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Nonlinear ion-stopping calculations for a classical free-electron gas at high projectile energies
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In this work, we solved the classical equations of motion and Poisson equation self-consistently, equivalent
to the nonlinear Vlasov-Poisson equation, for a projectile moving in a static free-electron gas to calculate the
full noncentral self-consistent electron-ion potential, and thus the ion stopping power. We investigated the
origin of the Barkas effect, namely, the first nonlinear effect for projectiles at high velocities responsible for
the difference between the energy-loss results for positively and negatively charged ions traversing the same
target. This effect is strongly enhanced by the multipolar part of the electron-ion potential as first suggested by
Lindhard [J. Lindhard, Nucl. Instr. and Meth. 132, 1438 (1976)]. Moreover, this effect is partially related to the
nonconservation of the angular momentum in electron-ion collisions. These nonlinear calculations are applied
to understanding the stopping of protons and antiprotons in Al at high projectile energies.
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I. INTRODUCTION

The stopping power, also called the stopping force, of ions
slowing down into the matter is a basic quantity used in many
areas of knowledge and different approaches to calculate it
are found in the extensive literature [1]. Among them, the
free-electron gas (FEG) model has been used to evaluate the
electronic stopping because of its simplicity and reliability
[2]. It can be also used as a starting point and a reference for
more advanced calculations such as time-dependent density
functional theory (TDDFT) [3] to check convergence and
predictions. The main physical quantity in the FEG model
is the electron-ion interacting potential, which is well known
in the framework of dielectric formalism or the linearized
Vlasov-Poisson equation for a classical plasma. For nonlin-
ear calculations the self-consistent electron-ion interacting
potential is still unknown and therefore central potentials de-
termined from the Friedel sum rule have been used [4,5] to
calculate the electronic stopping power and the corresponding
the Barkas effect [1,6–8] as a function of the projectile energy.

The Barkas effect [9,10], also called Barkas-Andersen [1],
is the first correction of the Bethe formula [11] that depends
on the sign of the charge of the projectile. At high projectile
energies, positively charged ions have larger stopping than
negatively charged ions for the same projectile mass and
target. This effect was first explained in terms of electron
polarization and calculated by Ashley, Ritchie, and Brandt
(ARB) [12] and Jackson and McCarthy [13] for distant col-
lisions using classical and quantum calculations, respectively,
for an electron harmonically bound. Some useful formulas for
the ARB model can be found in [14] and more recently in [11],
but they depended on a cutoff distance a. Lindhard [15] also
calculated the Barkas effect using a dimensionless analysis
and proposed different mechanisms involving close collisions.
Experimental data under channeling conditions demonstrated
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the validity of the ARB and Lindhard models for the Barkas
effect in Si [16,17].

For a FEG the rigorously second-order perturbation theory
was applied by Pitarke et al. [18]. Numerous articles on this
subject can be found in the literature (see, for example, the
references in [1]). Most of the articles are limited to the use of
either perturbation theory or central potentials to describe the
electron-ion interaction. Except for a few ab initio coupled-
channel and TDDFT calculations [19–21] and distorted wave
methods [22–24], full nonlinear calculations of the Barkas
effect in a free electron gas system using noncentral ion-
electron potentials and classical mechanics are still missing
in the literature. While classical calculations are much less
computationally demanding, classical Barkas results compare
well with the fully quantum mechanical ones [15,18], so that
in some cases we can avoid complex quantum mechanical cal-
culations. Moreover, classical calculations can be augmented
with quantum mechanical characteristics. One such approach
is to incorporate the inverse Bloch correction at high projectile
energies [1,25] or even utilize the Bohm quantum mechanical
potential [26,27].

To this end, we perform self-consistent stopping-force
(dE/dx) calculations corresponding to the full nonlinear
Vlasov-Poisson approach for a projectile with velocity �v and
charges Z1 > 0 and −Z1 traversing a homogeneous electron
gas at rest with undisturbed density n by using a multipolar
expansion for the induced potential. The results for the Barkas
factor, namely,

B =
dE
dx (Z1) − dE

dx (−Z1)
dE
dx (Z1) + dE

dx (−Z1)
, (1)

were compared to results obtained by Lindhard [15] and ARB
[12] with a = 1/(1.78v) [15,28]. It is pointed out that the
use of a as the radius of a quantum oscillator will reduce
B by a factor of 2 [15]. Furthermore, we calculated the full
numerical solution of a projectile with charge ±Z1 interact-
ing with a classical harmonic oscillator [29], as described in
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Appendix A, using the PYTHON code described in the Supple-
mental Material [30]. In addition, the present results were used
to calculate the total stopping force of protons and antiprotons
in an Al target by assuming a collection of FEGs to represent
the Al subshells. Atomic units (h̄ = me = e = 1) are used in
this work unless otherwise stated.

