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Generative Adversarial Networks (GANs) are promising analytical tools in

machine learning applications. Characterizing atypical neurodevelopmental

processes might be useful in establishing diagnostic and prognostic

biomarkers of psychiatric disorders. In this article, we investigate the potential

of GANs models combined with functional connectivity (FC) measures to

build a predictive neurotypicality score 3-years after scanning. We used a

ROI-to-ROI analysis of resting-state functional magnetic resonance imaging

(fMRI) data from a community-based cohort of children and adolescents

(377 neurotypical and 126 atypical participants). Models were trained on data

from neurotypical participants, capturing their sample variability of FC. The

discriminator subnetwork of each GAN model discriminated between the

learned neurotypical functional connectivity pattern and atypical or unrelated

patterns. Discriminator models were combined in ensembles, improving

discrimination performance. Explanations for the model’s predictions are

provided using the LIME (Local Interpretable Model-Agnostic) algorithm and

local hubs are identified in light of these explanations. Our findings suggest

this approach is a promising strategy to build potential biomarkers based on

functional connectivity.
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Introduction

Most common and severe mental disorders first
manifest during childhood, adolescence, and early adulthood
(Kessler et al., 2005; Solmi et al., 2021). Atypical or delayed
neurodevelopmental trajectories due to complex interactions
between genetic and environmental factors have been proposed
as the underlying mechanism for some common mental
disorders (Shaw et al., 2007; Di Martino et al., 2014; João Ricardo
Sato et al., 2019). Better describing atypical neurodevelopmental
trajectories might presumably improve predictions of mental
health prognosis and better inform preventive interventions.

More specifically, resting-state fMRI (rs-fMRI) based
functional connectivity can be used to assess brain
developmental trajectories prospectively and non-invasively in
children and adolescents (Grayson and Fair, 2017). Functional
connectivity is operationally defined as a measure of statistical
dependence between the recorded neural activity of spatially
segregated brain regions (Friston, 2011). In a common
approach for connectivity analysis, cortical parcellations
are used to identify regions of interest (ROIs) presenting
homogeneous blood oxygen level-dependent (BOLD) signals
(Gordon et al., 2016). ROI-to-ROI pairwise correlations are
then used to quantify fMRI signal temporal dependencies
yielding the so-called functional connectivity matrix (Li
et al., 2009). This data format is an appropriate raw feature
set for further analysis, as it summarizes the connectivity
states in a given subject and can be collected across subject
groups.

Machine learning methods and strategies are increasingly
used in clinical research and applications. Among machine
learning approaches, artificial neural networks have been
extensively adopted due to their good predictive power.
In particular, Generative Adversarial Networks (GANs) have
shown promising results in the context of semi-supervised
learning and generative models, especially in cases in which
researchers are interested not only in identifying patterns but
also in reliably reproducing them.

Generative adversarial networks (GANs) consist of a double
artificial network trained in a game-like environment where two
subnets (i.e., generator and discriminator) compete during the
optimization process. The generator yields samples from a latent
space vector in an attempt to fool the discriminator so that it
classifies fake data as real. More generally, the discriminator
subnetwork differentiates a modeled pattern from another,
helping the generator produce more realistic samples through
an adversarial training process.

In this study, we built on these characteristics of GANs
to develop and test a normative approach to evaluate atypical
trajectories. Models were trained using only neurotypical
participants’ functional connectivity matrix data, capturing the
variability across participants without a psychiatric diagnosis.
For the output scores of these models, neuroatypical functional

connectivity patterns should appear as outliers, regardless of the
diversity of neuroatypical profiles. Furthermore, this approach
allowed us to explore different patterns of neurotypicality by
observing the resulting generator subnetwork.

Though still scarce, previous studies have applied GANs
and resting-state functional connectivity for data augmentation
and illness classification in major depressive disorder (MDD),
schizophrenia (SZ) (Zhao et al., 2020), and both attention deficit
hyperactivity disorder (ADHD), and autism spectrum disorder
(ASD) (Yao and Lu, 2019). Other studies applying GANs to
MRI data have been mainly focused on image reconstruction
(Shende et al., 2019) and generation (Kazuhiro et al., 2018;
Welander and Eklund, 2018; Kwon et al., 2019). In contrast
with these previous applications, we used GANs to construct
an “atypicality detector” and as a “reproducer” of neurotypical
fMRI data patterns.

