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ABSTRACT

This paper presents an approach for runtime software-based fault injection, applied to a commercial mixed-signal 
programmable system-on-chip (PSoC). The fault-injection scheme is based on a pseudo-random sequence gen-
erator and software interruption. A fault tolerant data acquisition system, based on a design diversity redundant 
scheme, is considered as case study. The fault injection is performed by intensively inserting bit flips in the periph-
erals control registers of the mixed-signal PSoC blocks, as well as in the SRAM memory of the device. Results 
allow to evaluate the applied fault tolerance technique, indicating that the system is able to tolerate most of the 
generated errors. Additionally, a high fault masking effect is observed, and different criticality levels are observed 
for faults injected into the SRAM memory and in the peripherals control registers.. 

Index Terms: Fault Injection, Soft-Error, Fault Tolerance, Triple Modular Redundancy, Design Diversity, Mixed-Sig-
nal, Single Events, Data Converters, Programmable System-on-Chip.

I. INTRODUCTION

Over the years, the dimensions of the transis-
tors have been progressively reduced, allowing, so far, 
the continuity of Moore’s Law. This paradigm, with 
the consequent prevalence of deep submicron technol-
ogies, allowed the increase in clock rates and circuit 
miniaturization. On the other hand, such miniaturiza-
tion implies in higher current leakage, at the same time 
that make the integrated circuits more sensitive to ion-
izing radiation effects [1]. In a system that operates in 
a spacecraft, commercial aircraft or even at ground lev-
el, ionizing particle strikes may affect memory blocks, 
microprocessors, and mixed-signal blocks generating 
processing errors and potential system failure [2].

Analog-to-digital converters (ADCs) are com-
mon blocks in control, instrumentation and commu-
nication systems, including the ones adopted in space 
applications. While much effort has been directed to 
studies evaluating soft error effects and mitigation 
techniques in complex digital circuits, such as proces-
sors and FPGAs (Field Programmable Gate Arrays), 
few works deal with this problem on data converters 
or mixed signal devices [3]–[5].

Fault injection is an evaluation technique used 
to assess the dependability and fault tolerance degree 
of electronic and computer systems, by simulating or 

emulating faults that may occur during the system op-
eration, both in software and hardware. Computers 
and their applications have increased reliance on elec-
tronic systems, in which downtime and failures are not 
tolerable, such as in safety critical and financial critical 
applications [6], [7]. 

A possible fault injection technique, known as 
software implemented fault injection (SWIFI) consists 
in emulating faults by modifying the system software 
in order to include fault injection capability [8]. For 
systems that are intended to operate in radiation en-
vironments, this technique is used for testing the pro-
tection and mitigation techniques that are commonly 
employed in such applications [9]. The use of software 
interruptions to inject faults in processor based systems 
was proposed in [10], [11], addressing a technique 
known as CEU (Code Emulated Upset). 

In previous works of our research group [4], 
[12], we proposed the application of a mitigation 
strategy based on modular redundancy with design di-
versity to a data acquisition system, prototyped in a 
PSoC (Programmable System-on-Chip) device. In the 
mentioned works, a compiled-time fault injection was 
carried out, by manually inserting bit-flips in few reg-
isters of the architecture, since the purpose was only to 
validate the spatial-temporal voting scheme proposed 
in those works. 
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The first contribution of the current work is the 
description of a fully automated framework for mas-
sive fault injection in the studied PSoC system. The 
fault injection system is based on a pseudo-random 
number generator implemented in an auxiliary board, 
to select the memory and bit positions, to insert the 
faults, and software interruption to perform the bit- 
flip injection routine. As a second contribution, the 
obtained experimental results of fault injection help 
to understand the criticality levels of faults affecting 
different parts of the device and the functional impli-
cations of such faults in a mixed-signal diversity-based 
design.

In fact, a PSoC device was already tested un-
der fault injection in a related work [10]. However, 
the experiment was directed to a device from the first 
generation of the PSoC family (comprising a simple 
8-bit processor). The target application in that work 
was purely digital (matrix multiplication), to which 
no mitigation technique was applied. In this work, 
the studied device pertains to the third generation of 
PSoC family from Cypress semiconductor (compris-
ing a 32 bit ARM processor). Additionally, the appli-
cation is a fault tolerant mixed-signal system based on 
design diversity, comprising three ADCs, besides dig-
ital hardware and software resources for controlling 
the converters and the direct memory access, as well 
as to perform the voting. Therefore, experimental re-
sults also allows to validate the previously proposed 
mitigation technique [12].

