
185Journal of Integrated Circuits and Systems 2016; v.11 / n.3:185-191

Fault Injection on a Mixed-Signal Programmable
SoC with Design Diversity Mitigation

Carlos J. G. Aguilera, Cristiano P. Chenet, Tiago R. Balen

Federal University of Rio Grande do Sul (UFRGS) - Graduate Program on Microelectronics (PGMICRO)
cjgaguilera@inf.ufrgs.br, cristiano.chenet@ufrgs.br, tiago.balen@ufrgs.br

ABSTRACT

This paper presents an approach for runtime software-based fault injection, applied to a commercial mixed-signal
programmable system-on-chip (PSoC). The fault-injection scheme is based on a pseudo-random sequence gen-
erator and software interruption. A fault tolerant data acquisition system, based on a design diversity redundant
scheme, is considered as case study. The fault injection is performed by intensively inserting bit flips in the periph-
erals control registers of the mixed-signal PSoC blocks, as well as in the SRAM memory of the device. Results
allow to evaluate the applied fault tolerance technique, indicating that the system is able to tolerate most of the
generated errors. Additionally, a high fault masking effect is observed, and different criticality levels are observed
for faults injected into the SRAM memory and in the peripherals control registers..

Index Terms: Fault Injection, Soft-Error, Fault Tolerance, Triple Modular Redundancy, Design Diversity, Mixed-Sig-
nal, Single Events, Data Converters, Programmable System-on-Chip.

I. INTRODUCTION

Over the years, the dimensions of the transis-
tors have been progressively reduced, allowing, so far,
the continuity of Moore’s Law. This paradigm, with
the consequent prevalence of deep submicron technol-
ogies, allowed the increase in clock rates and circuit
miniaturization. On the other hand, such miniaturiza-
tion implies in higher current leakage, at the same time
that make the integrated circuits more sensitive to ion-
izing radiation effects [1]. In a system that operates in
a spacecraft, commercial aircraft or even at ground lev-
el, ionizing particle strikes may affect memory blocks,
microprocessors, and mixed-signal blocks generating
processing errors and potential system failure [2].

Analog-to-digital converters (ADCs) are com-
mon blocks in control, instrumentation and commu-
nication systems, including the ones adopted in space
applications. While much effort has been directed to
studies evaluating soft error effects and mitigation
techniques in complex digital circuits, such as proces-
sors and FPGAs (Field Programmable Gate Arrays),
few works deal with this problem on data converters
or mixed signal devices [3]–[5].

Fault injection is an evaluation technique used
to assess the dependability and fault tolerance degree
of electronic and computer systems, by simulating or

emulating faults that may occur during the system op-
eration, both in software and hardware. Computers
and their applications have increased reliance on elec-
tronic systems, in which downtime and failures are not
tolerable, such as in safety critical and financial critical
applications [6], [7].

A possible fault injection technique, known as
software implemented fault injection (SWIFI) consists
in emulating faults by modifying the system software
in order to include fault injection capability [8]. For
systems that are intended to operate in radiation en-
vironments, this technique is used for testing the pro-
tection and mitigation techniques that are commonly
employed in such applications [9]. The use of software
interruptions to inject faults in processor based systems
was proposed in [10], [11], addressing a technique
known as CEU (Code Emulated Upset).

In previous works of our research group [4],
[12], we proposed the application of a mitigation
strategy based on modular redundancy with design di-
versity to a data acquisition system, prototyped in a
PSoC (Programmable System-on-Chip) device. In the
mentioned works, a compiled-time fault injection was
carried out, by manually inserting bit-flips in few reg-
isters of the architecture, since the purpose was only to
validate the spatial-temporal voting scheme proposed
in those works.

Fault Injection on a Mixed-Signal Programmable SoC with Design Diversity Mitigation
Aguilera; Chenet & Balen

186 Journal of Integrated Circuits and Systems 2016; v.11 / n.3:185-191

The first contribution of the current work is the
description of a fully automated framework for mas-
sive fault injection in the studied PSoC system. The
fault injection system is based on a pseudo-random
number generator implemented in an auxiliary board,
to select the memory and bit positions, to insert the
faults, and software interruption to perform the bit-
flip injection routine. As a second contribution, the
obtained experimental results of fault injection help
to understand the criticality levels of faults affecting
different parts of the device and the functional impli-
cations of such faults in a mixed-signal diversity-based
design.

