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Abstract—This paper employs the Ensemble Monte Carlo 

method to simulate the transport of holes in SiGe alloys. A 

three-band model was employed to describe the valence band 

of these alloys. The nonparabolicity and the warping effect of 

the heavy-hole and light-hole bands were considered in their 

dispersion relation, while the split-off band was described as 

parabolic and spherical. We consider phonon and alloy disor-

der scattering in these calculations. The mobility of holes for a 

range of SiGe alloys was calculated at 300K. The simulation 

mobility results agree with the experimental data, implying that 

the selected transport model for holes in SiGe alloys is ade-

quate.  

Index Terms— Ensemble Monte Carlo, hole transport, SiGe 

alloys, alloy disorder scattering, dispersion relation. 

I. INTRODUCTION 

The progress in the microelectronic industry in the last 45 

years has been guided by Moore’s law [1]. However, the pro-

cess of scaling down the transistor dimensions is expected to 

have a limit, which is established by quantum mechanics [2]. 

Because of that, other approaches are needed to enhance fu-

ture improvements in the semiconductor industry. The ap-

proaches that are being proposed involve either changing the 

structure of the transistors or employing new materials or 

both [3]. 

Regarding use of new materials, p-type silicon-germanium 

transistors are found to be more reliable than conventional p-

type silicon devices with respect to the Negative Bias Tem-

perature Instability (NBTI) effect [4]. It has also been shown 

that holes have higher mobility in the SiGe alloy compared to 

pure silicon [5]. Hence, it is expected that SiGe alloys will 

replace pure silicon in the active channel region of the tran-

sistor. The SiGe alloys are semiconductors with electrical 

properties intermediate between those of silicon and germa-

nium. 

To successfully design future generations of transistors, 

the electrical properties, and the reliability of the transistors 

must be verified [6]. Hence, in the device development pro-

cess, which is very time consuming and very expensive, mod-

eling and simulation can significantly reduce the design to 

production time, thus reducing the cost. A Monte Carlo (MC) 

device simulator consists of a Poisson solver that is self-con-

sistently coupled to a Monte Carlo charge carrier transport 

simulator [7]. In this work, an Ensemble Monte Carlo 

transport simulator is proposed and developed for simulation 

of hole transport in SiGe alloys. To simulate the dynamics of 

holes, effective mass description and scattering mechanisms 

due to lattice vibrations and alloy defects are used in our the-

oretical model. 

II. BULK MONTE CARLO MODEL 

Within the semiclassical transport theory, the Boltzmann 

Transport Equation (BTE) is solved to obtain the charge car-

rier distribution function [7]. The MC method is used to di-

rectly solve the BTE where the charge carrier is exposed to 

the action of the external forces due to the applied electric 

field and to the instantaneous scattering events. In the MC 

transport simulation, the time between two successive scat-

tering events – the free-flight time – and the scattering mech-

anisms that terminate the carrier free-flights, are stochasti-

cally determined during the simulation [8]. When the move-

ment of several charge carriers is tracked, the simulation is 

called Ensemble Monte Carlo (EMC). EMC device simula-

tion is usually required in the analysis of semiconductor de-

vices. For that purpose, a transport simulator for holes in SiGe 

bulk material is needed [8]. 

A. Band structure 

The dispersion relation of the valence band is required to 

evaluate the scattering rates of holes in SiGe alloys and the 

energy and the velocity of holes. A three-band approach is 

used to model the valence band of SiGe alloys [9], [10], [11]. 

This model considers the heavy-hole, the light-hole and the 

split-off bands. The dispersion relation of the split-off band is 

defined as spherical and parabolic [9],[12]. In this work, we 

calculated the split-off band of SiGe alloys employing the 

Empirical Pseudopotential Method (EPM) [13]. The effective 

mass of the split-off band was extracted by fitting a parabolic 

equation to the EPM band structure data. 

