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ABSTRACT: We investigate the numerical stability of accelerating AdS black holes against
linear scalar perturbations. In particular, we study the evolution of a probe non-minimally
coupled scalar field on Schwarzschild and Reissner-Nordstrém AdS black holes with small
accelerations by computing the quasinormal modes of the perturbation spectrum. We
decompose the scalar field Klein-Gordon equation and study the eigenvalue problem for its
angular and radial-temporal parts using different numerical methods. The angular part is
written in terms of the Heun solution and expanded through the Frobenius method which
turns out to give eigenvalues qualitatively similar to the ones obtained through the spherical
harmonics representation. The radial-temporal evolution renders a stable field profile which
is decomposed in terms of damped and purely imaginary oscillations of the quasinormal
modes. We calculate the respective frequencies for different spacetime parameters showing
the existence of a fine-structure in the modes, for both real and imaginary parts, which
is not present in the non-accelerating AdS black holes. Our results indicate that the
Schwarzschild and Reissner-Nordstrom AdS black holes with small accelerations are stable
against linear scalar perturbations.
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1 Introduction

Boost symmetric geometries of General Relativity may provide models for accelerating
black holes and have been an active area of research, in particular in studies about the
creation of black hole pairs [1, 2|, the splitting of cosmic strings [3] and, notably, the
discovery of the black ring solution in five dimensions [4]. Moreover, interesting recent
works provide a solid ground for the thermodynamics of accelerating black holes [5] as well
as developments about their observational aspects such as the existence of shadows [6] and
gravitational lensing [7].

The stability of accelerating black holes is then an important question to investigate.
However most of the studies in this direction have so far been restricted to spacetimes with-
out a cosmological constant (see [8, 9] and references therein). In this paper, motivated by



the important role of the AdS-CF'T correspondence in physics, we investigate the numeri-
cal stability of accelerating black hole solutions with a negative cosmological constant. In
particular, we consider a non-minimally coupled scalar field perturbation on accelerating
AdS black hole backgrounds and study the evolution of quasinormal modes associated to
the Klein-Gordon field equation.

The accelerating AdS black hole spacetimes have been investigated in [10-12] where it
was realized that the conformal properties of the metric may drastically vary according to
the boost parameter. For small boosts, the asymptotic conditions from the point of view
of the wave propagation problem are similar to the non-accelerating AdS black holes. On
the other hand, for large accelerations, the presence of an accelerating horizon demands
different boundary conditions [13].

Considering the existence of an acceleration parameter in the metric, the causal
geodesics’ paths are significantly altered [14] as well as the shadow radius around the
black holes [6] and their gravitational lensing physics [7] thus providing an experimental
arena for observational tests. The black hole thermodynamics is also non-trivially affected
by the presence of the conical singularities [5, 15]. Such structures generate a topological
tension in the spacetime, proportional to the acceleration parameter that contributes to
the energy of the black hole, via Smarr’s formula. This affects, as well, other canonical
thermodynamical quantities like the entropy, temperature and surface gravity at the hori-
zons. So, an interesting question is how such non-trivial differences change the response of
the geometry to probe fields.

Relative to the AdS-CFT correspondence, the linear perturbations of black holes with a
negative cosmological constant on the gravitational side have an interesting interpretation
in terms of the conformal field theory. For large black holes, the imaginary part of the
quasinormal mode represents the inverse of the timescale for equilibrium in the associated
field theory [16] and the temperature scales directly the imaginary part of the frequencies.
In turn, for small black holes, the damping of oscillation is proportional to the event
horizon and, for BTZ-like black holes, the poles of the correlation function living in a
(1+1)-dimensional field theory are exactly those field oscillation modes of the black hole.
This provided a new interpretation of those frequencies in terms of its duals [17].

From the mathematical point of view, the stability of the non-accelerating
Schwarzschild AdS spacetime for the spherically symmetric Einstein-Klein-Gordon sys-
tem has been proved by [18, 19] (see also [20, 21] for stability results in the case of Kerr
AdS). More recently, [22] proved results about the stability of solutions to the Klein-
Gordon equation in Reissner-Nordstrom AdS black holes. Interestingly, [23] showed that
for Reissner-Nordstrom AdS black holes, the C%-formulation of the linear analog of the
strong censorship conjecture is false but the H'-formulation is true. It is conceivable that
the mathematical results about stability can be extended to the accelerating versions of
the AdS black holes but that remains to be seen.

Regarding numerical results, there have been works exploring the numerical stability
of non-accelerating Schwarzschild AdS [16, 24, 25] as well as Reissner-Nordstrom AdS black
holes by computing the quasinormal modes of scalar field perturbations [26, 27].



Our work can be seen as generalisation of the latter numerical studies by including
an acceleration parameter. In particular, we investigate the stability of accelerating AdS
black holes by studying the evolution of a probe scalar field propagating on AdS black hole
backgrounds with and without charge.

The dynamical response of the geometry to the field is expected to be that of a tower
(or multiple towers) of quasinormal modes. Those frequencies represent transient solutions
from the scattered wave of the scalar field potential. By means of the potential analysis,
we will investigate possible unstable or stable spacetimes, the latter having always positive
potentials. In the case of (partially) negative potentials, instabilities may occur and further
analysis is needed. In that case, the study of the characteristic integration may provide
a strong indication about the stability of the geometry when the field profile decays in
time. Once the scalar field signal is acquired, the quasinormal modes will be extracted
with spectral techniques applied to the field profile.

The paper is organized as follows, in sections 2 and 3 we revise the accelerating AdS
black holes with charge and acceleration. In section 4 we summarize the numerical methods
and the field ansatz used for the reduction of the Klein-Gordon equation into a separable
system. In section 5 we obtain the frequencies resulting from the numerical integration
identifying some of the interesting features of the scalar field perturbation such as the
existence of a fine structure with varying azimuthal momentum, which is not present in
non-accelerating cases, as well as the presence of purely imaginary modes. We present our
conclusions in section 6.

2 Accelerating Reissner-Nordstrom AdS metrics

In this section we present the metric forms that we will use and the coordinate transforma-
tions between them. This will allow us to keep track of the relevant physical parameters
involved in the metrics and clarify the geometric properties of the solutions.

We consider accelerating black hole solutions given by the C-metric with charge,
mass and a negative cosmological constant, henceforth referred as accelerating Reissner-
Nordstréom Anti-de Sitter (ARNAdS) spacetimes (see e.g. [28-32])

ds> =2 (—jfd7'2 + jlfdw + édXQ + @d¢2> : (2.1)
in which
W=aX+Y)
¥ = —3A2 + (Y2 - 1)(1 - 2MaY + Q%**Y?) (2.2)
(6%

6= (1-X3(1+2MaX +a*Q*X?),

and the parameters «, A, M and @) correspond to the acceleration, cosmological constant,
mass and charge of the black hole. The coordinate X is restricted to the interval —1 <
X < 1, while Y is bounded by conformal infinity through ¥ > —X so Y € [-X, +00).
See also the discussion in section 3.2 about the physical meaning of the parameters.