In fact, a PSoC device was already tested un-
der fault injection in a related work [10]. However,
the experiment was directed to a device from the first
generation of the PSoC family (comprising a simple
8-bit processor). The target application in that work
was purely digital (matrix multiplication), to which
no mitigation technique was applied. In this work,
the studied device pertains to the third generation of
PSoC family from Cypress semiconductor (compris-
ing a 32 bit ARM processor). Additionally, the appli-
cation is a fault tolerant mixed-signal system based on
design diversity, comprising three ADCs, besides dig-
ital hardware and software resources for controlling
the converters and the direct memory access, as well
as to perform the voting. Therefore, experimental re-
sults also allows to validate the previously proposed
mitigation technique [12].

II. BACKGROUND

A. Radiation Effects and Soft Errors

Radiation effects on electronic systems may
be classified as Total Ionizing Dose (TID), Displace-
ment Damage (DD) and Single Event Effects (SEE)
[13]. TID is a long term cumulative effect, which
degrades some electrical properties of circuits due to
the build up of trapped charges in the integrated cir-
cuits oxides [14]. Displacement damage are defects
created into the crystalline structure of the semicon-
ductor due to nonionizing energy loss of incident
particles (usually heavy ions and neutrons) [15]. Sin-
gle event effects occur due to the impact of strong-
ly ionizing particles in sensitive areas of integrated
circuits, inducing current pulses that can disturb the
circuit operation [16]–[20]. If the SEE generates a
bit inversion in a memory element it is called SEU
(Single Event Upset) [21]. On the other hand, a
temporary current pulse induced by an SEE that may
propagate into the signal path (either in digital or
analog circuits) is known as Single Event Transient
(SET) [22]. The system level effects of bit inversions

in digital systems, caused by SEEs, are also known
as soft errors. If the system stop working due to an
SEE the event is classified as Single Event Functional
Interrupt (SEFI).

B. Fault Tolerance with Design Diversity

Safety critical systems exposed to ionizing ra-
diation must employ some hardening strategy, de-
pending on the application and the required degree
of radiation tolerance. There are several mitigation
techniques that are carried out since the early stages
of a system or IC (Integrated Circuit) development.
Mitigation to soft errors is usually obtained by add-
ing some degree of redundancy, usually hardware or
information redundancy (as, for example, error cor-
recting codes). Triple Modular Redundancy (TMR)
is a popular technique that consists in triplicating the
hardware (or part of it) and voting upon the results
of the computation done by each TMR copy. This
way, a reduction in soft error rate is obtained, for
systems operating under ionizing radiation incidence
[23]. The drawbacks of this technique are the in-
crease in area and power consumption.

An improved TMR technique is the Diversity
Triple Modular Redundancy (DTMR). In this ap-
proach the hardware and software elements used to
perform the multiple computations are not copies,
but are independently designed to meet the system
requirements [24]. Design diversity can enhance the
system reliability to common-mode faults because
each module may have different levels of resilience,
therefore the probability of multiple domain faults
may be reduced. The main objective of this technique
is to avoid multiple errors that may arise due to com-
monalities among the system copies, by using differ-
ent hardware devices, different clock frequencies, and
different software implementations [12].

Redundancy with diversity is used by design-
ers and integrators of electronic systems for critical
applications, such as space missions, avionics and
military applications. Examples of applications of
Design Diversity techniques in aircrafts from NASA,
Airbus and Boeing can be found in [25]–[28]. In
some recent works, assessment of fault tolerance
is performed for various diversitary architectures,
specifically in digital and FPGA-based architectures
[29], [30].

In [4], the application of DTMR to mixed-sig-
nal (MS) circuits was addressed, identifying the pos-
sible modes of diversity implementation (time, do-
main, level and architecture) and the drawbacks of
applying this technique do MS systems. One of the
case studies of the mentioned work is a data acqui-
sition system implementing the DTMR technique
with hardware and time diversity. In that work the

Fault Injection on a Mixed-Signal Programmable SoC with Design Diversity Mitigation
Aguilera; Chenet & Balen

187Journal of Integrated Circuits and Systems 2016; v.11 / n.3:185-191

system was validated by a limited set of manually
injected faults. For this reason, the same case study
circuit is considered in this work, to be target of
massive fault injections as described in the following
sections.

