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Abstract

A path P in a graph G is said to be a degree monotone path if the
sequence of degrees of the vertices of P in the order in which they appear
on P is monotonic. The length of the longest degree monotone path in
G is denoted by mp(G). This parameter was first studied in an earlier
paper by the authors where bounds in terms of other parameters of G
were obtained.

In this paper we concentrate on the study of how mp(G) changes under
various operations on G. We first consider how mp(G) changes when an
edge is deleted, added, contracted or subdivided. We similarly consider the
effects of adding or deleting a vertex. We sometimes restrict our attention
to particular classes of graphs.

Finally we study mp(G×H) in terms of mp(G) and mp(H) where ×
is either the Cartesian product or the join of two graphs.

In all these cases we give bounds on the parameter mp of the modified
graph in terms of the original graph or graphs and we show that all the
bounds are sharp.

1 Introduction

Given a graph G, a degree monotone path is a path v1v2 . . . vk such that
deg(v1) ≤ deg(v2) ≤ . . . ≤ deg(vk) or deg(v1) ≥ deg(v2 ≥ . . . ≥ deg(vk).
This notion, inspired by the well-known Erdős-Szekeres Theorem [6, 7], was
introduced in [5] under the name of uphill and downhill path in relation to
domination problems, also studied in [3, 4, 9]. In [5], the authors specifically
suggested the study of the parameter mp(G), which denotes the length of the
longest degree monotone path in G. This parameter was first studied by the au-
thors in [2]. Links between this parameter and other classical paramaters such
as the chromatic number and clique number, using in particular the Gallai-Roy
Theorem [11] were explored, and lower bounds and upper bounds for mp(G)
were established in [2]. The close relation to Turan numbers [1] was also studied
and explained in [2].
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In this paper we consider another natural question related to the parameter
mp(G), that of the effect of graph operations on this parameter. We consider
both operations on a single graph G which produce a new graph G′, as well as
operations applied to two graphs to produce a new single graph.

In the first section, we consider operations involving edges, namely edge
addition and deletion, subdivision and edge contraction while in the second
section vertex addition and deletion is discussed. For each operation we obtain
sharp bounds on mp(G′), and give constructions which achieve these bounds.
In some cases, we consider the operation for a particular family of graphs which
gives more interesting results.

We then consider the Cartesian product and the graph join for two graphs
G and H, where again we give sharp bounds and constructions which achieve
these bounds.

Any graph theory terms not defined here can be found in [11].

2 Edge Operations

2.1 Edge Addition and Deletion

We now look at the concept of adding/deleting an edge to or from a given graph
G, and consider the effect of these operations on mp(G). We add an edge e
by connecting two vertices in V (G) which are non-adjacent, and the resulting
graph is denoted by G+ e, while when we delete an edge e, the resulting graph
is denoted by G− e.

Theorem 2.1. Given a graph G,

1. mp(G)+1
3 ≤ mp(G + e) ≤ 3mp(G).

2. mp(G)
3 ≤ mp(G− e) ≤ 3mp(G)− 1.

In both cases, the bounds attained are sharp.

Proof. Let us first consider the right hand sides of both inequalities.
1. Let G be a graph with mp(G) = k ≥ 1. If k = 1 then G is the empty
graph with no edges, hence mp(G + e) = 2 ≤ 3 = 3mp(G). So let us assume
that k ≥ 2.

Suppose that mp(G+e) = t ≥ 3k+1. Consider P = v1, v2, . . . , vt, a longest
degree monotone path in G + e in non-decreasing order. Observe that e must
have at least one of its vertices in P , otherwise P was originally in G.

Case 1.1. Let us assume that e = (vi, z), where z is not on the path. If
i = 1, then clearly v1, . . . , vt is also a degree monotone path in G and hence
t ≤ mp(G) = k < 3k, a contradiction.

If i = t then v1, . . . , vt−1 is a degree monotone path in G and hence t−1 ≤ k
which implies t ≤ k + 1 < 3k.

So let us assume 1 < i < t. Let us consider the paths v1, . . . , vi−1 and
vi, . . . , vt — both are non-decreasing degree monotone paths in G and hence
together they have length at most 2k, implying that t ≤ 2k < 3k.
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Case 1.2. Now assume e = (vi, vj), i < j. Hence, in G + e, all vertices in
P have the same degree as they have in G except for vi and vj whose degree
has increased by one. Consider the paths P1 = v1, . . . , vi, P2 = vi, . . . , vj−1 and
P3 = vj , . . . , vt.

P3 is clearly a degree monotone path in G since degG(vj)+1 = degG+e(vj) ≤
degG+e(vj+1) ( or j = t), hence |V (P3)| ≤ k. Similarly |V (P2)| ≤ k. So if
t ≥ 3k + 1, |V (P1)| ≥ k + 2 since vi is both in P1 and P2. But v1, . . . , vi−1
is a degree monotone path of length k + 1 in G, contradicting the fact the
mp(G) = k. Hence mp(G + e) ≤ 3k.