We shall use the above metric form in order to determine the conformal properties
of the spacetime and draw Penrose diagrams. However, to study the quasinormal modes
through the field propagation in the accelerating geometry, we will use the spherically
symmetric coordinate system, in which the non-minimally coupled scalar field equation can
be more easily handled and integrated with the usual boundary conditions. In appendix A
we relate the above coordinate system with other coordinate systems often used in the
literature.

The coordinate transformations from (2.1) to spherical coordinates were given in [33] as

X = —cos¥
1
= — (2.3)
T = at,
leading the metric to the form
1 2
ds? = Q2 (— fdt® + ?dﬁ + %dﬁz + 72 P sin® 9d¢>2> , (2.4)
with
Q= Q(r,0) :=1—arcosb (2.5)
r? —2Mr + Q? Ar?
f = f(?") = ( ’r2 (1 — O[2T2) — 7 (26)
P = P(f) :=1—2aM cosf + o?Q? cos? 6. (2.7)

which will be used in sections 4 and 5. We shall now revise some of the relevant geometric
aspects the accelerating Reissner-Nordstréom AdS spacetime.

3 Geometric properties of the spacetimes

The ARNAJS spacetime is static, axially symmetric and has two Killing horizons defined
by f = 0 for small accelerations (i.e. for a? — l% < 0, see appendix A), corresponding
to the Cauchy and event horizons. For large accelerations, a third null hypersurface is
present corresponding to the acceleration horizon. The spacetime with large acceleration
has a similar conformal structure as the case with A > 0 [34] and will not be treated here.
For studies of quasinormal modes of a scalar field in accelerating RN black holes with an
acceleration horizon, see [8, 13].

3.1 Conformal structure

Penrose diagrams were already given in [12, 35] with emphasis on cases with large acceler-
ations. Here, we focus on cases with small accelerations and provide further details.

In order to study the conformal structure of the ARNAdS spacetime we will use the
line element (2.1). In fact the radial coordinate in (2.4) is not complete in defining con-
formal infinity. Furthermore, in the regime of high ) the interpretation of r as the usual



radial coordinate loses its meaning (together with the metric parameters in that coordinate
system) and an analytical continuation to negative regions is needed (see also a discussion
in [33]). In the metric (2.1), the spacetime admits the two null directions

ny = 0; — Foy, ny = 0r + Foy (3.1)

and the metric is of Petrov type D with the two Killing vectors 0, and 0.

In order to construct the conformal diagram for small accelerations (a? < —WTA), which
accommodates a single black hole with an asymptotic AdS boundary, we first define an
alternative coordinate

z = By(Y + ) tan x, (3.2)

where the three constants d, 8 and v are determined using the geometric parameters M, Q, a
and A through equations (A.4)—(A.6) in appendix A and the angle x given by [35]

al
iny =——. 3.3
sin 35 (3.3)
We also define flat-conformal coordinates,
1
Z = /—dz
o (3.4)
T = =T1coty,
g
where
2 2 2 Q°A
F = p°Ftan x = pcos” x(z — z.)(z — 2) (2 + Az + B), p:_37’y4

for a black hole with horizons at z. and zj. In this case, Z is expressed as

A+ 2z

Z = kjarctan [ ————
! QMB—N

) + koIn(2% 4+ Az + B) + +keIn(ze — 2) + kp In(z), — 2),

with
(A2 — 2B + 22,21, + A(ze + 1)) sec? x

= PVAB — A2(B + 2(A + 20))(B + zn(A + 21))
by — (A+ zc + zp) sec? x
29(B + 2e(A + 2))(B + 2n(A + 1)) 53
- sec? x
‘ P(B + ze(A + 2))(2¢ — 2n)
by — sec? x ‘
p(B + 2n(A + 21)) (21 — 2c)
Finally, setting
u=2+T (3.6)
v=274-T,
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Figure 1. Conformal structure of the ARNAdS black hole. The shape of the asymptotic region
depends on 6 and the black hole parameters. We parametrize the middle panel with a straight line
at infinity and 6 = 7/2. In the left and right panels § = 0 and 8 = 7, respectively. H; and H,.

denote the event and Cauchy horizons, respectively.

we can prescribe the double-null compact coordinates U and V,

U = 2arctan [(‘Dm oxXp (Z)]

V = 2arctan [(—1)” exp (Z)] , (3.7)

where m and n are integers and A is such that A = 2|k.| in the vicinity of z. and Zgingularity
or A = 2|kp| in the vicinity of 2z, and z.. In turn the curvature invariants of met-
ric (A.1) read

R = 4A
RuRM™ = 4(A* + a8QH(X +Y)®) (3.8)
82
Ruvga R = ==+ 8ab (X +Y)S(12MQ*(X —Y) + 6M? + o*QH(7X?—10XY +7Y?)),

displaying a singularity at Y — oo or r = 0 (see also [12]). At conformal infinity the space-
time has the same curvature invariants as the AdS spacetime with R being proportional
to A.

The above considerations allow us to draw the Penrose diagrams of figure 1.

3.2 Conicity, mass and charge

We recall that the metric coefficient ggg must be positive. Such condition narrows down
the coordinate range to the interval between the two real roots of P which happens in



the vicinity of P = 1. Through these coordinates, we may see that the ratio circumfer-
ence/radius along the axis # = 0 and # = 7 is not 27 but a function of P. By specifying
the range of ¢, the deficit or excess angle of one of these two conical singularities can be
removed. If we assume that ¢ € [0,27C) and choose C' = 1/P(w) we are considering the
regularity of the half-axis of symmetry 6 = 7, with ¢t and r constant, and a deficit angle at
6 = 0 given by (see also e.g. [12, 33])

_ 1 [CPgge | _

The constant C' is called conicity of the solution, being a fundamental constant of the
spacetime since it is related to the presence of a thermodynamical quantity, the tension of
the string [15, 36]

Mo
1+ 2Ma+ Q3%a?’

which is interpreted as accelerating the black hole along the § = 0 axis. Furthermore the

p=CMo= (3.10)

string tension modifies non-trivially the first law of black hole thermodynamics as well as
the entropy and, thus, the event horizon area formula (see e.g. [5, 37]).

