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ABSTRACT
BACKGROUND: There have been significant challenges in understanding functional brain connectivity associated
with adolescent depression, including the need for a more comprehensive approach to defining risk, the lack of
representation of participants from low- and middle-income countries, and the need for network-based approaches
to model connectivity. The current study aimed to address these challenges by examining resting-state functional
connectivity of frontolimbic circuitry associated with the risk and presence of depression in adolescents in Brazil.
METHODS: Adolescents in Brazil ages 14 to 16 years were classified into low-risk, high-risk, and depressed groups
using a clinical assessment and composite risk score that integrates 11 sociodemographic risk variables. After
excluding participants with excessive head movement, resting-state functional magnetic resonance imaging data
of 126 adolescents were analyzed. We compared group differences in frontolimbic network connectivity using
region of interest–to–region of interest, graph theory, and seed-based connectivity analyses. Associations between
self-reported depressive symptoms and brain connectivity were also explored.
RESULTS: Adolescents with depression showed greater dorsal anterior cingulate cortex (ACC) connectivity with the
orbitofrontal cortex compared with the 2 risk groups and greater dorsal ACC global efficiency than the low-risk group.
Adolescents with depression also showed reduced local efficiency and a lower clustering coefficient of the subgenual
ACC compared with the 2 risk groups. The high-risk group also showed a lower subgenual ACC clustering coefficient
relative to the low-risk group.
CONCLUSIONS: These findings highlight altered connectivity and topology of the ACC within frontolimbic circuitry as
potential neural correlates and risk factors of developing depression in adolescents in Brazil. This study broadens our
understanding of the neural connectivity associated with adolescent depression in a global context.

https://doi.org/10.1016/j.bpsc.2022.03.008
Depression is the leading cause of disability among adoles-
cents across the globe (1). Characterizing neurobiological risk
factors and correlates of depression in adolescents could lead
to improvements in preventing and treating adolescent
depression. Prior research has identified several patterns of
resting-state functional connectivity (rsFC) associated with the
risk or presence of depression (2–9). However, a number of
barriers to a comprehensive understanding of rsFC in
adolescent depression remain, which if addressed could clarify
our understanding of the neural correlates of risk and presence
of depression in adolescents.

First, previous studies examining rsFC in relation to adoles-
cent depression have used either a case-control approach
(depressed vs. control) or a risk approach (high risk vs. low risk).
Research is needed that combines these approaches to
compare low-risk (LR) adolescents, high-risk (HR) adolescents,
and adolescents with major depressive disorder (MDD) to
distinguish between potential neural risk factors and neural
ª 2022 Society of Biological Psychiatry. Published by Elsevier Inc.
CC BY license (http://creativecommons.org/licenses/by/4.0/).

ical Psychiatry: Cognitive Neuroscience and Neuroimaging April 202
correlates of depression. Second, studies with a risk approach
have generally relied on parental history of depression as the
risk factor (9–11). However, adolescents without parental history
of depression can be highly heterogeneous (12), and some of
themmay have a high risk for depression based on other factors
(e.g., social isolation). Moreover, parental history of depression
can be accurately reported only by interviewing parents.
Examining risk factors that can be directly reported by the
adolescent could have future novel applications for identifying
and preventing depression risk in a range of settings. A more
comprehensive and accessible risk assessment is needed.
Third, the majority of rsFC studies on adolescent depression
have used a seed-based approach, restricting our knowledge to
the connectivity of particular brain regions. An alternative and
more comprehensive approach is a network-based approach
(13) that examines strength of connectivity or organizational
patterns (e.g., number of connections, efficiency of connections)
across multiple regions within a network of interest. Only a few
This is an open access article under the
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studies (14,15) have applied network-based approaches tar-
geting the whole brain or the reward-related network. More
studies with a network-based approach targeting the fronto-
limbic network, a network important for adolescent depression
and affective development, are needed. Finally, only 38% of
rsFC studies on adolescent depression were conducted in low-
and middle-income countries (LMIC), and the majority of studies
in LMIC (i.e., 13 out of 15) were from China (16). Considering
that 89% of all youth in the world live in LMIC (16), studies in
LMIC are urgently needed to address adolescent depression
research disparities across the globe.

