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The shape and orientation of a building influence the energy demand, therefore optimal decisions should
only be made rigorously supported by energy evaluation programs, which allow for measuring the energy
demand of a building more precisely. The main purpose of this research is to evaluate the shape and ori-
entation of massive residential social housing multifamily buildings to find the best solar positioning to
minimize cooling and heating demands simultaneously in the bioclimatic zone 2 (Cfa) in the southern
region of Brazil. To do this, this study utilizes multi-objective optimization with a genetic algorithm
(NSGA-II) simulating the thermal behavior in EnergyPlus and performing the optimization with a
Python language programming code, totalizing 80,000 simulations. The main results showed that solar
orientation optimization could reduce the total demand by 4% for the ‘‘H” shape and 22% for linear build-
ings in the isolated scenario. For the condominium condition, the reduction is 2% for the ‘‘H” typology and
8% for the linear shape. The results presented can help engineers and architects to design more energy-
efficient buildings and address the energetic vulnerability in the same building. Moreover, future work
can be carried out to improve the constructive pattern replicated all over the country, improving the
surroundings.
� 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Rising energy prices, global economic pressures, and the effects
of climate change are the main factors for the growth in energy
poverty worldwide. Currently, 75 million people who have recently
gained access to energy will not be able to pay for it [1]. Energy
poverty means being deprived of essential services such as cook-
ing, heating, or cooling at home and other subsidies for individual
and collective development [2 –4].

The leading causes of high energy loads in homes derive from
using ineffective air conditioning equipment (heating and/or cool-
ing) that is not up to date, with little maintenance; inefficient
household and lighting appliances; lack of thermal insulation; high
level of infiltration by openings, but also by behavioral and cultural
factors of society [5 –7].

To improve this scenario, energy efficiency measures are
needed at a global level, thus reducing the impacts of energy pov-
erty, achieving the proposed climate objectives, essential to
increase the annual energy-intensity improvement rate from
1.9 % (2010 – 2019) to 3.2 %. Regarding social housing, there are
1 billion slums worldwide, formed by the increase in population
in urban areas, lack of planning, lack of urban policies, and ineffec-
tive financing for the low-income population [8,9].

In this context, buildings accounted for 30 % of total final energy
consumption and 15 % of greenhouse gas emissions in 2021. In the
construction sector, there has been a growth of 0.5 % per year
(since 2010) in emissions linked to an increase in energy demand.
According to the World Energy Outlook 2022, the sector will pre-
sent a 20 % increase in floor area by 2030, with 80 % in developing
countries [1].
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Nomenclature

ANN Artificial Neural Networks
ASHRAE American Society of Heating, Refrigerating and Air- con-

ditioning Engineers
BESOS Building and Energy Simulation, Optimization and

Surrogate-modeling
BPNN Back Propagation Neural Network
BTO Building Technologies Office
BZ Bioclimatic Zone
CMA-ES Covariance Matrix Adaptation Evolution Strategy
COP Coefficient of Performance
DEAP Distributed Evolutionary Algorithms in Python
DOE U.S. Department of Energy’s
EPPY EnergyPlus and Python Library
EUI Intensity of Energy Use
GA Genetic Algorithm
GEATPY Genetic and Evolutionary Algorithms toolbox for Python
GIS Geographic Information Systems
GLSSVM Group Least Square Support Vector Machine
GMDH Grouped Method of Data Handling
GSPSO Particle Swarm Optimization
HDE Hybrid Differential Evolution
HVAC Ventilation and Air Conditioning
HypE Hypervolume-Based Many-Objective Optimization

INI-R Inmetro Normative Instruction for the Classification of
the Energy Efficiency of Residential Buildings

LCA Life Cycle Assessment
LCC Life Cycle Cost
LCE Life Cycle Energy
LSSVM Least Square Support Vector Machine
MOEA Multi-objective Evolutionary Algorithms
MOGA Multi-Objective Genetic Algorithm
MOPSO Multi-Objective Particle Swarm Optimization
MVHR Mechanical Ventilation System with Heat Recovery
NBR Brazilian Normative
NREL National Renewable Energy Laboratory
NSGA-II Non-Dominated Sorting Genetic Algorithm II
NSGA-III Non-Dominated Sorting Genetic Algorithm III
nZEB Nearly Zero Energy Building
PCM Phase Change Material
PYMOO Multi-Objective Optimization in Python
RTQ-C Brazilian Technical Quality Regulation for the Energy

Efficiency Level of Commercial Buildings
RTQ-R Brazilian Technical Quality Regulation for the Energy

Efficiency Level of Residential Buildings
SPEA-2 Strength Pareto Evolutionary Algorithm – II
WWR Window-to-Wall Ratio
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Analyzing the Brazilian context, the country presents a housing
deficit of almost 6 million homes in 2019, 75 % of which were for
families with an income of up to 3 minimum wages [10]. Between
2010 and 2018, more than 1,500 million housing units were deliv-
ered throughout the national territory designated for these fami-
lies [11]. These facts show that there is great interest by the
scientific community in improving and adapting the reality of
these homes, however, there is no thorough analysis of poverty
and energy efficiency issues [12 –15].

Considering the breakdown of final electricity consumption in
Brazil, the industrial sector consumes 37.4 %, residential buildings,
26.4 %, and commercial buildings, 15.7 %. That is, buildings con-
sume 42.1 % of the energy generated by the country [16]. For the
residential sector, electricity consumption is expected to increase
by 3.9 % between 2018 and 2029 due to increased purchasing
power and thermal comfort demands (primarily for cooling)
[16,17]. Added to these factors, in the last five years, the country’s
electricity cost has risen by 47 % [18].

Even with a mostly renewable energy matrix of 78.1 % [16], the
reality of social housing in Brazil needs to be improved. It can be
highlighted that the performance regulations are less restrictive
compared to the European ones, for instance. Most housing units
use natural ventilation systems, where the user opens the win-
dows without considering the outside temperature, either due to
habit or to reduce mold and the feeling of claustrophobia. They
are built out of masonry or concrete, using low-quality materials,
and without thermal or acoustic insulation, with high-thermal
transmittances, low-quality windows, significant infiltration prob-
lems, even of rainwater, and simple glazing, but more expressively
replicating an architectural model without considering the climatic
conditions and generally built by unskilled labor [14,19 –24].

In this scenario, improving social housing quality is needed, in
terms of thermal comfort and performance, to overcome energy
poverty and reduce the impacts of climate change [7,21,25,26].
Moreover, several governmental, economic, cultural, technological,
and market barriers exist, and a lack of specialized professionals is
observed [5,27]. Searching for low-cost energy demand optimiza-
2

tion strategies according to the climate, considering the construc-
tion of mass housing adapted to the country’s reality, is a way to
demonstrate and encourage the replication of these tactics.
1.1. Optimization inserted into the urban context

The concern for energy consumption in buildings is highly
linked to its surroundings. Thus, several researchers have sought
to improve the urban context from the energy point of view. Stud-
ies by Rode et al. (2014), Zucker et al. (2016), Salvati, Coch and
Morganti (2017) and De Luca and Dogan (2019) aim to present
data and methods for improving energy efficiency from the urban
level, presenting guidelines for urban planners, architects, govern-
ments, and decision-makers.

Furthermore, the studies mentioned above present strategies to
access and improve solar radiation, shape the urban fabric and
improve outdoor comfort. They also indicate that compact and ver-
tical urban contexts have better energy performance than more
sparse typologies [28 –31]. Taking into account the need for solar
incidence, the reviews by Allegrini et al. (2015) and Shi et al.
(2016) reinforce the importance of optimizing urban forms
designed for their energy performance [32,33].

When evaluating the scale of the building, the main design vari-
ables that determine the performance are the shape, transparent
surface, orientation, and the properties of the materials, as the pre-
vious researchers outline the characteristics of the urban space in
which it is inserted. Passive solar strategies are a preferred option
in the initial phases of the project, considering the main benefits of
reducing the demand for conditioning and lighting and configuring
a low-cost approach. Moreover, coordinating the site and climate is
essential to achieve these benefits [34,35].

Thus, several studies have analyzed the performance of build-
ings without the urban context, as common practice in the aca-
demic field. Few studies have predicted the building’s energy
performance, comparing it in an isolated and urban context, such
as Pisello et al. (2012), Samuelson et al. (2016), Han et al. (2017),
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Lima, Scalco and Lamberts (2019) and Jayaweera, Rajapaksha and
Manthilake (2021).

1.2. Multi-objective evolutionary algorithms

In this context, one of the biggest challenges when simulating
the energy behavior of buildings is to automate, parameterize
and optimize conflicting objectives involved in the project. For this
reason, there is a trend in multi-objective research that seeks alter-
natives that minimize thermal discomfort, energy consumption,
and demand, in addition to costs, LCE, and LCC. In this new field
of investigation, artificial intelligence has been an ally of research-
ers, reducing processing times and significantly increasing the
number of iterations between variables [36,37,46 –51,38 –45].