In other words, it was possible to reproduce the neurotypical
state in the generator, while predicting a neurotypicality score
in the discriminator using the fMRI dataset collected 3 years
before a mental symptoms screening. We expect to differentiate
neurotypical real data from both fake generated data and real
neuroatypical data. As artificial neural networks have been
criticized for interpretability issues, we adopted an explainability
algorithm to measure specific large-scale network feature
contributions to each model. Furthermore, ensemble strategies
were explored to improve classification performance.

Materials and methods

Subjects

The data sample employed by this study comprises 550
children and adolescents (53% male) recruited from two public
Brazilian schools from São Paulo (site 1, N = 274) and Porto
Alegre (site 2, N = 276) cities. Participants were a subset
of the “High Risk Cohort Study for Psychiatric Disorders in
Childhood” (HRC, N = 2,512 participants, more details in Salum
et al., 2015). The age range was between 6 and 15 years old when
the fMRI data were acquired, and the Development and Well-
Being Assessment (DAWBA) was conducted approximately
3 years later. This assessment allows the classification of
subjects in healthy controls and any psychiatric disorder
condition, which is interesting for modeling purposes later
described. Further cognitive, behavioral, and sociodemographic
assessments were performed in the cohort (Salum et al., 2015).
Most subjects with psychiatric diagnostics presented emotional
disorders, such as major depression, and hyperkinetic disorders
such as ADHD. Both sites’ local ethics committees approved the
protocol of the study. Written and verbal consent was obtained
respectively by the legal guardians and by the children involved
in the study.
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Data acquisition protocol

Resting-state fMRI time-courses were obtained with an
HDX and an HD 1.5 Tesla Signa MR systems (G.E.), respectively
in site 1 and site 2. Both sites acquired scans through a 180 echo-
planar imaging (EPI) sequence, with the following acquisition
parameters: repetition time (TR) of 2,000 msec, echo time
(TE) of 30 msec, flip angle of 80◦, slice thickness of 4 mm,
gap of 0.5 mm, number of excitations (NEX) of 1, 26 axial
slices, 80 × 80 matrix size, 128 × 128, 1.875 × 1.875 mm
reconstruction matrix, performing 6 min of acquisition. Subjects
remained with eyes open in the scan which contained a
fixation point. High-resolution T1 images were acquired for
spatial normalization with a three-dimensional fast spoiled
gradient recalled echo sequence (TR of 10.91 msec, TE phase
of 4.2 msec, flip angle of 15◦, thickness of 1.2 mm, field of view
of 24.0 × 18.0 cm, NEX of 1 and 256 × 192 matrix size with up
to 160 axial slices for whole-brain coverage).

Five hundred and three (503) participants were assessed
using the DAWBA 3 years after the fMRI acquisition. The
assessment consisted of an interview with parents covering
emotional, hyperactivity, and behavioral disorders, as well as
more severe disorders (Goodman et al., 2000). Based on this
assessment, 377 subjects were considered to be neurotypical
(IQ: µ = 102.27, σ = 16.64) whereas 126 were considered
neuroatypical (IQ: µ = 100.96, σ = 16.93).

Preprocessing

Raw fMRI data were preprocessed using the CONN
toolbox v.16.b (1 Whitfield-Gabrieli and Nieto-Castanon,
2012) based on the SPM12 software.2 First, the functional
images were unwarped and the head motion was corrected.
Then, the brain tissues were segmented into gray and
white matter and cerebrospinal fluid. Next, the resultant
images were spatially normalized to the MNI ICBM152
template and then functionally normalized to the standard
space. After that, data were scanned for outlier detection
and scrubbing using the ART approach based on frame
displacement > 0.5 mm and global signal z > 3.3 Finally,
the functional images were spatially smoothed with a
full width at a half maximum (FWHM) equal to 8 mm.
Linear detrending was performed, as well as bandpass
filtering (0.008–0.09 Hz). The nuisance variables (i.e.,
cerebrospinal fluid and white-matter signals) were regressed
out using six head motion parameters (and their respective
derivatives), with motion censoring and the Simult approach
(Hallquist et al., 2013). The mean frame displacement before

1 https://www.nitrc.org/projects/conn/

2 http://www.fil.ion.ucl.ac.uk/spm/software/spm12/

3 https://www.nitrc.org/projects/artifact_detect/

motion censoring was 0.23 (std. = 0.29) and post was 0.11
(std. = 0.04).

