
37Journal Integrated Circuits and Systems 2007; v.2 / n.1:37-44

Hardware support in a middleware for distributed
and real-time embedded applications

Elias T. Silva Jr1,2, Flávio R. Wagner1, Edison P. Freitas1, Leonardo Kunz1, Carlos E. Pereira1

1 PPGC – Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil 
2 Departamento de Telemática, CEFET-CE, Fortaleza, Brazil

e-mail: (etsilvajr,flavio,epfreitas,lkunz)@inf.ufrgs.br, cpereira@ece.ufrgs.br 

1. INTRODUCTION

MPRE (Multi-Processor Real-time Embedded)
systems are becoming largely used in several application
domains nowadays. A particular group of MPRE sys-
tems is called DRE (Distributed Real-time Embedded),
and their typical application is remote sensing and
telemetry, or even automotive and avionic control sys-
tems. DREs are often associated to distributed systems
connected by a network that is outside the chips imple-
menting the processors. However, the principles of net-
worked systems, found in a DRE system, can be reused
when the network is intra-chip. Even in this case, an
MPSoC (Multi-Processor System-on-Chip) platform
can make good use of technologies developed in the
DRE context. MPSoC platforms are frequently used in
domains that require real-time properties.

For those consumer markets of embedded
applications, important goals are the reduction of
time-to-market and development costs. To fulfill these
and other requirements, great efforts are being done in
the research of adequate technological support.
Particularly, the middleware support has been investi-
gated only in the context of DRE applications.
Nevertheless, also in the context of MPSoCs a middle-
ware could be a solution to raise the level of abstrac-
tion, helping to achieve shorter development times.

The challenges related with the development of
a middleware in a real-time and embedded system are:
(1) to reuse already developed software, (2) to address
real-time constraints, and (3) to present a small mem-
ory footprint and (4) a low power consumption. The
challenge in developing an MPRE system that
addresses all those features comes from the fact that
the hardware components of MPRE systems are gen-
erally elementary devices, with limited CPU capacity
and low memory.

A middleware can solve these problems by
managing run-time adaptability and leaving the pro-
grammer unaware of them. The middleware resides
just below the application software and, hence, it is
often best suited to monitor various application-spe-
cific runtime data. Since applications mainly drive
communication and other costs, a middleware-orient-
ed approach can provide the greatest benefit, besides
providing services in a higher abstraction layer.

Another way to use the middleware is as a
framework to encapsulate hardware devices into
objects, thus reducing development time, while simul-
taneously achieving real-time predictability, better
performance, and lower energy consumption. When
designing dedicated applications, this approach will
allow the exploration of hardware- or software-imple-
mented services.

ABSTRACT

One of the main challenges in the development of tools and methodologies for a multiprocessor real-
time embedded system is to reuse already developed software, but at the same time obtaining low
memory footprint, low energy consumption, and minimal area, obviously addressing the real-time
constraints. This work aims to face these problems at the middleware level. We show that adaptations
in the platform architecture, for instance exploring hardware implementations of middleware services,
such as task scheduling and communication, can drive better gains in application requirements like
energy and performance, which are essential for embedded applications. This approach is coupled
with a high flexibility in choosing either a hardware or a software implementation, because services
are encapsulated into objects and the application development and the design space exploration at
middleware level can be performed independently from each other, in a fully transparent way.
Furthermore, the use of the object-oriented approach reduces time-to-market and development costs.

Index Terms: Embedded Applications, Middleware, Real-time Systems, MPSoCs, Energy Efficiency.



Hardware support in a middleware for distributed and real-time embedded applications
Silva Jr, Wagner, Freitas, Kunz & Pereira

38 Journal Integrated Circuits and Systems 2007; v.2 / n.1:37-44

This paper presents hardware implementations
of task management and communication services.
Since they are transparently encapsulated into the
middleware, the designer can easily explore alternative
hardware and software services, looking for the mid-
dleware configuration that best matches the applica-
tion requirements, without affecting the application
development.

The middleware operation implies communica-
tion, so it requires a communication support in order
to provide the distribution of the tasks to be per-
formed by the system. The first step in the develop-
ment of a middleware is thus to define a communica-
tion infrastructure that makes possible the data
exchange among system components. In this work,
this support is provided by a transport layer commu-
nication API that provides real-time guarantees [1].
Since the middleware is being developed in Java and
focuses on real-time applications, an API that imple-
ments RTSJ (Real Time Specification for Java) is
required [2].