To overcome these barriers, the current study compared
rsFC of 39 LR adolescents, 45 HR adolescents, and 42 ado-
lescents with MDD recruited in Brazil, which is classified as a
middle-income country according to the World Bank (17). To
address the limitations of prior research that used parental
history of depression to determine depression risk, adoles-
cents in this study were classified using a clinical assessment
and an empirically validated multivariable prognostic model
(18) that integrated 11 sociodemographic variables (e.g.,
childhood maltreatment, social isolation), which has been
shown to predict depression risk across a variety of countries,
including Brazil, Nepal, the United Kingdom, and Nigeria
(18–20). Moreover, to better understand aberrant functional
neural architecture in high-risk and depressed adolescents, in
addition to seed-based connectivity analysis, this study
employed a network-based approach targeting frontolimbic
circuitry implicated in both adolescent affective brain devel-
opment (21,22) and adolescent depression (23–25).

The connectivity within the frontolimbic circuit changes
significantly during adolescence (26,27), and changing
interactions between the amygdala, striatum, and prefrontal
cortex (PFC) are theorized to underlie the development of
affective functions (21,22), such as emotion regulation (28),
self-conscious emotion (29), and cognitive control to emotional
cues (30). Moreover, frontolimbic connectivity was found to be
affected by adverse early experiences (31), such as maternal
deprivation (32), institutional care (33,34), and trauma exposure
(35). This suggests that abnormal frontolimbic connectivity and
development may be significantly associated with risk for and
development of adolescent depression (23,25). Indeed, the
majority of adolescent depression rsFC studies have focused
on the amygdala (3,5,35–38), anterior cingulate cortex (ACC)
(4,8,39–41), PFC (10,42), striatal regions (43,44), and hippo-
campus (40,45,46) and found their altered connectivity with
other brain regions in high-risk and depressed adolescents
(e.g., decreased amygdala–medial PFC [mPFC]/ACC connec-
tivity, increased ACC–ventromedial PFC connectivity). Inter-
estingly, a study (24) using predictive modeling found that rsFC
within the nodes of frontolimbic circuitry, but not whole-brain
connectivity, predicted both current and future depressive
symptoms measured after 18 months, highlighting its high
relevance to adolescent depression.

The current study aimed to examine the strength and to-
pology of frontolimbic network connectivity associated with the
risk and presence of depression in Brazilian adolescents. Given
that the above-mentioned study (24) examining rsFC of fron-
tolimbic nodes in adolescents observed that positive dorsal
ACC (dACC) connectivity with other regions exhibited the
greatest contribution to predicting depressive symptoms, we
Biological Psychiatry: Cognitive Neuroscience and
hypothesized that adolescents with high risk for depression and
depressed adolescents in our sample would show stronger (i.e.,
greater rsFC), more efficient (i.e., greater global efficiency, lower
average path length), and a greater number of connections (i.e.,
greater degree) of the same dACC node compared with the LR
adolescents. To test this hypothesis, we used region of interest
(ROI)–to–ROI analysis and graph theory analysis. Owing to the
nascent literature that has used network-based approaches for
frontolimbic rsFC, we also explored group differences in con-
nectivity strength and topological properties of all the regions
within the frontolimbic network. We additionally conducted
amygdala seed-based connectivity analysis to see whether the
most well-established connectivity pattern in the depression
literature [i.e., reduced amygdala–mPFC/ACC connectivity
identified using a seed-based approach (5,6,8,9,38,46–49)]
would be replicated in our sample of Brazilian adolescents. We
hypothesized that the HR and MDD groups would show
reduced amygdala–mPFC/ACC connectivity compared with the
LR group. Besides examining the association of connectivity
with risk group status and clinical depression, we also explored
the association of frontolimbic connectivity with subjectively
experienced depressive symptoms using a self-reported,
continuous measure, which allowed us to examine associa-
tions with depressive symptoms spanning the subclinical
through clinical range.

METHODS AND MATERIALS

Participants

Participants were recruited for the IDEA-RiSCo (Identifying
Depression Early in Adolescence Risk Stratified Cohort). Full
details regarding the procedures of recruitment, screening,
exclusion, clinical assessment, and questionnaires assessing
sociodemographic variables are provided in the published
protocol for the study (50). Results of analyses with task-based
functional magnetic resonance imaging (MRI) data using this
cohort have been previously reported (51).