Local representatives for the 333 regions-of-interest
(ROIs) as defined by Gordon et al. (2016) in its functional
cortical parcellation were obtained by averaging the voxel’s
BOLD signals. This atlas also labels each ROI as belonging
to a functional network (RSBFN); Following the previous
processing, pairwise temporal correlations were calculated for
each pair of different ROIs, resulting in functional connectivity
matrices using a Fisher transform. Vectorized upper triangular
matrices were used as inputs to the neural networks summing
up (3332–333)/2 = 55,278 unique features. Using all features for
training would be impractical due to the effect of dimensionality
on the nets’ optimization algorithm performance, so in the
following section we describe a dimensionality reduction
procedure.

Dimensionality reduction

In order to reduce the scope of this study, focusing mostly on
cognitive, attentional, and emotional circuitries, which are often
linked to neuroatypicality (Krain and Castellanos, 2006), we
opted to use up to five predictors in the ensemble construction,
one for each of the considered RSBFNs: Default Mode, Dorsal
Attention, Ventral Attention, Fronto-parietal and CO + SN
[combination of the Cingulo-opercular and Salience RSBFNs
as in Lopez-Larson et al. (2017)] as labeled in the Gordon
parcellation atlas.

After the organization of the connectivity matrices in
specific functional networks (subsets of features), a cleaning
process was carried out. First, a value of −2 was considered
the floor and 2 the ceiling, limiting the range of variation.
This procedure aims to concentrate the sensitivity of the
modeling process within a given significant range of the
output of the Fisher transform and facilitate the ingestion
in the following steps algorithms. Next, the values were
scaled to the interval [−1,1] required by the hyperbolic
tangent activation function utilized in the machine learning
models. Regarding quality control, an exclusion criterion was
applied, and so matrices with more than 15% of modified
cells were discarded. This step was conducted to reduce
outlier influences.

The above-mentioned cleaning step may cause the exclusion
of a subject from one functional network while it is preserved
in another, as subsets were processed separately. Thus, the
exclusion threshold may result in a variable number of samples
for each RSBFN depending on the alterations produced by the
cleaning process. In the scenario in which more data were
excluded (for the Default, VentralAttn, and CO + SN RSBFNs)
this resulted in the loss of 1 unlabeled, 11 neurotypical, and 2
neuroatypical subjects’ data, resulting respectively in 46, 366,
and 124 matrices lasting in each group. This effect is later
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discussed in the ensemble strategies to ensure each predictor
gets a vote on samples that were not excluded.

Figure 1 summarizes the final preprocessing steps. From
each set of specific functional net preprocessed matrices, only
neurotypical subjects’ data are used in training. Approximately
80% of the neurotypical data were used in 5-fold cross-
validation, so as to allow variability assessment for each trained
model. In the case when the most amount of data exclusion
was observed, the greatest multiple of 5 under the 80%
limit amounted to 290 matrices. Data from the remaining 76
neurotypical subjects were reserved for the evaluation set, as well
as a corresponding number of neuroatypical data samples. The
remaining 48 neuroatypical samples and the fold-out data (58
neurotypical matrices, a fifth of the training data, not used in
direct optimization of the models) were used respectively for
ensemble and model selection, which will be further discussed
afterward.

Generative adversarial networks design
and training

For each specific RSBFN several architectures were trained
in a standardized manner and on neurotypical data only. Five-
fold cross-validation to assess model stability and variability
(especially of the discriminator subnetwork, in terms of the bias-
variance tradeoff). Each GAN contained a feedforward structure
similar to the one described in Figure 2. A 100-length normally
distributed random vector was used as input to all the generator
subnetworks.