The transformations of the previous section raise the question of the interpretation of
the parameters m, ¢ and M, () and their relation to the mass and charge of the black holes.
Recently, this issue has been addressed in [37] where a framework for the thermodynamics
of a charged accelerating black hole has been put forward. To define the mass and charge
of an accelerating black hole Gregory at al. [37] used the method of Ashtekar et al. of
conformal completion [38, 39]. This involves defining the mass as an integral (over a
sphere at conformal infinity) of the electric part of the Weyl tensor projected along the
timelike conformal Killing vector. Their calculations give

M=CM, Q=CQ, (3.11)

which correspond to the (Komar) mass and charge observed at infinity.

4 Evolution equation and numerics

In this section we consider the evolution equation for a non-minimally coupled scalar field on
a ARNAJS background. We show how the scalar field wave equation can be conveniently
separated, leading to a system of two differential equations and to a double eigenvalue
problem for the corresponding linear differential operators. The angular equation will be
further analyzed in the accelerating Schwarzschild AdS case where it reduces to a Heun
differential equation [40].

4.1 The eigenvalue problems

We consider a massless neutral scalar field non-minimally coupled to the Ricci curvature
scalar on a ARNAdS spacetime (M, g), expressed through the matter field action as

S = /M d*z\/—g (8,@8#@ - 57%(1)2) (4.1)



yielding the Klein-Gordon equation
0,8 — ER® = 0, (4.2)

where O, = gQBVO‘VfB is the wave operator with respect to the metric (2.4) whose compo-
nents are denoted by g,g. We note that rigorous results about the existence and stability of
solutions to the above equation have been proved in [19] for Schwarzschild AdS backgrounds
and in [22] for Reissner-Nordstrom-AdS backgrounds.

We choose 6§ = 1 which allows the separation of the wave equation into angular and
radial-temporal parts.! Expanding (4.2) and multiplying by the auxiliary function r20~2

we get

Rr? r?

— D — — Oy D+ O0.(r’ )0, D + 12 f0,, P + ———— Dy ®
6z~ ol T oo+ 17 [0 ® + H g 0o
Og(P sin 0 (43)
+9(Si§;n)ag¢’ 1 POge® — 2r2f,8,® — 2PQdp® = 0
where 5.0 5.0
Q, = Q and Qp = 9?

and we recall that € is given by (2.5). We now replace the first term using the relation
between R and Rj (see also e.g. [42] eq. D.9)

PaggQ + Rg?“z
Q 6

_ _ 2 2 _ 202
6Q2<I>_ 2P, + + 0p (r° f)Q — 2fr°Qs + a

sin 6

Rr? (89(Psin ) fr2awsz> o

in which
_2f + 470, f + 120, f _ 3cot 009 P + Oyp9 P — 2P

R =
9 r2 r2

represents the Ricci scalar of the metric go3 conformal to g, as given by (2.4),
ga,@ = 92904,3 .
Then equation (4.3) can be written as

) .
E ) ) R 9p(Psin§)
8tt<I> + ar(r f)arq) +r farrq) + Psin2 Qad)d)q} + sin 6

f
0p(P sin 0)Qy _ PO _ RgTQ
sin 0 Q 6

Op® + POpy®

—2r2 £Q,.0,® — 2PQp0p® + <2P92 — (4.4)

2
=0 (r? /) + 2/ — AL SQ) ® = 0.

Now, multiplying (4.4) by Q! and applying the transformation

d = QU, (4.5)

"We note that this procedure would not be possible for the wave equation Og¢ = 0 which is not
conformally invariant in this setting. See also [41] where the a conformally coupled scalar field is considered.



we get the separable form

r? 1 1
—— OV + 0, (r’fO,0) + — 0y ¥ + —— (P sin 09,V
fa” + 0, (r° fO, )+Psin208¢¢ +sin980( sin 0y V)

1 1
+6(2f + 470, f + 120, f) U + 6(3 cot 00y P + Ogg P — 2P)¥ = 0.

Finally, taking the ansatz

U= 4.
g (16)
and tortoise-like coordinates for r and @,
1 1
dry, = =dr, d® = ———db, 4.
" f " © Psinfd (4.7)

we obtain the radial-temporal equation and the angular equation as

(g;—§;+v>¢=o (4.8)
2
(W—m +19>C:O (4.9)
with
9(0) = Psin?0 ()\ _ g 4 oot 928913 + a"gp ) (4.11)

where A and m denote the eigenvalues associated to the operators in (4.8) and (4.9),
respectively. Recalling that the coordinate ¢ is periodic within [0, 2rC], then the eigenvalue
m is written as

m =my/C,

with mg € Z. The eigenvalue X of the angular part is expected to be near (¢ + 1) + 1/3,
¢ € N, which represents the exact solution in spherical harmonics for a = 0 and mg is
bounded by —¢ < mg < /.

The boundary conditions for the quasinormal problem are given by the usual plane
wave solution near the event horizon and the constant solution at spatial infinity, since the
potential tends to constant as r — oo, and we can write them as

— W

¢’r*%foo — €

4.12
1/}’7’*—)0 — O? ( )

although a secondary wavefront might be taken in limit r, — 0 [43], since V remains
bounded there. In both cases though, the integration scheme we use assures the same set
of quasinormal modes.?

2Tt was noticed in [43] the presence of a secondary group of frequencies when the extra wavefront exists.
That corresponds to w‘mao ~ const which brings no modification to the characteristic integration. Also,
the frequencies produced were in general very high for the imaginary part of the modes and far from the
values obtained for const = 0.



For the angular part, we consider boundary conditions compatible with the angular
equation (4.9), maintaining ¢ finite along the boundary values of the coordinate 6,

(lostoo — €TIMO (4.13)

and will employ different numerical methods to obtain the eigenvalues in each case.

For the radial-temporal component (4.8), we apply the characteristic integration in
double null coordinates u = t — r, and v = t + r,. As a first step in the method, we
propagate a constant r,-surface together with a Gaussian package

(8

along the u-v diagram. The wave signal emerges in a surface of constant r, being collected

= constant P,_ o = e H(u—u0)? (4.14)

T+=Tx0

and analyzed through the prony method described in [44]. The quasinormal frequencies
are obtained altogether within this wave signal by applying such spectroscopic technique
with an a priori number of overtones to be collected. A detailed description of both the
double null integration and the prony method can be found in section IIL.E of [44].

The numerical analysis of the angular problem is performed with a Frobenius based
method described in the appendix of [13] while the adaptation of the method to our case
is described in appendix B.

Furthermore, for both the angular and radio-temporal field equations, we have also
checked our results using the QNMSpectral method developed in [45]. In this case we have
found that the numerical results do not deviate beyond 0.1% with respect to our results.