II. BACKGROUND

A. Radiation Effects and Soft Errors

Radiation effects on electronic systems may 
be classified as Total Ionizing Dose (TID), Displace-
ment Damage (DD) and Single Event Effects (SEE) 
[13]. TID is a long term cumulative effect, which 
degrades some electrical properties of circuits due to 
the build up of trapped charges in the integrated cir-
cuits oxides [14]. Displacement damage are defects 
created into the crystalline structure of the semicon-
ductor due to nonionizing energy loss of incident 
particles (usually heavy ions and neutrons) [15]. Sin-
gle event effects occur due to the impact of strong-
ly ionizing particles in sensitive areas of integrated 
circuits, inducing current pulses that can disturb the 
circuit operation [16]–[20]. If the SEE generates a 
bit inversion in a memory element it is called SEU 
(Single Event Upset) [21]. On the other hand, a 
temporary current pulse induced by an SEE that may 
propagate into the signal path (either in digital or 
analog circuits) is known as Single Event Transient 
(SET) [22]. The system level effects of bit inversions 

in digital systems, caused by SEEs, are also known 
as soft errors. If the system stop working due to an 
SEE the event is classified as Single Event Functional 
Interrupt (SEFI).

B. Fault Tolerance with Design Diversity

Safety critical systems exposed to ionizing ra-
diation must employ some hardening strategy, de-
pending on the application and the required degree 
of radiation tolerance. There are several mitigation 
techniques that are carried out since the early stages 
of a system or IC (Integrated Circuit) development. 
Mitigation to soft errors is usually obtained by add-
ing some degree of redundancy, usually hardware or 
information redundancy (as, for example, error cor-
recting codes). Triple Modular Redundancy (TMR) 
is a popular technique that consists in triplicating the 
hardware (or part of it) and voting upon the results 
of the computation done by each TMR copy. This 
way, a reduction in soft error rate is obtained, for 
systems operating under ionizing radiation incidence 
[23]. The drawbacks of this technique are the in-
crease in area and power consumption.

An improved TMR technique is the Diversity 
Triple Modular Redundancy (DTMR). In this ap-
proach the hardware and software elements used to 
perform the multiple computations are not copies, 
but are independently designed to meet the system 
requirements [24]. Design diversity can enhance the 
system reliability to common-mode faults because 
each module may have different levels of resilience, 
therefore the probability of multiple domain faults 
may be reduced. The main objective of this technique 
is to avoid multiple errors that may arise due to com-
monalities among the system copies, by using differ-
ent hardware devices, different clock frequencies, and 
different software implementations [12].

Redundancy with diversity is used by design-
ers and integrators of electronic systems for critical 
applications, such as space missions, avionics and 
military applications. Examples of applications of 
Design Diversity techniques in aircrafts from NASA, 
Airbus and Boeing can be found in [25]–[28]. In 
some recent works, assessment of fault tolerance 
is performed for various diversitary architectures, 
specifically in digital and FPGA-based architectures 
[29], [30]. 

In [4], the application of DTMR to mixed-sig-
nal (MS) circuits was addressed, identifying the pos-
sible modes of diversity implementation (time, do-
main, level and architecture) and the drawbacks of 
applying this technique do MS systems. One of the 
case studies of the mentioned work is a data acqui-
sition system implementing the DTMR technique 
with hardware and time diversity. In that work the 
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system was validated by a limited set of manually 
injected faults. For this reason, the same case study 
circuit is considered in this work, to be target of 
massive fault injections as described in the following 
sections.

III. FAULT INJECTION SETUP

A. Programmable SoC

The case study circuit, a Data Acquisition Sys-
tem (DAS), was fully implemented in a commercial 
programmable SoC (PSoC 5LP from Cypress Semi-
conductor) manufactured in a 130nm CMOS tech-
nology. The general architecture of the PSoC is pre-
sented in Figure 1 [31]. The PSoC has a 32-bit ARM 
Cortex-M3 CPU (up to 80 Mhz), 256 kBytes of flash 
memory, 64 kBytes of SRAM memory, 2 kBytes of 
EEPROM memory and 24 channels of DMA (Direct 
Memory Access). The device also comprises digital pe-
ripherals such as communication interfaces and PLDs 
(Programmable Logic Devices), based on UDBs (Uni-
versal Digital Blocks) which provide the implementa-
tion of various functions such as timers, counters, and 
others. Also, analog peripherals such as a sigma-delta 
AD converter, two SAR (Successive Approximation 
Register) converters, digital to analog converters, 
comparators, operational amplifiers and configurable 
analog blocks may also be used to implement several 
analog functions [31].

B. Case Study Implementation

The simplified block diagram of the case study 
circuit is depicted in Figure 2. The DAS is composed 
by three ADCs operating in parallel: two SAR con-
verters and a sigma-delta converter. Besides the hard-
ware diversity implementation, due to different ADC 
architectures, temporal diversity is achieved due to the 
different sampling rate of the SAR ADCs (740 ksps 
and 74 ksps, where sps stands for “samples per sec-
ond”). The system also comprises two voters: one 
main spatial voter and a temporal voter, which also do 
the coarse synchronization of the DAS.