The output format of the generator was equal to the input
format of the discriminator and to the specific number of
features for each of the five data sets according to the five
RSBFNs used in training. Moreover, the output node of the

discriminator is always a single node that outputs a score
of neurotypicality for each sample. A variable number of
nodes was used in the hidden layers of both generators and
discriminators, always constrained to the input and output sizes
of each subnetwork.

Due to the variable number of features for each RSBFN
(from 276 to 976), we first assessed triangular and rectangular
networks with different numbers of neurons at each layer to
evaluate stability. GANs are known to have failure modes such
as a lack of convergence and mode collapse and they also need
to be balanced in terms of their subnetworks (Bhagyashree
and Nandi, 2020). Therefore, unbalanced GANs are easy to
spot, either because training neuroatypicality scores would not
raise for neurotypical training data or because the evolution
of these scores was rather noisy. By reducing the number of
layers in the generator subnetwork and utilizing Dropout layers
in the discriminator network, we were able to achieve a better
neighborhood of solutions.

Dropout layers randomly assign a value of 0 to the weights
of a given percentage of connections (Abadi et al., 2016). This
procedure was applied as a regularization tool stimulating the
learning process to be handled without being reliant on a
small number of inputs. Also, these layers simulate a smaller
number of features being inputted to the first hidden layer in the
discriminator, which in the case of bigger sets of features helped
to overcome dimensionality issues to some degree. Dropout
rates from 40 to 70% were evaluated. Hyperbolic tangent, the
Leaky version of the Rectified Linear Unit (LeakyReLU), and
Sigmoid activation layers (Abadi et al., 2016) were used in
different parts of the GAN models.

A Batch Normalization Layer (Abadi et al., 2016) was
utilized in the generator subnetworks. This layer normalizes
inputs from the previous layer, applying a transformation that
approximates the mean of the output to 0 and its standard

FIGURE 1

Preprocessing steps performed for datasets preparation. In blue, neurotypical data and processes only involving this type of data are identified.
In green, the same is done for neuroatypical data, while parts of the process involving a mixture of these two types of data are identified in
yellow. Note that only neurotypical subjects’ data is used for GAN training while a balanced evaluation dataset is used for the evaluation step.
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FIGURE 2

General structure of generative adversarial network (GAN) models. Each layer is only fed forward, represented by the color-coded rectangles.
The discriminator subnetwork is fed with batches of both generated (i.e., fake) data from the generator as well as genuine training data. rely on
100-length random noise vectors.

deviation to 1. It is able to encompass the learning of scaling
parameters during training and acts as a moving average
during evaluation/prediction using these parameters. Finally,
Flatten and Reshape layers were employed to reshape inputs
and outputs into usable formats respectively as tensors and
functional connectivity matrices.

Each GAN was trained in the following manner: the
discriminator subnetwork was trained in a standalone manner
with a mini-batch of 32 real samples. Then, the whole
GAN network (considering both subnetworks) was trained
using the false information that the generated samples were
real in an attempt to trick the frozen discriminator while
the generator is optimized. Freezing the discriminator while
training the generator keeps the latter from having a decrease
in performance allowing an increase in the performance of
the former (Abadi et al., 2016). Discriminator and generator
losses were calculated using Binary Cross-Entropy considering
the above-mentioned desired labels. An Adam optimizer with
a learning rate of 0.0002 was utilized in the training process of
both nets (Abadi et al., 2016).

Each training process was halted using a stop criterion
defined by a training metric. A moving window with 15,000
training epochs was used. Once the standard deviation of the
percentage of the training neurotypicality scores above 0.5 went
below 0.01 within this window, the training process stopped.
The percentage of training scores above 0.5 is an indicator
of how sensitive the discriminator has become to the training
samples, while the moving standard deviation window for
this metric ensures the training will stop when there is little
variability in the scores for a specific number of epochs, aiding
to avoid overfitting.

Model and ensemble generative
adversarial networks selection

Rectangular and triangular architectures were chosen for
each RSBFN based on training stability and performance across

training folds: 2 architectures for the Default, CO + SN, and
VentralAttn RSBFNs, 3 architectures for the FrontoParietal
and 4 for the DorsalAttn network. The performances on the
validation and test data sets were not considered for the selection
of architectures.