II. THEORETICAL PROCEDURES

In this work, we consider the reference frame where the
projectile is at rest, in which the electrons move initially with
a velocity −�v related to the projectile. The initial undisturbed
electron density n is given as a function of the Wigner-Seitz
radius rs as n = 3

4π
r−3

s . We consider �rcl(t, �b) as the classical
trajectory of each electron at time t and with impact param-
eter �b, V (�r) as the total projectile-electron potential energy
(including screening), Vind(�r) as the induced potential energy,
Vbare(�r) as the bare ion-electron potential energy, ρ(�r) as
the density in the disturbed electron gas, and nind(�r) as the
induced electron gas density. These quantities are related ac-
cording to nind(�r) = ρ(�r) − n and V (�r) = Vind(�r) + Vbare(�r).

We performed self-consistent evaluations of the stopping
force, by solving the following coupled equations iteratively:

d2

dt2 �rcl(t, �b) = −∇V (�rcl ), (2)

ρ(�r) = nv

∫
dt

∫
d2b δ(3)[�r − �rcl(t, �b)], (3)

∇2Vind(�r) = −4πnind(�r), (4)

namely, Newton’s and Poisson’s equations, which are equiv-
alent to the so-called Vlasov-Poisson equation [14,31] largely
used in plasma physics. The physical interpretation of Eq. (3),
described in [25], corresponds to the electron counting in a
given volume dV under stationary conditions, by integrating
all trajectories of a large electron ensemble, with different
impact parameters �b related to the ion. It was shown that the
electron density obtained from Eq. (3) satisfies the Friedel
sum rule for central potentials [25]. Given the total potential
energy V (�r), each classical trajectory �rcl(t, �b) is obtained by
integrating Eq. (2) numerically via the Verlet algorithm. Each
trajectory begins with impact parameter �b, chosen from an
evenly spaced grid. After obtaining the classical trajectories
for several electrons, a new interacting potential is evaluated
via Eqs. (3) and (4), and the process is repeated until con-
vergence is achieved. For this sake, the new potential should
be mixed with typically 95% of the previous one otherwise
convergence is not achieved. The initial potential is assumed
to have Yukawa-type screening, with inverse screening length
given by α = ωp/v, where ωp = √

4πn [1] is the plasmon
frequency. Then, unless defined otherwise, the initial potential
energy is a central one. To allow for multipolar effects on both
the induced density and the energy loss, the potential energy
is, following our system symmetry, expanded via Legendre
polynomials [32] as

Vind(�r) =
∞∑

�=0

c�(r)P�(cos θ ), (5)

where r is the distance between the electron and the projectile
and θ is the angle between the direction parallel to the initial
electron velocity and the electron position. The radial coeffi-
cients c�(r) are given by

c�(r) = 2πnv

∫ ∞

0
db b

∫ ∞

−∞
dt 	(Rmax − rcl(t, �b))P�(cos θcl(t, �b))

×
{

	(r − rcl(t, �b))
r�

cl

r�+1
+ 	(rcl(t, �b) − r)

r�

r�+1
cl

− r�r�
cl

R2�+1
max

}
− 2πn

3

(
R2

max − r2
)
δ0,�, (6)

where Rmax is a maximum distance in the calculations,
rcl(t, �b) = |�rcl(t, �b)| is the distance between the electron and
the ion, θcl(t, �b) is the angle between �rcl(t, �b) and the z axis,
and 	(x) is the Heavyside step function.

To achieve convergence, all radial coefficients c�(r) were
subject to the condition c�(r � Rmax) = 0, where Rmax was
chosen typically as 4/α, corresponding to four times the
screening length. Equation (6) was obtained by considering
the potentials given by a Green’s function for a FEG inside
a grounded spherical shell of radius Rmax, that is, V (Rmax =
0), as described in Appendix B. Using the aforementioned
Green’s function, Vbare(�r), the central Coulomb potential, is
given by

Vbare(�r) = −Z1

(
1

r
− 1

Rmax

)
. (7)

For practical reasons, the sum in Eq. (5) is truncated to a maxi-
mum value of �, denoted as �max. After describing an adequate

number of electron trajectories via �rcl(t, �b), the energy-loss
can be evaluated either from the dipolar part of the induced
potential as c1(r)/r at r → 0 or by using the following
expression [25]:

dE

dx
= Z1nv

∫
dt

∫
d2b

cos θcl(t, �b)

r2
cl(t, �b)

. (8)

In this work, both methods yield the same results within the
numerical uncertainties.