The search for strategies with fast data convergence has
expanded the investigation of methods that prioritize the perfor-
mance of the optimal confluence curve in fewer solutions. Accord-
ing to Deb et al. (2002), there is a set of efficient multi-objective
solutions for each numerical problem called the Pareto Front. Thus,
multi-objective optimization methods or multi-objective evolu-
tionary algorithms (MOEA) mainly aim to minimize the distance
between the non-dominated front and the Pareto optimal front,
finding various solutions for a given problem. This approach is used
in problems with two or more conflicting objective functions,
which can be minimized or maximized according to what is
intended with the analysis [52].

GAs are based on natural selection and adaptation, miming bio-
logical evolution. As in genetics, these algorithms can cross infor-
mation (genes), combine, and mutate them to deliver diverse
solutions. Due to the elitist taxonomy, it accelerates the conver-
gence of results and is an excellent solution to engineering prob-
lems [43].

Due to this, several types of research were carried out using
MOEA to minimize the impacts of global warming, improve energy
efficiency and user comfort, meet the new stricter regulations, such
as nZEB requirements, and analyze the cost of optimized solutions
and the life cycle. In this context, Table 1 summarizes the most cur-
rent related articles that perform multi-objective analysis allied to
GA.

As observed in the literature, among the most used MOEAs, the
NSGA-II, proposed by Deb et al. (2002), is widely replicated in stud-
ies and has other versions and variants. It is best suited for solving
multi-objective optimization problems of an architectural and
engineering nature. This algorithm uses crowding distance, which
means it seeks the convergence of the fittest genes after the first
random generation [40,52,95].

The Asian continent was the most studied and continues to
update and demonstrate parameters to improve its buildings. In
the existing literature, several climatic contexts were analyzed,
showing the concern of researchers regarding the use of tools,
strategies, and systems allied to the climatic context, as well as
the need to evaluate conflicting objectives to achieve the desired
performance.

The main energy simulation engine used is the Energyplus soft-
ware developed by the U.S. Department of Energy’s (DOE), Building
Technologies Office (BTO) and managed by the National Renewable
Energy Laboratory (NREL). The optimization tools vary among dif-
ferent software, in which Matlab is the most replicated in the stud-
ies. The Python programming language appears as a trend in
studies and has been gaining strength as an optimization engine
used in collaboration with specific libraries.

The trend of current publications is to analyze multiple vari-
ables, showing that the studies use from 4 to 54 different optimiza-
tion features in the same research, usually linked to the geometry,
envelope, systems, and facilities of the building, and common prac-
tice is to optimize them without the surroundings. In 22 articles,
3

solar orientation was analyzed as a variable. The evaluation of
the solar orientation in conjunction with the shape of the building
was carried out in 7 studies [6,53,76 –78,84,93]. However, the
study by Yan, Ji, and Yan (2022) analyzes two building models con-
sidered archetypes (point and slab block buildings with 18 floors),
developed by the Housing and Development Board of Singapore.
All other papers cited optimize a generic form.

As seen from the literature results, there is no trend for the best
solar orientation that varies even within a similar climatic context.
The main findings of the multifamily building optimizations, in an
isolated scenario, to the Cfa climate, are the following orientations:
Milan 90�, Florianópolis 292.50�, Guangzhou 14� and to Hong Kong
201�; 5� and 358� [6,80,82,89,90].

It depends on the constructive pattern, shape and precepts of
the building use. Regarding the analysis in isolated scenarios, this
work corroborates the evidence of other authors of not neglecting
the immediate/urban surroundings of the building being studied to
optimize energy efficiency [96 –100]. Considering the enormous
replication of large residential condominiums in Brazil, the ener-
getic evaluation has to be performed taking into account the
surroundings.

Among these, the studies by Shadram and Mukkavaara (2019)
and Ciardiello et al. (2020) analyzed the multifamily building with
an ‘‘H” shape, using multi-objective evaluation to optimize heating,
cooling and total energy demand and embodied and operational
energy, respectively.

Research by Chen et al. (2017), Li et al. (2018), Lima et al.
(2019), Jayaweera, Rajapaksha, and Manthilake (2021) and Chen
et al. (2022) addressed an urban context. Only the study of Li
et al. (2018) analyzed residential multifamily with the assistance
of GA. Lima et al. (2019) explored the cooling thermal load for
office buildings, decomposing by floors and with and without sur-
roundings, with parametric simulations and without multiobjec-
tive analysis. None of the research compares the impact of
heating and cooling demand for each apartment separately or in
the context of large and massive residential condominiums.

The simultaneous minimization of heating and cooling, as two
conflicting objectives, is necessary for the climatic context under
study, which is predominantly cold [101], making it more chal-
lenging to optimize the building with strategies that are only
addressed to a season of the year. Likewise, as a climate trend, opti-
mizing cooling to avoid using ventilation and air conditioning sys-
tems (HVAC) as a consequence of climate change. These objective
functions were investigated by Chen et al. (2019) and Ciardiello
et al. (2020), analyzing multifamily buildings, focusing on energy
improvements, and no work aims to present energy vulnerability
individually.
1.2.1. Brazilian context
In the Brazilian context, optimizations using GA are still recent.

Most studies optimize the degree of heating and cooling hours, as
in Santana et al. (2016), Fonseca et al. (2017), Linczuc (2020), Linc-
zuc and Bastos (2020) and Berleze, Brasileiro and Silvoso (2021).

They use generative modeling to achieve energy efficiency level
A according to the Brazilian Technical Quality Regulation for the
Energy Efficiency Level of Commercial Buildings (RTQ-C) [102].
Optimizing an office building reduces initial costs by 6.7 % in one
solution and a 1.3 % increase in LCE [103]. Minimizing the annual
energy consumption and the constructive cost of a hypothetical
office building achieved 50 % energy savings with a return on
investment of fewer than three years [6].

A few studies were carried out to evaluate single-family houses
in the southern part of Brazil. Dalbem et al. (2019) and Vettorazzi
et al. (2021) aimed to meet the rigorous Passivhaus standard. Both
studies showed a significant decrease in energy demand and dis-



Table 1
Multi-objective Optimization with GA studies.

Reference GA Typology Case
Study

Location Simulation Tool Optimization Tool Variables Objectives
Functions

[53] NSGA-II RMF HB Singapore
(Af)

Rhino + grasshopper/Ladybug + Honeybee Python + N/a 2 shapes,
orientation + 16
variables

Daylight
performance,
energy
efficiency, and
thermal
comfort

[54] GMDH
(ANN) + NSGA-II

RMF HB Yazd (BWh),
Tehran (BSk),
Tabriz (BSk),
Rasht (Cfa),
Bandar Abbas
(BWh), Iran

EnergyPlus – 4 variables Payback
period and
the predicted
percentage
dissatisfied

[55] GLSSVM + NSGA-
II

I RB Kjevik,
Norway (Cfb)

IDA ICE Dynamo 17 variables Energy
consumption
and thermal
comfort

[56] BPNN – MOEA/E,
NSGA-II and
NSGA-III

O RB Qingdao,
China (Cwa)

EnergyPlus Python + PYMOO
toolkit

Orientation + 27
variables

Carbon
emissions,
discomfort
hours and
global cost

[57] NSGA-II + ANN I RB Guangzhou,
China

Grasshopper Python + Geatpy Orientation + 29
variables

Energy,
thermal
comfort and
daylighting

[58] ANN, NSGA-II
and MOPSO

I HB Nanjing,
China (Cfa)

EnergyPlus Python + N/a 22 variables Daylighting,
thermal
comfort,
energy
savings and
economy

[59] NSGA-II I RB Tianjin, China
(Dwa)

EnergyPlus Python + N/a 13 variables Improve
energy
efficiency and
thermal
comfort

[60] LSSVM – NSGA-II I RB Wuhan,
China (Cfa)

DesignBuilder, EnergyPlus MATLAB 6 variables Energy
consumption
and indoor
thermal
comfort

[61] NSGA-II RSF HB N�is, Serbia
(Cfb)

DesignBuilder, EnergyPlus DesigBuilder 7 variables Improve
energy
efficiency and
thermal
comfort

[62] NSGA-II, MOPSO,
MOGA + ANN

RSF HB Marrakech,
Morocco
(Csa)

TRNSYS MATLAB 7 variables Improve
thermal
comfort and
energy
performance

[63] NSGA-II RMF HB Agadir (Bsh),
Tangier (Csa),
Fez (Csa),
Ifrane (Csb),
Marrakech
(Bsh) and
Errachidia
(BWh),
Morroco

TRNSYS MOBO Orientation + 8
variables

LCC, energy
saving, and
thermal
comfort

[64] NSGA-II RSF RB Darwin (Aw),
Alice Springs
(BWh),
Brisbane
(CfaB), Perth
(Csa), Sydney
(CsaS),
Mildura
(Bsk),
Melbourne
(CfbM) and
Hobart
(CfbH),