For sampling adolescents who met the criteria of LR, HR,
and MDD groups, 7720 adolescents 14 to 16 years of age were
screened from June 2018 to November 2019 in Porto Alegre,
Brazil. To stratify risk groups, we used a multivariable prog-
nostic model, the IDEA Risk Score (IDEA-RS) (18). This model
was developed by our group using data from the Pelotas 1993
Cohort Study (52) and was recently validated in multiple
countries (18–20). This model integrates 11 sociodemographic
variables (i.e., skin color, biological sex, school failure, drug
use, fight involvement, ran away from home, social isolation,
childhood maltreatment, poor relationship with mother, father,
and between parents) and generates the probability of pre-
senting with a unipolar depressive episode in 3 years.

The LR group met the criteria of having a risk score equal to
or below the 20th percentile of the Pelotas 1993 cohort, and
the HR and MDD groups met the criteria of having a risk score
equal to or above the 90th percentile of the Pelotas 1993
cohort. We required the MDD group to have high-risk socio-
demographic profiles (an IDEA-RS equal to or above the 90th
percentile) to attribute any neural differences between the HR
and MDD groups only to the presence of depression.

Presence of a current MDD episode (in the MDD group) or
absence of a current or past MDD episode (in the LR and HR
Neuroimaging April 2023; 8:426–435 www.sobp.org/BPCNNI 427
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groups) was determined with the Brazilian Portuguese version
of the Schedule for Affective Disorders and Schizophrenia for
School-Age Children–Present and Lifetime Version (53), con-
ducted by a child psychiatrist. Self-reported instruments were
administered, including the Brazilian Portuguese version of the
adolescent-reported Mood and Feelings Questionnaire (MFQ-
C) (54), measuring depressive symptoms. IQ was assessed
using the Brazilian Portuguese version of the Wechsler
Abbreviated Scale of Intelligence (55).

To make our sample more homogeneous, we included only
participants without long-term or current use of psychotropic
medications. Percentages of participants with lifetime comor-
bid diagnoses are reported in the Supplement.

After screening and clinical assessment, 150 participants
who met inclusion criteria and did not meet exclusion criteria
[see inclusion and exclusion criteria in the published protocol
(50)] underwent MRI scanning from August 2018 to December
2019. Written informed assent and consent were obtained
from adolescents and their caregivers, respectively, after the
procedures had been fully explained. After exclusion of 24
participants with excessive head movement (i.e., greater than
20% volumes were censored), the sample size was 126 (LR
group: n = 39; HR group: n = 45; MDD group: n = 42). This
study was approved by the Brazilian National Ethics in
Research Commission.

Data Acquisition, Preprocessing, and Denoising

All images were acquired on a 3T Ingenia (Philips Healthcare)
MRI scanner. Structural MRI images were acquired before
acquiring blood oxygen level–dependent functional MRI im-
ages for resting-state connectivity. Full details regarding the
data acquisition parameters, preprocessing, and denoising are
reported in the Supplement. The data were analyzed using
CONN toolbox 18b. We confirmed that data from all partici-
pants had good signal coverage (i.e., signal coverage over
98% of voxels within each of our ROIs) (see Supplement for a
specific method to inspect signal loss).

ROI-to-ROI Analysis

We estimated rsFC between all pairs of 47 ROIs (Figure 1; see
Table S1 for the coordinates of the ROIs), which consisted of
Figure 1. The 47 nodes of frontolimbic circuitry used for region of inter-
est–to–region of interest and graph theory analysis. We adopted 40 nodes
from a previous study (26) that defined these nodes as an adolescent
depression circuit. We added 7 nodes corresponding to hippocampus.
ACC, anterior cingulate cortex; dPFC, dorsal prefrontal cortex; vPFC, ventral
PFC.
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the frontolimbic circuitry or adolescent-depression network, as
defined in a previous study (24), which selected the bilateral
amygdala, subregions of the striatum, the ACC, and the PFC
from a functional brain atlas with 268 nodes (56). We added 7
ROIs corresponding to the hippocampus from the same
functional brain atlas given that the hippocampus is also a key
frontolimbic region associated with early life stress (31) and
depression in adolescents (40,45,46). Pearson’s correlation
coefficients were normalized through Fisher’s
z-transformation.