The described procedure is performed for projectiles with
charge Z1 > 0 and for antiprojectiles with charge −Z1. Fi-
nally, the so-called Barkas factor from Eq. (1) is evaluated.

III. RESULTS AND DISCUSSION

The above procedure is used for a target modeled by
a FEG with rs = 2.07, which realizes the Al valence elec-
trons. The used projectiles were protons and antiprotons
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FIG. 1. Self-consistent results of dE/dx for ions (continuous
lines) and anti-ions (dashed lines) in Al FEG (rs = 2.07) as a func-
tion of the projectile velocity for different values of �max (indicated by
colors) and for Z1 = ±1 (top panel) and Z1 = ±2 (bottom panel). As
a comparison, Bohr stopping results are shown (black dashed-dotted
line). The difference in the energy loss for ions and anti-ions for
noncentral potentials is larger than the one found by using a central
potential (�max = 0).

(Z1 = ±1), helium and antihelium (Z1 = ±2), and, to com-
pare the energy-loss results to the ones obtained via perturba-
tion theory, projectiles with Z1 = ±0.1 were used.

Figure 1 shows the present calculations for the stopping
force as a function of the projectile velocity and different
values of the cutoff �max for the multipolar expansion in
Eq. (5). The calculations are compared to the classical Bohr
stopping formula [33] recently rederived for a FEG in [25]
with the oscillator frequency ω0 matching the plasmon one
ωp (see black dashed-dotted lines). All calculations converge
to the results of the Bohr formula at high projectile veloci-
ties. Calculations restricted to a central potential (�max = 0)
approach faster to the Bohr results whereas calculations with
noncentral potentials (�max > 0) overestimate (underestimate)
the Bohr results for Z1 > 0 (Z1 < 0) for v > 2 due to the
Barkas effect. The dipolar self-consistent potential (�max = 1)
overestimates the Barkas effect, but the calculations shows a
fast convergence for �max � 4.

By considering the difference between the stopping forces
of the proton and antiproton (top panel), our results show

FIG. 2. Self-consistent results of the Barkas factor for |Z1| = 1
(continuous lines), Lindhard [15] and Ashley et al. [12] (dashed
lines) and classical harmonic oscillator (HO, circles) in Al FEG. For
large values of �max, the self-consistent results approach the results
from Lindhard and Ashley and the classical HO results.

that the Barkas factor is strongly increased for noncentral
potentials, especially for lower projectile velocities. For heav-
ier ions, the same behavior regarding the Barkas factor can
be seen, just enhanced, as shown in the bottom panel. In
Fig. 2, our results of the Barkas factor B [see Eq. (1)] for
|Z1| = 1 are shown for different values of �max and compared
to the results from Lindhard, ARB, and the classical harmonic
oscillator (HO) (using ω0 = ωp) models. For velocities above
3.0 a.u., we find a good agreement between the self-consistent
(�max = 10) and HO results. The Lindhard results are larger
than the ARB ones, but both converge to HO results at high
velocities. It is important to point out that ARB and HO, in
general, yield different results. This is because ARB evalu-
ations converge to HO only for distant collisions, i.e., those
larger than a certain cutoff parameter. On the other hand,
HO calculations do not require the use of a cutoff parameter.
The calculated Barkas factors using only central potentials
(�max = 0), however, are noticeably smaller than all presented
results particularly the ones using noncentral potentials. This
indicates that the Barkas effects depend on the noncentrality
of the screening potentials and cannot be described adequately
by using only central screening potentials.

Since the agreement among different models for the Barkas
factor seems to become better for larger velocities, we in-
vestigate the same effects for fictitious projectiles that bear
|Z1| = 0.1 to approximate the perturbative conditions (in
atomic units, 2Z1/v � 1) for ion-FEG interaction even for
lower ion velocities. The present self-consistent results are
shown in Fig. 3 for central potentials (�max = 0) and non-
central potentials with �max = 10, together with the Lindhard,
ARB, and HO models. Under perturbative conditions as re-
alized by such fictitious projectiles, the following results are
even more evident. HO and �max = 10 results have a very good
agreement, lying between ARB and 2/3 of the Lindhard re-
sults and converging to the ARB and Lindhard results at high
velocities. According to Lindhard [15] 2/3 of his suggested
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FIG. 3. The same as in Fig. 2 but for fictitious projectiles with
|Z1| = 0.1. Note that the present noncentral calculations for � = 10
converge to the ARB or Lindhard results for large velocities.