TRNSYS and Daysim jEPlus + EA and
Python + N/a

9 variables Thermal
discomfort
hours,
unsatisfied
daylight
hours, and
LCC
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Table 1 (continued)

Reference GA Typology Case
Study

Location Simulation Tool Optimization Tool Variables Objectives
Functions

Australia
[65] NSGA-II – HB Boston, USA

(Dfa)
EnergyPlus jEplus + EA Orientation + 4

variables
Energy
consumption
for annual
heating,
cooling, and
electric
lighting

[66] NSGA-II RMF RB Osmaniye
(Csa) and
Erzurum
(Dfb), Turkey

EnergyPlus MATLAB Orientation + 7
variables

Thermal
energy and
investment
cost

[67] NSGA-II RMF RB Hanzhong
(Cwa),
Chengdu
(Cfa), Wuhan
(Cfa),
Changsha
(Cfa),
Xinyang
(Cfa),
Yichang
(Cfa),
Chongqing
(Cfa),
Shaoguan
(Cfa), China

EnergyPlus Python + N/a Orientation + 13
variables

EUI for
heating and
cooling,
thermal
discomfort
rate, and LCC

[68] CMA-ES and HDE RSF HB Bento
Gonçalves
(Cfb), Santa
Maria (Cfa)
and
Florianopólis
(Cfa), Brazil

EnergyPlus MATLAB 4 variables Energy
demand and
thermal
discomfort

[69] HypE RSF HB Chapecó
(Cfa), Brazil

EnergyPlus + Archsim Octopus Window
orientation + 12
variables

Degrees of
hours of
cooling and
heating

[70] NSGA-II + ANN RMF HB South Korea
(Dwa to Cfa)

TRNSYS MATLAB 12 variables Building
energy
demand, LCA
and LCC

[71] HypE RMF HB Budapest,
Hungary
(Dfb)

Rhinoceros3D Grasshopper EnergyPlus Ladybug&Honeybee
– Octupus

Number of floors,
building
width + 12
variables

Embodied and
operational
impact

[72] aNSGA-II RMF HB Roma, Italy
(Csa)

EnergyPlus Python + Eppy 11 variables Investment
cost, energy
cost, energy
demand and
CO2 emissions

[73]) aNSGA-II RMF HB 19 different
cities

EnergyPlus Python + Eppy 11 variables CO2 emission,
annual energy
costs, and
energy
retrofit costs.

[74] NSGA-II O RB Hohhot (Cfa),
Tianjin
(Dwa),
Shangai (Cfa),
Guangzhou
(Cfa), China

DesignBuilder jEPlus + EA Orientation + 9
variables

Heating,
cooling,
lighting
energy
consumption
and
discomfort
hours

[75] NSGA-II – HB Curitiba,
Brazil (Cfb)

EnergyPlus JEPlus + EA Orientation + 6
variables

Degrees of
hours of
cooling and
heating

[76] aNSGA-II RMF HB Roma, Italy
(Csa)

EnergyPlus Python + Eppy (Phase I): Shape,
shape
proportion,
orientation + 5
variables

Total energy
demand,
heating and
cooling
demand

[77] NSGA-II O HB Athens, Rhino and Grasshopper software via the modeFRONTIER 4 shapes + 4 Energy

(continued on next page)
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Table 1 (continued)

Reference GA Typology Case
Study

Location Simulation Tool Optimization Tool Variables Objectives
Functions

Greece (Csa) plugins Honeybee and Ladybug EnergyPlus orientations + 5
variables

demand,
energy
production
and adaptive
thermal
comfort

[78] SPEA-2 and HypE RMF HB Stockholm,
Sweden (Dfb)

Grasshopper, EnergyPlus, Honeybee, Octopus rectangular, H, U,
L, T and cross
shapes,
orientation + 10
variables

Embodied and
operational
energy

[79] NSGA-II RSF HB Singapore
(Af)

EnergyPlus JEPlus + EA Phase I:
Orientation + 8
variables – Phase
II: 4 variables

Phase I:
thermal
discomfort
rate and
daylighting
ineffective
time. Phase II:
LCC and
energy
consumption

[80] Variant of NSGA-
II

RMF HB Palermo
(Csa), Naples
(Csa),
Florence
(Csa) and
Milan (Cfa),
Italy

EnergyPlus MATLAB Orientation + 15
variables

Primary
energy
consumption,
energy-
related global
cost and
discomfort
hours

[81] Variant of NSGA-
II

RSF RB Naples (Csa),
Italy and
Athens (Csa),
Greece

EnergyPlus MATLAB 9 variables Global cost
and primary
energy
consumption

[82] NSGA-II e
GPSPSO

RMF HB Hong Kong,
China (Cfa)

EnergyPlus jEPlus, GenOpt Orientation + 10
variables

Heating,
cooling and
lighting
demand

[83] NSGA-II RSF HB Québec,
Canada (Dfb)

– Phyton + DEAP 39 variables LCC,
greenhouse
gases
emissions and
the thermal
discomfort

[84] MOGA O HB Milan, Italy
(Cfa)

EnergyPlus MATLAB Orientation + 53
variables

Primary
energy
consumption,
global cost
and CO2-eq
emissions

[6] PAES – HB Curitiba
(Cfb),
Florianópolis
(Cfa), Campo
Grande (Aw)
and Belém
(Af), Brazil

EnergyPlus Python + N/a Shape of a
module (array),
orientation + 6
variables

Energy
consumption
and
constructive
cost

[85] CMA-ES and HDE RSF HB Curitiba
(Cfb), Santa
Maria (Cfa)
and
Florianopólis
(Cfa), Brazil

EnergyPlus – 4 variables Heating
demand and
degree-hours
of cooling

[86] GA O HB Beijing
(Dwa),
Shangai (Cfa)
and
Guangzhou
(Cfa), China

Radiance + DesignBuilder MATLAB Rectangle, L-
shaped, H-
shaped, U-
shaped, cross, T-
shaped and
trapezoidal + 11
variables

Building
proportion,
daylight and
energy
consumption

[87] NSGA-II RMF HB Embrun
(Dfb), La
Rochelle
(Cfb), Nice
(Csb), Nancy

TRNSYS MOBO 14 variables Thermal,
electrical
demands and
LCC
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Table 1 (continued)

Reference GA Typology Case
Study

Location Simulation Tool Optimization Tool Variables Objectives
Functions

(Cfb) and
Limoges
(Cfb), France.
Beirut (Csa),
Qartaba
(Csb), Zahle
(Csa), Cedars
(Cfa),
Lebanon

[88] NSGA-II + ANN RMF HB Shanghai,
China (Cfa)

EnergyPlus jEPlus Orientation + 19
variables

Comfort Time
Ratio and
Energy
Demand

[89] NSGA-II RMF HB Hong Kong
(Cfa),
Guangzhou
(Cfa), China.
Taipei (Cfa),
Taiwan.
Bangkok
(Aw),
Thailand.
Singapore
(Af).

EnergyPlus jEPlus + EA Orientation + 6
variables

Lighting and
cooling
energy
consumption

[90] NSGA-II RMF HB Hong Kong,
China (Cfa)

EnergyPlus jEPlus + EA Orientation + 9
variables

Lighting
energy and
cooling
energy

[91] NSGA-II RSF RB Paraná,
Argentina
(Cfa)

EnergyPlus Python Orientation + 6
variables

Comfort of
naturally
ventilated
rooms and
energy
consumption
in air-
conditioned
rooms

[92] SPEA-2 and HypE RSF HB Viçosa, Brazil
(Cwa)

Rhino + Grasshoper + Archsim + EnergyPlus Octopus 8 variables Degrees of
hours of
cooling and
heating and
cost

[93] NSGA-II + ANN O HB Naples, Italy
(Csa)

EnergyPlus MATLAB Orientation + 47
variables

Energy
consumption,
thermal
discomfort
hours and
global cost for
energy

[94] Variant of NSGA-
II

I RB Benevento,
Italy (Csa)

EnergyPlus MATLAB 10 variables St1:
discomfort
hours, heating
and cooling
demands/St2:
investment
cost, primary
energy
consumption
and LCC

RMF: Residential multifamily; RSF: Residential single-family; O: Office building; I: Institutional building.
RB: Real Building; HB: Hypothetical building.
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comfort hours, with an increase of 40 % in the total construction
cost [68,85].

1.3. Research aim and contribution

As observed in the literature, there is a research gap regarding
energy vulnerability within the same building and a lack of analy-
sis of the energy performance of a building connected to its urban
7

context [28,31,97 –100,104], which can directly impact the cooling
demand, essential to meet the increase with the current scenario.
Optimization of heating demand, without neglecting cooling in
colder climates, entails reducing the intensity of use of air condi-
tioning for cooling [17].

Therefore, as mentioned above, this study aims to optimize two
multifamily building shapes using the Python programming lan-
guage, combined with NSGA-II as an optimization tool and coupled
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with EnergyPlus to find the optimal solar orientation to minimize
cooling and heating demand simultaneously to the representative
city of Passo Fundo, Brazil (Cfa).