For sharpness of the bound, consider P3k, to which we add a leaf to vertices
v2 up to v3k−2 except vertices vk+1 and v2k+1, and we connect v3k−1 to a new
vertex z to which we add two leaves. Thus the resulting graph G+

1 has 6k − 2
vertices. Figure 1 shows the construction for k = 4. It is clear that mp(G+

1 ) = k.
Now if we add the edge e = (vk+1, v2k+1), these two vertices now have degree
3 also, and hence the path v1, v2, . . . , v3k−1, z is a degree monotone path so
mp(G+

1 + e) = 3k = 3mp(G+
1 ).

Figure 1: G+
1 when k = 4

2. Let G be a graph with mp(G) = k ≥ 1. If k = 1 then G is the empty
graph with no edges, hence we cannot delete edges. Therefore assume k ≥ 2
and suppose that mp(G−e) = t ≥ 3k. Let P = v1, . . . , vt be a degree monotone
path of maximum length in non-increasing order. Observe that e must have at
least one of its vertices in P , otherwise P was originally in G.

Case 2.1. Let us first assume that e = (vi, z), where z is not on the path.
If i = 1, then clearly v1, . . . , vt is also a degree monotone path in G and hence
t ≤ mp(G) = k < 3k, a contradiction.

If i = t then v1, . . . , vt−1 is a degree monotone path in G and hence t−1 ≤ k
which implies t ≤ k + 1 < 3k.

So let us assume 1 < i < t. Let us consider the paths v1, . . . , vi−1 and
vi, . . . , vt — both are non-increasing degree monotone paths in G and hence
together they have length at most 2k, implying that t ≤ 2k < 3k.

Case 2.2. Now assume e = (vi, vj), i < j. Hence, in G− e, all vertices in P
have the same degree as they have in G except for vi and vj whose degree has
decreased by one. Consider the paths P1 = v1, . . . , vi, vj , P2 = vi, . . . , vj−1 and
P3 = vi, vj , . . . , vt.

P3 is clearly a degree monotone path in G since vi and vj have a larger (by
1) degree in G and deg(vi) ≥ deg(vj). Similarly |V (P2)| ≤ k. So if t ≥ 3k,
|V (P1)| ≥ k + 3 since vi and vj are also on P2 and P3. But v1, . . . , vi−1 is a
degree monotone path of length k+1 in G, contradicting the fact the mp(G) = k.
Hence mp(G− e) ≤ 3k − 1.
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For sharpness, let us construct the graph G−1 as follows: we start with
P3k−1 and add three leaves to v1and a leaf to v2; we then connect vk+1 to v2k+1

— we call this edge e. Figure 2 shows the construction for k = 4. Clearly
mp(G−1 ) = k while mp(G−1 − e) = 3k− 1 with the path v1, . . . , v3k−1 and hence
mp(G−1 − e) = 3mp(G−1 )− 1.

Figure 2: G−1 when k = 4

Let us now turn to the lower bounds in both cases. These results are derived
from those for the upperbounds.

1. Suppose for some graph G, mp(G + e) < mp(G)+1
3 . Then if we take

H = G + e so that G = H − e, we have mp(H) < mp(H−e)+1
3 , which implies

that mp(H − e) > 3mp(H)− 1, contradicting the righthand side of part 2.
For sharpness, let G+

2 be the graph G−1 without the edge e. Then mp(G+
2 +

e) = k while mp(G+
2 ) = 3k − 1 giving mp(G+

2 + e) =
mp(G+

2 )+1
3 .

2. Suppose that for some graph G, mp(G−e) < mp(G)
3 . Then let H = G−e

so that G = H+e giving mp(H) < mp(H+e)
3 which implies mp(H+e) > 3mp(H),

contradicing the upper bound in part 1.
For sharpness of the bound, let G−2 be the graph G+

1 with the added edge

e = (vk+1, v2k+1). Then mp(G−2 ) = 3k and mp(G−2 − e) =
mp(G−2 )

3 .

2.2 Subdivision

Given a graph G and e = (u, v) ∈ E(G), the subdivision of e is the addition
of a new vertex w such that (u,w) is an edge and (w, v) is an edge but (u, v)
is no longer an edge. Note that the degree of u and v remains the same, and
the degree of w is 2. The graph obtained by subdividing e is denoted by G∗.
Again, we look at the effect of this operation on the maximum length of a degree
monotone path, mp(G).

Theorem 2.2. Let G be a graph and e = (u, v) an edge in G such that G∗ is
the graph obtained by subdividing e with the vertex w. Then⌈

mp(G) + 1

2

⌉
≤ mp(G∗) ≤ mp(G) + 1,

and both bounds are sharp.

Proof. Let us first consider the upper bound. Let P be a degree monotone path
of maximum length in G∗. We consider the following cases:
Case 1. If w 6∈ P , then P is a degree monotone path in G hence mp(G∗) ≤
mp(G).
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Case 2. If w ∈ P , then either u or v or both are in P otherwise P = {w}
which is not maximal. We consider these cases separately:

• If both u and v are in P then P −{w}∪ (u, v) is a degree monotone path
in G hence mp(G∗) ≤ mp(G) + 1.