In addition to the ADCs and voters the im-
plemented system also comprises three sample-and-
hold blocks, three channels of Direct Memory Access 
(DMA) and a synchronizer block, needed to accu-
rately synchronize the voting cycles, since the conver-
sion times are different for the triplicated converters. 
Besides that, a fault injection block is also necessary. 
Additionally, a status register (composed by 5 circular 
buffers) monitors the output of the three ADCs and 
both voters, sending its content to an external comput-
er whenever a fault is detected by the voters. The buffer 
size is such that at least two complete periods of the 
converted analog signal is stored (one cycle before and 
another after the error detection). The fault injection 
block also communicates to an auxiliary equipment 
(AE), responsible for controlling the fault injection 
procedure. Figure 3 shows the overall system block di-
agram of the DUT (Device Under Test).

Figure 1. Architecture of PSoC 5LP [31].

Figure 2. DAS scheme, based on a Diversity TMR technique

Figure 3. Details of the full implementation of DAS in the PSoC 
device.
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The AE is implemented in secondary board, 
comprising another PSoC device, in which a pseu-
do-random sequence generator (PRSG) is programed. 
The PRSG defines the address and the bit position that 
will be flipped, both in the peripherals control registers 
and in the SRAM memory, during the fault injection. 
A predefined clock of the AE activates the PRSG. The 
generated random number is sent to the DUT through 
a parallel connection, then, the software interruption 
is activated in the DUT to inject the fault. The inter-
ruption routine is responsible for inserting the fault, 
by performing an XOR operation with the content of 
the selected register and a mask corresponding to the 
faulty bit position. The implemented fault injection 
scheme, is shown in Figure 4. The AE also operates 
like a watchdog in which a counter is reset whenev-
er a transition occurs in an “alive” signal sent by the 
DUT. If the alive signal remains silent for more than 
30 seconds, the watchdog resets the DUT. This is done 
to deal with possible SEFIs (Single Event Functional 
Interrupts) on the DUT

Due to the memory organization of the PSoC 
and due to the fact that part of the SRAM is devoted to 
the control registers of the peripherals, the fault injec-
tion is performed in distinct ways, for the peripherals 
and for the CPU SRAM memory.

1) Fault Injection in Peripherals: The registers 
of the PSoC responsible for controlling the peripher-
als are composed of 8 bits. The nominal addresses of 
the peripherals registers range from 0x40004000 to 
0x5FFFFFFF. However, there are only 13000 physical 
registers within this address range [31]. Therefore, a ful-
ly random fault injection is not allowed, since most of 
the address in this range are not targeted to a physical 
memory position. To overcome this issue, a vector with 
the valid addresses of the peripherals registers is stored 
into the fault injection block into the DUT, in a way 
that the PRSG will randomly select one of the valid ad-
dresses to inject a fault. Due to limitations in memory to 
store all 13000 addresses, a subset of 7.892 registers was 
selected, prioritizing the ones responsible for controlling 
the analog and mixed-signal peripherals. A clock signal 
provided by the AE, activates the system interruption in 
order to inject the fault into the DUT. The clock fre-

quency defines the number of injected faults per second. 
In this work a 1 Hz clock frequency is employed. 

In this part of the experiment, a “semi-perma-
nent” model for fault injection into the peripherals is 
used. This means that the fault is injected and after 500 
ms it is removed. This time, while the bit-error remains 
active, comprises several millions of clock cycles. This 
is done since the fault may remain latent and an error 
may manifest several clock cycles after the fault injec-
tion, during the program execution. Faults are then re-
moved to prevent the error pile up, in order to have a 
more precise interpretation of the results.

2) Fault Injection in SRAM: The PSoC SRAM 
memory consists of two banks of 32 kB, as shown in 
Table I. From the base addresses 0x1FFF8000 and 
0x20000000 it is possible to reach any address of the 
banks by adding to them a 15- bit number. This way, 
such 15-bit number is generated by the pseudo ran-
dom sequence generator from AE, so that a fully ran-
dom address selection is achieved for the SRAM fault 
injection. A permanent fault model for injecting faults 
in the SRAM is adopted, which means that a fault in-
serted is never removed by the injector block.

C. Test Setup

The overall test setup for the fault injection cam-
paign is shown in Figure 5. Besides the AE, the DUT is 
connected to a computer which stores the fault detec-
tion logs. The DAS input is a 120Hz sinewave signal 
from an external signal generator. An oscilloscope is 
also used to monitor the real-time operating status of 
the DAS, by means of the “alive” signal. 

During the experiment, 23815 faults were in-
jected into the peripheral control registers. This is near 
3 times the number of registers stored in the valid ad-
dresses vector. Into the SRAM, 130236 faults were in-

Figure 5. Test setup for the fault injection campaign. 