4.2 The angular equation

The angular part of the wave equation, differently from the radial-temporal part, has real
eigenvalues which will be computed through a Frobenius expansion around one of the
coordinate poles.

4.2.1 Case Q #0
The Frobenius method starts by redefining the angular variable as

1 — cosf
w = % (4.15)

in order to turn (4.9) into a more suitable form,

(T — (6m? 4+ a2Q*T(6A +T"))¢ = 0, (4.16)

2
3042622

where the prime denotes a derivative with respect to w and
4
T(w) =16 [ [ (w — wy)
i=1

is a polynomial with the four regular singular points (in the sense of the theory of ordinary
differential equations),

2
aQ* —r3q
wy =0, wy=1, w3y

~10 -



with r34 = . Equation (4.16) has a fifth regular singularity ws at infinity. Such

M=/ M2-Q2
2
number of singularities does not seem to allow to transform (4.16) into a Heun differential
equation with the usual field variables modifications [46-49]. In such case, we are able
to solve the problem only numerically with the method detailed in appendix B which is

adapted from [13].

4.2.2 Case Q=0

A different situation occurs when @) = 0 in which case the angular equation becomes

1
T(TC’)’+4<—m2+T<)\+2aM(1—2w) - 3))4:0. (4.18)
Using now
3
T(w) = —16aM H(w — w;),
i=1
with
—1+4+2aM
w1 = 0, Wo = 1, w3 = ﬁ, (4.19)
gives

2bw(w—1)(w — w3)0y (2bw(w—l)(w — wg)awC) = (m2 + 4bw(w—1)(w — w3)(c — bw)){
(4.20)
with 1
b=4aM, c:)\—§+2aM.
In this case the angular equation has four regular singular points and can be transformed

into a Heun differential equation [40]. Then, the solution to (4.20) can be written in terms
of Heun general functions as

b—2 b b+2mgy — 2
Q(’U))ZClb_;’_HeunG <2b,lc),].,]., m0+b__}—2m0 ,m0+1,w>
(4.21)
b—2
+ Cyb_HeunG (2[)’ b1, b2, b9, bo, mg + 1, w>
for s2) \
by = wh BT (w— 1)M0/2(2 — b+ 2bw) 2+
b — p1m3 + pamg + 2¢(b — 2)?
! 2b(b — 2)2
P = 363 + 106 4+ 4b — 8, (4.22)

po = —3b% + 207 + 120 — 8
1—m0)b—2m0—2
b—2

and Cp and Cy are real constants. The asymptotic behaviour of (4.21) requires Cy = 0,

by = &

as the companion function of C is the only bounded solution satisfying conditions (4.13).

- 11 -



Still, a Taylor series expansion of (4.21) around w = 0 will be convergent whenever [40]

b—2
2b

‘ <1. (4.23)

Since b > 0, we obtain the convergence condition
1
aM < 6 (4.24)

We note that this is the same convergence condition as obtained for the expansion of the
wave function around a regular singular point in the case @ = A = 0 of [13]. A Frobenius
method for the numerical computation of the eigenvalue A similar to the one developed
in [13] is detailed in appendix B. In the limit of very small charges (e.g. Q@ < 10712M),
this method yields a similar eigenvalue to the one found in [13].

5 Quasinormal modes

One might expect that the propagation of initial data with compact support for the scalar
field in the black hole geometry will generate a decaying profile that decomposes into a
tower of damped oscillations of quasinormal modes. In such tower of oscillations each
quasinormal mode is labeled by its overtone number v € N. As v increases, its imaginary
part increases as well. Interestingly, all overtones of a specific black hole solution (for
M,Q, A and « fixed) are present in each profile of the scalar field evolution (for mg and
A fixed).

It is well known that this is the case whenever V' > 0 [50]. Such status would indicate
the stability of the background with respect to the scalar perturbations. However, in our
case there are regions where V' < 0. We will now investigate this issue by studying the
Schwarzschild and Reissner-Nordstrém AdS accelerating black holes separately.

5.1 Accelerating Schwarzschild AdS case

In this case the potential (4.10) is positive for r > r;, when A > 1/3. This occurs for every
pair of eigenvalues (¢, mg) of the angular equation with ¢ > 0. In the special case ¢ = 0
we have A < 1/3 in general resulting in a potential partially negative for the region r > r,
which may bring instabilities to the field evolution. However, as can be seen in table 1,
even for the highest values of the event horizon radius and acceleration, the deviation of
A from 1/3 is very mild. Since the change of sign in V' happens at r = ry := %, this
means that V' (r,) < 0 on a small interval (—¢,0), for |¢| < h, where h defines the grid step
of integration. This fact turns unlikely the presence of instabilities in the field evolution.
In fact, we did extensive numerical simulations of the scalar field evolution for small black
holes and we have found, after the initial burst, the usual oscillatory phase that endures
until late times. This indicates the spacetime stability with respect to the linear scalar
field perturbation. Table 2 contains a representative sample of the quasinormal frequencies
w found.

- 12 —



Th

a=0.03

a = 0.06

a=0.09

a=0.12

0.2
0.4
0.6
0.8
1.0

0.333326843646
0.333301035946
0.333233421490
0.333074906497
0.332732202536

0.333307373544
0.333204107919
0.332933283827
0.332296910238
0.330915104778

0.333274919903
0.333042441470
0.332431707754
0.330991099266
0.327839878228

0.333229477512
0.332815856349
0.331726651464
0.329143397162
0.323432092330

Table 1. The first (¢ = 0) angular eigenvalue X of the accelerating Schwarzschild AdS black holes
with A = —3.

a=0.03 a =0.06 a=0.09 a=0.12

rn (£,mg) R(w) —S(w) R(w) —S(w) R(w) —G(w) R(w) —S(w)
0.2 (0,0) 1.721852 0.176419 1.720124 0.175806 1.717236 0.174785 1.713179 0.173357
(1,0) 2762191 0.025072 2.759331 0.024902 2.754548 0.024623 2.747818 0.024245
(1,£1) 2.769023 0.024648 2.773004 0.024061 2.775059 0.023375 2.775151 0.022597
0.4 (0,0) 1.631413 0.523901 1.630082 0.522541 1.627857 0.520273 1.624729 0.517097
(1,0) 2503694 0.313820 2.501580 0.312606 2.498048 0.310585 2.493085 0.307757
(1,£1) 2517637 0.311202 2.529609 0.307365 2.540282 0.302720 2.549619 0.297274
0.6 (0,0) 1.665875 0.863752 1.664954 0.861889 1.663413 0.858781 1.661244 0.854426
(1,0) 2.437852 0.681911 2.436027 0.680042 2.432977 0.676926 2.428690 0.672563
(1,£1) 2.460361 0.677410 2.481504 0.670979 2.501855 0.663239 2.521374 0.654185
0.8 (0,0) 1.762268 1.191167 1.761986 1.189024 1.761512 1.185451 1.760839 1.180448
(1,0) 2467364 1.036596 2.465721 1.034409 2.462967 1.030767 2.459081 1.025674
(1,£1) 2.501639 1.029955 2.535487 1.020942 2.569435 1.010265 2.603456 0.997900
1.0  (0,0) 1.896277 1.511802 1.896969 1.509651 1.898121 1.506072 1.899724 1.501076
(1,0) 2.546882 1.378140 2.545149 1.376025 2.542207 1.372522 2.537978 1.367663
(1,£1) 2.596948 1.368790 2.648150 1.356866 2.701079 1.343022 2.755756 1.327205

Table 2. Quasinormal modes of accelerating Schwarzschild AdS black holes with A = —3.