III. FAULT INJECTION SETUP

A. Programmable SoC

The case study circuit, a Data Acquisition Sys-
tem (DAS), was fully implemented in a commercial
programmable SoC (PSoC 5LP from Cypress Semi-
conductor) manufactured in a 130nm CMOS tech-
nology. The general architecture of the PSoC is pre-
sented in Figure 1 [31]. The PSoC has a 32-bit ARM
Cortex-M3 CPU (up to 80 Mhz), 256 kBytes of flash
memory, 64 kBytes of SRAM memory, 2 kBytes of
EEPROM memory and 24 channels of DMA (Direct
Memory Access). The device also comprises digital pe-
ripherals such as communication interfaces and PLDs
(Programmable Logic Devices), based on UDBs (Uni-
versal Digital Blocks) which provide the implementa-
tion of various functions such as timers, counters, and
others. Also, analog peripherals such as a sigma-delta
AD converter, two SAR (Successive Approximation
Register) converters, digital to analog converters,
comparators, operational amplifiers and configurable
analog blocks may also be used to implement several
analog functions [31].

B. Case Study Implementation

The simplified block diagram of the case study
circuit is depicted in Figure 2. The DAS is composed
by three ADCs operating in parallel: two SAR con-
verters and a sigma-delta converter. Besides the hard-
ware diversity implementation, due to different ADC
architectures, temporal diversity is achieved due to the
different sampling rate of the SAR ADCs (740 ksps
and 74 ksps, where sps stands for “samples per sec-
ond”). The system also comprises two voters: one
main spatial voter and a temporal voter, which also do
the coarse synchronization of the DAS.

In addition to the ADCs and voters the im-
plemented system also comprises three sample-and-
hold blocks, three channels of Direct Memory Access
(DMA) and a synchronizer block, needed to accu-
rately synchronize the voting cycles, since the conver-
sion times are different for the triplicated converters.
Besides that, a fault injection block is also necessary.
Additionally, a status register (composed by 5 circular
buffers) monitors the output of the three ADCs and
both voters, sending its content to an external comput-
er whenever a fault is detected by the voters. The buffer
size is such that at least two complete periods of the
converted analog signal is stored (one cycle before and
another after the error detection). The fault injection
block also communicates to an auxiliary equipment
(AE), responsible for controlling the fault injection
procedure. Figure 3 shows the overall system block di-
agram of the DUT (Device Under Test).

Figure 1. Architecture of PSoC 5LP [31].

Figure 2. DAS scheme, based on a Diversity TMR technique

Figure 3. Details of the full implementation of DAS in the PSoC
device.

Fault Injection on a Mixed-Signal Programmable SoC with Design Diversity Mitigation
Aguilera; Chenet & Balen

188 Journal of Integrated Circuits and Systems 2016; v.11 / n.3:185-191

The AE is implemented in secondary board,
comprising another PSoC device, in which a pseu-
do-random sequence generator (PRSG) is programed.
The PRSG defines the address and the bit position that
will be flipped, both in the peripherals control registers
and in the SRAM memory, during the fault injection.
A predefined clock of the AE activates the PRSG. The
generated random number is sent to the DUT through
a parallel connection, then, the software interruption
is activated in the DUT to inject the fault. The inter-
ruption routine is responsible for inserting the fault,
by performing an XOR operation with the content of
the selected register and a mask corresponding to the
faulty bit position. The implemented fault injection
scheme, is shown in Figure 4. The AE also operates
like a watchdog in which a counter is reset whenev-
er a transition occurs in an “alive” signal sent by the
DUT. If the alive signal remains silent for more than
30 seconds, the watchdog resets the DUT. This is done
to deal with possible SEFIs (Single Event Functional
Interrupts) on the DUT

Due to the memory organization of the PSoC
and due to the fact that part of the SRAM is devoted to
the control registers of the peripherals, the fault injec-
tion is performed in distinct ways, for the peripherals
and for the CPU SRAM memory.