• If only one of u or v, say u, is in P then P − {w} is a degree monotone
path in G and again mp(G∗) ≤ mp(G) + 1.

For sharpness of the bound, consider G = Pn the path on n vertices — then
mp(G) = n− 1, and subdividing any edge gives mp(G∗) = n = mp(G) + 1.

For the lower bound, let P be a degree monotone path of maximum length
in G and let P = v1, v2, . . . , vt, vt+1, . . . , vk, such that u = vt and v = vt+1. Let
us consider e = (u, v) and the subdividing vertex w.
Case 1. If e = (u, v) is not on the path P , then P is a degree monotone
path in G∗ hence mp(G∗) ≥ mp(G).
Case 2. If the edge e = (u, v) is in P , then as w subdivides e, we get
P ∗ = v1, . . . , vt, w, vt+1, . . . , vk a path in G∗, where vt = u and vt+1 = v.

We assume without loss of generality that P is a non-decreasing monotone
path, and hence deg(u) ≤ deg(v). The vertex w has degree 2. Now if deg(u) > 2,
the paths v1, . . . , vt and the paths w, vt+1, . . . , vk are degree monotone in G∗,
while if deg(u) ≤ 2, the path P ∗ is degree montone in G∗. Hence in G∗ there is

a degree monotone path of length at least
⌈
k+1
2

⌉
=
⌈
mp(G)+1

2

⌉
.

For sharpness of the lower bound, let us take the path Pn and add a leaf
to the vertices v2 up to vn−1. Hence mp(G) = n− 1. If we subdivide the edge

(vdn
2
e, vdn

2
e+1), we get mp(G∗) =

⌈
n
2

⌉
=
⌈
mp(G)+1

2

⌉
.

2.3 Edge Contraction

In a graph G, contraction of an edge e = (u, v) is the replacement of u and
v with a single vertex w adjacent (without multiple edges) to all vertices in
N(u)\v ∪ N(v)\u. The resulting graph G · e has one less vertex than G. In
case a vertex z ∈ V (G) is adjacent to both u and v, the degree of z in G · e
decreases by one — otherwise it remains the same as in G. In view of this we
first consider triangle-free graphs, in which case the degrees of the neighbours
of u and v remain unchanged in G · e, and deg(w) = deg(u) + deg(v)− 2.

Theorem 2.3. Let G be a triangle-free graph. Let e = uv be an edge of G
which is contracted to form G · e with new vertex w. Then

mp(G)

3
≤ mp(G · e) ≤ 2mp(G).

Proof. Let us first consider the upper bound. Clearly mp(G) ≥ 2 as if mp(G) =
1, G has no edges and G · e is not defined. Let P = v1v2 . . . vk be a degree
monotone path in non-decreasing order of maximum length in G · e. We know
that deg(w) = deg(u) + deg(v)− 2. Let us look at all the different possibilities.
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Case 1 : Assume first that deg(u) = deg(v) = 1 and hence deg(w) = 0. If
this was the only edge in G, then mp(G) = 2 while mp(G · e) = 1, and the
upper bound holds. If there are other edges in G, then mp(G ·e) = mp(G), and
again the upper bound holds.

Case 2 : Now assume 1 = deg(u) < deg(v) — then deg(w) = deg(v) − 1 in
G · e. We consider the following cases:

• Clearly, if w is not a vertex in P , then P is degree monotone in G too,
hence mp(G · e) ≤ mp(G).

• If w = v1 in P , then in G, v2 . . . vk is a degree monotone path, and hence
mp(G · e)− 1 ≤ mp(G) and hence mp(G · e) ≤ mp(G) + 1 ≤ 2mp(G).

• If w = vk, then v1 . . . vk−1v is degree monotone in G and hence mp(G·e) ≤
mp(G).

• If w = vj for 2 ≤ j ≤ k − 1, then v1 . . . vj−1v and vj+1 . . . vk are degree
monotone in G, and min{max{j, k − j}} = dk2e.

If k is odd, then mp(G) ≥ k+1
2 and hence mp(G · e) ≤ 2mp(G)− 1.

If k is even, then mp(G) ≥ k
2 and hence mp(G · e) ≤ 2mp(G).

Case 3 : It remains to consider, without loss of generality, the case

2 ≤ deg(u) ≤ deg(v) ≤ deg(w) = deg(u) + deg(v)− 2.

Again we consider each possibility.

• If in G, w is not a vertex in P , then P is degree monotone in G too, hence
mp(G · e) ≤ mp(G).

• If w = v1, then in G, either u or v is adjacent to v2 — since deg(u) ≤
deg(v) ≤ deg(w) then either uv2 . . . vk or vv2 . . . vk is a degree monotone
path in G, and hence mp(G·e)+1 ≤ mp(G) giving mp(G·e) ≤ mp(G)−1 ≤
2mp(G).