For each architecture, five training folds were performed and
evaluated in a fold-out. The model with the best performance
on the fold-out (neurotypical) data across folds was chosen to
participate in the ensemble construction as the representative
of the architechture. The considered performance metrics were
the percentage of neurotypicality scores above 0.5 and the mean
neurotypicality score for the fold-out matrices.

From individual RSBFN architectures, a combinatorial
approach was used to construct ensembles containing 0 or
1 model from each RSBFN, not necessarily containing more
than one RSBFN. Besides the null model, this approach
generated 539 ensembles.

Ensembles are a technique usually employed with so-
called weak predictors that, through bagging or boosting
strategies, attempt to improve prediction performance and/or
diminish prediction variability (Polikar, 2012). Alternatively, we
explored natural divisions in the data set, defined by the five
RSBFNs, so predictions are complementary to each other in a
more functional perspective. The exclusion of certain RSBFNs
aimed to reduce undesired information improving prediction
performance and explainability.

For each ensemble, its underlying RSBFNs models were
compared in terms of the subjects which were excluded in the
preprocessing stage (excessive outlier corrections threshold). If
subject A was excluded in the preprocessing of a RSBFN and
subject B was excluded in the preprocessing of another RSBFN
in the same ensemble, subjects A and B were excluded from
the evaluation data. In the case with the most divergence, two
matrices relative to neurotypical subjects were excluded due to
the impossibility of obtaining reliable predictions for at least one
of the models involved.

Two evaluation strategies were implemented. The first
assesses the average atypicality score among the ensemble
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models. The second consisted in a majority voting strategy
in which each model in the ensemble assigned one vote
defining if a given matrix corresponds to a neurotypical or
neuroatypical class (see Figure 3). The mean difference between
these two strategies lies in the fact that the magnitude of the
neurotypicality score is important in an average score which has
to be above 0.5 so that a subject is considered neurotypical. In a
voting strategy, all models have an equal contribution–although
the same threshold of 0.5 is used to compute the vote across
the models. In cases in which an even number of RSBFNs is
employed in a voting strategy, a tie will favor a neuroatypical
prediction. This approach aims to increase specificity and is
coherent with a normative approach, somewhat comparable to
anomaly detection.

Combining RSBFN models exhaustively can generate issues
related to the randomness of this procedure. Apart from
potentially being a misleading factor in the evaluation, it would
not provide a single best reliable model. Ranking models based
on their performance would only reflect the fact that combining
diverging scores may, in some cases, lead to an increase in
ensemble performance. Therefore, a validation set consisting of
neuroatypical matrices was used to select the best ensembles
before effective performance metric quantification was carried
out on the balanced evaluation dataset. In cases where the
same performance on the validation dataset was observed for
two models, the mean fold-out neurotypicality score across the
ensemble models was used as a tiebreaker criterion.

Accuracy, negative predictive values (NPV), positive
predictive values (PPV), sensitivity, and specificity were
obtained from the single best of the implemented ensembles. To

evaluate how different from a null model (i.e., random choices)
the predictions were, we computed the p-value of the balanced
accuracy (average between sensitivity and specificity metrics)
using bootstrap permutations of the labels in the evaluation
dataset. Ideally, a ROC-AUC (area under the receiver operating
characteristic curve) metric would be employed, but this metric
would not be adequate to evaluate the variation of the threshold
of votes (discrete) as well as the threshold for mean scores
(continuous). A significance value of α = 0.05 was chosen to test
the null hypothesis (i.e., the null model) rejection.

Explainability of the models

The LIME (Local Interpretable Model Agnostic) algorithm
(Ribeiro et al., 2016) was employed to improve the explainability
of the individual GAN discriminator models. This technique
performs a local linear approximation for a given prediction,
computing the importance of features for that sample,
without necessarily including all features as important to this
prediction (Ribeiro et al., 2016). This is useful when identifying
which features in each RSBFN have the most weight to
the predictions, that is, which connections are considered
more important for the assessment of neurotypicality
(i.e., possible local hubs with important dysconnectivity
effects).