An analysis of covariance (ANCOVA) was conducted to
examine group differences (LR vs. HR vs. MDD) in dACC
(center of mass [mm]: 7, 21, 32) connectivity with all other
nodes, controlling for age, sex, and head movement (i.e., mean
framewise displacement). False discovery rate (FDR) correc-
tion was applied to correct for the number of target nodes
(i.e., 46). Next, we explored group differences in connectivity
in any pair of 47 frontolimbic nodes using ANCOVA. We
combined the connection-level threshold (uncorrected p ,

.001) and network-based statistics FDR-corrected p (pFDR) (by
intensity) , .05 (two-sided). Any pattern of connectivity that
showed a significant group difference was submitted to a
pairwise comparison t test (Tukey corrected) to specify the
pattern of group difference. With the same statistical threshold,
we conducted multiple regression analyses with the indepen-
dent variable of log-transformed MFQ-C (self-reported
depressive symptoms) and covariates of age, sex, and head
movement.
Graph Theory Analysis

To identify group differences in the topological properties of the
frontolimbic circuit, which consisted of 47 nodes (Figure 1), we
used CONN’s automated protocol to construct individuals’
graph theory measures. This protocol thresholded each partic-
ipant’s 47 3 47 correlation matrix to generate an adjacency
matrix. We adopted cost thresholding for constructing the ad-
jacency matrix. To illustrate, if the cost value (i.e., K) is 0.15, only
the pairs with the highest 15% of the correlation coefficient
values have a value of 1, and all other pairs have a value of 0.
Based on 100 simulations that generated 4 unique optimal cost
values (i.e., 0.1198, 0.12997, 0.14015, 0.14986) (see Figure S1
for details), we defined our graph theory measures by aver-
aging graph theory measures obtained using each of the 4
optimal values. We report results from both one-sided cost
thresholding that considers only positive correlations when
defining the highest K% connections and two-sided cost
thresholding that considers both positive and negative correla-
tions when defining the highest K% connections.

We first conducted an ANCOVA that examines the group
difference of 6 graph theoretical measures of the dACC node:
global efficiency, local efficiency, clustering coefficient,
betweenness centrality, average path length, and degree (see
Supplement for definitions). Age, sex, and head movement
were entered as covariates. Next, we explored the group dif-
ference of graph theory measures of all other frontolimbic
nodes. To correct for the number of nodes, we adopted a
statistical threshold of two-sided pFDR , .05. To compare
group differences in the integrated and segregated nature of
the frontolimbic network as a whole, we conducted ANCOVA
pril 2023; 8:426–435 www.sobp.org/BPCNNI
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on the network-level global efficiency, local efficiency, and
clustering coefficient (see Supplement for the calculation and
choice of measures). Any measures that showed a significant
group difference were submitted to a pairwise comparison t
test (Tukey corrected) to specify the pattern of group differ-
ence. We conducted multiple regression analyses with the
independent variable of log-transformed MFQ-C and cova-
riates of age, sex, and head movement with the same statis-
tical threshold to examine associations with continuous
depression symptoms. To facilitate interpretation of the re-
sults, we identified the anatomical label of the nodes with
significant results based on the Automated Anatomical La-
beling atlas 3 (57).

Seed-Based Connectivity Analysis

Individuals’ rsFC maps with the seed regions of the left and
right amygdala from the Automated Anatomical Labeling atlas
3 were estimated. We first conducted an ANCOVA with the
search volume of an mPFC/ACC mask. The mPFC/ACC mask
was created by combining medial orbitofrontal regions, rectus,
superior medial prefrontal regions, and ACC of the Automated
Anatomical Labeling atlas 3. We conducted a small-volume
correction for the search region with familywise error rate
correction provided in SPM12. The a value was divided by 2 to
correct for 2 tests for left and right amygdala seeds. Then,
whole-brain results were examined with a whole-brain pFDR ,

.025 threshold (two-sided). To explore the association between
continuous self-reported depressive symptoms and amygdala
connectivity with mPFC/ACC and whole brain, we ran multiple
Table 1. Demographic, Clinical, and Head Motion Data