• If w = vk, then v1v2 . . . vk−1 is still a degree monotone path in G hence
mp(G · e)− 1 ≤ mp(G) that is mp(G · e) ≤ mp(G) + 1 ≤ 2mp(G).

• If w = vj , 2 ≤ j ≤ k − 1, then let us consider the following cases:

1. If in G, u is adjacent to both vj−1 and vj+1, and hence v is not adja-
cent to either of these vertices since G is triangle-free, then v1 . . . vj−1
and u, vj+1 . . . vk are degree monotone paths of length j − 1 and
k−j+1 respectively in G. Again, min{max{j−1, k−j+1}} = dk2e.
If k is odd, then mp(G) ≥ k+1

2 and hence mp(G · e) ≤ 2mp(G)− 1.

If k is even, then mp(G) ≥ k
2 and hence mp(G · e) ≤ 2mp(G).
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Figure 3: G1 when k = 4

2. If in G, u is adjacent to vj−1 and v is adjacent to vj+1, then if
deg(vj−1) ≤ deg(u) then v1v2, . . . , vj−1, u, v, vj+1, . . . vk is degree mono-
tone in G and hence mp(G·e)+1 ≤ mp(G) implying that mp(G·e) ≤
mp(G)− 1 ≤ 2mp(G).

If, on the other hand, deg(vj−1) > deg(u), then deg(u) ≤ deg(v) ≤
deg(w) ≤ deg(vj+1) and hence v1v2 . . . vj−1 and u, v, vj+1 . . . vk are
degree monotone paths in G of length j−1 and k−j+2 respectively.
In this case we consider min{max{j − 1, k − j + 2}}.
If k is even this is equal to k+2

2 , and hence mp(G · e) ≤ 2mp(G)− 2.

If k is odd, we get k+1
2 , and hence mp(G · e) ≤ 2mp(G)− 1.

3. If in G, v is adjacent to vj−1 and u is adjacent to vj+1, then v1v2 . . . vj−1
and uvj+1 . . . vk are degree monotone paths of length j−1 and k−j+1
respectively in G, and again min{max{j − 1, k − j + 1}} = dk2e.
If k is odd, then mp(G) ≥ k+1

2 and hence mp(G · e) ≤ 2mp(G)− 1.

If k is even, then mp(G) ≥ k
2 and hence mp(G · e) ≤ 2mp(G).

4. If in G, v is adjacent to both vj−1 and vj+1, and u is adjacent to nei-
ther since G is triangle-free, then v1 . . . vj−1 and u, v, vj+1 . . . vk are
degree monotone paths in G of length j−1 and k−j+2 respectively.
In this case we consider min{max{j − 1, k − j + 2}}.
If k is even this is equal to k+2

2 , and hence mp(G · e) ≤ 2mp(G)− 2.

If k is odd, we get k+1
2 , and hence mp(G · e) ≤ 2mp(G)− 1.

This bound is attained by the graph G1 constructed as follows: consider the
path on 2k + 1 vertices — we add a leaf to vertices v2 up to v2k, and to the
vertices vk and v2k we add a second leaf. Then mp(G) = k. If we contract
one of the edges joining vk and a leaf, then vertex w has degree 3 and hence
v1v2 . . . vk−1wvk+2 . . . v2k is degree monotone in G · e and has length 2k, giving
mp(G · e) = 2mp(G). Figure 3 shows the construction for k = 4.

We now consider the lower bound. Let P = v1 . . . vk be a degree monotone
path in non-decreasing order of maximum length in G. Let e = uv be the
edge contracted to vertex w in G · e, and without loss of generality, we assume
deg(u) ≤ deg(v). Clearly, if the vertices u and v are not on P , then P is still
degree monotone in G · e and hence mp(G · e) ≥ mp(G). So let us assume that
u and v are on P , and hence k = mp(G) ≥ 2. If k = 2, that is P = uv, then

mp(G · e) ≥ 1 ≥ mp(G)
2 . So let us assume that k ≥ 3 and hence deg(v) ≥ 2. So

let us assume that u and v are on P and mp(G) ≥ 3.

7



Case 1. We first consider the case in which either u or v, but not both, are
on P . Without loss of generality, Let u = vj be on P . Then in G · e, w is on
P , and v1 . . . vj−1 and vj+1 . . . vk are degree montone in G · e, of length j and
k − j respectively. Now min{max{j, k − j}} = dk2e.

If k is even then mp(G · e) ≥ mp(G)
2 ≥ mp(G)

3 .

If k is odd then mp(G · e) ≥ mp(G)+1
2 ≥ mp(G)

3 .

Case 2. We now consider the case in which u and v are in P but e = uv is
not in P . Let u = vi and v = vj in P ; in all cases j − i ≥ 3, otherwise we have
a copy of K3 in G — we consider the following cases:

• If i = 1 and j = k, then v2 . . . vk−1w is degree monotone in G · e, hence

mp(G · e) ≥ mp(G)− 1 ≥ mp(G)
3 since mp(G) ≥ 2.