The remaining of the paper is organized as fol-
lows. Section 2 gives an overview about related work
in the area. In Section 3, the development platform is
presented. The hardware implementations under the
middleware are presented in Section 4, highlighting
communication resources. In Section 5, experimental
results present area, time, and energy measures in the
use of the hardware services, providing comparisons
to their counterparts in software. Finally, in Section 6
concluding remarks are drawn.

2. RELATED WORK

Although significant amount of work has been
done in middleware for embedded and/or real-time
systems, they are not optimized for the MPSoC con-
text and only a few have addressed energy-efficiency as
their main foci. We highlight the work carried out by
Yau et alii [3], where an ORB (Object Request
Broker) is implemented in hardware to achieve high
performance. However, the focus of their work is con-
text-sensitivity and reconfigurability for mobile and
ad-hoc networks, and no design exploration was per-
formed.

On the other hand, many works have pro-
posed the implementation of operating system serv-
ices in hardware, particularly task management serv-
ices. Burleson et al. present the Spring scheduling
co-processor [4], which was built to improve task
and resource management services of an operating
system. FastHard [5] is a multitasking stand-alone
real-time kernel in hardware for single processor sys-
tems. The custom hardware, implemented in an
FPGA, is used to execute the functionality of the pri-

ority scheduler. In [6], the implementation of a para-
meterized scheduling algorithm in an external FPGA
is presented. In this proposal, the scheduling algo-
rithm may be changed during run-time without
reprogramming the FPGA. This is achieved by
implementing in a single circuit several algorithms,
which in fact share the same hardware components.
The proper scheduler discipline is chosen through
manipulation of some parameters. In [7], the
authors describe the hardware design of a priority
scheduler module developed as part of a multi-
threaded RTOS (real-time operating system) kernel.
They extend the multithreaded programming model
to abstract the FPGA components, which are
attached to the CPU bus. The work presented in [8]
describes the Real-Time Task Manager (RTM). It
supports in hardware a few of the common RTOS
operations that represent performance bottlenecks,
like task scheduling, time management, and event
management. The goal of the RTM is to increase the
performance obtained by the RTOS. 

These previous approaches focused on the
implementation of specific services (task manage-
ment) of real-time operating systems in order to take
advantage of the parallel nature of the hardware
implementation. Thus, the known overhead intro-
duced into the system by these services, when imple-
mented in software, is significantly reduced. In our
work, the purpose is to extend this idea, by encapsu-
lating hardware implementations of operating systems
services (task management and also communication)
into objects, thus using a framework to reduce devel-
opment time. This will allow the exploration of hard-
ware- or software-implemented services of the mid-
dleware, when designing dedicated applications.

There are few works describing extensions to
the RTSJ to achieve distribution. An initial framework
[9] integrating the RTSJ with RMI proposes a three-
level approach. Level 0 – no guarantee of timely deliv-
ery, level 1 – real-time remote object, and level 2 – dis-
tributed thread model. Borg and Wellings [10]
explore facilities that must be provided by a real-time
RMI (RT-RMI), focusing on the integration level 1,
where the notion of a real-time remote object is intro-
duced and supported by a real-time RMI that pro-
vides timely invocation guarantees. Their work differs
from that presented in this paper since they assume a
real-time network and consider the real-time aspects
at a higher level, focusing on the remote invocation of
threads. Our work, in turn, considers facilities at a
lower abstraction level, providing a unicast/broadcast
mechanism to exchange messages meeting time
restrictions. Moreover, our development is focused on
embedded platforms with restricted performance and
tight memory resources, while RT-RMI does not con-
sider these restrictions.