LR Group (n = 39) HR Group

Categorical Variables n (%) n (%

Sex

Females 19 (48.72%) 23 (51

Males 20 (51.28%) 22 (48

Skin Color/Racea

Black 7 (17.95%) 10 (22

Brown 7 (17.95%) 12 (26

Native Brazilian 1 (2.56%) 2 (4.4

White 24 (61.54%) 21 (46

Yellow 0 (0%) 0 (0%

Continuous Variables Mean (SD) Mean (

Age 15.44 (0.74) 15.82 (0.8

WASI IQ 90.64 (10.64) 88.09 (9.0

IDEA-RSb, % 1.30 (0.33) 8.28 (4.5

MFQ-Cd 6.44 (4.71) 12.73 (8.0

Censored Number of Volumes 12.44 (13.01) 13.93 (10

Mean Framewise Displacement 0.19 (0.05) 0.20 (0.0

HR, high-risk; IDEA-RS, Identifying Depression Early in Adolescence Ris
and Feelings Questionnaire-Child; WASI, Wechsler Abbreviated Scale of In

aCategories were based on the Brazilian national census classification o
bIDEA-RS was developed with data from the Pelotas 1993 Cohort Study

predicted risk of a current unipolar depressive episode at age 18 years [se
cThe effect was driven by the difference in LR , HR (t123 = 7.37, p , .0
dBrazilian Portuguese version of the adolescent-reported MFQ-C.
eThe effect was driven by the difference in LR , HR (t123 = 3.40, p = .0

p , .001).

Biological Psychiatry: Cognitive Neuroscience and
regression analyses with the independent variable of log-
transformed MFQ-C and covariates of age, sex, and head
movement. The same statistical threshold was used as
ANCOVA.

Outlier Treatment

After identifying any significant result, we identified outliers,
defined as 3 standard deviations from the mean of the risk
group that each participant belonged to (for ANCOVA) or the
mean of all participants (for the regression analysis). We
planned to report only the results that remained significant
after excluding the outliers (see Table S2 for the number of
excluded participants).

RESULTS

Demographic and Clinical Data

Demographic and clinical data are presented in Table 1.

ROI-to-ROI Connectivity Within Frontolimbic
Circuitry

We found that dACC connectivity with the posterior orbito-
frontal cortex (OFC) (center of mass: 27, 20, 221) showed a
significant group difference (F2,119 = 8.98, pFDR = .01), with the
effect driven by greater connectivity of the MDD group
compared with the LR group (t119 = 3.86, p , .001) and HR
group (t119 = 3.39, p = .003) (Figure 2). Effects of the explor-
atory analysis with other nodes were not significant.
(n = 45) MDD Group (n = 42) Analysis

) n (%) c2 p

c2
2 = 0.11 .95

.11%) 22 (52.38%)

.89%) 20 (47.62%)

c2
8 = 5.41 .71

.22%) 8 (19.05%)

.67%) 7 (16.67%)

4%) 3 (7.14%)

.67%) 23 (54.76%)

) 1 (2.38%)

SD) Mean (SD) F2,123 p

2) 15.81 (0.79) 3.03 .052

7) 88.81 (10.14) 0.72 .49

4) 9.59 (5.81) 42.62 , .001c

7) 41.90 (11.17) 206.75 , .001e

.23) 14.31 (10.41) 0.31 .73

7) 0.19 (0.05) 0.32 .73

k Score; LR, low-risk; MDD, major depressive disorder; MFQ-C, Mood
telligence.
f race.
. Using 11 sociodemographic variables measured at age 15, the model
e (18,19) for more details].
01) and LR , MDD (t123 = 8.61, p , .001).

03), LR , MDD (t123 = 18.83, p , .001), and HR , MDD (t123 = 16.05,
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Figure 2. The significant group difference in
connectivity between dorsal anterior cingulate cortex
(dACC) and posterior orbitofrontal cortex (OFC). The
left panel describes the location of dACC (blue) and
posterior OFC (green), of which connectivity strength
showed a significant group difference. The right
panel describes the specific pattern of group differ-
ences in dACC-OFC connectivity. Error bar indicates
standard error. **p # .01; ***p # .001. HR, high-risk;
LR, low-risk; MDD, major depressive disorder.
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Graph Theory Measures Within Frontolimbic
Circuitry