Interestingly, as we increase the acceleration parameter, the change in #(w) and $(w)
take opposite directions: the former increases while the latter decreases. This is also true if
we consider increasing |my| for fixed «, r, and £. To illustrate this we can observe, in table 2,
that every 3(w)mg—=o is larger than I(w)m,—=1 and that, on the contrary, R(w)me=0 <
%(w)mo:il.

We have also computed the frequencies for the fifth eigenvalue, ¢ = 4, for different my
in the case 3r, = —A = 3 and for different acceleration parameters. The results are given
in figure 2 confirming that, as we vary mg, the increment of the field azimuthal angular
momentum increases f(w) and decreases I(w), thus improving the quality factor of the
spacetime

R(w
Q-5
The variation in Q follows a similar pattern if we increase £. By comparing the last two
columns with the first two columns of table 2, we observe that the change in Q for the
second eigenvalue of angular momentum is of about 1% for my = 0 and about 10% for

mo = 1.
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Figure 2. Quasinormal modes of the accelerating Schwarzschild AdS black hole for r;, = 1 and
different mgy. Each eigenvalue A is given in table 8 of appendix B and corresponds to the fifth
angular eigenvalue (¢ = 4) of each case.

v
0.00001 : _sl i

5.x107°

-5.x10"°

~0.00001 H _20l

Figure 3. Examples of field profile evolutions (left panel) and its logarithmic behavior (right
panel). The geometry and field parameters read M = —A/3 = «/0.12 = (/4 = 1.

In figure 3 some typical field profiles are displayed for two values of mg in the case of
an accelerating Schwarzschild AdS spacetime. In each field profile (red/blue), all quasinor-
mal modes (corresponding to a tower of overtones) are encoded for the chosen geometry
parameters and eigenvalues ¢, mg. However, such tower of states is not apparent in the
profile as long as the imaginary part of the ‘excited’ modes (v > 1) decays faster than the
fundamental mode.

The presence of different quasinormal frequencies as we change mg indicates the ex-
istence of a fine structure for the scalar field, which is not present in the non-accelerating
Schwarzschild AdS black hole (neither in the non-accelerating Reissner-Norstrom AdS ge-
ometry) and is a direct consequence of the presence of a. Indeed, in the non-accelerating
Schwarzschild black hole, each ‘state’ ¢ has 2¢ + 1 degenerate substates with identical
spectrum, while in the accelerating Schwarzschild AdS, the fine structure changes such
distribution as the change in \, for each mg (for fixed ¢), is now very pronounced. This
variation can be observed in the tables of appendix C for the angular eigenvalues that we
have computed.
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We now comment briefly on the fact that, in figure 2, the modes for my = 0 are ordered
differently than for mg > 0: this is due to the fact that the real part of the quasinormal
mode is very sensitive to the increase of the angular eigenvalue. By looking at table 8,
in appendix C, we can see that the same pattern emerges for the angular eigenvalue. In
fact, for an eigenvalue Aj, ~corresponding to a pair (mo,a) in the table, we have, e.g.
AG03 > A\306 5 2009 5 D12 At the same time, we have \J93 < \0:06 < \0-09 < \0-12
with similar inequalities holding for mg > 1. Such inequalities match the ones obtained
for R(w)y,,- Differently from the real part (proportional to /1), the imaginary part of the
quasinormal mode is of order ¢°, being less affected by the change of order of angular
momentum when mgo = 0 (see also e.g. [51], relations (12) and (13)).

In order to make contact with the results available in literature, we have tested our
numerical methods in the case of the non-accelerating geometry studied in [52, 53], finding
a good convergence with their data. For example, for a black hole with r; ~ 33.65,
A ~ —0.0883 and ¢ = 0, the quasinormal mode displayed in figure 4 of [53] reads w ~
1.236 — 1.5281, while we obtained w = 1.237 — 1.5261 for very small a (= 107'%) using our
method of characteristic integration in double null coordinates. With the same codes, we
further tested the limit of very small A (= 10719), obtaining a deviation not higher than
0.3% comparing to the values listed in the tables of [54-56], for 2M = ¢ =1 and n = 0.

5.2 Accelerating Reissner-Nordstrom AdS case

The ARNAAJS black hole spacetime contains an event horizon and a Cauchy horizon. Here
we exclude the range o? — % > 0 for which an acceleration horizon forms. The extremal
value of the charge defined for fixed a;, A and 7y is given by

1—a?r?/3
_ 2 h
O = ”’J N ((1 - a27«,z>2>

which in the special case & = 0 matches the known expression of [57].

For convenience, the computation of the quasinormal frequencies is performed using

the normalized charge

__Q
Qmax

such that Q € [0, 1]. The quasinormal modes for small and intermediate values of the charge

Q

(5.1)

are given in table 3 and table 4. Note that for @ = 0.1 the respective frequencies are mildly
different from those found in the non-charged case. In fact, the real and imaginary parts of
the accelerating Schwarzschild AdS spectra deviates slightly from the ARNAdS case with
small charge (thus having a higher Q). This feature is present for different pairs (¢, mg).
In fact, the value of Q increases as we increase the black hole charge. In turn, the
variation of the real and imaginary parts of the frequencies for small charges is again
similar to that of a accelerating Schwarzschild AdS black hole, while the variation of w
for increasing « is more pronounced for higher pairs (¢,mg). In the case of high charges,
an interesting novelty is the presence of purely imaginary frequencies taking control of the
field evolution, as they are smaller than the imaginary parts of the oscillatory modes.
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a=0.03 a = 0.06 a=0.09 a=0.12
rn (£,mo) R(w) —S(w) R(w) —S(w) R(w) —S(w) R(w) —G(w)
0.2 (0,0) 1.718881 0.177636 1.717162 0.177020 1.714290 0.175994 1.710254 0.174559