1) Fault Injection in Peripherals: The registers
of the PSoC responsible for controlling the peripher-
als are composed of 8 bits. The nominal addresses of
the peripherals registers range from 0x40004000 to
0x5FFFFFFF. However, there are only 13000 physical
registers within this address range [31]. Therefore, a ful-
ly random fault injection is not allowed, since most of
the address in this range are not targeted to a physical
memory position. To overcome this issue, a vector with
the valid addresses of the peripherals registers is stored
into the fault injection block into the DUT, in a way
that the PRSG will randomly select one of the valid ad-
dresses to inject a fault. Due to limitations in memory to
store all 13000 addresses, a subset of 7.892 registers was
selected, prioritizing the ones responsible for controlling
the analog and mixed-signal peripherals. A clock signal
provided by the AE, activates the system interruption in
order to inject the fault into the DUT. The clock fre-

quency defines the number of injected faults per second.
In this work a 1 Hz clock frequency is employed.

In this part of the experiment, a “semi-perma-
nent” model for fault injection into the peripherals is
used. This means that the fault is injected and after 500
ms it is removed. This time, while the bit-error remains
active, comprises several millions of clock cycles. This
is done since the fault may remain latent and an error
may manifest several clock cycles after the fault injec-
tion, during the program execution. Faults are then re-
moved to prevent the error pile up, in order to have a
more precise interpretation of the results.

2) Fault Injection in SRAM: The PSoC SRAM
memory consists of two banks of 32 kB, as shown in
Table I. From the base addresses 0x1FFF8000 and
0x20000000 it is possible to reach any address of the
banks by adding to them a 15- bit number. This way,
such 15-bit number is generated by the pseudo ran-
dom sequence generator from AE, so that a fully ran-
dom address selection is achieved for the SRAM fault
injection. A permanent fault model for injecting faults
in the SRAM is adopted, which means that a fault in-
serted is never removed by the injector block.

C. Test Setup

The overall test setup for the fault injection cam-
paign is shown in Figure 5. Besides the AE, the DUT is
connected to a computer which stores the fault detec-
tion logs. The DAS input is a 120Hz sinewave signal
from an external signal generator. An oscilloscope is
also used to monitor the real-time operating status of
the DAS, by means of the “alive” signal.

During the experiment, 23815 faults were in-
jected into the peripheral control registers. This is near
3 times the number of registers stored in the valid ad-
dresses vector. Into the SRAM, 130236 faults were in-

Figure 5. Test setup for the fault injection campaign.

Table I. PSoC SRAM organization

Address range Purpose

0x1FFF 8000 - 0x1FFF FFFF Up to 32 kB SRAM in code region

0x2000 0000 - 0x2000 7FFF Up to 32 kB SRAM in SRAM region

Figure 4. Main blocks of the AE and DUT needed for the fault
injection procedure.

Fault Injection on a Mixed-Signal Programmable SoC with Design Diversity Mitigation
Aguilera; Chenet & Balen

189Journal of Integrated Circuits and Systems 2016; v.11 / n.3:185-191

jected, which corresponds to near two injected faults
per SRAM byte (64 kBytes). The overall usage rate of
the SRAM memory, according to the compiler report
for the DUT, is 36.8%.

IV. EXPERIMENTAL RESULTS

The experimental results are divided in two
groups, in order to better detail the errors observed
either due to injected faults in the peripherals and in
the SRAM.

A. Test Setup

Errors detected in the peripherals were classified
into two groups: i) errors detected by the system vot-
ers, and ii) errors due to SEFIs. The later class com-
prises the errors that were detected by the watchdog,
or by the experiment operator (manual reset). Table II
shows the results of fault injection in the peripherals.
From the 23815 injected faults, 848 generated detect-
ed errors, corresponding to 3.56% of the total injected
faults. From the total amount of errors 2.22% (528)
were detected by the voters.