Both heavy-hole and light-hole bands of Si and Ge are an-

isotropic and non-parabolic [14]. Hence, heavy-hole and 

light-hole bands of SiGe alloys are also described as warped 

and non-parabolic bands. The dispersion relation of warped 

and non-parabolic bands equals the product of the dispersion 

relation for warped parabolic bands (which was proposed by 

Dresselhaus [15]) and the non-parabolicity function [14]: 

EH(k) = 
ℏ

2
k

2

2m0
 |A|(1 − g(θ,ϕ))χ

H
 , 

EL(k) = 
ℏ2k2

2m0

 |A|(1 + g(θ,ϕ))χ
L
, (1) 

where H and L refer to heavy-hole and light-hole bands, χ is 

the non-parabolicity function and g(θ,ϕ) is given by 

g(θ, ϕ) = [
B2
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C2

A2 q(θ, ϕ)]
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where θ and ϕ are the polar and azimuthal angles in spherical 

coordinates of the reciprocal space. A, B and C are the 

Dresselhaus parameters of the material [14]. 

To obtain the Dresselhaus parameters, we used the EPM 

calculated heavy-hole and light-hole bands towards [100] and 

[111] directions, in a region near the gamma point. Neglect-

ing the nonparabolicity effect in equation (1), Dresselhaus pa-

rameters were obtained by fitting the dispersion relation to the 

EPM data. Once the Dresselhaus parameters were extracted, 

we calculated the entire heavy-hole and light-hole bands us-

ing the EPM in both [100] and [111] directions. We estimated 

the nonparabolicity of both bands at each point in both direc-

tions, using [14] 

 

 χ
H

(E)= 
2m0E(k)

ℏ
2
k

2|A|(1−g(θ, ϕ))
 , 

 χ
L

(E)= 
2m0E(k)

ℏ
2
k

2|A|(1+g(θ, ϕ))
 . 

 

This resulted in a set of 𝜒(𝐸) for each band for both [100] 

and [111] directions. An average value of both energy and 

nonparabolicity, Eav and χ
av

, was calculated to remove the di-

rectional dependence from the nonparabolicity function. The 

directional dependency of the dispersion relation is, therefore, 

only kept in the warping function [14].  

The analytical expression of the nonparabolicity function 

is [14]  

 

 χ(E)= 
aE2+bE+c

dE+1
  . (4) 

 

This expression, proposed in [14], was chosen because its 

four parameters assure better agreement with the bands cal-

culated using the EPM. Besides, the simplicity of the model 

makes its inclusion into the transport code easier. The param-

eters a, b, c, and d of each band were obtained by fitting 

equation (4) to the Eav and χav set of data. To achieve plausible 

results, we divided the energy range into small intervals, 

where each interval has a set of parameters that best fit the 

nonparabolicity function. After substituting the analytical 

function of the nonparabolicity in equation (1), the final ex-

pressions for the dispersion relations for the heavy-hole and 

the light-hole bands are: 
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2
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2
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where f
L
 and 𝑓𝐻 are related to the warping effect of the light-

hole band and the warping effect of the heavy-hole band, re-

spectively, and are calculated using 

 

 f
H

 =
ℏ

2

2m0
 |A|(1 − g(θ,ϕ)) , 

 f
L

 =
ℏ

2

2m0
 |A|(1 + g(θ,ϕ)) . 

B. Scattering Mechanisms 

Phonon scattering and alloy disorder scattering are the two 

most important mechanisms that must be accounted for when 

simulating the transport of holes in bulk SiGe [9], [10], [11]. 

In this work, we consider that the SiGe acoustic phonon spec-

trum is a single averaged branch of the pure materials. In con-

trast, the Si-like and the Ge-like modes coexist in the SiGe 

optical phonon branch. In this description, any phonon modes 

that could arise due to the alloy disorder have not been con-

sidered. The assumptions concerning the SiGe phonon branch 

have been supported by prior research findings [9], [11].  