As each feature corresponds to a connectivity measure
between two ROIs, it is possible to take an average of
all importance values for each feature across the evaluation
data to identify connections that were determinant to the

FIGURE 3

Schematic of the ensemble strategies employed. From a given subject regions of interest (ROI)-to-ROI preprocessed correlation matrix, specific
intra-functional net correlations are extracted to reduce dimensionality. For a given number of trained models in each of these functional nets,
a single model is chosen for each one of them, generating a score of neurotypicity for its specific functional net. To combinate models’ outputs,
two ensemble strategies were applied: Averaging models’ scores and converting these scores to votes to calculate majority. In both cases, not
necessarily all five functional nets were used to constitute an ensemble. An exhaustive strategy was used combining each trained model for
each functional net with a variable number of functional nets being used. A validation dataset was used to choose the best ensembles.
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FIGURE 4

Regions of interest (ROI) connections’ correlation with neurotypicality label. The complex pattern observed justifies the use of a machine
learning model, as no direct associations can be made directly from data.

model predictions. Likewise, one can average all connection
importance values across a given ROI for the matrix resulting
from the previous step, quantifying ROI centrality in the RSBFN
based on prediction values.

Higher mean values indicate greater importance for a given
functional connection to the considered class (i.e., neurotypical
or neuroatypical). From that, we can infer which relations hold
most of the importance for the prediction of neurotypicality.
Similarly, ROI centrality as described here shows the importance
of a given ROI as a local hub within the specific RSBFN in which
the prediction was made.

For the above-mentioned procedure, we chose the trained
models with the highest individual (considered in ensembles
with only themselves) accuracy for each of the five RSBFNs
used and obtained a LIME explanation for all samples in the
evaluation dataset. ROI centrality was considered separately for
neurotypical and neuroatypical groups.

Results

In Figure 4 it is possible to observe how each ROI
connection is correlated with the neurotypicality label. Not
only do several connections show little to no correlation with
neurotypicality, but also intricate patterns are observed in the
connections that do. In Figure 4, features are in fact only in areas
around the main diagonal (intra-RSBFN relations).

An estimated 45-min time frame was observed for
each training fold using a machine with an i7-9750H
processor with 2,6 GHz–with Python Tensorflow module
v.1.15.0, Keras module v.2.2.4 and NumPy v.1.19.2. The
workload was mostly memory and CPU-bound. Figure 5
illustrates the evolution of the discriminator accuracy
(genuine vs generated samples discrimination) and both
discriminator and generator losses for the single Dorsal
Attention model. This specific model contained 200 nodes
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in its generator single hidden layer, 50% of dropout rate, and
sequential 75, 50, and 25 nodes in its discriminator hidden
layers.

Mean and voting evaluation strategies are equivalent
and most of the models ranked low in the validation
data set performance. Accuracies varied between 0.51 and
0.59, with similar values for balanced accuracy. The best
individual models in terms of accuracy were used for
the computation of ROI centrality described in subsection
“Model and ensemble GANs selection.” In Figure 6 it
is possible to observe these results for each of the five
studied RSBFNs for both neurotypical and neuroatypical
subjects.

Considering models grouped in ensembles, first we can
consider the use of the highest fold-out percentage scores
above 0.5 as the fold selection method. Using the average
neurotypicality score across ensemble models as an evaluation
metric, we obtain a summary metric. The results for the best
model in this category as defined by the validation data criterion
for ten seeds (random parameter initialization of GAN weights)
are shown in Table 1.

Models with one and three predictors were among
the highest-ranking ones for the aforementioned strategy.
Although, in general, they presented high p-values for the
metric of balanced accuracy which did not allow for null

hypothesis rejection. The accuracy was greatly affected by the
performance in the neurotypical class, which is noticeable from
specificity values. This suggests that an average neurotypicality
score across models may be sensitive to high individual
scores (i.e., favoring the predictions of neurotypical scores–
above 0.5).