In the group of observed errors due to SEFIs, 4
different types of errors were identified. The communi-
cation between the DUT and the monitoring comput-
er is made through a serial RS232 interface. Therefore,
one class of observed SEFI is related to an error on the
serial interface, manifested by incoherent writing in the
test report, possibly generated by a change in the inter-
face speed, which may be due to faults injected into the
system PLLs and oscillators. However, the system was
able to continue running, though the test data results
were not generated. For this type of error, a manual re-
set had to be triggered to continue the experiment. The
same procedure had to be applied to the second class of
SEFI error: lost of functionality of fault injector blocks
of the DUT. This is probably due to a failure on the in-
terruption scheme of the microprocessor. However, as in
the previous mentioned case, the DAS system remained
working correctly. The third class of observed SEFIs, for
the peripherals fault injection, is a permanent error at the
output of one of the converters. These cases also demand-
ed a manual reset. These 3 classes of errors, comprise 63
of the 320 observed SEFIs, and are not the most critical
ones, since the system is still functional, even when one of

the converter fails (due to the DTMR scheme). Complet-
ing the set of SEFI faults there are the faults that caused
a system halt and, for this reason, they were detected by
the AE watchdog. This way, the total number of critical
SEFIs observed is 257 (1.08% of injected faults).

Figure 6 shows examples of errors detected by
the voters on the ADCs, resulting from fault injection
in the peripherals. Since single fault injection is per-
formed at each injection, in all cases the overall DAS
was able to tolerate the fault, as expected for a TMR
system. The discontinuities observed in the curves
are related to the time needed by the fault injection
routine, since, during the fault injection, some analog
samples are lost, and there is a time discontinuity as
well, though not evidenced in the plots. Figures 6 (a)
and (b) show an error on the SAR ADC operating at
740 kps which is recovered on the next voting cycle.
A similar case is observed in figure 6 (d) on the SAR
ADC operating at 74 ksps. Figures 6 (c), (e) and (f)
show some cases in which a permanent error is ob-
served at the converters.

B. Results of fault injection in SRAM

Only 46 errors were detected from the 130236
faults injected in the SRAM memory, corresponding
to 0.03% of faults detected as errors, as can be seen in
Table III. It can be noticed from the table that 60.87%
of the observed errors, were detected by the voters, and
39.12% generated SEFIs. The critical SEFIs (system
halt) represents 13.04% of the observed errors. This
shows a high fault masking effect in this memory. Fig-
ure 7 shows some examples of the ADCs and voter
outputs for faults that were detected by the voters.

Figure 6. Examples of soft error effects on the ADCs, for faults
injected into the peripherals.

Table II. Results of fault injection in the peripherals

Total injected faults 23815 100%

Total observed errors 848 3,56%

-Total errors detected by voters 528 2,22%

-Total SEFIs 320 1,34%

Fault Injection on a Mixed-Signal Programmable SoC with Design Diversity Mitigation
Aguilera; Chenet & Balen

190 Journal of Integrated Circuits and Systems 2016; v.11 / n.3:185-191

V. CONCLUSIONS

In this paper a software-based fault injection
campaign was applied to a commercial programmable
mixed-signal system-on-chip. Faults are emulated by
means of SW interruption, which modifies the mem-
ory content, inserting bit-flips in memory positions
randomly selected by a pseudo-random number gen-
erator. More than 154000 faults were injected in a data
acquisition system programmed into the PSoC. The
case study design implements a DTMR fault tolerance
technique with spatial and temporal voting schemes.

Fault injection was divided in two experiments,
one to inject fault in the PSoC peripherals and other
directed to the CPU SRAM. Results showed that the
faults injected at the peripheral blocks present higher
criticality to the application than the faults injected
into the SRAM, since only 0.03% of faults in SRAM
generated errors, whereas for the peripherals this num-
ber is 3.56%.

Results show that most of the observed errors
were tolerated by the DTMR system (62% of total
errors). Additionally, most of the observed SEFIs are
related to malfunction on the fault injection and moni-
toring blocks, whereas only 0.19% of the total injected
errors generated critical SEFIs

As general conclusions, the applied fault injec-
tion methodology showed suitable to intensively test
the soft error effects on the complex mixed-signal SoC
under study. Finally, with the fault injection results, the
previously proposed mixed-signal DTMR technique
was proved to be effective to tolerate soft errors.

ACKNOWLEDGMENT

This research is supported in part by Brazil-
ian National Council for Scientific and Technolog-
ical Development (CNPq), under grant number
56947/2014-0.

REFERENCES

[1] H. J. Barnaby, “Total-ionizing-dose effects in modern cmos
technologies,” IEEE Transactions on Nuclear Science, De-
cember 2006.