Hardware support in a middleware for distributed and real-time embedded applications
Silva Jr, Wagner, Freitas, Kunz & Pereira

39Journal Integrated Circuits and Systems 2007; v.2 / n.1:37-44

3. DEVELOPMENT PLATFORM

A. JAVA-RT Configurable Processor

The development platform used in this work
is the FemtoJava processor [11], a stack-based
microcontroller that natively executes Java byte-
codes, whose major characteristics are a reduced and
configurable instruction set, Harvard architecture,
and small size. It implements an execution engine
for Java in hardware, through a stack machine that
is compatible with the specification of the Java
Virtual Machine (JVM). A compiler that follows the
JVM specification is used and allows the synthesis of
an ASIP (application-specific integrated processor)
version of FemtoJava. For real-time applications, a
multi-cycle version of FemtoJava is used. The sup-
ported instructions, a subset of the JVM bytecodes,
are basic integer arithmetic and bitwise operations,
conditional and unconditional jumps, load/store
instructions, stack operations, and two extra byte-
codes for arbitrary load/store. Additionally, in [12],
the instruction set of FemtoJava was expanded do
support RTSJ, with the inclusion of bytecodes put-
field, getfield, invokevirtual, invokespecial, and
instanceof. In this processor, all instructions are exe-
cuted in 3, 4, 7, or 14 cycles, because the micro-
controller is cacheless and several instructions are
memory bound. In order to support multithread
applications, two pseudo-bytecodes, save-ctx and
restore-ctx, were created to provide context switch-
ing [13].

B. Design and Simulation Tools

The Sashimi environment [11] is used to gen-
erate customized code for the application. The code
includes the VHDL description of the processor core
and ROM (programs) and RAM (variables) memories
and can be used to simulate and synthesize the appli-
cation. Sashimi, as an example of JVM optimization
for embedded systems, eliminates all un-referenced
methods and attributes, automatically customizing
the final code.

The Sashimi environment has been extended to
incorporate an API [2] that supports the object-ori-
ented specification of concurrent tasks and allows the
specification of timing constraints, implementing the
RTSJ standard. These facilities increase the code
abstraction level and optimize the development of
real-time embedded systems. The intent is to mini-
mize architecture-dependent characteristics within the
scheduling algorithms, thus making the framework as
general as possible.

The RTSJ-API uses the concept of schedulable
objects, which are instances of classes that implement
the Schedulable interface, for instance the
RealtimeThread. It also uses a set of classes to store
parameters that represent a particular resource
demand from one or more schedulable objects. 
The ReleaseParameters class (superclass of
AperiodicParameters and PeriodicParameters), for
example, includes several useful parameters for the
specification of real-time requirements. Moreover, the
API supports the expression of the following ele-
ments: absolute and relative time values, timers, peri-
odic and aperiodic tasks, and scheduling policies. The
term ‘task’ derives from the scheduling literature, rep-
resenting a schedulable element within the system
context. It is also a synonym for schedulable object.

4. HARDWARE IMPLEMENTATIONS

Since our middleware focuses on embedded
and real-time applications, hardware implementations
of some components can be useful to fulfill deadlines
and reduce energy consumption. 

Application developers want to use a friendly
interface when choosing among hardware- or soft-
ware-implemented resources. This means that applica-
tions should be developed without caring about the
physical implementation of middleware and platform
resources. This transparency is provided by the mid-
dleware, encapsulating communication and schedul-
ing resources.

Figure 1 shows the overall platform architec-
ture. A middleware encapsulates communication facil-
ities (APICOM) and manages RTSJ resources. The
APICOM works together with the RTSJ-API, using
the FemtoJava features to provide communication via
a network interface.

The implementation of RTSJ includes a hard-
ware implementation of the real-time scheduler.
Likewise, some communication services, when imple-
mented in hardware, are encapsulated by the API-
COM block.

Figure 1. General Platform Architecture.



Hardware support in a middleware for distributed and real-time embedded applications
Silva Jr, Wagner, Freitas, Kunz & Pereira

40 Journal Integrated Circuits and Systems 2007; v.2 / n.1:37-44

A. RT-Scheduler

When implemented in software, the scheduler
object consists of an additional runtime process (or
task) that is in charge of allocating the CPU for
those application-processes that are ready to execute,
exactly as in any RTOS. Application developers
should choose the most suitable scheduling algo-
rithm at design time. Later on, this algorithm is syn-
thesized with the scheduler process into the embed-
ded target.

The hardware scheduler object has the same
responsibilities. However, its hardware component
contains additional tables that store task descrip-
tors sent by the FemtoJava processor, as well as
operators to manipulate those tables. A class called
HardwareScheduler, which interacts with the real
hardware and performs context switching and dis-
patching, encapsulates the hardware. Context
switching and dispatching imply a minimum cost
when compared to the scheduling computation,
especially when using complex scheduling algo-
rithms.

