graph such that

- $V(G+H)=V(G) \cup V(H)$
- $E(G+H)=E(G) \cup E(H) \cup\{x y: x \in V(G), y \in V(H)\}$

We now consider degree monotone paths in $G+H$.
Theorem 4.2. Given two graphs G and H,

$$
m p(G)+m p(H) \leq m p(G+H) \leq|V(G)|+|V(H)|
$$

and both bounds are sharp.
Proof. The upper bound is trivial since for any graph $m p(G) \leq|V(G)|$. So let us consider the lower bound. Let $P=v_{1}, v_{2}, \ldots, v_{t}$ be a degree monotone path of maximum length in G and let $P^{*}=u_{1}, u_{2}, \ldots, u_{s}$ be a degree monotone path of maximum length in H. Let us rearrange $\left\{v_{1}, \ldots, v_{t}, u_{1}, \ldots, u_{s}\right\}$ in nondecreasing order according to their degrees in $G+H$, noting that $d e g_{G+H}(v)=$ $\operatorname{deg}_{G}(v)+|V(H)|$ while $\operatorname{deg}_{G+H}(u)=\operatorname{deg}_{H}(u)+|V(G)|$. Then it is clear that these vertices form a degree monotone path in $G+H$ of length $s+t$, hence $m p(G+H) \leq m p(G)+m p(H)$.

Let us consider the upper bound. Let G and H be two graphs such that $|V(G)|=|V(H)|$ and G and H have the same degree sequence. We write the vertices of $G+H$ in non-decreasing order of their degrees such that each vertex of the G part is followed by the corresponding vertex in the H part. So for the degree monotone path in $G+H$, we start with the vertex of smallest degree in $G+H$ and alternately take vertices of this same degree from H and G until all vertices of this degree are included in the path: we then move to the second smallest degree in G and carry out the same procedure for every different degree in the sequence. There is an even number of vertices in $G+H$ of each degree since G and H have the same number of vertices and the same degree sequence, so this alternating path can be continued until all vertices in $G+H$ have been included, which implies that $m p(G+H)=|V(G)|+|V(H)|$ in this case, achieveing the upper bound.

For the lower bound, consider $G=K_{1, m}$ and $H=K_{k}$. So $m p(G)=2$ and $m p(H)=k$. Then in $G+H$ there are $k+1$ vertices of degree $k+m$, namely the vertices of H and the vertex of degree m in G, and the m vertices of degree $k+1$ that are independent. So if we can start the path with a vertex of degree $k+1$, and then we must move to a vertex of degree $k+m$, and all the vertices of this degree can be included in the path. hence $m p(G+H)=1+k+1=$ $2+k=m p(G)+m p(H)$.

5 Conclusion

We have given sharp bounds for $m p\left(G^{\prime}\right)$ in terms of $m p(G)$ where G^{\prime} is obtained from G by the most basic operations involving a single vertex or edge. We have shown that the effect of edge contraction on $m p(G)$ in the case of K_{3}-free graphs is bounded (above and below) by a multiplicative factor, while there exist $K_{4}{ }^{-}$ free graphs for which $m p(G)=4$ while $m p(G \cdot e)=|V(G)|-1$. This leads to the following questions:

1. Is there a K_{4}-free graph G such that $m p(G)=3$ and $m p(G \cdot e) \geq|V(G)|-$ 1 ?
2. Is there a characterization of K_{4}-free graphs for which $m p(G \cdot e)$ is bounded above and below by a multiplicative factor?

We have also obtained sharp bounds for $m p(G \times H)$ in terms of $m p(G)$ and $m p(H)$ where \times is either the Cartesian product of the join of two graphs. Repeating this for other products, such as the direct product, might be interesting.

Finally, the notion of edge addition gives rise to the question of what the minimum number of edges of a graph G on n vertices can be if adding any edge increses $m p(G)$. This leads to a problem analogous to the saturation number of a graph [8, 10], and we shall be considering this in a forthcoming paper.

References

[1] B Bollobás. Extremal graph theory. Courier Dover Publications, 2004.
[2] Y. Caro, J. Lauri, and C. Zarb. Degree Monotone Paths. ArXiv e-prints, May 2014. submitted.
[3] J. Deering. Uphill \& Downhill Domination in Graphs and Related Graph Parameters. PhD thesis, ETSU, 2013.
[4] J. Deering, T.W. Haynes, S.T. Hedetniemi, and W. Jamieson. Downhill and uphill domination in graphs. 2013. submitted.
[5] J. Deering, T.W. Haynes, S.T. Hedetniemi, and W. Jamieson. A polynomial time algorithm for downhill and uphill domination. 2013. submitted.
[6] M. Eliáš and J. Matoušek. Higher-order erdős-szekeres theorems. Advances in Mathematics, 244:1-15, 2013.
[7] P. Erdös and G. Szekeres. A combinatorial problem in geometry. Compositio Mathematica, 2:463-470, 1935.
[8] J.R. Faudree, R.J. Faudree, and J.R. Schmitt. A survey of minimum saturated graphs. The Electronic Journal of Combinatorics, 1000:DS19-Jul, 2011.
[9] T. W. Haynes, S. T. Hedetniemi, J. D. Jamieson, and W. B. Jamieson. Downhill domination in graphs. Discussiones Mathematicae Graph Theory. accepted.
[10] L. Kászonyi and Z. Tuza. Saturated graphs with minimal number of edges. Journal of graph theory, 10(2):203-210, 1986.
[11] D. B. West. Introduction to Graph Theory. Prentice Hall, 2 edition, September 2000.