Furthermore, studies regarding energy performance are well
established in the academic field, and the novelty of this study is
characterized by gaps revealed throughout this study and by
reviewing the publications presented so far, as follows:

The analysis of two scenarios (isolated and condominium) to
compare how the shadows of the surroundings can impact the
demand of the building was studied allied to multi-objective anal-
ysis and using GA.

A comparison was made between two architectural typologies
of the multifamily building.

Unlike previous works, the optimization of only one variable
was performed to reduce computational costs and present a
friendly tool to architects, engineers and stakeholders.

The energy demand was shown in the building regarding the
apartment positioning.

This study implements and evaluates the presented multi-
objective optimization framework in the case study buildings
based on real models replicated all around the country.

The most significant contribution of this research is that it is
viable for use by architecture, engineering and construction firms,
in which the framework is developed in open access software. It
also presents relevant data on the potential for improving Brazilian
social housing.

As a motivation to carry out the study, the demands were ver-
ified and highlighted separately for each apartment, and energy
discrimination within the same building was discussed, highlight-
ing energy vulnerability as a way of facing the consequences of
energy poverty and climate change.
2. Materials and methods

This study uses a computer simulation and the NSGA-II algo-
rithm for optimization as a research strategy. EnergyPlus (version
9.0.1), validated by ANSI/ASHRAE Standard 140 [105], meets the
criteria established by NBR 15575 [106] and Inmetro Normative
Instruction for Classifying the Energy Efficiency of Residential
Buildings – INI-R [107] was used as thermal energy engine calcula-
tion software and the Python programming language coupled to
the Jupyter Lab interface as an optimization tool. The modeling
was carried out in Sketchup using the Euclid plugin (Version
0.9.4.1) that transfers all the constructive and geometric informa-
tion of the model to the EnergyPlus. All the pieces of software used
are open source.

This article presents the problem of how to solve heating with-
out neglecting cooling by optimizing solar orientation. Considering
the analyses carried out, it can be observed that it is important to
consider both parameters when designing a building. Moreover,
solar orientation is one of the easiest and cheapest strategies to
make the most of the existing solar radiation to improve the heat-
ing and comfort of residential social housing multifamily in the
cold climate in the south of Brazil.

This research recreates the context of the chosen typologies,
simulating the thermal behavior of two residential social housing
multifamily buildings with different geometric shapes in the cli-
matic context of the city of Passo Fundo, bioclimatic zone 2 (BZ2
and Cfa, Brazil). The optimal solar orientation was sought that
simultaneously reduced the cooling and heating thermal demand
in the isolated and condominium scenarios and presented the ther-
mal load of energy per apartment, separately. Fig. 1 shows the
research framework.

The research framework is proposed in 3 main steps. Initially,
the typologies to be studied were selected according to the analysis
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carried out by Triana, Lamberts and Sassi (2015), establishing the
two typologies of multifamily social housing buildings most repli-
cated in Brazil [108]. Next, the climatic context was selected to
simulate the energy demand.

As observed in the literature, there are few studies on multi-
objective optimization for buildings in an ‘‘H” shape and several
for the linear typology (most common in Europe) and no research
on multifamily buildings in the Brazilian context. This analysis is
important because these building shapes are replicated in the
country without considering each region’s climatic conditions.
The Brazilian climate is predominantly hot, making it clear that
the particularity of each location needs to be analyzed. For this
purpose, this work is applied to a case study in the cold region of
the country [15].
2.1. Description of case studies

The two evaluated buildings belong to the Brazilian social hous-
ing program, designed for target audience 1 (families with income
up to 1.8 thousand reais), and were designed for the BZ2. Both
cases consist of a kitchen, bathroom, living room, and two bed-
rooms (single and double), and are part of a housing complex of
more buildings. Both buildings were constructively modified for
this experiment and are models based on existing constructions
but without in situ measurements.

The ‘‘H” shape is a five-story building with four apartments per
floor. The useful interior area is 37.05 m2 and the balcony is
3.00 m2, totalizing 1,011.25 m2 of the built space. The linear edifi-
cation has two stair cores and each apartment has a useful floor
area of 36.95 m2 totalizing 1,010.50 m2 of built area. Both shapes
do not have solar protection on the façades or windows.

The building shape and the constructive characteristics directly
affect the thermal exchange between the interior and exterior. To
describe the shape of a building and its consequences on thermal
behavior, the shape coefficient is used to demonstrate the relation-
ship between the external envelope and the volume of the building
as presented in Eq. (1) [109].

Sc ¼ se
vt ð1Þ

Where Se is the total envelope surface (façades and roof) and Vt

is the total volume of the building.
2.2. Climatic context

The study is applied to Passo Fundo, in southern Brazil. The city
belongs to BZ2, as the NBR 15220 classification, which divides the
Brazilian territory into eight different bioclimatic zones [101].
Regarding the Köppen-Geiger classification, the city is classified
as Cfa climate [110]. As in the studies of Bre and Fchinotti
(2017); Chen et al. (2018); Gou et al. (2018); Chen et al. (2019);
Dalbem et al. (2019); Vettorazzi et al. (2021); Berleze et al.
(2021); Jung et al. (2021).

The city is located at an altitude of 687 m above sea level and
has well-defined seasons. Negative temperatures may be reached
on winter nights. It has sparse rainfall and a large temperature
range during the day and night. The predominant direction of the
winds is northeast. Table 2 presents the respective climatic data.

This context was chosen by the representativeness demon-
strated by Linczuc (2020), who carried out a cluster analysis, eval-
uating 5 climatic variables from 71 cities of the 3 southern states of
Brazil (Rio Grande do Sul, Santa Catarina and Paraná). The evalua-
tion demonstrated that Passo Fundo represents 19 cities of the
southern climatic context [111].



Fig. 1. Research framework.

Table 2
Normal Climate of Passo Fundo –1981 to 2010.

Month Average temp. (�C) Relative Humidity (%) Precipitation (mm) Wind
(m/s)

Insolation
(h)

Jan 22.2 72.6 159.7 3.9 236.9
Feb 21.7 75.6 140.9 3.9 203.5
Mar 20.7 74.5 121.5 3.8 213.3
Apr 18.0 73.1 138.9 3.8 189.1
May 14.8 75.9 159.4 3.8 177.1
Jun 13.1 78.2 148.0 4.0 146.0
Jul 12.4 76.4 180.9 4.2 169.8
Aug 14.1 71.7 137.9 4.3 173.8
Sept 15.1 72.2 174.3 4.5 166.1
Oct 18.0 71.4 225.0 4.3 186.9
Nov 20.0 66.3 158.8 4.2 229.2
Dec 21.8 66.5 162.2 4.1 250.1
Year 17.7 72.9 1,907.5 4.1 2,341.8
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2.3. Modeling and settings for simulation and optimization

The modeling of the buildings was performed in Sketchup 2017.
The simulation setups were run in EnergyPlus, with a simulation
timestep of 4 simulations per hour. According to INI-R guidelines
(still in the probationary period), NBR 15575 was for transmittance
values and NBR 15220 for the physical properties of materials
[101,106,107]. The FullExterior object of EnergyPlus, was config-
ured taking into account the effect of shadows. Fig. 2 summarizes
the setting and definitions of the shape and orientation
optimizations.

The optimizations of the two architectural typologies are per-
formed in the isolated and condominium scenarios. Using the
Python programming language, the NSGA-II optimization codes
were executed, supported by the Jupyter lab interface, and associ-
ated with the Building and Energy Simulation, Optimization and
Surrogate-modeling (BESOS) platform developed by the University
of Concordia in Canada, as proposed in the research conducted by
Leitzke (2021) [112]. Table 3 shows the range of variability of the
optimization variable.

As a decision-making criterion, a Python code was used to add
the result of Pareto points to find the optimal solution, the one
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with the lowest total demand for heating and cooling, according
to Nguyen, Reiter and Rigo (2014), Ascione et al. (2019), Bre and
Fachinotti (2018) and as cited in Costa-Carrapiço, Raslan and Gon-
zález (2021), as the main decision criterion of the articles studied
in the review.

All optimizations were executed in a 2-core laptop with an Intel
Core i7-4500U processor of 1.8 GHz, with 16 GB of RAM and aWin-
dows 10 operating system of 64bits.
2.3.1. Internal loads
As a simulation strategy, to standardize the models, the thermal

zones were simplified in apartments, due to the robustness of the
optimizations and unlike the INI-R that distinguishes the zone of
long-term occupation (bedroom and living room) [107]. Thus, the
solar orientation can be found more easily.

The conditions of occupancy (people and schedule) and meta-
bolic rate were adapted from the INI-R, as well as the lighting sys-
tem and its agenda, and internal load density. INI-R does not
differentiate workdays, weekends, summer, or winter for these
agendas [107]. Table 4 presents the occupancy schedule.

The lighting schedule is shown in Table 5.