By moving the scheduling algorithm from soft-
ware to hardware, this operating system function no
longer competes with the application tasks for the
processor. Now, the scheduling function has its own
dedicated hardware unit, which is able to run more
complex scheduling algorithms and to provide a real-
ly non-intrusive task scheduling, thus enhancing the
tasks’ temporal predictability.

The architecture for the hardware scheduler is
shown in Figure 2. The main components of this
hardware scheduler are General Register, Scheduler,
SyncEvent, and AsyncEvent. Each sub-system is an
autonomous machine with its own datapath and con-
trol part. They contain a set of registers and a control
logic that, considering its inputs and register contents,
generates output signals and changes register values.
Details of each sub-system and their external connec-
tions, as well as on the encapsulation of the hardware
scheduler into objects, are shown in [14].

B. Communication Support

In order to provide real-time communication
facilities, a communication API was developed for the
real-time FemtoJava processor, providing an interface
in the transport layer [1].

The communication system provides message
exchange among applications running in different
FemtoJava processors. The API allows applications to
establish a communication channel through the net-
work, which can be used to send and receive mes-
sages. The service allows the assignment of different
priorities to messages and can run in a multithread
environment. From the application point-of-view, the
system is able to open and close connections, in a
client-server mode, or even to run in a publish-sub-
scribe mode.

A general description of the services that are pro-
vided by the communication API is given in Table 1.

In order to offer a larger design space to be
explored in the development of application-specific
middlewares, a hardware implementation of the com-
munication service was developed. It is encapsulated
in a class called HwTransport and can be used in the
same way as the software implementation (called
Transport). The FemtoJava processor interacts with
this communication block implemented in hardware
as with any other I/O device.

When sending a message, the HwTransport
class reads the Message object passed as a parameter
and delivers it to the hardware. Likewise, when receiv-
ing a message, the class fills a Message object passed
by the application with data read from the hardware.
These operations are transparent to the programmer,
since they are encapsulated in the HwTransport class,
which has the same interface provided by Transport
Class, which implements all operations in software.

Figure 2. Architecture for the hardware scheduler.

Table 1. Services provided by the communication API

Service Description
Establish connection Applications can request and wait for

connections. The API provides a code
that identifies the connection and is
used to send and/or receive messages.

Exchange message Applications exchange information by
sending and receiving messages, which
are sequences of up to 20 bytes.

Establish a logic Applications can set their own 
ocal address addresses, which will be used to

identify stations.
Message broadcast Messages can be sent directly to 

a specific host, through a predefined
connection, or broadcasted in the 
network. This option is made by calling
different primitives of the API when
sending a message. A host needs to
perform a subscription in order to
receive broadcast messages.



Hardware support in a middleware for distributed and real-time embedded applications
Silva Jr, Wagner, Freitas, Kunz & Pereira

41Journal Integrated Circuits and Systems 2007; v.2 / n.1:37-44

Figure 3 shows the general architecture of the
hardware that implements communication. It has
been described in VHDL in order to be synthesized in
an FPGA, together with the FemtoJava processor. The
Network Interface is the block that put packets in the
physical layer. The current implementation uses a bus
that is synchronous and applies a bit-dominance pro-
tocol (CSMA/AMP – Carrier Sense Multiple Access
with Arbitration on Message Priority) [15]. In this
protocol there is no collision and the highest priority
packets always gain access to the bus. This strategy was
chosen to meet real-time constraints.

The OP_READER block receives and inter-
prets commands from the processor and dispatches
commands and data to blocks OUTPUT_MES-
SAGE_STORAGE or CONNECTION_ MANAGER.

The OUTPUT_MESSAGE_STORAGE block
is in charge of storing messages that should be sent. As
soon as it receives a complete message, it starts inter-
action with the FRAG block, which will fill the neces-
sary number of packets and deliver them to the
Network Interface. After sending each packet, the
FRAG block waits for an acknowledgment from the
network before sending another packet.

The TIMEOUT block monitors the FRAG
operation, looking at the RTC (Real-Time Clock)
evolution. If the time allowed to send the message is
finished, an exception is communicated to the proces-
sor, thus providing the application with a way to
recover the control when the message fails trying to
get access to the bus.