In the analysis with one-sided cost thresholding, the ANCOVA
targeting dACC revealed a significant group difference in
global efficiency driven by greater global efficiency of the MDD
group compared with the LR group (Figure 3). In the analysis
with two-sided cost thresholding, the analysis exploring all
other frontolimbic nodes found significant group differences in
local efficiency and clustering coefficient of left subgenual ACC
(sgACC). For sgACC local efficiency, the group difference was
driven by reduced local efficiency in the MDD group compared
with the 2 risk groups. For the sgACC clustering coefficient,
the group difference was driven by a decreasing pattern in the
order of LR, HR, and MDD groups (Figure 4). The statistical
values and center of mass of each node are presented in
Table 2. Note that the results of the local efficiency and clus-
tering coefficient of the sgACC could not include 18 partici-
pants because they did not have a neighboring subgraph, and
3 participants were excluded as outliers from the LE analysis
ciency has a greater number of light circles. *p # .05. dPFC, dorsal prefron
vPFC, ventral PFC.
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(Table S2). There was no difference between included and
excluded participants in clinical status and risk score
(Tables S3 and S4).

Multiple regression analysis with MFQ-C showed that
greater self-reported depressive symptoms are associated
with greater dACC global efficiency (t120 = 2.23, p = .03) and
degree (t121 = 2.24, p = .03) when using one-sided cost
thresholding and reduced sgACC local efficiency (t100 =24.01,
pFDR = .005) and clustering coefficient (t103 = 23.89, pFDR =
.008) when using two-sided cost thresholding (Figure 5).
Network-level global efficiency, local efficiency, and clustering
coefficient did not show significant group differences or as-
sociations with self-reported depressive symptoms.
Amygdala Seed-Based Connectivity

Amygdala connectivity with the regions within mPFC/ACC or
the whole brain did not show group differences or associations
with MFQ-C.
Figure 3. The significant group difference in
dorsal anterior cingulate cortex (dACC) global
efficiency. The left top panel describes the loca-
tion of dACC (blue), of which global efficiency
showed a significant group difference, and other
nodes (gray) in the frontolimbic circuit. The left
bottom panel describes the specific pattern of
group differences in dACC global efficiency. Error
bar indicates standard error. The right panel il-
lustrates the high and low global efficiency of
dACC. The data of participants with the highest
and lowest dACC global efficiency were used. The
graphs were generated using one of the optimal
cost values (i.e., 0.14986). Circles and lines indi-
cate nodes and edges, respectively. The circle
with an asterisk indicates the dACC node. The
brightness of nodes represents the shortest path
length from dACC (a darker circle means shorter
path length, and a lighter circle means longer path
length). A participant with high dACC global
efficiency has a greater number of dark circles,
while a participant with low dACC global effi-

tal cortex; HR, high-risk; LR, low-risk; MDD, major depressive disorder;
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Figure 4. The significant group difference in subgenual anterior cingulate
cortex (sgACC) local efficiency and clustering coefficient. The top panel
describes the location of sgACC (blue), of which local efficiency and clus-
tering coefficient showed significant group differences, and other nodes
(gray) in the frontolimbic circuitry. The middle panel illustrates the high and
low local efficiency and clustering coefficient of sgACC. We used data of
participants with the highest and lowest local efficiency and clustering
coefficient among the participants who had 4 direct connections originating
from sgACC. The graphs were generated using one of the optimal cost
values (i.e., 0.14986). Circles and lines indicate nodes and edges, respec-
tively. The circle with an asterisk indicates the sgACC node. The subgraph of
a participant with the highest local efficiency and clustering coefficient
shows that all the nodes in the subgraph are connected to each other, while
the subgraph of a participant with the lowest local efficiency and clustering
coefficient shows that only 2 connections are present between the nodes
other than sgACC. The left bottom panel describes the specific pattern of
group differences in sgACC local efficiency and clustering coefficient. The
black dot indicates individuals’ data, and the error bar indicates standard
error. *p # .05; **p # .01; ***p # .001. HR, high-risk; LR, low-risk; MDD,
major depressive disorder.
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DISCUSSION

The current study investigated how frontolimbic network
connectivity is associated with the risk and presence of
Biological Psychiatry: Cognitive Neuroscience and
depression in Brazilian adolescents stratified using 11 soci-
odemographic variables and clinical assessment. We found
that the MDD group showed greater dACC-OFC connectivity
compared with the 2 risk groups and greater dACC global
efficiency compared with the LR group. The MDD group
showed reduced sgACC local efficiency and a lower clus-
tering coefficient than the 2 risk groups, and the HR group
showed a lower sgACC clustering coefficient than the LR
group. Adolescents with greater self-reported depressive
symptoms showed greater dACC global efficiency, greater
dACC degree, reduced sgACC local efficiency, and a lower
sgACC clustering coefficient. This study indicates that the risk
and presence of adolescent depression in Brazil is associated
with altered ACC connectivity patterns within frontolimbic
circuitry.