[2] A. Johnston, C. Lee, B. Rax, and D. Shaw, “Using commer-
cial semiconductor technologies in space,” pp. 175–182,
1995, radiation and its Effects on Components and Systems
- RADECS.

[3] A. J. Lanot and T. R. Balen, “Analysis of the effects of single
event transients on an sar-adc based on charge redistribu-
tion,” 2014, 15th IEEE Latin-American Test Workshop.

[4] C. P. Chenet, T. R. Balen, F. L. Kastensmidt, L. A. Tamba-
ra, G. M. Borges, and M. S. Lubaszewski, “Exploring design
diversity redundancy to improve resilience in mixed-signal
systems,” 2015, microelectronics Reliability.

Figures 7 (a) and (b) show errors observed at
the SAR ADCs, immediately after the injection of
the fault. It is possible that, in these cases, the fault
was injected in the address in which the quantized
sample was stored in the SRAM, directly modifying
its value.

Figure 7 (c) shows errors in the Sigma-Delta
ADC. It should be noticed that, in this case, errors
were detected after the time of the fault injection, since
no discontinuity of the corrected voted signal is ob-
served in the curve. One of the possible causes of this
error can be attributed to the inadequate performance
of either the buffer, which stores the converted data,
the voters or the status register block. Figure 7 (d)
shows errors occurring at the output of the temporal
voter (SAR ADC voter), which start to occur after the
injection of the fault and remain on subsequent voting
cycles. This behavior suggests that a modification in
the voter may have occurred generating a small error
at its output.

It can be noticed from the fault injection experi-
ments, that, for the tested application, the faults at the
memory addresses related to the control of the periph-
eral of the PSoC are more critical than faults occurring
in the CPU SRAM. In this implemented system, the
application is highly dependent on the peripherals, to
perform the sampling and conversions of the analog
signal. Although 36.8% of the SRAM is used, as the
voting task and the general control of the system are
performed by software, faults in SRAM have a lower
impact in the performed application.

Figure 7. Examples of soft error effects on the ADCs and voters,
for faults injected into the SRAM memory.

Table III. Results of fault injection in the SRAM

Total injected faults 130236 100%

Total observed errors 46 0,03%

-Total errors detected by voters 28 60,87%

-Total SEFIs 18 39,12%

Fault Injection on a Mixed-Signal Programmable SoC with Design Diversity Mitigation
Aguilera; Chenet & Balen

191Journal of Integrated Circuits and Systems 2016; v.11 / n.3:185-191

[5] T. L. Turflinger, “Single-event effects in analog and mixed-sig-
nal integrated circuits,” IEEE Transactions on Nuclear Sci-
ence, pp. 594– 602, April 1996.

[6] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection tech-
niques and tools,” Computer, pp. 75–82, April 1997.

[7] J. A. Clark and P. K. Dhiraj, “Fault injection a method for
validating computer-system dependability,” Computer, pp.
47–56, June 1995.

[8] H. Ziade, R. Ayoubi, and R. Velazco, “A survey on fault injec-
tion techniques,” The International Arab Journal of Informa-
tion Technology. Vol 1, No. 2, pp. 171–186, July 2004.

[9] J. V. Carreira, D. Costa, and J. G. Silva, “Fault injection spot-
checks computer system dependability,” IEEE Spectrum, pp.
50–55, August 1999.

[10] W. Mansour, R. Velazco, H. Ziade, R. Ayoubi, and W. E. Fa-
lou, “Seu simulation by fault injection in psoc device: Prelim-
inary results,” 2nd International Conference on Advances in
Computational Tools for Engineering Applications (ACTEA),
pp. 330–333, 2012.

[11] R. Velazco, S. Rezgui, and R. Ecoffet, “Predicting error rate
for microprocessor-based digital architectures through c.e.u.
(code emulating upsets) injection,” IEEE Transactions on
Nuclear Science (Vol.47, no 6), pp. 2405 – 2411, December
2000.

[12] C. P. Chenet, A. J. Lanot, and T. R. Balen, “Design diversity
redundancy with spatial - temporal voting applied to data ac-
quisition systems,” IEEE, March 2014, lATW, 2014 15th Latin
American.