(1,0)  2.759956 0.025368 2.757105 0.025197 2.752339 0.024917 2.745631 0.024535
(1,£1) 2.766871 0.024936 2.770947 0.024341 2.773105 0.023647 2.773309 0.022861

0.4 (0,0) 1.626331 0.527058 1.625017 0.525697 1.622819 0.523427 1.619729 0.520247

(1,0) 2.499482 0.316147 2.497383 0.314931 2.493875 0.312904 2.488946 0.310068
(1,£1) 2.513610 0.313490 2.525787 0.309610 2.536680 0.304918 2.546253 0.299424

0.6 (0,0) 1.658217 0.868747 1.657321 0.866891 1.655822 0.863795 1.653711 0.859458

(1,0) 2.432055 0.686018 2.430248 0.684153 2.427228 0.681044 2.422982 0.676691
(1,£1) 2.454942 0.681440 2.476503 0.674934 2.497304 0.667117 2.517307 0.657986

0.8 (0,0) 1.751439 1.198093 1.751188 1.195978 1.750766 1.192451 1.750165 1.187512

(1,0) 2.459416 1.042430 2.457783 1.040266 2.455047 1.036663 2.451187 1.031625
(I.£1) 2.494402 1.035648 2.529034 1.026510 2.563833 1.015713 2.598778 1.003232

1.0  (0,0) 1.881849 1.520744 1.882570 1.518658 1.883767 1.515187 1.885435 1.510343

(1,0) 2.536224 1.385794 2.534463 1.383741 2.531472 1.380343 2.527171 1.375635
(1,£1) 2.587522 1.376203 2.640081 1.364077 2.694505 1.350048 2.750822 1.334060

Table 3. Quasinormal modes of the ARNAdS black holes with A = —3 and @ = 0.1.

a=0.03 a = 0.06 a = 0.09 a=0.12
ry (€,mg) R(w) -G (w) R(w) -G (w) R(w) —SG(w) R(w) -G (w)
0.2 (0,0) 1.570213  0.273557 1.568928  0.272705 1.566780  0.271286  1.563760  0.269299

(1,0) 2.636061 0.0499589 2.633737 0.0495998 2.629851 0.0490039 2.624387 0.0481749
(1,£1) 2.646877 0.0489293 2.655441 0.0475567 2.662492 0.0459730 2.667984 0.0441919

0.4 (0,0) 1.403189 0.786864 1.402657 0.785257 1.401766 0.782575 1.400506 0.778814

(1,0) 2.305143 0.482371 2.303651 0.480928 2.301156 0.478521 2.297648 0.475151
(1,£1) 2.328241 0.477328 2.350345 0.470802 2.371912 0.463277 2.392892  0.454756

0.6 (0,0) 0 1.199676 0 1.198777 0 1.197278 0 1.195175

(1,0) 2.190183 0.976503 2.189016 0.974854 2.187062 0.972107 2.184305 0.968263
(1,£1) 2.232217 0.965776 2.274869 0.953254  2.318472 0.939462 2.362967  0.924370

0.8 (0,0) 0 1.047781 0 1.046328 0 1.043885 0 1.040417
(1,0) 2.154314 1.478695 2.152591 1.478218 2.149655 1.477470 2.145403  1.476530
(1,£1) 2.225074 1.456170 2.299557 1.432795 2.378204 1.408642 2.460882  1.383604
1.0 (0,0) 0 1.035007 0 1.032701 0 1.028663 ok ok
(1,0) 0 1.678920 0 1.669835 0 1.653840 ok ook
(1,£1) 0 1.769704  2.428626  1.900650  2.525291  1.870401 ook ook

Table 4. Quasinormal modes of the ARNAdS black holes with A = —3 and Q = 0.7.

The existence of purely imaginary frequencies may be related to a second family of
quasinormal modes called near-extremal modes. In a non-accelerating Reissner-Nordstrom
geometry such family is prominent, controlling the field evolution for ‘very’ near-extremal
values of charge and being an important aspect in numerical studies of the strong cosmic
censorship conjecture [58, 59]. In the ARNAdS black hole, the presence of such damped
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a=0.03 a = 0.06 a=0.09 a=0.12
rn (Gme)  Rw) S Rw) S Re) S Rw) —S(w)

0.6 (0,0) 1.390444 1.326985 1.390886 1.325262 1.391619 1.322387 1.392637 1.318355
0.8 (0,0) 1.461326 1.856400 1.463267 1.855531 1466474 1.854304 1.471059 1.852342

1.0 (0,0) 1.567971 2.384519 1.572088 2.386000 1.578328 2.389188 ook ook
(1,0)  2.164401 1.999024 2.159934 2.002625 2.197220 1.989364 otk ook
(1,£1) 2.273826 1.954646 ok ook ook ook ok ok

Table 5. Subdominant oscillatory quasinormal modes of the ARNAdS black holes of table 4.

purely imaginary decay is noticed for much smaller values of the black hole charge. This
seems to indicate the presence of the near-extremal family, as long as the oscillatory family
has an increasing imaginary part (with increasing r) that suprasedes the near-extremal
modes. In this case, the secondary oscillatory mode can be acquired through the prony
method by collecting ‘higher overtones’ in the field profile evolution, as it is shown in
table 6. The frequencies of the subdominant oscillatory family, in the case of Q@ = 0.7, can
be seen in table 5.

The quest of stability of the ARNAdS black hole is similar to the previous Schwarzschild
AdS case: for ¢ > 0 the potential is positive outside the event horizon, thus generating a
stable field profile decay, i.e. a composition of towers of quasinormal modes. Such behaviour
was found numerically in our search with different geometry parameters which resulted in
a field evolution constrained to that tower of quasi-eigenstates belonging to the different
parameter families.

The special case ¢ = 0 results in A-eigenvalues that allow for V' < 0 when r > r,. The
signal change in V' occurs at

~ 3M £ \/IM? +6Q%(1 — a?Q? — 3X)
n 1 —a2Q? — 3\

T (5.2)
In general, far from the near-extremal regime, we will have V(r > r;) < 0 and V(r), <
r < ry) > 0. As in the accelerating Schwarzschild AdS spacetime, the transition point
r4 is high enough to let |r.(r4)| < h, where h defines the grid step of integration. This
represents again a very small 7, interval, (r.(r;),0), where the potential is negative and
indicates the stability of the field evolution substantiated by our numerical data. The
behaviour of the frequencies relative to the variation of myq is similar to the accelerating
Schwarzschild AdS case, i.e. we find a fine structure for both real and imaginary parts of
w, allowing the increment of Q for increasing mg (also observed for increasing ¢).

Finally, as a consistency check, we note that for very small values of A (~ 10710) we
managed to essentially reproduce the results obtained in [13] for the case A = 0.