We found several connectivity patterns of frontolimbic cir-
cuitry associated with the presence of depression, which
supports the theory suggesting the critical role of interactions
of the regions within the frontolimbic circuit in adolescent af-
fective development (21,22) and depression (23–25). Interest-
ingly, consistent with our hypothesis based on the recent
discovery showing that dACC connectivity to other fronto-
limbic regions has a critical role in predicting depressive
symptoms (24), we found that adolescents with MDD showed
greater dACC-OFC connectivity compared with adolescents in
the other 2 groups and that they showed greater dACC global
efficiency compared with adolescents in the LR group. This
result indicates that greater and more efficient dACC con-
nectivity may be a neural correlate or outcome of the devel-
opment of depression in adolescents.

In addition to the recent study by Jin et al. (24), multiple
studies have reported abnormal dACC connectivity in
depressed adolescents. Two studies (14,58) showed height-
ened degree and efficiency of ACC in depressed adolescents
in terms of connectivity with whole-brain regions, although the
ACC was not divided into its subregions in these studies.
Studies with a seed-based approach have also demonstrated
that depressed adolescents showed heightened dACC rsFC
with frontal (7) and striatal (43) regions and that depressive
symptoms were associated with greater dACC rsFC with
perigenual ACC (8). Based on the functions of dACC in
salience detection (59) and action selection based on reward
contingency (60), we speculate that heightened resting-state
global efficiency of dACC in depressed adolescents may be
associated with extensive transfer of salience signals detected
from negative and self-relevant information or selecting
avoidance behavior by weighting expected cost and dew-
eighting expected benefit of normally rewarding events (e.g.,
social activities). As the prominent role of OFC is value
updating (61), high dACC-OFC connectivity of depressed ad-
olescents could be related to increased propensity to update
the value of an object or behavior when it is associated with an
outcome with high saliency, such as an unexpected or
threatening experience. It should be noted that, in contrast to
the dACC-OFC connectivity effect, there was no difference in
dACC global efficiency between high-risk and depressed
adolescents, which suggests that the high dACC global effi-
ciency could not be attributed solely to the diagnosis of
depression, but rather the combination of high-risk profiles and
the clinical diagnosis.
Neuroimaging April 2023; 8:426–435 www.sobp.org/BPCNNI 431
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Table 2. Statistical Values for Analysis of Covariance of Graph Theory Measures

Graph Theory Measures Node (CoM) F Statistics Pairwise Comparison Statistics

Global Efficiency Right dACC (7, 21, 32) F2,118 = 3.34, p = .039 LR , MDD: t118 = 2.419, p = .045

HR , MDD: t118 = 1.951, p = .129

LR , HR: t118 = 0.575, p = .834

Local Efficiency Left sgACC (25, 29, 210) F2,99 = 11.6, pFDR = .001 LR . MDD: t99 = 4.71, p , .001

HR . MDD: t99 = 3.07, p = .008

LR . HR: t99 = 1.93, p = .135

Clustering Coefficient Left sgACC (25, 29, 210) F2,102 = 11.47, pFDR = .002 LR . MDD: t102 = 4.77, p , .001

HR . MDD: t102 = 2.61, p = .028

LR . HR: t102 = 2.41, p = .047

CoM, center of mass; dACC, dorsal anterior cingulate cortex; FDR, false discovery rate; HR, high-risk; LR, low-risk; MDD, major depressive
disorder; sgACC, subgenual ACC.