Voting strategies for the same fold selection method
showed improved performance when compared to the previous
evaluation strategy, as shown in Table 2. The best voting
strategy outcomes were seen for ensembles considering two
predictors, which can be explained by the number of votes
required to assign a neuroatypical prediction in these cases.
If both models in an ensemble with two predictors vote for
a neurotypical phenotype the final prediction does so. The
divergence between models can be exploited as an anomaly
detector–as the neuroatypical class was not modeled, individuals
in this class should appear as outliers with low neurotypicality
scores. Voting strategies also address the sensitivity of averages
to outliers (faulty scores in the ensemble who weigh in strongly
for a neurotypicality prediction), diminishing the negative effect
that models in different training points could have when
combined.

Fold selection strategies showed little to no difference in the
result of the above-mentioned evaluation strategies. The highest
mean neurotypicality score from fold-out often chose the same

FIGURE 5

Evolution of the discriminator accuracy and both discriminator and generator losses for a single DorsalAttn model with a triangular architecture.
Relative consistency across folds is displayed, showing model stability, especially in terms of the bias-variance tradeoff for the discriminator
subnetwork. In all folds except the third, it is noticeable when the training process was halted due to the predefined stop criterion. A seed
number of 0 was used for this specific training process (set for both NumPy and Tensorflow modules).
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FIGURE 6

Regions of interest (ROI) centrality. Each ROI belonged to a Resting State Brain Functional Network (RSBFN) and only intra-RSBFN relations were
considered. The referred models presented the highest accuracy among the architectures tested for their specific datasets. Centrality (color bar)
was derived from the average connection importance in predictions across neurotypical and neuroatypical subjects. Positive values indicate
ROIs whose connections raised the neurotypicality score while negative values indicate ROIs whose connections lowered this metric. High
values (in module) indicate great importance for the neurotypicality score. Group separation aims to ensure that the group’s neurological
differences are excluded as confounding factors.

fold of the former strategy (i.e., based on the percentage of
scores above 0.5).

Discussion

In this study, we employed a normative approach
to model neurotypicality from functional connectivity
profiles. We used a GAN model trained on functional
connectivity matrices from neurotypical subjects only,
having been able to replicate this pattern to new samples

in its generator and providing a neurotypicality score
in its discriminator. As our main result, this proposed
score is promising regarding the prediction of children’s
mental health 3 years in advance. Moreover, we proposed
and tested some model training, selection, ensemble, and
evaluation strategies.

First, we observed that model performance is dependent
on parameter initialization, i.e., it depends on the seed used
in the random initialization of the GAN weights. Most
studies in the literature rely on the results and performance
from a single trained GAN model, without assessing the
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TABLE 1 Ensemble performance of models with a mean score as evaluation metric and the highest percentage of fold-out scores above 0.5
for fold selection.

Method Mean score

Seed 0 1 2 3 4 5 6 7 8 9

Accuracy 0.54 0.53 0.51 0.54 0.59 0.55 0.55 0.59 0.57 0.57

Sensitivity 0.71 0.61 0.76 0.74 0.70 0.67 0.68 0.78 0.43 0.57

Specificity 0.37 0.46 0.25 0.34 0.47 0.43 0.42 0.41 0.70 0.57

PPV 0.53 0.53 0.50 0.53 0.57 0.54 0.54 0.57 0.59 0.57

NPV 0.56 0.54 0.51 0.57 0.61 0.57 0.57 0.65 0.55 0.57

Balanced accuracy 0.54 0.53 0.51 0.54 0.59 0.55 0.55 0.59 0.57 0.57

p-value 0.19 0.24 0.44 0.21 0.03 0.09 0.12 0.01 0.05 0.05

Note that the performance variables and p-values are seed-dependent. In this case, four of the ten different seeds yielded a model providing typical/atypical diagnosis prediction better
than chance (i.e., balanced accuracy > 0.5).

TABLE 2 Ensemble performance, with votes as evaluation metric and the highest percentage of fold-out scores above 0.5 for fold selection.