Fig. 2. Settings of the environment and shape optimizations.

Table 3
Range of variability of the optimization.

Variable EnergyPlus (field name) Range of variability

Orientation North Axis 0� to 360�
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Regarding the metabolic rate, the average between the living
room (sitting or watching TV – 108W) and the bedrooms (sleeping
or resting – 81 W) per unit of area was used, totalizing the meta-
bolic rate of 94.5 W total heat [107,113]. Moreover, 4 persons
per apartment were stipulated. As defined by the INI-R, the
installed lighting power density adopted was 5.0 W/m2, and the
internal load density adopted the power of 120 W, which was used
between 2 pm and 10 pm.
2.3.2. Constructive parameters
NBR 15575 defines a minimum performance value according to

the 8 bioclimatic zones of the country [106]. The building envel-
ope’s thermal configuration was established with the limits recom-
mended by the NBR 15220 [101] for their material and physical
proprieties and the NBR 15575 [114,115] observing thermal trans-
mittance, thermal absorptance, and thermal capacity, as presented
in Table 6.

For the configuration of the external wall, a calculation of the
equivalent thickness of the red clay ceramic brick of 6 holes was
made as the EnergyPlus considers that all components are consti-
tuted by layers transverse to the heat flow, disregarding the calcu-
lation of thermal resistance in parallel. To resolve this matter,
Ordenes et al. (2003) calculation method was used for the con-
struction model of an equivalent component that takes into
Table 4
Occupancy schedule.

Time 00:00 to 08:00 08:00 to 1

Occupancy rate 100 % 0 %
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account the heat fluxes through transverse layers for the correct
insertion in the software [116]. Table 7 presents the characteristics
of the opaque envelope of the buildings (exterior walls and roofs).

Regarding the translucid envelope, the windows comprise sin-
gle glazing of 3 mm, with a solar transmittance factor of 0.837
and thermal transmittance of 5.8 W/m2K.

It is important to mention that the ‘‘H” shape has its own shad-
ing, caused by the indentations of the constructed format. It has
two facades with larger openings (location of bedrooms and living
rooms), with a window-to-wall ratio (WWR) of 18.45 %. The room
comprises a balcony with a glass door, which increases solar radi-
ation entering, however this door is shaded because of the existing
slab of the upper balconies. The other two facades (location of
kitchens and bathrooms) are set back and have a WWR of 2.66 %.

The linear building has a different WWR for each facade, the lar-
gest with 12.8 % and 12.26 % and the smallest facades without
windows.

To summarize the building composition, Table 8 outlines the
settings for both typologies.
2.3.3. Natural ventilation
The natural ventilation settings were made in the AirFlowNet-

work object of the EnergyPlus, as used in Bre et al. (2016), Bre
and Fachinotti (2017) and Vettorazzi et al. (2021) [68,91,117].

The ventilation was set to be always on (possibility of leaving
the window open with and without occupancy) because opening
the windows was limited to a controlled temperature, in the range
of 5 �C. Below 20 �C, the program considers the windows closed,
avoiding energy loss. Above this value, windows are considered
as remaining open until 25 �C, if the external temperature is
between 20 �C and 25 �C, when the program considers the win-
4:00 14:00 to 18:00 18:00 to 24:00

50 % 100 %



Table 5
Lighting schedule.

Time 00:00 to 06:00 06:00 to 08:00 08:00 to 16:00 16:00 to 23:00 23:00 to 24:00

Lighting 0 % 100 % 0 % 100 % 0 %

Table 6
Thermal performance by NBR 15575 (2021).

Bioclimatic Zone 2

Local U-value Thermal capacity Absorptance

Roof 2.3 W/m2.K Not specified Not specified
Exterior walls 2.7 W/m2.K �130 kJ/m2.K Not specified
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dows closed to avoid overheating due to energy gains, as in Bre and
Fachinotti (2017) and Vettorazzi et al. (2021).

The main natural ventilation settings used the AirflowNetwork
control in multizone without distribution and initialization type
linear method. For leakage and airtightness, the settings shown
in Table 8 were applied. The sliding windows with a crack factor
and minimum venting open factor were set to 0.45. The ventilation
control mode was in the Zone Level. The indoor and outdoor tem-
perature difference upper limit for minimum venting open factor
was at 5 deltaC. The outdoor air flow rate per person was
0.00944 m3/s.

The value range stipulated was based on the study by Martins
et al. (2009) and according to the limit of comfort from the Passive
House Institute to warmer climates [85,118]. The buildings do not
have active systems, such as air conditioning. Regarding the infil-
tration rate of the openings, it was used according to the INI-R pre-
scription, as shown in Table 9.
2.3.4. Ground temperature
Silva and Ghisi (2013) used SLAB to determine the soil temper-

ature in their work as the iteration of the simulations analyzed by
the authors depended directly on the average temperature of the
indoor air of the building, where the soil temperature generates
influence [119].

The choice of SLAB to configure the soil temperature was due to
the influence of the soil in relation to the heat exchange with the
internal environment of the building, attempting to make the
building as close as possible to reality. The values defined in the
SLAB program were used in all simulations and are shown in
Table 10.
Table 7
Opaque envelope- physical properties.

Exterior wall t (m) k (

Exterior mortar 0.025 1.1
Red clay ceramic brick 0.18 0.9
Interior mortar 0.015 1.1

Roof t (m) k (
Fibercement tile 0.008 0.6
Air gap >0.05 –
Concrete slab 0.10 1.7

Floor t (m) k (
Ceramic tiling 0.01 1.3
Mortar 0.02 1.1
Concrete slab 0.10 1.7

t = thickness; k = thermal conductivity; q = density; s = specific heat.
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2.3.5. Cooling and heating demand assessment
The HVACTemplateZone:IdealLoadsAirSystem routine of the Ener-

gyPlus was used, as in Dalbem et al. (2019), Gou et al. (2018) and
Vettorazzi (2021), which analyzes the energy necessary to heat and
cool the thermal zone. This setting of the EnergyPlus simulates an
HVAC system with a Coefficient of Performance (COP) equal to 1,
therefore the energy demand may be taken directly from the
results [68,85,88].

The setpoint was set to 19 �C for heating, and 26 �C for cooling.
This configuration makes it possible to reduce the time of using the
installations and increases the comfort time using natural ventila-
tion. Thus, it prevents the thermal engine software from calculat-
ing the active system (IdealLoadsAirSystem routine) and the
natural ventilation at the same time.

2.4. Multi-objective optimization

To characterize a multi-objective optimization, two or more
objective functions must be delimited to proceed with the evalua-
tion, and the results of these objectives are presented as a set of
Pareto optimal solutions (Pareto front). In the case of two objective
functions, the Pareto front is a curve in a two-dimensional space.
Each Pareto Front point is a non-dominated solution. For example,
improving one objective function without hindrance to the other is
impossible. For this matter, a set of optimal solutions is presented
instead of just one [36,37,46,103,110].

Thus, this article uses two objective functions, selected accord-
ing to the climatic characteristics of the study site, represented by
a greater demand for heating. Thus, evaluating two conflicting
objectives to find the solution that minimizes both parameters
simultaneously generates a curve with the optimal solutions. The
objective functions of this experiment are to minimize the heating
demand (Dh) and cooling (Dc) of the two typologies in the study.

Furthermore, this optimization seeks to minimize the cooling
and heating demand at the same time, concerning the variables
of the solar orientation. The multi-objective problem is presented
as:

Min Dhf g Dcf g ¼ x1½ � ð2Þ
W/mK) q (kg/m3) s (kJ/kgK)

5 1,800 1.00
0 785 0.92
5 1,800.00 1.00

W/mK) q (kg/m3) s (kJ/kgK)
5 1,800 0.84

– –
5 2,400.00 1.00

W/mK) q (kg/m3) s (kJ/kgK)
2,300.00 0.965

5 1,800.00 1.00
5 2,400.00 1.00



Table 8
Building configurations.

Item ‘‘H” Building Linear Building

Total built area 1.011.25 m2 1.010.50 m2

Useful area of apartment 37.05 m2 36.95 m2

Shape coefficient 0.49 0.38
WWR north 18.45 % 12.8 %
WWR south 18.45 % 12.26 %
WWR east 2.66 %* 0 %
WWR west 2.66 %* 0 %
Floor height 2.7 m
N� of floors 5
N� of apartments 20 (4 per floor)
Lighting load 5.0 W/m2

Equipment load 120 W
Occupancy load 94.5 W/person
Uvalue window 5.8 W/m2.K
Uvalue ext. Wall 2.6 W/m2.K
Thermal capacity ext. Wall 130 kJ/m2.K
Thermal absorptance wall 0.2
Uvalue roof 2.3 W/m2.K
Thermal capacity roof 252.10 kJ/m2.K
Thermal absorptance roof 0.6

WWR: Window-to-Wall Ratio.
* Recessed windows with shadows cast by the building itself.

Table 9
INI-R infiltration settings.