5.2.1 Near-extremal modes

We start by introducing the quantity
n=103(1- Q) (5.3)

as a more suitable variable such that n € [1,10].
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Figure 4. Scalar field potentials for the ARNAdS black hole with parameters r, = —A/3 =1 and
Q = 0.7 (left), @ = 0.999 (right) with £ = 0. The regions where V is negative is limited to: a
small interval in r, for large r as displayed in the left panel; a small well in the near-extremal black
hole as shown in the right panel; a small interval for large r also in the near-extremal case. This
situation does not yield unstable field evolutions in any case.

a=0.03 a = 0.06

no (6me) Rw) —Sw) Rw) —S(w)
1 (0,0) 0 0.003825 0 0.003747
(1,0) 0 0.008092 0 0.007999
(1,+£1) 0 0.008756 0 0.009408
4 (0,0) 0 0.016608 0 0.016390
(1,0) 0 0.031966 0 0.031602
(1,+£1) 0 0.034577 0 0.037142
7 (0,0) 0 0.030203 0 0.029872
(1,0) 0 0.056053 0 0.055420
(1,+£1) 0 0.060608 0 0.065089
10 (0,0) 0 0.044233 0 0.043800
(1,0) 0 0.080236 0 0.079339
(1,£1) 0 0.086726 0 0.093115

Table 6. Near-extremal quasinormal modes with 3r;, = —A = 3.

In the near-extremal regime, in addition to the region where r € (r4, 00) we also have
a negative potential for r € (r4,7-), i.e. V < 0 for r, € (=00, 74(r-)). Nevertheless, only a
very small deep of the potential is observed that is about one order of magnitude smaller
than its peak in the region r € [r_,ry]. This then indicates the numerical stability of the
solution. Figure 4 displays the cases with qualitatively different potentials.

In turn, table 6 contains results of the computation of the near-extremal quasinormal
modes. The field profile is dominated by purely imaginary decaying modes for both £ =0
and £ = 1, as shown for example for n < 10 and Q > 0.99.

The exact expression for the near-extremal family found in [13] reproduces similar re-
sults as those displayed in table 6 within a deviation of 5%. The agreement of the mode val-
ues in table 6 with the results of [13] indicates that they represent the same family of modes
which are also present in Reissner-Nordstrom and Reissner-Nordstrém dS black holes.
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6 Final remarks

Accelerating black holes have been an active area of research with interesting recent de-
velopments leading to a better understanding of their physical and mathematical proper-
ties [5-7, 13, 14].

In this paper, we have studied the numerical stability of accelerating AdS black holes
against linear scalar perturbations. In order to do that we have considered a non-minimally
coupled scalar field propagating on AdS black holes with small accelerations and computed
the field evolution and their quasinormal modes.

For the accelerating Schwarzschild AdS black hole we have found, through charac-
teristic numerical integration, that only oscillatory quasinormal modes are present in the
perturbation spectra and that the scalar field perturbation decays in time, for the range of
accelerations considered. Furthermore, the oscillatory frequencies display a fine structure
relative to the azimuthal angular momentum mg of the field. For a specific eigenstate £,
different mg render different modes w with increasing R(w) and decreasing J(w) as mg
increases. This is a new behaviour peculiar to accelerating black holes. In fact, for the
non-accelerating AdS black holes any eigenstate ¢ is degenerated in m and produces the
same quasinormal mode.

For the accelerating Reissner-Nordstrom AdS black hole, a similar fine structure is
exhibited with respect to mg. In this case, however, the existence of a Cauchy horizon
gives rise to field profiles controlled by purely imaginary solutions for high values of the
charge. As a consequence of the small deeps in the scalar potentials, together with the
small intervals for r, where V(r) < 0, the evolution of the scalar perturbation is observed
to be stable.

In conclusion, our results strongly suggest that these accelerating AdS black holes with
small acceleration are stable against small linear scalar perturbations.
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A Coordinate transformations of the spacetime metric

In order to make contact with previous works, we rewrite metric (2.1) in coordinates often
used in the literature as (see e.g. [11, 12, 35, 60, 61])

1 1
ds* = w2 (—th2 + ngﬁ + éde + Gd<1>2) : (A1)
with
W =a(z +y)
1
F=—5-1+ y? — 2amy® + a®¢*y? (A.2)
a?l
G =1-2>-2amz® — a®¢*2*,
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where a,m, q and [ are constant parameters. The transformation between the above coor-
dinate system and that of (2.1) is given by

y = py(Y +9)

r = fy(X —9)

t= %T (A.3)
_

@—qu

which is a generalization of the transformation introduced in [29]. The relation between
the parameters of (A.1) and (2.1) is obtained from the determination of the triad (53,7, 0)
through the equations

402Q%*6% + 6aMS? +2(1 — a*Q*)6 —2aM = 0 (A.4)

A 1 -1/2
<3a2Q254 +4aM&® 4+ (1 — a?Q?)6* +1 + 32T W) =B (A.5)
(1= 02Q? + 6aMb + 602Q%6%)Y/? = ~. (A.6)

There is at least one positive real root for ¢ in equation (A.4), which may be used to
solve the subsequent equations for 8 and . The remaining two roots are either imaginary
(yielding non-physical spacetimes) or forbidden by the restriction |al| > 1 (see [35] for more
details). The determination of the triad allows us to find the constants in the system (A.3)
through

a= % (A7)
Q
q9= ? (A.8)
2
— w, (A.9)

We note that the coordinate transformations must be such that the order of the roots
of G and & are preserved. Furthermore, we note that the rescaling of the cosmological
constant in terms of —I2A = 3¢ induces different values of 3 in equation (A.5) depending
on the choice of ¢, and has impact on the relations between (m,a) and (M, «). We can
freely choose ¢ = 1, such that, equation (A.5) is the same as found in [29]. In turn, the
asymptotic AdS behaviour can be recovered with the proper rescaling of the coordinates.?

B Coefficients of the Frobenius method for the scalar angular equation
with Q = 0

We apply the Frobenius method (detailed in [13]) to the angular equation (4.20) and we
describe briefly how the respective expansion coefficients are obtained. In order to do that

3The shift in a can be absorbed through the relation siny = a2

conformal structure.