• If i = 1 and 4 ≤ j < k, then v2 . . . vj−1w and vj+1 . . . vk are degree
monotone in G · e. Hence we need min{max{j − 1, k − j}} = bk2c. Then

mp(G · e) ≥ bmp(G)
2 c ≥ mp(G)

3 .

• If i > 1 and j = k, then v1 . . . vi−1 and vi+1 . . . vk−1w are degree monotone
in G · e. Hence we need min{max{i− 1, k− i}} = bk2c. Then mp(G · e) ≥
bmp(G)

2 c ≥ mp(G)
3 .

• If 1 < i < j < k, then v1 . . . vi−1w, vi+1 . . . vj−1w and vj+1 . . . vk are
degree monotone in G · e, of lengths i, j − 1 and k − j respectively. Let
k = 3t + r where 0 ≤ r ≤ 2.

If k − j > t, then k − j ≥ t + 1 ≥ k
3 , and hence mp(G · e) ≥ mp(G)

3 .

So let us assume that k − j ≤ t and hence j ≥ k − t = 2t + r. Now
max{i, j − 1} ≥ 2t+r

2 = t + r
2 . If r = 0 then k ≥ 3t hence max{i, j − 1} =

t = k
3 . If r = 1, then k = 3t+1, then max{i, j−1} ≥ t+1 = k+2

3 > k
3 since

max{i, j − 1} must be an integer. Finally, if r = 2, then max{i, j − 1} ≥
t + 1 = k+1

3 > k
3 .

Hence, in each case, mp(G · e) ≥ mp(G)
3 .

Case 3. Finally, we consider the case in which e = uv is in P . We may
assume that mp(G) ≥ 3 since ifmp(G) = 2 then clearly mp(G · e) ≥ 1 ≥ mp(G)

3 .
This results in the following cases:

• If u = v1 and v = v2, then in G ·e, v3 . . . vk is degree monotone, and hence
mp(G · e) ≥ mp(G)− 2 ≥ mp(G)

3 for mp(G) ≥ 3.

• If u = vk−1 and v = vk, hence 2 ≤ deg(u) ≤ deg(v) ≤ deg(w), then in
G · e, v1 . . . vk−2w is degree monotone since deg(u) ≤ deg(v) ≤ deg(w) =

deg(u)+deg(v)−2. Hence mp(G·e) ≥ mp(G)−1 ≥ mp(G)
3 for mp(G) ≥ 3.

• If u = vj and v = vj+1 for 2 ≤ j ≤ k−2 (so k ≥ 4 otherwise we have one of
the previous two cases), then in G·e, v1 . . . vj−1w and vj+2 . . . vk are degree
monone paths of lengths j and k − j − 1 respectively— hence we must
consider min{max{j, k − j − 1}} = dk2e. Hence mp(G · e) ≥ dk2e ≥

mp(G)
3

as required.
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The bound is attained by the following construction to give graph G3: let us
take the path on 3k + 3 vertices — we add a leaf to the vertices v2 up to v3k+2

except for vk+1 and v2k+2, and we connect these two vertices by an edge e. We
also attach three leaves to each of the leaves attached to vk+2 and v2k+1. Finally
we add 3 leaves to vertex v3k+3. Thus deg(v1) = 1, deg(v2) = deg(v3) . . . =
deg(v3k+2) = 3 and deg(v3k+3) = 4, hence mp(G) = 3k+3. Now let us contract
the edge e. Then deg(v1) = 1, deg(v2) = deg(v3) . . . = deg(vk) = deg(vk+2) =
. . . = deg(v2k+1) = deg(v2k+3) = . . . = deg(v3k+2) = 3 and deg(v3k+3) = 4.
Vertex w has degree 4. Hence the possible degree monotone paths in G · e are
v1 . . . vkw, vk+2 . . . v2k+1w and v2k+3 . . . v3k+3 — all these are of length k + 1

and therefore mp(G3 · e) = mp(G3)
3 . Figure 4 shows the construction for k = 3.

Figure 4: G3 when k = 4

The following proposition shows that if we consider contraction in graphs
which are not triangle-free, the situation is very different.

Theorem 2.4. There exist arbitrarily large K4-free graphs G on n vertices such
that mp(G) = 4 while mp(G.e) = |V (G · e)| = n− 1.

Proof. Consider the following construction: G is the graph constructed by tak-
ing a path P = v1 . . . v4k on 4k vertices where k ≥ 2, and another edge e = uv.
We connect the vertices v2i ∈ P , 1 ≤ i ≤ 2k to both u and v — we then
connect v2i−1 ∈ P for 1 ≤ i ≤ k to u, and v2i−1 ∈ P for k + 1 ≤ i ≤ 2k to
v. Finally we connect v1 to v4k. Figure 5 gives the construction for k = 2. G
is not triangle-free, but it is K4-free. One can see that in P , the vertices with
even index have degree 4, while the vertices with odd index have degree 3, and
deg(u) = deg(v) = 3k. Hence it is clear that mp(G) = 4 for any value of k ≥ 2.
Now if we contract e = uv to a vertex w, all vertices in P have degree 3, while
deg(w) = 4k ≥ 3, and therefore mp(G · e) = 4k + 1.