Field Value

Air mass flow coefficient when the opening is closed 0.001 kg/s.m
Air mass flow exponent when the opening is closed* 0.66
Minimum density difference for two-way flow 0.0001 kg/m3

Discharge coefficient* 0.6

* Dimensionless.

Table 11
NSGA-II parameters.

Parameter (NSGA-II) Value

Population size 100
Maximum number of generations 200
Crossover 0.9
Mutation probability 1.0
Total simulations 20,000.00 per building (x4)

80,000.00 simulations
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Where f1 (Dh) minimizes the cooling demand and f2 (Dc) mini-
mizes the heating demand. Moreover, the principal variable in
analysis x1 is the solar orientation of the buildings. The optimal
solutions will be presented in the Pareto front.
2.4.1. Optimization algorithm
To carry out this experiment, optimizing solar orientation, the

NSGA-II was selected to carry out the multiobjective analysis,
given its efficiency and well-established use in the building perfor-
mance simulation [37,120]. It is a metaheuristic method, which
works like human DNA, based on the selection, crossover, and
mutation of genes in their various generations. It has an iterative
application where the new generations replace the old ones. It is
elitist, which speeds up the convergence process and can effi-
ciently put the best solutions in order. They are less likely to con-
verge at the local optimum, use random choice operators, and are
efficient at solving nonlinear problems [37,38,45,48,91].

The NSGA-II uses the concept of Dominance to evaluate each
individual of its population so that, where p and q are two individ-
uals of population P, p dominates q if p is better than q in at least
one of its goals, the rest of the p goals are no worse than q. This
Table 10
Ground temperatures for Passo Fundo from Slab (EnergyPlus).

Month Jan Feb Mar Apr May Jun

�C 23.2 23.3 23.3 20.9 18.9 18.6
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strategy allows the algorithm to classify the fittest individuals
and determine the distance from the crowding distance-sorting
algorithm for each of them to the optimal point (origin of the rep-
resentation plane in the case of minimization functions or the con-
stant enlargement of the identified values for the maximization
functions). The behavior occurs in such a way that the greater
the number of individuals dominated by p and the smaller its dis-
tance to the optimal point, the better its classification [52].

The NSGA-II implementation also has a Q data structure, which
stores non-dominated individuals, that is, those that at a given
moment of execution were part of the set P but were discarded
in the execution of the current generation due to better results.
The existence of Q allows the ordered elements not to lose interest-
ing characteristics at a given moment of execution, ensuring the
heterogeneity of the population set and avoiding elitist aspects
that disregard the diversity of individuals. Table 11 present the
parameters of the NSGA-II utilized in the experiment.

The population size has to be large enough to verify the vari-
able. In this case, 100 buildings were selected as the population.
Regarding the termination criteria, the number of generations
was fixed at 200, as in Ascione et al. (2016) and as referenced in
Ciardiello et al. (2020), as 2 – 6 times the number of genes
[76,121]. This value must be significant but not excessive, which
can extend the computational time. Thus, 20,000,000 simultaneous
simulations were performed per building. Evaluating the 4 differ-
ent scenarios, this research achieved a total of 80,000,00
simulations.
3. Results

As mentioned throughout this article, the importance of the
solar orientation of buildings focusing on the quality of the north
solar orientation for the southern hemisphere can be mentioned
[122,123]. Thus, the first step of the optimization research was to
seek the solar orientation that ensures the energy demand of heat-
ing and cooling and analyzes the shape (‘‘H” or linear) for the same
reasons. In this section, the results obtained from the optimizations
of the two architectural typologies will be presented for the two
analyzed scenarios.
3.1. Isolated scenario

This scenario evaluated the two typologies without surround-
ings with no external shadows. Fig. 3 presents the Pareto Front
results for both buildings.

The Pareto Front shows the 100 individuals analyzed, after the
200 generations and how the GA distributed the optimization
between the two objective functions (Dh and Dc). The ‘‘H” building
Jul Aug Sept Oct Nov Dec

18.5 18.5 19.3 20.2 21.2 22.9



Fig. 3. Pareto Front – Isolated situation – ‘‘H” and Linear buildings.
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achieves 10 Pareto Front solutions, and the optimization took 5 h
53 mins. The linear building reached 11 solutions in the Pareto
Front set and the optimization was run in 4 h 52 mins.

Analyzing the evolutionary behavior of the samples, the ‘‘H”
building achieved a greater convergence of solutions compared
to the linear building. The linear shape presents three large groups
of results, divided by different cooling intervals in the same heat-
ing interval, that is, with Pareto solutions that will be between
the first part of this set that were between 1.0 and 1.15 kWh/m2.
yr of cooling and others of the second set that were between
1.35 and 1.3 kWh/m2.yr of cooling. However, both with little vari-
ation in heating, indicating that it is an evolutionary pattern for
this shape, are able to reduce heating, while the set that achieves
a greater reduction in heating is not able to reduce cooling
significantly.

The behavior of the Pareto Front of the linear building is due to
several factors. Initially, because the initial population generated
by the NSGA-II is random, and from this point onward, it creates
the optimal solutions according to these initial premises due to
its elitist character. The configuration of the initial population
and the number of generations highlights the need to go deeper
in this sense, finding the most suitable combination to find the best
solar orientation. Furthermore, the architecture of the building
itself is a limiting factor for the convergence of solutions on the
Pareto curve.

Thus, Fig. 4 shows the parallel coordinate graph of the ‘‘H”
building, presenting the solar orientations evaluated.

To understand the optimization and parameters found by the
GA, the parallel coordinate graph shows the evolutionary behavior
and the optimal orientation search. The graph shows the solar ori-
entation angles analyzed by the algorithm for the ‘‘H” building and
presents that from 0.98� to 45�, it can achieve major reductions in
both heating and cooling. From 180� to 210� and those close to
350� are the best for optimizing heating. On the other hand, the
orientations around 130� and 310� are the angles with a major
demand for heating and cooling.

The same analysis is performed for the isolated scenario, for the
linear building, where the optimizations are well defined in three
heating intervals. Fig. 5 presents the parallel coordinate graph for
the linear building shape.

The graph illustrates that the orientations from 150� until 175�
and the closest to 350� are the best solutions to achieve the lower
demand of heating, although the best angles to reduce the cooling
demand are closer to 0.28� until 25� and around 150� until 170�.

The selection of the initial random population identified the
regions mentioned above with the most significant reductions in
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the heating demand, concentrating the search for solutions close
to these intervals, as the GA seeks the results that are best executed
in one generation, thus concentrating the crowdistance function
between them.

As the cooling demand has a smaller impact on the total
demand, and as described in the method, for both shapes, the opti-
mal solution achieved is to reduce heating and cooling simultane-
ously. Thus, Table 12 presents the best solutions for both shapes
and also shows the solution that achieves better heating and cool-
ing demands separately. Additionally, it presents the worst case
reached by the optimization to evaluate the improvement in the
orientation and demand.

The convergence of the optimal solutions was reached among
the first 10 generations for both buildings, as in Lopes (2020).
The term ‘‘convergence” can be defined when future generations
do not improve the defined function objectives, reaching the opti-
mal solutions. Nonetheless, it does not necessarily mean that it has
reached the minimum location. This phenomenon occurs due to
the elitist nature of the NSGA-II, and the crowdistance function,
which searches for the genes that had the best performance
[52,103,124].

Analyzing the optimization results for the ‘‘H” building, it is
clear that the orientations that have the largest glazed areas
(WWR – 18.45 %) are facing north, to retain solar radiation, as in
Ciardiello et al. (2020) [76]. Comparing the optimal solution with
the worst case, there is a reduction of 4 % in the total demand. From
this value, there was a decrease of 10 % for cooling and 4 % for
heating.

For the linear building, the same pattern occurs, the optimiza-
tion seeks to orient the large facades with a greater glazed area
(WWR – 12.8 %) to the north, a characteristic for colder climates,
aiming to accumulate the heat from solar radiation in the winter
period. For this shape, the optimal solution that minimizes heating
and cooling matches the solution that most minimizes heating. In
this case, the difference between the optimal solution and the
worst solution is a decrease of the 2 % of the total demand, in
which there is a 15 % reduction in the cooling and 22 % in the
heating.

3.2. Condominium scenario

As an isolated scenario, the condition of the condominium was
optimized, with the same configurations. It was differentiated
because eight adjacent buildings separated 5 m from the central
building in each direction so as to replicate the reality of large con-
dominiums in Brazil. The behavior of the building with the influ-



Fig. 4. Parallel coordinate graph – Isolated situation – ‘‘H” building.

Fig. 5. Parallel coordinate graph – Isolated situation – Linear building.
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ence of the shadows was observed. Fig. 6 presents Pareto Front
results for the two typologies.

Similar to the isolated scenario, the Pareto Front solutions for
the condominium condition had the same pattern. The ‘‘H” build-
ing had more sparse solutions and the linear shape with two heat-
ing intervals was well defined. The ‘‘H” building optimization
achieves 10 Pareto Front solutions and ran in 8 h. The linear build-
ing achieved 14 Pareto Front solutions and took 4 h 42 mins to
finish.