PACK_SOLVER is able to identify the type of
packet arriving from the physical layer. If it is a data
packet, it is sent to the DEFRAG block, otherwise it
is a control packet and must be sent to the CON-
NECTION_MANAGER.

The DEFRAG block receives packets from the
Network Interface. When a message is ready, it is sent
to the INPUT_MESSAGE_STORAGE block, which

signalizes the message to the processor. Afterwards,
INPUT_ MESSAGE_STORAGE delivers the messages
to the processor in a pre-defined sequence of bytes.

The CONNECTION_MANAGER block is
responsible for opening and closing connections. It
also interacts with the TIMEOUT block in order to
ensure predictability of tasks when trying to establish
connections.

5. EXPERIMENTAL RESULTS

Experiments have been performed to evaluate
the hardware implementations when encapsulated in
Java objects. The VHDL models were compiled using
Altera tools - Quartus II v.5.1. An evaluation in terms
of performance, energy, and FPGA area is shown. Java
code running on the FemtoJava processor was simu-
lated using a cycle-accurate power simulator [16]. The
clock rate of the system (processors and hardware-
implemented services) was 20 MHz.

A. RT-Scheduler

A benchmark of 8 synthetic tasks was used to
evaluate the scheduler. Details about the task set can
be found in [14].

Table 2 shows the cost to run the scheduling
algorithm in the software and hardware versions, for
several executions. The cost is evaluated in millisec-
onds. For the hardware scheduler the execution time
does not depend on the number of tasks, since the
times to communicate with an I/O device and to
switch task contexts are fixed. Thus, increasing the
number of tasks does not affect the performance of
the hardware scheduler. The software scheduler, how-
ever, scans a table of added tasks for verifying which
task is ready to run, such that its performance is affect-
ed by the number of tasks and by the position of the
selected task in the table. The software scheduler also
has a high cost because it is developed using a high-
level language (Java) and uses the object-oriented par-
adigm.

The energy consumed when running the
scheduler was measured by capturing the total gate
capacitance switching, which is proportional to the
dynamic power. Table 3 shows the energy consumed
by the processor when running the scheduler. The
cost running the application was not taken into
account. All experiments were performed using the
hardware scheduler for 8 tasks. When a hardware
scheduler is used, around 99% of the total energy is
due to the processor. As shown in the table, the ener-
gy consumed when using a hardware scheduler varies
from 17% to 7% of the energy consumed when a soft-
ware scheduler is used.Figure 3. General architecture for the communication service

implemented in hardware.



Hardware support in a middleware for distributed and real-time embedded applications
Silva Jr, Wagner, Freitas, Kunz & Pereira

42 Journal Integrated Circuits and Systems 2007; v.2 / n.1:37-44

The area for the hardware scheduler heavily
depends on the number of tasks to be managed. An
area of 3305 logic cells is required for 4 tasks, and
15181 cells are needed for 8 tasks. The hardware
scheduler has a relatively large area, since the
FemtoJava processor costs only nearly 3500 logic cells
(but we are using a very simple multi-cycle version of
the microcontroller, and the hardware scheduler
would not represent a too large area overhead in case
of more complex processors). This area overhead is
the price to be paid for a lower time overhead, real-
time predictability, and lower system energy cost.
Actually, around 70% of the hardware scheduler area is
due to the SyncEvent block, which is not exactly the
scheduler, but an event detector block, which was
designed for maximum parallelism.

The ratio between the power consumption of
the software scheduler and the total CPU power and
the performance of the software/hardware RT-sched-
ulers are shown in [14].

B. Communication Support

The communication service was evaluated
using a producer-consumer benchmark that sends 20
messages whose lengths vary from 1 up to 20 bytes.
Time spent sending and receiving messages is shown
in Figure 4, with the x-axis indicating the length of
messages. An evident aspect in Figure 4 is the step
seen when the length of the message increases from 7
to 8 bytes or from 14 to 15 bytes. This happens
because the API needs to use one more packet to send
the message. In this example, the packet can carry on
7 bytes. This cost is related to the fragmentation/re-
assembly procedure.