Barkas factor comes from projectile screening and 1/3 from
nonconservation of the angular momentum. A Barkas factor
amounting values close to 2/3 of the Lindhard results was also
obtained by classical calculations [8] using central potentials,
where the angular momentum is conserved, differently from
the present work.

The equivalence between the oscillator and FEG mod-
els for ω0 = ωp is well known in first-order perturbation
theory [1]. However, this equivalence goes further includ-
ing the leading term of the Barkas effect as long as the
self-consistent noncentral potential is used for FEG calcula-
tions. Similar results were reported by Miraglia and Gravielle
[24] by using a distorted-wave-like dielectric function called
Coulomb-Lindhard [23].

From Figs. 2 and 3 we can also observe that no other
model agrees with the self-consistent results for central po-
tentials, further indicating that the Barkas effect is strongly
enhanced by noncentral potentials. Indeed our calculations
show a strong increase of the induced potential Vind(�r) at
r = 0 when at least the dipole part of the potential is added.
According to the Lindhard model [15], this extra screening
will reduce (increase) the local velocity at the distance of
the closest approach increasing (decreasing) the scattering
intensity for positively (negatively) charged ions. Figure 4
shows the induced potential calculated at the position of the
projectile (r = 0) of a fictitious charge Z1 = 0.1 as a func-
tion of the projectile velocity. For calculations restricted to
a central potential (lmax = 0) the induced potential at r = 0
agrees with the one obtained from the Friedel sum rule [4] at
high projectile velocities for a Yukawa potential with inverse
of screening length α = ωp/v. For a noncentral electron-ion
potential the induced potential at r = 0 or equivalently the
screening around the projectile increases in accordance with
the value predicted by the dielectric formalism at high pro-
jectile velocities, namely, α = 0.5π ωp/v [34]. By allowing
for further terms in the multipole expansion in Eq. (5) the
monopole contribution decreases (being more screened) to

FIG. 4. Self-consistent results for the induced potential at the
ion position as a function of the ion velocity with charge Z1 = 0.1
for a FEG with rs = 2.07 a.u. The lines correspond to the induced
potential at r = 0 from a Yukawa potential with inverse of screening
length given by α.

compensate for the extra scattering from the � > 0 terms in a
self-consistent calculation. As discussed in [15], the screening
effect around the projectile is directly responsible for the
Barkas effect and therefore it will be enhanced in comparison
to the one obtained by restricting the electron-ion potential to
a single monopole (central) contribution.

Moreover, by using only central potentials to describe the
changes in n, there is, as expected, no change between the
initial and final electron angular momentum related to the ion
for all initial momentum values. However, by using noncentral
potentials, the ion-perturbed FEG combination behaves also
as a dipole because of the accumulation (or depletion) of
the electron behind the ion, leading to the nonconservation
of the angular momentum, as shown in Fig. 5. Indeed, for
large angular momenta, we can see that the electron angular
momentum is increased for positive ions and decreased for
negative ones compared to the case of a central potential.
Also, as displayed in Fig. 5, the change is not symmetric
between both positive and negative projectiles. However,
they become more symmetrical in the perturbative regime as
shown in Fig. 6 for fictitious Z1 = ±0.1 ions. A slight increase
(decrease) of angular momentum relative to the initial one
will cause a slight increase (decrease) of the angle between
the electron position and linear momentum. As observed in
the calculated electron trajectories for positively (negatively)
charged ions this change will slightly decrease (increase) the
angular position θcl and therefore according to Eq. (8) will
slightly increase (decrease) the stopping force for for posi-
tively (negatively) charged projectiles. This explains the extra
mechanism for the Barkas effect in the perturbative regime
proposed by Lindhard [15], which amounts to 1/3 of the value
given by Lindhard. However, for smaller electron angular
momenta (either small impact parameters or smaller velocities
or a combination of both), there are a few differences in the
electron angular momentum change for ions or anti-ions as
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FIG. 5. Final versus initial angular momentum for scattered
electrons by protons (top panel) and by antiprotons (bottom panel)
for v = 5 a.u. and rs = 2.07 and self-consistent �max = 0 (dashed
lines) and �max = 10 (continuous lines) potentials. As expected, a
central potential (�max = 0) does not change the electron angular
momentum, while noncentral potential can even invert the sign of
the angular momentum, see text.

observed in Fig. 5. Even an inversion of the electron angular
momentum is observed at 2 a.u. and 3 a.u. for protons and
antiprotons, respectively. Nevertheless, the region of angular
momenta where this takes place vanishes in the perturbative
limit as shown in Fig. 6 for fictitious Z1 = ±0.1 ions.