Method Vote

Seed 0 1 2 3 4 5 6 7 8 9

Accuracy 0.49 0.53 0.61 0.56 0.60 0.55 0.59 0.55 0.59 0.57

Sensitivity 0.53 0.39 0.75 0.47 0.58 0.53 0.61 0.66 0.39 0.51

Specificity 0.46 0.66 0.47 0.64 0.62 0.57 0.57 0.45 0.78 0.63

PPV 0.49 0.54 0.59 0.57 0.60 0.55 0.58 0.54 0.64 0.58

NPV 0.49 0.52 0.65 0.55 0.59 0.54 0.59 0.57 0.56 0.56

Balanced accuracy 0.49 0.53 0.61 0.56 0.60 0.55 0.59 0.55 0.59 0.57

p-value 0.70 0.27 < 0.01 0.10 0.01 0.17 0.02 0.14 0.01 0.04

Note that 5 of the 10 different seeds resulted in models providing typical/atypical diagnosis prediction better than chance (i.e., balanced accuracy > 0.5).

impact of the seeds used for network weights initialization.
Second, the vote strategy (Table 2) as an evaluation metric
to build the neurotypicality scores provided slightly better
performance in the test data, with balanced accuracy of
almost 60%. Third, based on the LIME approach for model
explanation, we explored ROI centrality to identify local
hubs inside RSBFNs with potential dysconnectivity effects
(Figure 6).

In addition, we observed that single model performance
varied significantly, even within each RSBFN. This may be due
to the aggressive Dropout layer used to reduce the number
of trainable parameters. Given the high dimensionality of
functional connectivity variables (ROI-to-ROI), the aggressive
dropout was relevant to eliminate irrelevant features improving
the models’ robustness.

Previously in the wide literature, GANs have displayed
their potential in image generation tasks (Radford et al., 2015;
Salimans et al., 2016). Aside from phenotypic characterization,
at least two previous studies generated connectivity matrices
that have been used for data augmentation (Yao and Lu, 2019;
Zhao et al., 2020) aiming to alleviate the low sample count effect
and improve classification performance. Though not directly
comparable to this study–due to the use of a discriminative
approach and larger datasets in both cases–these attempts

highlight how effective GANs can be for neurological data
handling. Discrimination tasks involving ASD and ADHD
achieved 90.2 and 87.9% accuracy in relation to matched healthy
subjects, respectively (Yao and Lu, 2019). In the other study,
MDD and SZ discrimination tasks (against healthy controls)
achieved 70.1 and 80.7% accuracy, respectively (Zhao et al.,
2020). Previous results suggest that generated data may hold at
least part of the predictive value compared to that which would
be observed with real samples–it could be further exploring
characteristics of the underlying real data distribution at the cost
of some redundancy.

In the last decade, connectome analysis serves as a
framework upon which neurodevelopmental trajectories
can be assessed in vivo (Di Martino et al., 2014; Grayson
and Fair, 2017). In the scope of the current study, only
intra-RSBFNs correlations were explored but further
models could be trained considering all combinations of
RSBFNs (visible in Figure 4), which would characterize
inter- RSBFNs interaction. Moreover, in the current study,
the generation of five separate RSBFN typical patterns
still does not comprehensively consider the whole brain
typicality. Thus, we believe the models’ performance could be
improved. Future studies could focus on further compressing
features in a reversible form to address both dimensionality
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issues as well as the whole brain atypical connectome
generation.

Conclusion

We conclude that GAN is a promising tool for anomaly
detection and in the context of brain functional networks, it
could be used to build a functional atypicality score. In the
current study, we illustrate the proposed approach in a proof-
of-concept that this score could predict psychiatric problems
3 years in advance with accuracy greater than chance. Methods
for accuracy optimization are still an open question.

In the long run, methods as proposed in this study may
support clinical procedures by helping both diagnosis and
prognosis. Models’ specificity and sensitivity values provide
a starting point on how clinicians should evaluate the
neurotypical score. In addition, the model explainer can provide
reason behind each of these inputs, and the evaluation can be
done using the resting-state fMRI alone regardless of preexisting
suspicion for neuroatypicality. For a more comprehensive and
collective view of what features were considered most important
for models predictions, Figure 6 characterizes relevant hubs
from a functional perspective, though their centrality from
other points of view is rather complex neurobiologically. We
prefer not to provide a detailed explanation of the role of each
region-of-interest in the psychiatric disorders, since given the
dataset used, these would be mostly conjectures. It is important
to mention that in this study, we focused on proposing a
new approach and illustrating its value in a proof-of-concept
application.
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