Using the hardware implementation under
APICOM, latencies to send and receive messages are
largely reduced, as can be seen in Figure 5. For mes-
sages with 7 bytes, for instance, the transmission
latencies are reduced from 0.201 ms, in the case of the

software implementation (see Figure 4), to only 0.073
ms. The cost shown is due to the operations per-
formed by the class HwTransport. The time spent by
the hardware to build packets and to deliver them to
the physical layer of the network is negligible.
Actually, the hardware uses 6 clock cycles to deliver a
full message, which means less than 1 µs considering
its operating frequency.

A noticeable aspect is that the latency grows up
in a linear way, when messages are sent through a
hardware device. This occurs because the processor
only delivers the message contents to the hardware
device, which manages fragmentation operations in a
few clock cycles. It is also interesting to notice that, as
opposed to the software implementation, the trans-
mission cost is now larger than the reception one. This
happens because, in a send process, the API needs to
deliver information about the message to the hard-
ware block, while during reception the hardware sig-
nalizes to the processor only when a message is ready,
and the processor just reads the message. The ratio
between the software communication service time and
the total CPU time is presented in [1].

The energy is strongly related to the time spent
by Java classes processing messages. Thus, the energy
is proportional to latencies and its curve presents a
shape similar to Figure 4 and Figure 5. Figure 6 shows
a comparison of the values of the energy costs
involved sending and receiving a message using both
hardware and software-implemented services, for dif-
ferent message lengths. The energy spent in the soft-
ware version was divided by the energy spent when

Figure 4. Communication latencies (sw implementation).

Figure 5. Communication latencies (hw implementation).

Table 2. Time consumed by the Scheduler.

Num. Of Execution Time (ms)
Tasks Hardware Software Scheduler

Scheduler Avg Min Max
2 0.0575 0.3348 0.2285 0.3639
4 0.0575 0.5142 0.3728 0.5984
8 0.0575 0.7779 0.5853 0.9780

Table 3. Gate capacitances switching when Scheduler runs.

Num. Of Switching of gate capacitances
Tasks Hardware Software Scheduler

Scheduler Avg Min Max
2 2.02E+06 16.4E+06 13.8E+06 18.9E+06
4 2.02E+06 18.3E+06 13.8E+06 20.7E+06
8 2.02E+06 27.4E+06 20.4E+06 33.8E+06



Hardware support in a middleware for distributed and real-time embedded applications
Silva Jr, Wagner, Freitas, Kunz & Pereira

43Journal Integrated Circuits and Systems 2007; v.2 / n.1:37-44

using the hardware version, for each length of mes-
sage. The results indicate a gain of 7 times in the bet-
ter case (messages of 1 byte) and of almost 4 times for
messages of 7 bytes.

Table 4 shows the area, in logic cells, of each
block of the communication hardware. The extra
hardware cost cannot be neglected if compared to the
FemtoJava processor cost.

6. CONCLUSIONS

Middleware approaches that propose adaptabil-
ity usually supply the application with information to
adapt itself or to provide software adaptation in the
middleware services. This paper shows that adapta-
tions in the platform architecture, by using hardware
services, can provide gains in energy consumption and
performance.

The paper proposes a design space exploration
approach in developing middleware-based object-ori-
ented real-time embedded applications. The develop-
er can choose hardware or software-implemented
services, which include a real-time thread scheduler
and inter-processor communication facilities.
Latencies and costs in energy and area, for both imple-
mentations, were evaluated. While hardware services
present smaller execution times, smaller energy con-
sumption, and higher real-time predictability, they in
turn occupy a large area and thus also imply larger
power consumption.

This approach is coupled with a high flexibility in
choosing either a hardware or software implementation
in order to meet application requirements, because the
services are encapsulated into objects and the applica-
tion development and the design space exploration at
middleware level can be performed independently from
each other, in a fully transparent way. Furthermore, the
use of the object-oriented approach reduces time-to-
market and development costs.

The paper focused on design space exploration
at design time. The authors are currently working on
mechanisms to provide run-time adaptability in an

embedded environment with dynamic load, optimiz-
ing metrics like energy or performance according to
application requirements.

ACKNOWLEDGEMENTS

Thanks to the Brazilian funding agency CNPq,
which is the project sponsor. The authors also thank
to the other SEEP-project researchers for the valuable
discussions.

REFERENCES

[1] Silva Jr., E.T., Freitas, E.P., Wagner, F.R., Carvalho, F.C., and
Pereira, C.E. “Java Framework for Distributed Real-Time
Embedded Systems”, in Proceedings of 9th IEEE ISORC,
2006, pp. 85-92.