Finally, in Fig. 7 we provide a comparison with experi-
mental data for proton and antiprotons in Al. For this sake,
we used a collection of FEGs according to ICRU recommen-
dations [1]. Namely, we used two FEGs with rs = 0.46 and
rs = 2.07 realizing the L (2p) and M shells of Al, respectively.
The K and L (2s) shells were not included in what follows
because they are of minor importance for the present projectile
velocity range v < 6 a.u. According to the Bohr’s criterion
[1,35] for the validity of the classical calculations κ = 2Z1/v

should be larger than 1. Since, for the present case κ ranges
from 1/3 to 2/3, we added the inverse Bloch correction as
demonstrated in [25] and used in stopping power programs
as, e.g., PASS [36] to add quantum mechanical features to
our classical calculations. It should be pointed out, however,
that the inverse Bloch correction can be used only at high
velocities and relates only to scattering in the Coulomb

FIG. 6. The same as in Fig. 5 for Z1 = ±0.1. Differently from
Fig. 5, it is possible to see symmetry in the angular momentum
change for scattered electrons by ions and anti-ions for larger mo-
mentum values.

FIG. 7. Experimental (symbols: squares for protons and circles
for antiproton) [37,38] and theoretical (lines, see legend) results for
the stopping of protons (p) and antiprotons ( p̄) in Al as a function of
the ion velocity. The lines stand for our self-consistent calculations
(FEG) and the TDDFT evaluations [20].
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potential. There is no corresponding quick-fix for quantum
mechanical effects or corrections to the electron density in-
duced according to classical mechanics. The results were then
averaged according to the velocity distribution of a degener-
ated electron gas allowing a better description for the shell
corrections [1] of the Al L (2p) shell.

Overall, a good agreement between the self-consistent and
experimental results is obtained for velocities above 3 a.u.
as can be seen in Fig. 7. Because the present calculations
assume a FEG at rest we did not present any evaluations
for v < 3 a.u. Since we consider a frozen classical FEG, our
model does not describe all possible incoming directions and
velocities for the scattered electrons. These effects become
increasingly considerable at smaller projectile velocities. The
experimental results for proton and antiproton energy losses
in Al as a function of the ion velocity are given in [37] and
[38]. The self-consistent results for �max = 0 and �max = 10
are shown for protons and antiprotons. Especially for pro-
tons, the use of noncentral potentials is necessary for a better
agreement between experimental and theoretical results. For
swift antiprotons, however, noncentral components for the
potential seem to play a minor role in the energy-loss results.
In fact, according to Fig. 1 the self-consistent calculations for
�max = 0 and �max = 10 are more different for protons than
for antiprotons. Therefore, for the energy range where the
experimental data are available the Barkas effect cannot be
treated as perturbative, where the effect must be symmetrical
for both projectiles. For smaller projectile energies, TDDFT
results for interaction between protons or antiprotons and
valence (M shell) Al electrons [20] are given for comparison,
depicting considerable Barkas effect for smaller energies.

IV. CONCLUSION

We provided stopping-force and Barkas-factor results for
bare ions traversing a classical frozen (at rest) free electron
gas, evaluated by the nonlinear Vlasov-Poisson equations for
central and noncentral screening potentials for the ion. The
results indicated that classical FEG evaluations using only
central potentials are not enough to describe the Barkas effect
of the stopping, especially for fast projectiles. However, for
slower projectiles in a more realistic (nonstatic) FEG, non-
central effects on the potential are expected to vanish.

The present calculations agree with ARB and Lindhard-
Barkas results only at very high projectile energies where the
Barkas effect is indeed very small. For the energy range where
the Barkas effect is of some importance (at lower velocities),
the present calculations better agree with 2/3 of the Lindhard
values. This is because changes in the angular momentum are
only symmetrical and effective in the perturbative limit. This
can explain the fact that the Barkas effect should be reduced
from ARB values as demonstrated recently by Salvat [11] who
analyzed the stopping data at high energies using the Bethe
formula and its corrections.