For a better understanding of the orientations optimized, Figs. 7
and 8 present the parallel coordinate graph for both shapes, in the
condominium scenario.

By analyzing the ‘‘H” shape, it can be said that it had the same
evolutionary behavior as in the isolated scenario. In this case, three
groups of orientations can be seen, those that reduce heating are
between 340� and 357�, from 150� to 200� and those from 0.76�
to 30� are presented as the orientation angles that can decrease
demand simultaneously.

Regarding the linear shape, four orientation groups can be
observed, two that reduce cooling and two that reduce heating,
as illustrated in Fig. 8.

The solar orientation around 150� until 180� and 330� until 360�
are the ones that optimize the heating demand, following the same
pattern in the isolated case, where the large façades are exposed to
the north. On the other hand, the angles 0.07� until 25� and 180�
until 200� have the most reduction in cooling.

Table 13 presents the Pareto Front solution to the ‘‘H” and linear
buildings for heating, cooling and the optimal solution. It also
shows the worst case achieved by the optimization to evaluate
the improvement made in the orientation and solution.

The ‘‘H” shape obtained the best reduction in heating and cool-
ing in the 350� orientation, which was the same solution that min-
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imizes heating the most. Comparing the optimal solution and the
worst optimized solution, there is a 2.7 % reduction in total
demand. There was a 2.5 % reduction in cooling and 2.7 % in
heating.

Regarding the linear format, the orientation that obtains the
greatest reduction is 175�, with a difference in thermal demand
8.2 % that is smaller compared to the worst optimized solution.

Finally, the best relationship between the cooling and heating
demand, named as the optimal solution in this article, for both sce-
narios and shape are presented in Fig. 9.

Due to its more compact form, the ‘‘H” building has less demand
in both scenarios compared to the linear building, it has several
setbacks. It has a shadow of the volume and this does not happen
in the linear form, where the facades are fully exposed. Comparing
the two scenarios, it can be said that there was an increase in the
total demand of 4.5 % of the isolated building for the condominium
case. For the linear shape, there was a 6.5 % increase in total ther-
mal demand, comparing both scenarios. In both cases, the increase
is due to the shading generated and the increase is all in heating.
The solar orientation for the two scenarios is close to the same
angle.

3.3. Demand for each apartment

The apartments were evaluated separately to understand the
thermal behavior in each scenario. Fig. 10 compares the cooling
and heating demand for each apartment separately in both scenar-
ios to the ‘‘H” building. The demand is in accordance with the ori-
entation optimizations carried out (3� – isolated scenarios and
350� – condominiums).

As shown in Fig. 10, the thermal behavior of the apartments is
similar for different orientations. In the 5 apartments facing north



Table 12
Pareto Front solutions � worst solution.
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and east, there is a greater thermal demand of heating similar to
those facing south and east. The thermal demand increases from
the first floor to the roof, where there is more sun exposure and
thermal changes, as observed by Jayaweera, Rajapaksha and
Manthilake (2021) and Lima, Scalco and Lamberts (2019).

Comparing the graphs, it can be seen that the apartment facing
south and west is the one with the highest cooling load, due to the
west facade in summer, which receives more radiation at the end
of the day. In all orientations, there is an increase in the heating
demand in the condominium condition compared to the isolated
scenario. For cooling, the difference between the two scenarios is
a small decrease in the condominium.

It can be seen that for the facades facing north, the behavior is
similar, reaching a difference of 18.8 kWh/m2.yr between the
ground floor apartment and the penthouse for the isolated scenario
and of 19.1 kWh/m2.yr with the urban context.
15
Fig. 11 presents the thermal behavior of each apartment to the
linear typology as the optimized orientations and scenarios (178� –
isolated and 175� – condominium scenarios).

In this case, the lateral apartments have 3 orientation façades.
The same arrangement of the ‘‘H” building is repeated in this
shape, the first floors have the lowest demand, increasing the
demand by floor until the highest demand on the roof apartment.
Comparing the apartments, the increase in the total thermal
demand from the first floor to the last floor can be observed. In this
typology, the lateral apartments have the same thermal behavior
and the same occurs with the middle apartments.

This behavior is due to the poor quality of the building envel-
ope, making the linear building unfavorable energetically in all ori-
entations, when compared to the ‘‘H” building. It is more evident
for the lateral apartments with 3 façades, when the ‘‘H” shape is
more compact and has apartments with only two exposed façades.



Fig. 6. Pareto Front – Condominium condition – ‘‘H” and Linear buildings.

Fig. 7. Parallel coordinate graph – Condominium condition – ‘‘H” building.

Fig. 8. Parallel coordinate graph – Condominium condition – Linear building.
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Table 13
Pareto Front solutions � worst solution.
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The central apartments behave better, but compared to the ‘‘H”
shape, still perform worse due to the good orientation of one
facade and the bad orientation of the other. This is also because
of the transparent envelope, where the losses due to the bad façade
cannot be compensated for by better orientation.

It can be observed, for both shapes, that the condominium sce-
nario, has an increase in the heating demand and a small reduction
in cooling. This fact occurs because the simulated building is in the
shade, on the first floors up to approximately the fourth floor, in
winter periods. With the highest sun in the summer, the ground
floor apartments are still in the shade, but those closer to the roof
are more exposed to solar radiation.
17
The solar orientation influences the demand of the apartments
separately and it is an important factor of comfort in the buildings.
This compact shape of the ‘‘H” building works very well from a
whole point of view, but when scrutinizing the demand separately
by apartments, the disparity is a condition for energy efficiency
equality. This article aimed to highlight the importance of design-
ing the building by its parts, so as not to damage one or the other.
4. Discussion

This section will present the main findings of the experiment
and insights into the results obtained with optimization. Thus, ana-



Fig. 9. Comparison of the optimal solution for both scenarios and typologies.
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lyzing the framework’s application and comparing it with the pre-
vious studies identified in this article.

4.1. Multi-objective optimization performance

The application of a multi-objective method for energy demand
optimization, combined with a GA and an energy calculation
engine, provides various benefits in decision making for more effi-
cient buildings. It is an agile tool in the data and variable conver-
gence process, can be helpful in all project phases, and it is seen
an increase in the use of this tool to achieve conflictive objectives
[37,44,45,75,82,84,88,90,121].

In this experiment, the use of a genetic algorithm allowed the
execution of 80,000.00 simultaneous simulations, reaching a wide
spectrum of possibilities, resulting in a group of solutions that opti-
mize the demand for heating without neglecting cooling, one of the
current concerns due to the climatic exchange [1,17]. Thus, this
research presents the results of applying a simplified framework
for optimizing the solar orientation of multifamily buildings in a
Cfa climate, predominantly cold.

4.2. Climatic context and objective functions

The function objectives used significantly reduce energy
demand in the climate context studied. Since, as we improve the
energy benefits for winter, with the increase in solar radiation,
the demand for refrigeration increases, it is necessary to introduce
18
contradictory measures to achieve a demand that minimizes heat-
ing and cooling simultaneously. This was observed by Ciardiello
(2020) and Chen (2019), who analyzed the Csa and Cfa climate
[76,82].
4.3. Solar orientation

Regarding solar orientation, as mentioned in the research con-
ducted by Morrissey et al. (2011), for the southern hemisphere,
the search for the best orientation will optimize the entry of light
during the day and increase the thermal gains for the winter [122].
This fact is outlined in this paper, with the convergence of the GA
to the orientations with major WWR facing the north.

In this context, this experiment guided the following orienta-
tions: ‘‘H” building 3� in the isolated scenario and 350� in the con-
dominium, the linear building 175� in isolation, and 178� in the
condominium. Demonstrating that there is a difference between
optimizing energy demand and considering the context in which
it is inserted. The search for better solar orientation is increasingly
difficult to achieve, given the predominance of buildings built in
the urban context, which is already consolidated, generating
impact on neighboring buildings [28,30,31].

The behavior of GA was to seek the set of solutions that places
the largest areas of windows for the best orientation; in this case,
the north. It is an easy strategy to achieve in linear typology. How-
ever, complex in the form ‘‘H”. The results were observed by paral-
lel graphs, demonstrating a trend and accumulation of optimal



Fig. 10. Comparison of cooling and heating demand for each apartment by facade and scenario to ‘‘H” building.

Fig. 11. Comparison of cooling and heating demand for each apartment by facade and scenario to linear building.
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orientations in well-defined groups, given by the elitist character-
istic of the algorithm.

Condominium scenario – urban context.
Furthermore, the urban context needs to be inserted into the

optimization of buildings. According to Pisello et al. (2012), analyz-
ing a building without considering its surroundings can lead to dis-
19
tortions and oversizing of equipment. The distortion can reach 42 %
for summer and 22 % for winter [98]. Continuing this investigation,
Han et al. (2017) showed that shading significantly impacts solar
reflection, with a more significant effect in warmer climates [99].