[2] Wehrmeister, M.A., Becker, L.B., Pereira, C.E. “Optimizing
Real-Time Embedded Systems Development Using a RTSJ-
based API”, in Proceedings of JTRES 2004, Proceedings
Springer LNCS, 2004, pp. 292-302.

[3] Yau, S.S. et al. “Reconfigurable Context-Sensitive Middleware
for Pervasive Computing”, IEEE Pervasive Computing, vol.1,
no.3, Jul/Sep-2002, pp. 33-40.

[4] Burleson, W. et al. “The Spring Scheduling Co-Processor: A
Scheduling Accelerator”, IEEE Transactions on VLSI
Systems, vol.1, no.7, Mar-1999, pp. 38-48.

[5] Lindh, L. “Fasthard - a Fast Time Deterministic Hardware
based Real-time Kernel”, in Proceedings of IV Euromicro
Workshop on Real-Time Systems, 1992, pp. 21-25.

[6] Kuacharoen, P., Shalan, M., and Mooney, V. “A Configurable
Hardware Scheduler for Real-time Systems”, in Proceedings
of International Conference on Engineering of
Reconfigurable Systems and Algorithms - ERSA, 2003, pp.
96-101.

[7] Agron, J., Andrews, D., Finley, M., Komp, E., and Peck, W.
“FPGA Implementation of a Priority Scheduler Module”, in
Proceedings of the 25th IEEE RTSS, WIP, 2004.

[8] Kohout, P., Ganesh, B., and Jacob, B. “Hardware Support for
Real-time Operating Systems”, in Proceedings of 1st
IEEE/ACM/IFIP International Conference on HW/SW
Codesign and System Synthesis, 2003, pp. 45–51.

[9] Wellings, A., Clark, R., Jensen, D., and Wells, D.A.
“Framework for Integrating the Real-Time Specification for
Java and Java’s Remote Method Invocation”, in Proceedings
of the 5th IEEE ISORC, 2002, pp. 13-22.

[10]Borg, A. and Wellings, A. “A Real-Time RMI Framework for
the RTSJ”, in Proceedings of the 15th Euromicro Conference
on Real-time Systems, 2003, pp. 238-246.

[11] Ito, S.A., Carro, L., and Jacobi, R.P. “Making Java Work for
Microcontroller Applications”, IEEE Design & Test of
Computers, vol.18, no.5, Sep/Oct-2001, pp. 100-110.

Figure 6. Switching capacitances in the communication (soft-
ware / hardware comparison)

Table 4. Logic cells used by communication hardware.

Sub-system name Logic Cells
OP_READER 47
OUTPUT_MESSAGE_STORAGE 857
FRAG 399
TIMEOUT 43
DEFRAG 855
INPUT_MESSAGE_STORAGE 357
CONNECTION_MANAGER 202
PACK_SOLVER 89
Total 2849



Hardware support in a middleware for distributed and real-time embedded applications
Silva Jr, Wagner, Freitas, Kunz & Pereira

44 Journal Integrated Circuits and Systems 2007; v.2 / n.1:37-44

[12]Wehrmeister, M.A., et al. “Optimizing the Generation of
Object-Oriented Real-Time Embedded Applications Based
on the Real-Time Specification for Java”, in Proceedings of
DATE, 2006, pp. 806-811.

[13]Rosa Jr. L.S., et al. “Scheduling Policy Costs on a Java
Microcontroller”, in Proceedings of the JTRES, 2003, pp. 520-
533.

[14]Silva Jr., E.T., Carro, L., Wagner, F.R., and Pereira, C.E.
“Development of Multithread Real-Time Applications Using a
Hardware Scheduler”, in Proceedings of 13th IFIP VLSI-SoC,
2005, pp. 311-316

[15]Wolf, W.H.. Computer as Components: Principles of
Embedded Computing System Design. Morgan Kaufmann
Publishers, San Francisco: 2000.

[16]Beck Filho, A.C.S., Mattos, J., Wagner, F.R., and Carro, L..
“CACO-PS: A General-Purpose Cycle-Accurate Configurable
Power Simulator”, in Proceedings of the 16th SBCCI, 2003,
pp. 349-354