Even for protons the perturbative approach to obtain the
Barkas effect at few hundred of keV/u is not suitable since
noncentral potential effects are more important for protons
than for antiprotons. Finally, the present stopping calculations
agree with the experimental data of protons and antiprotons in
Al at high projectile energies showing the importance of the

FIG. 8. Calculations of the Barkas factor Eq. (1) as a function of
the dimensionless parameter η = Z1ω0/v

3. Open circles correspond
to solutions of the classical equations for an electron harmonically
bound according to provided PYTHON algorithm. The lines are the
results of quantum (green line) [39] and ARB calculations for bmin =
2Z1/v

2 (orange line) [11]. Dashed lines show different trends of the
Barkas factor (see text).

Barkas effect and its asymmetry for protons and antiprotons
at the high-energy range of the available experimental data.

This work suggests the use of the Bohmian mechanics to
convert the present classical calculations into fully quantum
mechanical ones [26,27] by utilizing the Bohm quantum me-
chanical potential which is based on the electronic density and
evaluated from the trajectories as in Eq. (3). This approach can
offer an alternative to the traditional quantum calculations for
the electronic stopping power.
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APPENDIX A: CLASSICAL HARMONIC OSCILLATOR

The stopping cross section for a classical collision between
a projectile with charge Z1 and velocity v and an electron
harmonically bound with frequency ω0 is calculated using
quantum [39] and classical [29] mechanics. In this work
we obtain the classical solution of this problem by solving
directly the corresponding Newton’s equations through the
ODEINT function from the SCIPY PYTHON package [40]. A
simple code is available in the Supplemental Material [30].

Figure 8 shows the Barkas factor Eq. (1) as a function of
the dimensionless parameter η = Z1ω0/v

3. Classical calcula-
tions (open circles) agree with ARB [12] calculations for η �
1 as expected from the ARB model. Quantum calculations
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performed by Mikkelsen and Flyvberg agree with the classical
ones. This shows that quantum effects are of less importance
for the Barkas effect in the harmonic oscillator target. The
dashed lines show two predictions of the Lindhard model
[15] for the Barkas effect. One of them corresponds to 2/3
of the original one where only screening effects at r = 0
are considered. Although it does not correspond to the exact
asymptotic solution at η → 0, it provides a better agreement
with classical and quantum calculations for the cases where
the Barkas effect is not too small.

APPENDIX B: EXPANDING THE INDUCED POTENTIAL
IN SPHERICAL HARMONICS

To achieve convergence for the classical equations, we
consider the electrostatic potential for an arbitrary charge dis-
tribution inside a grounded conductive sphere of radius Rmax.
Therefore, all evaluated potentials are subject to the boundary
condition V (r � Rmax, θ, φ) = 0.

In this work, we use an approach described in [41], in
which the Green’s function inside the conductive sphere is
obtained by solving

∇′2G(�r, �r′) = −4πδ(�r − �r′), (B1)

using the aforementioned boundary conditions (the so-called
Dirichlet conditions). In Eq. (B1), �r is the point where we
evaluate the potential and �r′ is the integration variable to
determine the aforementioned potential. The prime in the
Laplacian operator indicates that the derivatives should be
taken related to �r′.

The solution of Eq. (B1) can be shown as

G(�r, �r′) = 1

|�r − �r′| − Rmax

r′∣∣�r − R2
max
r′2 �r′∣∣ . (B2)

Equation (B2) can be rewritten in spherical coordinates as

G(�r, �r′) = 1√
r2 + r′2 − 2rr′ cos α

− 1√
r2r′2
R2

max
+ R2

max − 2rr′ cos α
, (B3)

where α is the angle between �r and �r′. It is possible, in a pro-
cedure analogous to the one used in [41], to expand G(�r, �r′)
inside the sphere as

G(�r, �r′) = 4π

∞∑
�=0

1

2� + 1

�∑
m=−�

(
r�
<

r�+1
>

− r�r′�

R2�+1
max

)

×Y m
� (θ, φ)Y m∗

� (θ ′, φ′), (B4)

where r< = min{r, r′}, r> = max{r, r′}, and Y m
� (θ, φ) are the

spherical harmonics as functions of the polar angle θ and the
azimuthal angle φ [41].

Finally, as V (r = Rmax, θ, φ) = 0, we have

Vind(�r) =
∫

r′�Rmax

[ρ(�r′) − n]G(�r − �r′)d3r′, (B5)

where ρ is the charge density. Finally, by inserting Eq. (B4)
in Eq. (B5), using Eq. (3), and using the azimuthal symmetry
of the system ion-FEG, as well as the addition theorem for
spherical harmonics [41], we obtain Eq. (6).
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