[13] R. Velazco, P. Fouillat, and R. Reis, Radiation Effects on
Embedded Systems. Springer Dordrecht, The Netherlands,
2007.

[14] M. Turowski, A. Raman, and R. Schrimpf, “Nouniform to-
tal-doseinduced charge distribuition in shallow-trench isola-
tion oxides,” IEEE Transactions on Nuclear Science, vol. 51,
no 6, pp. 3166–3171, 2004.

[15] J. Srour, C. Marshall, and P. Marshall, “Review of displace-
ment damage effects in silicon devices,” IEEE Transactions
on Nuclear Science, vol. 50, no 3, pp. 653–670, 2003.

[16] D. Binder, E. Smith, and A. B. Holman, “Satellite anomalics
from galactic cosmic rays,” IEEE Transactions on Nuclear
Science, v.22, n.6, pp. 2675–2680, December 1975.

[17] T. May and M. Woods, “A new physical mechanism for soft
errors in dynamic memories,” Reliability Physics Sympo-
sium, pp. 33–40, 1978.

[18] J. Ziegler and W. Lanford, “Effect of cosmic rays on computer
memories,” Science, v.206, n.4420, pp. 776–788, November
1979.

[19] F. Wang and V. Agrawal, “Single event upset: an embedded
tutorial,” IEEE International Conference on VLSI Design, pp.
429–434, 2008.

[20] R. Ecoffet, S. Duzellier, P. Tastet, C. Aicardi, and M.
Labrunee, “Observation of heavy ion induced transients in
linear circuits,” Radiation Effects Data Workshop, IEEE, pp.
72–77, July 1994.

[21] C. S. Gunzer, E. A. Wolicki, and R. G. Allas, “Single event
upset of dynamic rams by neutrons and protons,” IEEE
Transactions on Nuclear Science, v.26, n. 6, pp. 5048–5052,
December 1979.

[22] M. P. Baze and S. P. Bucbner, “Attenuation of single event
induced pulses in cmos combinational logic,” IEEE Transac-
tions on Nuclear Science, v.44, n. 6, pp. 2217–2223, Decem-
ber 1997.

[23] F. L. Kastensmidt, F. Almeida, S. Pagliarini, L. Entrena, A.
Lindoso, E. S. Millan, and E. Chielle, “Single event induced
charge sharing effects in tmr with differente levels of granu-
larity,” 2012, iV Werice Aeroespacial - Workshop on the Ra-
diation Effects on Electronic and Photonic Devices for Aero-
space Appplications, Vol 1, p.67-72, out/2012, Sao Jose dos
Campos. IEAv.

[24] A. Avizienis and J. Kelly, “Fault tolerance by design diversity:
Concepts and experiments,” Computer, vol. 17, no. 8, pp.
67–80, 1984.

[25] J. Lala and R. Harper, “Architectural principles for safety-crit-
ical realtime applications,” Proc. IEEE 82 (1), p. 25?40, Jan-
uary 1994.

[26] K. Szalai and et al., “Digital fly-by-wire flight control validation
experience,” NASA Tech. Memo. 72860, December 1978.

[27] R. Riter, “Modeling and testing a critical fault-tolerant
multi-process system,” FTCS-25. Digest of Papers., Twen-
ty-Fifth International Symposium on Fault- Tolerant Comput-
ing, June 1995.

[28] D. Briere and P. Traverse, “Airbus a320/a330/a340 electrical
flight controls a family of fault-tolerant systems,” FTCS-23.
Digest of Papers., Twenty-Fifth International Symposium on
Fault- Tolerant Computing, p. 616?623, June 1993.

[29] Z. Wang, L. Yang, and A. Chattopadhyayy, “Architectural reli-
ability estimation using design diversity,” 2015, 16th Interna-
tional Symposium on Quality Electronic Design.

[30] R. J. Rizwan A. Ashraf, Ouns Mouri and R. F. DeMara, “De-
sign-fordiversity for improved fault-tolerance of tmr systems
on fpgas,” 2011, international Conference on Reconfigurable
Computing and FPGAs.

[31] C. Semiconductor, PSoC 5LP Architecture TRM, 2015,
technical Reference Manual http://www.cypress.com/?do-
cID=46050.