In the transport simulation, the scattering rate of each 

mechanism must be calculated to compute the free-flight time 

of each hole and to select the mechanism responsible for ter-

minating the free-flights. In the EMC code, the scattering 

rates are stored in tables as a function of the hole energy. 

The acoustic phonon transition rate considered in this pa-

per is given in [16]. The acoustic phonon scattering is mod-

eled as an elastic process that only causes intraband transi-

tions, which is a reasonable approach when the transport sim-

ulation is performed at room temperature [17]. Phonons are 

assumed to be in equilibrium and described by Bose-Einstein 

statistics. In the elastic approximation there is no difference 

between the final state achieved by emission and absorption 

processes [16]. Therefore, the scattering rate of acoustic pho-

non is the sum of the emission and absorption scattering rates. 

The total scattering rate of the acoustic phonon mechanism as 

a function of the hole energy is given by 

 

 PHH(E)=
√2Eac

2
kBT〈mH

3 2⁄ 〉

πρvs
2ℏ

4  √Eℱ(E) ,  

 PLL(E)=
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2ℏ
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 PSS(E)=
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2
kBT(mSO
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2ℏ
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where 𝜌 is the density of the material, T is the temperature of 

the material, Eac is the acoustic coupling constant, vs is the 

sound velocity in the material and 〈mH
3 2⁄ 〉 and 〈mL

3 2⁄ 〉 are 

the average effective masses, and are given by 
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(m0)3 2⁄
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and ℱ(E) is given by 

 

ℱ(E)=
(dbE2+2dcE−aE2+c)E1 2⁄ (dE+1)1 2⁄

(aE2+bE+c)
5 2⁄  . (9) 

 

In the notation used for the total scattering rate, the first 

letter in the index of the total scattering rate refers to the initial 

and the second refers to the final band. Thus, HH corresponds 

to the intraband transition in the heavy-hole band, LL corre-

sponds to the intraband transition in the light-hole band and 

SS corresponds to the intraband transition in the split-off 

band. To calculate the total scattering rate of acoustic phonon 

scattering of SiGe alloys, the acoustic coupling constant of 

SiGe alloys is obtained by linearly interpolating the values of 

pure Si and pure Ge [9]. 

The nonpolar optical phonon transition rate is given in 

[16]. The dispersion relation of the optical phonons responsi-

ble for the scattering is independent of the phonon wavevec-

tor [17], therefore, the frequency of the optical phonon is a

(3) 

(6) 

(8) 
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constant ωop. The total scattering rate of the nonpolar optical 

phonon mechanism as a function of the hole energy is given 

by 

PHH,LH, SH(E)=
√2Dop

2
〈mH

3 2⁄ 〉

2πℏ
3
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 [
Nq

Nq+1
] √E'F(E') ,  
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√2Dop

2
mso
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2πℏ
3
ωop

 [
Nq
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] √E' , 

where the upper terms correspond to the scattering rate due to 

the absorption and the lower terms correspond to the scatter-

ing due to the emission of an optical phonon. Dop is the optical 

coupling constant and E' is the final energy of holes and is 

given by E'=E ± ℏω − ∆Efi. The nonpolar optical phonon 

scattering in the SiGe alloys can be induced by Si-Si and Ge-

Ge modes. Therefore, the scattering rate of each mode is 

weighted by the content of each atom in the alloy.   

The alloy disorder scattering was also accounted for in 

simulating the transport of holes in SiGe alloys. The random 

distribution of the atoms that constitute random alloys is re-

sponsible for generating a perturbation that scatters the charge 

carrier while moving inside the alloy. The transition rate of 

the alloy disorder scattering is given in [18]. The total alloy 

disorder scattering rate as a function of the energy is given by 

PHH,LH,SH(E)=
Ω023 2⁄ 〈mH

3 2⁄ 〉

2πℏ
4 ΔU2x(1-x)√E'F(E') , 

PLL, HL,SL(E)=
Ω023 2⁄ 〈mL

3 2⁄ 〉

2πℏ
4 ΔU2x(1-x)√E'F(E') , (11) 