Samuelson et al. (2016) demonstrated an increase in energy
consumption for heating and artificial lighting when considering



Table 14
Shapes comparison.

Typology Isolated Condominium

H 16.0 kWh/m2.yr 16.7 kWh/m2.yr
LINEAR 22.6 kWh/m2.yr 24.1 kWh/m2.yr
Difference 41.3 % 44.3 %
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the urban context, highlighting that ignoring the surroundings can
lead to misled in the optimal design solutions [97].

The analysis of the cooling load of two hypothetical office build-
ings, isolated and without urban context (in two orientations),
underlines the importance of thermal energy simulation by consid-
ering the surroundings. The study, applied to Maceio in Brazil,
reached a reduction between 16 and 18 % in the thermal load with
the presence of the surroundings [100].

Comparing the energy consumption with or without the sur-
roundings can reduce the cooling load for buildings by 3 to 6 %
compared to the isolated situation for colder climates [96]. In the
case of warmer climates, it can be between 16 and 18 % of the dif-
ference [100]. The findings were validated in this article with an
increase in the total demand of 4.5 % of the isolated building for
the condominium case. For the linear shape, there was a 6.5 %
increase in total thermal demand, comparing both scenarios, with
a reduction in cooling.

Most studies disregard the urban context, focusing on the urban
fabric, the comfort of outdoor spaces, and urban dimensions. This is
relevant, given that the world population is increasingly urban,
where land is scarce and expensive, and pressures are increasing
for the verticalization of buildings to meet the housing demand,
generating large and massive condominiums, where Brazil still
has a long way to go to meet household demand.

4.4. Shape

Regarding the shape of buildings, Depecker et al. (2001) demon-
strate that energy consumption is inversely proportional to the
compactness of the building [108]. Thus, the best performance of
the ‘‘H” building is the result of its more compact shape compared
to the linear building, where the side apartments are more
exposed, with three facades.

Exposing the typologies to a crisis, it can be observed that the
academic and construction sector have analyzed linear format
buildings in more depth, from the energy point of view, which
are more common in Europe as regulations are demanding and
better determine thermal performance with the mandatory insula-
tion of facades, as is the case of the Basic Building Standard – Ther-
mal Conditions in Buildings (NBE-CT/79) in force since 1979 in
Spain [125].

One of the major normative challenges in Brazil is where cul-
tural and technical barriers still do not allow the insertion of
new technologies in civil construction, especially regarding social
housing [5,15,27].

Thus, comparing a format already consolidated and known in
the world context for having a more compact format, and various
setbacks and self-shading, identifies that the compactness factor
is relevant for climates with milder temperatures. Similarly, the
optimized solar orientation, in isolation, does not reach significant
results when compared with isolated constructive models
[53,54,80,82,84,87,126,63,66,67,70,71,73,76,78].

The simultaneous evaluation of solar orientation and the shape
of a building, in the initial phases of the project, up to 36 % energy
reduction can be achieved [127]. Comparing typologies shows that
poor quality and construction are the main barriers to achieving
better energy performance [22,27,108]. A maximum of 22 % reduc-
tion in demand in the isolated scenario was achieved with the best
orientation.

4.5. Shapes comparison

The two most replicated shapes in Brazil are analyzed. These
typologies are little studied in the Brazilian context when studies
explore single-family buildings. As previously commented, the
‘‘H” building presents lower total energy demand compared to
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the linear one. Thus, Table 14 presents the difference between
the two shapes.

There is more than a 40 % difference in energy demand for the
linear shape, due to the potential for self-shading and minimiza-
tion of the ‘‘H” building’s shape coefficient. Comparing the scenar-
ios, isolated and condominium, the greatest reduction is presented
when the building is inserted in the urban context, where the total
demand of the linear building is greater due to the need for
heating.

Methodological approach.
Unlike the cited articles, as a methodological choice, this

research optimizes only one variable, simplifying the process,
reducing processing time, and serving as a quick decision-making
tool in the early stages of the project. As seen in the revision of
Machairas et al. (2018) and the research of Gagnon et al. (2019),
the large number of variables can make it difficult to search for
the best solutions, generating uncertainties in the results and
directly impacting unnecessary computational time [44,83].

To perform the 80,000.00 simulations in a 2-core laptop with an
Intel Core i7-4500U processor of 1.8 GHz took 23 h and 45 min to
finalize the procedure. Demonstrating that this framework is agile
and does not require investment in large computer processors.

Developed in open-access software (Sketchup 2017, Euclid/
OpenStudio, EnergyPlus, and Python 3, with code written in Jupy-
ter Lab and connected to the BESOS library) with a friendly inter-
face based on Leitzke’s dissertation (2021) [112]. After adopting
the model, modeled in Sketchup, and configured in EnergyPlus,
the code is opened in a browser and the file name (.idf) and opti-
mization parameters are changed, if required. This methodology
is uncommon in the literature and has been gaining ground.
4.6. Energetical vulnerability

After analyzing the individualized demand for an apartment,
showing its behavior, verifying the existing inequality between
the neighbors of the same building, taking advantage of the GA
and optimizing the solar orientation, to the best of our knowledge
there is no other research using this methodology. Assessing the
intensity of energy poverty in multifamily buildings is little dis-
cussed in the existing literature.

When analyzing the apartments individually, as seen in Lima
et al. (2019) and, Rajapaksha and Manthilake (2021), the thermal
demand increases, the closer the floors are to the roof. Analyzing
the impact of the simulations by floors, little difference was
noticed in the thermal load. In the case without surroundings, only
the ground floor and the roof behave differently. However, in the
analysis of the urban environment, there was a variation of 13–
24 % for the different floors [100,104].

The energy demand trend, individually by apartment, shows
that ground floor owners have a lower demand than those more
exposed on the roof floors, with a difference of approximately
19 kWh/m2.yr between these apartments in the ‘‘H” building and
28 kWh/m2.yr for the linear, both in the condominium condition.
This shows the vulnerability and the need to investigate the
improvement not only of energy efficiency but also because of
the integration of solutions that are addressed to optimize the
demand among the neighbors.
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4.7. Implications for stakeholders

As affirmed in Stevanović (2013), the GA tool is a complex pro-
cedure to use in architecture firms [123]. For this reason, this tool
can be replicated in other typologies and climate contexts. More-
over, when it is expanded, the analysis can optimize more variables
or parameters. Optimizing only one variable reduces processing
time without the need for powerful machines to perform robust
data processing and it is more attractive for decision-makers and
stakeholders. It can be used in the early stages of the project when
there is still not much information about the building.

The results of the implementation of the framework demon-
strate that it is a helpful tool that assists in decision-making
aligned with measures to mitigate the effects of poor constructive
quality of buildings and can be allied to new regulations and future
enterprises. The biggest obstacle to the effective use of the tool is
still connected with cultural aspects and the lack of specialized
professionals in the construction sector in issues related to energy
efficiency. Topics normally passed on to consultancies, which last
longer than the project, are unfeasible for social projects.
4.8. Energy savings potential

As the average energy consumption for the southern region of
Brazil is 177 kWh/month [75], if all 170,000.00 buildings built in
the southern region had optimized solar orientation, 812,430.00
kWh/month could have been saved, or 9,749,160.00 kWh/year, just
using the best solar orientation for the ‘‘H” building.
5. Conclusions

This article carried out a multi-objective optimization, aiming
to simultaneously minimize the cooling and heating demand. The
proposed method was applied in two architectural typologies, iso-
lated scenario and condominium, and disclosed the energy
demand of each apartment. As a methodological strategy, the opti-
mization was performed using a Python code written in the Jupyter
Lab interface, coupled to the BESOS library. The models were
designed in Sketchup with the Euclid plugin that sends the model
data to the EnergyPlus energy calculation engine.

As a result, for the ‘‘H” building, a reduction of 4 % in the total
thermal demand was obtained for the isolated scenario and 2.7 %
for the condominium condition. For the linear shape, there was a
22 % reduction in the isolated case and 8.2 % in the condominium.
These values were only achieved with the best positioning of the
building according to the solar incidence. Based on these results,
the ‘‘H ” building obtains the best overall performance due to its
more compact format, as affirmed by Depecker et al. (2001). How-
ever, the improvement found is still relatively low due to the con-
structive pattern replicated in the country.

The best solar orientation in the early stages of the project
should be carried out, as it is a quick and low-cost strategy given
the need to build new homes in urbanized contexts. It should also
consider the great potential for energy savings concerning the high
housing deficit in Brazil.

The main limitations of this study are related to the adoption of
a single pattern of occupancy, lighting, and natural ventilation.
Thus, it is suggested that future studies consider many of these
characteristics, which are so sensitive to the conditioning of resi-
dential buildings. For this study, it can be observed that only the
optimization of solar orientation is not enough to reach efficient
performance levels, thus showing the need to adopt the analysis
of constructive parameters to improve the energetic performance.
21
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