Frontolimbic Network Topology and Adolescent Depression
Biological
Psychiatry:
CNNI
Adolescents with MDD also showed reduced sgACC local
efficiency and clustering coefficient compared with adoles-
cents in the LR and HR groups. The sgACC has been a major
target of depression treatment through deep brain stimulation
(62), as it is consistently implicated in depression, potentially
owing to its critical role in affective processing, such as
reappraising visceral signals (63), sustaining physiological
arousal during anticipation of reward (64), and self-reported
432 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging A
distress after a negative experience such as social exclusion
(65). Studies have documented that adolescents with MDD
showed reduced sgACC functional connectivity with distrib-
uted frontal cortical regions (39,66), and adolescents with
greater depressive symptoms and more severe anhedonia
showed reduced sgACC functional connectivity with mPFC
(41) and nucleus accumbens (43), respectively. Our results
extend the finding of major disruption of sgACC connectivity in
Figure 5. The association between self-reported
depressive symptoms and dorsal anterior cingulate
cortex (dACC) and subgenual ACC (sgACC) graph
theory measures. The top panels are the partial
regression plots that describe the positive associa-
tion between self-reported depressive symptoms
and dACC global efficiency and degree, controlling
for age, sex, and head movement (i.e., mean
framewise displacement). The bottom panels are the
partial regression plots that describe the negative
association between self-reported depressive
symptoms and sgACC local efficiency and clustering
coefficient, controlling for age, sex, and head
movement (i.e., mean framewise displacement). The
shaded area represents the 95% confidence interval.
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adolescent depression by demonstrating the reduced inter-
connectedness of its neighboring regions. Importantly, we
also observed a reduced sgACC clustering coefficient but not
local efficiency in the HR group compared with the LR group.
This result indicates that while both a reduced number of
direct connections and inefficient connections among the
neighboring regions of the sgACC are neural correlates or
outcomes of depression, only a reduced number of direct
connections serves as a potential risk factor for developing
depression.

It is important to note that the observed abnormal efficiency
of dACC and sgACC in depressed adolescents supports the
recent proposal (67,68) suggesting that ACC connectivity is
key for healthy behavioral development in multiple domains
(e.g., relationships, achievement) owing to its hublike function
of integrating multimodal inputs (e.g., social, cognitive, and
visceral) to guide adaptive self-regulation. Interestingly, the
analysis with self-reported depressive symptoms mirrored the
findings from the group analysis, with an addition of greater
number of edges originating from dACC (i.e., degree), sug-
gesting that abnormal ACC topological properties are related
not only to clinical diagnosis of depression but also to sub-
jective experience of depressive symptoms across the sub-
clinical to clinical range.

Contrary to our expectation, there was no group difference
in amygdala–mPFC/ACC connectivity, which has consistently
been implicated in depression in adolescents and adults in
high-income countries (48,49). It should be noted that we did
find in another article using this sample that higher depressive
symptoms were associated with decreased amygdala-mPFC
connectivity during a face-matching task (51), suggesting
that this association may become more apparent when con-
nectivity is elicited by a stimulus, such as a threatening face.

This study has several limitations. First, this study is cross-
sectional. A longitudinal study that examines the intraindividual
change in frontolimbic network topology before and after
developing depression is needed to understand the timing of
changes in topology in relation to developing depression.
Second, although the IDEA-RS provides a more comprehen-
sive approach to measuring depression risk, it did not include
parental history of depression, as this cannot be assessed
accurately through adolescent self-report. A future study is
needed to systematically compare the IDEA-RS and parental
history of depression to determine the advantages and dis-
advantages of the 2 approaches for understanding neural
correlates of depression risk. Note that a study testing the
predictive validity of the IDEA-RS within a different Brazilian
sample found that the risk score improved prediction of
depression risk above and beyond family history (18), sug-
gesting that it may capture risk not captured by family history.
Third, we did not examine whether the three topological
properties altered in adolescents with MDD were associated
with different symptom dimensions (e.g., decision-making
ability, rumination, anhedonia). A future study that examines
specific depression symptom dimensions would have impli-
cations for personalized treatment. Fourth, we did not collect a
field map and did not apply distortion correction to the images,
so results and/or lack of results for regions susceptible to
distortion, such as the OFC, should be interpreted with
caution.
Biological Psychiatry: Cognitive Neuroscience and
In conclusion, with an underrepresented and extensively
phenotyped Brazilian adolescent sample, we found that
aberrant connectivity of the ACC in frontolimbic circuitry may
be involved in risk for and the presence of depression in
adolescence. The present study provides the first evidence to
our knowledge that high-risk adolescents and adolescents
with clinical depression show altered topology of the fronto-
limbic network implicated in adolescent affective brain devel-
opment and depression. These results advance our knowledge
on the atypical neural architecture of adolescents with
depression and depression risk, specifically in Brazil, and will
ultimately contribute to the prevention and treatment of
adolescent depression across the globe.
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