PSS, HS, LS(E)=
Ω023 2⁄

mSO
3 2⁄

2πℏ
4 ΔU2x(1-x)√E' , 

where Ω0 is the volume of the unit cell, ∆U is the alloy scat-

tering potential and x is the content of Ge in the SiGe alloy. In 

previous works, several values were attributed to the alloy 

scattering potential of SiGe alloys. In [9] and [11], a discus-

sion concerning the lack of consensus about the value reported 

for the alloy scattering potential in the literature was made. 

This uncertainty may be a consequence of distinct expressions 

being employed to calculate the total scattering rate. They 

suggested considering the alloy scattering potential as a quan-

tity to be empirically obtained. Another approach used in the 

literature is calculating the alloy scattering potential using 

first-principles methods. Both the virtual crystal approxima-

tion (VCA) or the coherent potential approximation (CPA) 

can be employed in tight-binding (TB) method to calculate the 

alloy scattering potential. In [19], an atomistic investigation 

was performed to calculate the alloy scattering potential. They 

calculated the TB band structure and wave function, and then 

extracted the alloy scattering potential. Comparing the empir-

ically calculated alloy scattering potential and their results, 

they concluded that they were reasonably close. Because there 

is no relevant improvement in calculating the alloy scattering 

potential by first-principles methods, and first-principles cal-

culations would increase the complexity of our model, the al-

loy scattering potential is a fitting parameter to reproduce the 

experimental mobility data. 

III. RESULTS 

To validate the importance of alloy disorder scattering, the 

mobility of holes was calculated for low electric field and at 

300K using the theoretical model described in the previous 

section. The obtained mobility data vs. Ge content were com-

pared with experimental data [20] and previous theoretical 

calculations [11]. In [11], a full-band ensemble MC simula-

tion was employed, where band structure calculations are per-

formed during the simulation. The method employed in [11] 

is more computationally expensive than our model. 

Table 1 presents the Dresselhaus parameters, the effective 

mass of the split-off band and the splitting energy of each 

SiGe alloy studied in this paper. These values were extracted 

from the band structure of each alloy calculated by EPM, fol-

lowing the methodology described in the previous section. 

Table I.  Parameters of the band structure of SiGe alloys simulated in this 

paper. 

Ge con-

tent 
A B C 

mso 

(m0) 
∆ (eV) 

0.1 4.4 0.85 4.99 0.1408 0.05879 

0.2 4.65 0.95 5.15 0.1402 0.08067 

0.3 4.95 1.15 5.3 0.1356 0.1037 

0.4 5.28 1.3 5.65 0.1282 0.1283 

0.5 5.55 1.65 5.95 0.1189 0.1546 

0.6 6.15 1.9 6.9 0.1086 0.1827 

0.7 6.82 2.8 7.3 0.0982 0.2121 

0.8 8.35 4.4 8.5 0.0889 0.2426 

0.9 8.72 4.57 9.25 0.0812 0.2737 

Fig. 1 shows the experimental curve [20] and our simula-

tion data when the alloy scattering potential was set to 1.2. 

Also shown in this figure is the simulation curve obtained by 

Fischetti and Laux [11] when using alloy scattering potential 

equal to 0.8. We can see a good agreement between the theo-

retical results. Comparing the theoretical results and the ex-

perimental data, we can observe that for the Si0.8Ge0.2 alloy the 

Fig.1  Comparison of the hole mobility in Si1-xGex alloys versus ger-

manium content. The alloy scattering potential used in the in-house sim-

ulator is equal to 1.2. The interpolated lines are a guide to the eye. 
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mobility calculated agrees with the experimental value. How-

ever, for the other alloys, the experimental values are lower 

than the theoretical mobilities. 