3 Vertex Addition and Deletion

Given a graph G, we can add a vertex v and connect it to at least one vertex
in G to give the graph G+ v. On the other hand, given a graph G and a vertex
v ∈ V (G), the graph G − v is obtained by deleting the vertex v and all its

9



Figure 5: G when k = 3

incident edges. The effect on the maximum length of a degree monotone path
can be seen through the following observations.

Proposition 3.1. Given a graph G and v ∈ V (G),

1. 2 ≤ mp(G + v) ≤ |V (G)|+ 1

2. 1 ≤ mp(G− v) ≤ |V (G)| − 1

Proof.
1. Consider the complete bipartite graph G = Kn,n+1 so that mp(G) = 2.
We add a vertex v1 and connect it to all the vertices in the larger part, to give
H = G + v1 = Kn+1,n+1 — now mp(G + v1) = mp(H) = |V (G)| + 1. Now if
we add another vertex v2 and connect it to all the vertices in one part of the
partition, we get H + v2 = F = Kn+1,n+2 and again mp(H + v2) = mp(F ) = 2.

2. For the upperbound, consider the graph G = Kn — then mp(G) = n,
and G− v = Kn−1 hence mp(G− v) = n− 1 = |V (G)| − 1.

For the lower bound consider G = K1,m, m ≥ 1. Then deleting the vertex
of degree m gives mp(K1,m − v) = mp(G− v) = 1.

In view of this general result, we consider vertex addition and deletion for the
family of trees. The following example shows that if one adds non-leaf vertices,
the effect on mp(G) can be quite drastic. Consider the tree T constructed by
taking a path on 2k + 1 vertices (v1v2 . . . v2k+1), k ≥ 1, and adding a leaf to
the vertices v2i, 1 ≤ i ≤ k. Clearly this tree has mp(T ) = 2. Let us add a
vertex v and connect it to the vertices v2i+1, 0 ≤ i ≤ k. So now all the vertices
on the path have degree 3 except for v1 and v2k+1, and vertex v has degree
k + 1 ≥ 2. Hence there is now a degree monotone path of length 2k + 1, that
is mp(T + v) = 2k + 1. Hence, in the sequel, we only consider the addition of
leaves, so that the resulting graph is another tree.

Theorem 3.2. Let T be a tree and v ∈ V (T ),

1. If we add a vertex v such that T + v is also a tree, then

mp(T )

2
≤ mp(T + v) ≤ 2mp(T ).
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2. If v ∈ V (T ) such that T − v is a tree, then

mp(T )

2
≤ mp(T − v) ≤ 2mp(T ).

In both cases, the bounds attained are sharp.

Proof. Let us first consider the upper bound for each case.
1. If T + v is a tree then clearly v is a leaf otherwise it would form a cycle.
Let P = v1, v2, . . . , vk be a degree monotone path of maximum length in T + v
in non-decreasing order. Observe that k ≥ 2 as T +v contains at least one edge.
So we consider all possible cases.

• If v is not adjacent to any vertex in P then P is a degree monotone path
in T hence mp(T + v) ≤ mp(T ).

• If v is adjacent to v1, then v, v1, . . . , vk is a degree monotone path in T +v
contradicting the maximality of P .

• If v = v1 then v2, . . . , vk is a degree monotone path in T of length k−1 so
k − 1 ≤ mp(T ) and hence 2mp(t) ≥ 2k − 2 ≥ k = mp(T + v) since k ≥ 2.

• If v is adjacent to vk, then v1, . . . , vk−1 is a degree monotne path in T ,
hence again 2mp(t) ≥ 2k − 2 ≥ k = mp(T + v) since k ≥ 2.

• If v = vk, this implies that deg(v) = 1 and that k = 2, and since T is not
K1, mp(T ) ≥ 2 hence 2mp(T ) ≥ 4 > 2 = k = mp(T + v). (If T = K1

then trivially T + v = K2 so mp(T + v) = 2 = 2mp(T ).)

• Let v be adjacent to some vj for 2 ≤ j ≤ k − 1. Note that v can only
be v1 or vk in P since it is a leaf. Consider v1, . . . , vj−1 which is a degree
monotone path in T hence j − 1 ≤ mp(T ). Similarly vj , . . . , vk is also a
degree monotne path in T with length at most mp(T ) hence by adding
we get mp(T + v) ≤ 2mp(T ) as required.

For sharpness, consider the tree T+
1 constructed as follows: take the path

on 2k+ 1 vertices v1, . . . , v2k+1, where k ≥ 2 — we add a leaf to all the vertices
except v1,vk+1 and v2k+1. Then mp(T+

1 ) = k. If we add a vertex v and connect
it to vertex vk+1, then mp(T+

1 + v) = 2k = 2mp(T+
1 ). Figure 6 shows the

construction for k = 4.