+ ¢ — 1, see (3.3), preserving the
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we consider the ansatz
C(w) = wl(w—1)7 Z Apw'™,

with d,v € C, into (4.20) to obtain the recurrence relation

n—1

An =400 ((U2+i + To4i) (i + 1 =1 —0) = (b1 + witi + Ur4i)
i=0

ts34i(—02 4+ 63+ 20— 2m) — (=1 =) (n =2~ 1)) Ap_i1,
with
1
up+ 11(0 +n) + 52002 +6(2n — 1) + n2 —n)’
and the terms vy, 7, tn, wn, Uy and s, are the expansion coefficients of the equation which,
with the given ansatz, are written as

A, =

w = 160%y(y — 1)w?(w — w3)? Z wpw"

= 4T byw(w — w3) Z thw",
=TT = Z Thw",

u = —4<m(2)(1—|—b/2) +T( c—bw) Zunw

where v € N and b, c and T are given in subsection 4.2.2.
The boundary conditions (4.13) can be rewritten in terms of the coordinate w as

¢l =g,

w—0
—ZA (w—1)7

and determine the exponents of our ansatz as

’w—)l

1+2aM

1-— 2aM
mo

2

0=

The method requires that Ap and >, _, A,, are constant and remain bounded. Then, the
eigenvalue A is the one for which the series converges faster. The Frobenius method then
follows as in the appendix B of [13] using the coefficients derived above.
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C Angular eigenvalues

The angular eigenvalues are listed in tables 7 and 8 for the accelerating Schwarzschild AdS

case and in tables 9, 10 and 11 for the ARNAJS case.

Th

(€, mo)

a=0.03

o =0.06

a=0.09

a=0.12

0.2

0.4

0.6

0.8

1.0

(1,0)
(1,41)
(1,0)
(1,41)
(1,0)
(1,41)
(1,0)
(1,41)
(1,0)
(1,+1)

2.333298289031
2.352100113297

2.333158927615
2.375327006500

2.332793811025
2.407500556252

2.331937839414
2.453306519460

2.330087286568
2.517761087135

2.333193150587
2.370960670720

2.332635518848
2.417792644473

2.331173092362
2.483154962052

2.327736825751
2.577205005199

2.320275866010
2.711482557976

2.333017901376
2.389915327738

2.331762531208
2.460737190225

2.328464689225
2.560346525295

2.320686176298
2.705243211037

2.303673700564
2915172999773

2.332772513678
2.408964400969

2.330539001733
2.504167616545

2.324657677389
2.639126560839

2.310710590694
2.837644842922

2.279920427719
3.129533412902

Table 7. The second (¢ = 1) angular eigenvalues A of the accelerating Schwarzschild AdS black

hole with A = —3.

mo

a=0.03

a=0.06

a=0.09

a=0.12

=W Ny = O

20.30572099701
20.87611371905
21.43937370937
21.99553895303
22.54466781250

20.22226231855
21.42902918386
22.60338669832
23.74601976879
24.85790253689

20.08104555132
21.99951026422
23.83468102299
25.59052162022
27.27215921520

19.87872040093
22.59604586787
25.14323594138
27.53470285859
29.78713644778

Table 8. Angular eigenvalues A with ¢ = 4 of the accelerating Schwarzschild AdS black hole with

37’h =A=-3.

rn  (£,mg) a=0.03 a=0.06 a=0.09 a=0.12
0.2 (0,0) 0.333326837517 0.333307349027 0.333274864737 0.333229379426
(1,0)  2.333298040894 2.333192158012 2.333015667982 2.332768542947
(1,£1) 2.352303887057 2.371372590208 2.390539801594  2.409805874504
0.4 (0,0) 0.333300916993 0.333203631726 0.333041368601 0.332813945442
(1,0)  2.333157148535 2.332628399331 2.331746500271 2.330510472275
(1,£1) 2.375871987345 2.418907374042 2.462447057555 2.506498648789
0.6 (0,0) 0.333232588715 0.332929944209 0.332424161459 0.331713155034
(1,0)  2.332785718749 2.331140664571 2.328391505356  2.324527017068
(1,£1) 2.408665900195 2.485572648034 2.564107786727 2.644327115676
0.8 (0,0) 0.333071229416 0.332282115738 0.330957483809 0.329082802532
(1,0)  2.331909007110 2.327620960995 2.320423445562 2.310238346293
(1,£1) 2.455526720737 2.581892598674 2.712663759721 2.848083771123
1.0  (0,0) 0.332719915444 0.330865382867 0.327725787649 0.323223985944
(1,0)  2.330001714700 2.319930221691 2.302883047186 2.278446512474
(1,£1) 2.521647942458 2.719867695779 2.928727407306 3.148993761679

Table 9. Angular eigenvalues A of the ARNAdAS black hole with A = —3 and Q = 0.1.
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rn  (£,mg) a=0.03 a=0.06 a=0.09 a=0.12
0.2 (0,0) 0.333324773122 0.333299091318 0.333256284397 0.333196346487
(1,0)  2.333276571169 2.333106277538 2.332822431005 2.332424995816
(1,£1) 2.362097897588 2.391196700671 2.420632595437 2.450408417681
0.4 (0,0) 0.333282840912 0.333131285290 0.332878430787 0.332523882596
(1,0)  2.333004974607 2.332019423693 2.330375252847 2.328070070650
(1,£1) 2.402121884881 2.472784748118 2.545369724045 2.619925174347
0.6 (0,0) 0.333137622108 0.332549129966 0.331563746663 0.330174503791
(1,0)  2.332100326764 2.328393392034 2.322188588900 2.313445356211
(1,£1) 2.465010534629 2.603302572682 2.748536027677 2.901045550449
0.8 (0,0) 0.332701705859 0.330793750908 0.327569297922 0.322958059610
(1,0)  2.329482746515 2.317857309942 2.298230820803 2.270208175180
(1,£1) 2.563543502614 2.812908360172 3.082822247896 3.374677803926
1.0  (0,0) 0.331561686530 0.326155642110 0.316615165824 HoAk
(1,0)  2.322824812111 2.290797459472  2.234454422975 HoAE
(1,£1) 2.712510606271 3.140238163558 3.628888161327 HoAk

Table 10. Angular eigenvalues A of the ARNAdAS black hole with A = —3 and Q = 0.7.

n (¢, mo) a=0.03 a = 0.06
1 (0,0) 0.329111161147 0.316010922864
(1,0)  2.308616801645 2.232119643296
(1,£1) 2.923676195498 3.622431056504
4 (0,0)  0.329147462042 0.316163105766
(1,0)  2.308824301404 2.232987160996
(1,£1) 2.921133606250 3.616534976067
7 (0,0)  0.329183475855 0.316314034822
(1,0)  2.309030216868  2.23384772208
(1,£1) 2.918599959560 3.610661601828
10 (0,0) 0.329219204255 0.316463713017
(1,0)  2.309234557044 2.234701378731
(1,£1) 2.916075243898 3.604810894210

Table 11. Angular eigenvalues A of the ARNAdS black hole with 3r, = A = —3.
Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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