 
Following the suggestion given by Fischetti and Laux [11], 

the alloy scattering potential was slightly increased. Fig. 2 

shows our mobility values when the alloy scattering potential 

is set to 1.5, the Fischetti and Laux [11] data for alloy scatter-

ing potential equal to 1, and the experimental data [20]. When 

the alloy scattering potential is set to 1.5, our simulated mo-

bility data agree very well with both the experimental data and 

the results presented by Fischetti and Laux [11]. 

The profile of the mobility data vs. Ge content shows that 

the mobility of holes in alloys with low Ge content is smaller 

than the mobility of holes in Si. Nevertheless, when the Ge 

content is higher than 0.8, the hole mobility becomes larger in 

comparison with Si. This suggests that the impact of the scat-

tering mechanisms on the hole mobility depends upon the Ge 

content.  

 
Fig. 3 shows the decrease of the occupancy of the light-

hole band and the increase of the occupancy of the heavy-hole 

band as the Ge content increases. The split-off band is only 

slightly occupied in the entire Ge content range. Therefore, as 

the Ge content increases, the interband scattering is reduced 

(see [9] for more details).  As a result, the mobility of holes in 

the heavy-hole band becomes more relevant than the mobility 

of holes in the light-hole band. 

Fig. 4 shows the alloy disorder intraband scattering rates of 

heavy-hole band of Si0.9Ge0.1, Si0.7Ge0.3, Si0.5Ge0.5, Si0.3Ge0.7 

and Si0.1Ge0.9 alloys as a function of energy, considering the 

energy range of interest for low electric fields. For low Ge 

content, the alloy disorder scattering rate increases as the Ge 

content increases reaching its maximum value for Si0.5Ge0.5, 

and then it starts to decrease. For high Ge content, the reduc-

tion of the heavy-hole band density of states is responsible for 

the decrease of the alloy disorder scattering rate. 

In Fig. 5, we show the total phonon scattering rate as a 

function of the hole energy. For low Ge content, the acoustic 

phonon scattering is more likely to happen.  Both the acoustic 

scattering rates and the Si optical phonon scattering rates are 

reduced as the Ge content increases, while the intraband non-

polar optical scattering caused by Ge optical phonon becomes 

more relevant. Fig. 5 also shows that, for extremely low en-

ergy values, the total scattering rate increases with the Ge con-

tent.  However, for values of energy higher than the thermal 

energy at 300K, the total phonon scattering rates become 

smaller as the Ge content increases. This trend is observed be-

cause, at extremely low energy, the acoustic scattering rate is 

low (but it rapidly increases with energy). This behavior is 

seen in the Si0.9Ge0.1, where the acoustic phonon scattering is 

more relevant than the optical phonon scattering (continuous 

green line in Fig. 5). The Ge optical phonon scattering rate 

slowly increases with the hole energy, and for the case of the 

Si0.9Ge0.1 alloy the Ge optical phonon scattering is more im-

portant than the acoustic phonon scattering.  

 

 
Fig.2  Comparison of the hole mobility in Si1-xGex alloys versus germa-

nium content. The alloy scattering potential used in the in-house simu-

lator is equal to 1.5. The interpolated lines are a guide to the eye. 

 

 
Fig.3  Occupation of heavy-hole band, light-hole band and split-off 
band versus Ge content. The lines are guide to the eye. 

 
Fig.4  Alloy disorder scattering rate of Si0.9Ge0.1, Si0.7Ge0.3, Si0.5Ge0.5, 

Si0.3Ge0.7 and Si0.1Ge0.9. The alloy disorder scattering rates reaches its 
maximum value for Si0.5Ge0.5 and then decreases to reach its minimum 

value for Si0.9Ge0.1. 
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IV. CONCLUSION 

The hole transport simulator for SiGe alloys was validated 

by calculating the low field mobility of holes in these alloys 

at 300K. The mobility estimated by this simulator was com-

pared with previous simulation results and with available ex-

perimental data, thus demonstrating that the results obtained 

by the simulator are realistic and the presented theoretical 

model is adequate.  
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