Figure 6: T+
1 when k = 4

2. Let P = v1, v2, . . . , vk be a degree monotone path of maximum length in
T − v in non-decreasing order. Not that if k = 1 then T − v has no edges which
imples that T = K1,m for some m ≥ 1, and so mp(T ) = 2 = 2mp(T − v).
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So let us assume that k ≥ 2. If in T v is not adjacent to any vertex of P ,
then P is also a degree monotone path in T , hence mp(T − v) = k ≤ mp(T ) <
2mp(T ).

So we consider the case in which v is adjacent to exactly one vertex in P .
We consider the different scenarios.

• If v is adjacent to v1 in T , then v2, . . . , vk is a degree monotone path of
length k− 1 in T hence mp(T − v) = k ≤ 2(k− 1) ≤ 2mp(T ) since k ≥ 2.

• If v is adjacent to vk in T then v1, . . . , vk is also a degree monotone path
in T , hence again mp(T − v) = k ≤ mp(T ) < 2mp(T ).

• If v is adjacent to some vj for 2 ≤ j ≤ k − 1, then consider in T the path
v1, . . . , vj — this is degree monotone hence j ≤ mp(T ). Now vj+1, . . . , vk
is also a degree monotone path in T and has length at most mp(T ).
Adding, we get mp(T − v) ≤ 2mp(T ) as required.

For sharpness consider the graph T−1 constructed as follows — we take a path
on 2k+1 vertices for k ≥ 2 and we add a leaf to vertex vk and to vertex v2k. Then
mp(T−1 ) = k, while if v is the leaf attached to vk, mp(T−1 −v) = 2k = 2mp(T−1 ).
Figure 7 shows the construction for k = 4.

Figure 7: T−1 when k = 4

We now consider the lower bounds.

1. Assume mp(T + v) < mp(T )
2 . Let T ′ = T + v hence T = T ′ − v — then

mp(T ′) < mp(T ′−v)
2 implying that mp(T ′ − v) > 2mp(T ′), contradicting the

upper bound in part 2.
For sharpness, let T+

2 be the path on 2k + 1 vertices, k ≥ 2, with a leaf
added to vertex v2k. Then mp(T+

2 ) = 2k. We add a vertex v and connect it to

the vertex vk — then mp(T+
2 + v) = k =

mp(T+
2 )

2 .

2. Assume mp(T − v) < mp(T )
2 . Let T ′ = T − v hence T = T ′ + v —

then mp(T ′) < mp(T ′+v)
2 implying mp(T ′ + v) > 2mp(T ′), contradicting the

upperbound in part 1.
For sharpness, we construct the graph T−2 as follows: take the path on 2k+1

vertices for k ≥ 2 and add a leaf to every vertex except the first and the last so
that mp(T−2 ) = 2k. Consider the leaf v connected to vk+1 — if we delete this

vertex, mp(T−2 − v) = k =
mp(T−2 )

2 .
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4 Operations involving two graphs

4.1 Cartesian Product

The Cartesian product G � H of graphs G and H is a graph such that the
vertex set of G � H is the Cartesian product V (G)×V (H) and any two vertices
(u, u′) and (v, v′) are adjacent in G � H if and only if either

• u = v and u′ is adjacent with v′ in H, or

• u′ = v′ and u is adjacent with v in G.

Theorem 4.1. Let G and H be two connected graphs. Then

mp(G) + mp(H)− 1 ≤ mp(G � H) ≤ mp(G)mp(H)

and both bounds are sharp.

Proof. Let us first consider the lower bound. Let v1 . . . vt be a longest degree
monotone path in G, and let u1 . . . us be a longest degree monotne path in H,
both in non-decreasing order.

Consider the path in G � H with vertex coordinates

(v1, u1)(v1, u2) . . . (v1, us)(v2, us)(v3, us) . . . (vt, us).

This is clearly a degree monotone path in G � H with t + s − 1 vertices, and
hence mp(G � H) ≥ mp(G) + mp(H)− 1.

Now let us consider the degree monotone path in in G � H of maximum
length r = mp(G � H) with vertices zi for 1 ≤ i ≤ r. Let us label zi = (vai , ubi).
So consider the vertices from z1 to zi = (vai , ubi): for vertex zi+1, either the v
coordinate or the u coordinate will change but not both.

If the v coordinate changes, then zi+1 = (vai+1 , ubi+1
) where ai+1 > ai and

bi+1 = bi, hence it follows that deg(vai+1) ≥ deg(vai).
If the u coordinate changes, then zi+1 = (vai+1 , ubi+1

) where ai+1 = ai and
bi+1 > bi, hence it follows that deg(ubi+1

) ≥ deg(ubi).
Now let us consider those vertices in which the index ai+1 > ai, which

implies that the corresponding vertices in G are distinct — it is clear that these
vertices form a degree monotone paths in G. Hence if the number of such
vertices is t, t ≤ mp(G).

Similiarly, if we consider the vertices in which the index bi+1 > bi, the
corresponding vertices in H are distinct and form a degree monotone path in
H — if the number of such vertices is s, then s ≤ mp(H).

Now since for each move from zi to zi+1, only one coordinate changes, we
have at most st coordinates, hence mp(G � H) ≤ mp(G)mp(H).

Now we look at construction which achieve these bounds. Firstly, let G =
H = K1,m, where m ≥ 2, and hence mp(G) = mp(H) = 2. In G � H there is
one vertex of degree 2m, 2m vertices of degree m + 1 which are independent,
and m2 vertices of degree 2 which are independent. Hence the longest degree
monotone path has three vertices so mp(G � H) = 2 = mp(G) + mp(H)− 1.
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Now for the upper bound, let G be a connected regular graph on t vertices
and let H be a graph such that mp(H) = s. Let the vertices of G be v1, . . . , vt,
and let the vertices u1, . . . , us in H be vertices on a longest degree monotone
path in H.

Now in G � H, consider the path

(v1, u1), (v2, u1), . . . , (vt, u1), (vt, u2), (vt−1, u2), . . . , (v1, u2), (v1, u3), . . . (vt, u3), . . .

and we carry on in this fashion until we have used all the st vertices. This path
is degree monotone and hence mp(G � H) = mp(G)mp(H).

4.2 Graph join

The graph join G + H of two graphs G and H with disjoint vertex sets, V (G)
and V (H) and disjoint edge sets E(G) and E(H) is the graph such that

• V (G + H) = V (G) ∪ V (H)

• E(G + H) = E(G) ∪ E(H) ∪ {xy : x ∈ V (G), y ∈ V (H)}

We now consider degree monotone paths in G + H.

Theorem 4.2. Given two graphs G and H,

mp(G) + mp(H) ≤ mp(G + H) ≤ |V (G)|+ |V (H)|,

and both bounds are sharp.

Proof. The upper bound is trivial since for any graph mp(G) ≤ |V (G)|. So
let us consider the lower bound. Let P = v1, v2, . . . , vt be a degree monotone
path of maximum length in G and let P ∗ = u1, u2, . . . , us be a degree monotone
path of maximum length in H. Let us rearrange {v1, . . . , vt, u1, . . . , us} in non-
decreasing order according to their degrees in G+H, noting that degG+H(v) =
degG(v) + |V (H)| while degG+H(u) = degH(u) + |V (G)|. Then it is clear that
these vertices form a degree monotone path in G + H of length s + t, hence
mp(G + H) ≤ mp(G) + mp(H).

Let us consider the upper bound. Let G and H be two graphs such that
|V (G)| = |V (H)| and G and H have the same degree sequence. We write
the vertices of G + H in non-decreasing order of their degrees such that each
vertex of the G part is followed by the corresponding vertex in the H part. So
for the degree monotone path in G + H, we start with the vertex of smallest
degree in G + H and alternately take vertices of this same degree from H and
G until all vertices of this degree are included in the path: we then move to
the second smallest degree in G and carry out the same procedure for every
different degree in the sequence. There is an even number of vertices in G + H
of each degree since G and H have the same number of vertices and the same
degree sequence, so this alternating path can be continued until all vertices in
G + H have been included, which implies that mp(G + H) = |V (G)|+ |V (H)|
in this case, achieveing the upper bound.
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For the lower bound, consider G = K1,m and H = Kk. So mp(G) = 2 and
mp(H) = k. Then in G + H there are k + 1 vertices of degree k + m, namely
the vertices of H and the vertex of degree m in G, and the m vertices of degree
k + 1 that are independent. So if we can start the path with a vertex of degree
k + 1, and then we must move to a vertex of degree k + m, and all the vertices
of this degree can be included in the path. hence mp(G + H) = 1 + k + 1 =
2 + k = mp(G) + mp(H).

5 Conclusion

We have given sharp bounds for mp(G′) in terms of mp(G) where G′ is obtained
from G by the most basic operations involving a single vertex or edge. We have
shown that the effect of edge contraction on mp(G) in the case of K3-free graphs
is bounded (above and below) by a multiplicative factor, while there exist K4-
free graphs for which mp(G) = 4 while mp(G · e) = |V (G)| − 1. This leads to
the following questions:

1. Is there a K4-free graph G such that mp(G) = 3 and mp(G ·e) ≥ |V (G)|−
1?

2. Is there a characterization of K4-free graphs for which mp(G·e) is bounded
above and below by a multiplicative factor?

We have also obtained sharp bounds for mp(G × H) in terms of mp(G)
and mp(H) where × is either the Cartesian product of the join of two graphs.
Repeating this for other products, such as the direct product, might be inter-
esting.

Finally, the notion of edge addition gives rise to the question of what the
minimum number of edges of a graph G on n vertices can be if adding any edge
increses mp(G). This leads to a problem analogous to the saturation number
of a graph [8, 10], and we shall be considering this in a forthcoming paper.
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