Table I.  PSoC SRAM organization 

Address range Purpose

0x1FFF 8000 - 0x1FFF FFFF Up to 32 kB SRAM in code region

0x2000 0000 - 0x2000 7FFF Up to 32 kB SRAM in SRAM region

Figure 4. Main blocks of the AE and DUT needed for the fault 
injection procedure. 
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jected, which corresponds to near two injected faults 
per SRAM byte (64 kBytes). The overall usage rate of 
the SRAM memory, according to the compiler report 
for the DUT, is 36.8%.

IV. EXPERIMENTAL RESULTS

The experimental results are divided in two 
groups, in order to better detail the errors observed 
either due to injected faults in the peripherals and in 
the SRAM. 

A. Test Setup

Errors detected in the peripherals were classified 
into two groups: i) errors detected by the system vot-
ers, and ii) errors due to SEFIs. The later class com-
prises the errors that were detected by the watchdog, 
or by the experiment operator (manual reset). Table II 
shows the results of fault injection in the peripherals. 
From the 23815 injected faults, 848 generated detect-
ed errors, corresponding to 3.56% of the total injected 
faults. From the total amount of errors 2.22% (528) 
were detected by the voters. 

In the group of observed errors due to SEFIs, 4 
different types of errors were identified. The communi-
cation between the DUT and the monitoring comput-
er is made through a serial RS232 interface. Therefore, 
one class of observed SEFI is related to an error on the 
serial interface, manifested by incoherent writing in the 
test report, possibly generated by a change in the inter-
face speed, which may be due to faults injected into the 
system PLLs and oscillators. However, the system was 
able to continue running, though the test data results 
were not generated. For this type of error, a manual re-
set had to be triggered to continue the experiment. The 
same procedure had to be applied to the second class of 
SEFI error: lost of functionality of fault injector blocks 
of the DUT. This is probably due to a failure on the in-
terruption scheme of the microprocessor. However, as in 
the previous mentioned case, the DAS system remained 
working correctly. The third class of observed SEFIs, for 
the peripherals fault injection, is a permanent error at the 
output of one of the converters. These cases also demand-
ed a manual reset. These 3 classes of errors, comprise 63 
of the 320 observed SEFIs, and are not the most critical 
ones, since the system is still functional, even when one of 

the converter fails (due to the DTMR scheme). Complet-
ing the set of SEFI faults there are the faults that caused 
a system halt and, for this reason, they were detected by 
the AE watchdog. This way, the total number of critical 
SEFIs observed is 257 (1.08% of injected faults).

Figure 6 shows examples of errors detected by 
the voters on the ADCs, resulting from fault injection 
in the peripherals. Since single fault injection is per-
formed at each injection, in all cases the overall DAS 
was able to tolerate the fault, as expected for a TMR 
system. The discontinuities observed in the curves 
are related to the time needed by the fault injection 
routine, since, during the fault injection, some analog 
samples are lost, and there is a time discontinuity as 
well, though not evidenced in the plots. Figures 6 (a) 
and (b) show an error on the SAR ADC operating at 
740 kps which is recovered on the next voting cycle. 
A similar case is observed in figure 6 (d) on the SAR 
ADC operating at 74 ksps. Figures 6 (c), (e) and (f) 
show some cases in which a permanent error is ob-
served at the converters.

B. Results of fault injection in SRAM

Only 46 errors were detected from the 130236 
faults injected in the SRAM memory, corresponding 
to 0.03% of faults detected as errors, as can be seen in 
Table III. It can be noticed from the table that 60.87% 
of the observed errors, were detected by the voters, and 
39.12% generated SEFIs. The critical SEFIs (system 
halt) represents 13.04% of the observed errors. This 
shows a high fault masking effect in this memory. Fig-
ure 7 shows some examples of the ADCs and voter 
outputs for faults that were detected by the voters. 

Figure 6. Examples of soft error effects on the ADCs, for faults 
injected into the peripherals. 

Table II. Results of fault injection in the peripherals 

Total injected faults 23815 100%

Total observed errors 848 3,56%

-Total errors detected by voters 528 2,22%

-Total SEFIs 320 1,34%
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V. CONCLUSIONS

In this paper a software-based fault injection 
campaign was applied to a commercial programmable 
mixed-signal system-on-chip. Faults are emulated by 
means of SW interruption, which modifies the mem-
ory content, inserting bit-flips in memory positions 
randomly selected by a pseudo-random number gen-
erator. More than 154000 faults were injected in a data 
acquisition system programmed into the PSoC. The 
case study design implements a DTMR fault tolerance 
technique with spatial and temporal voting schemes. 

Fault injection was divided in two experiments, 
one to inject fault in the PSoC peripherals and other 
directed to the CPU SRAM. Results showed that the 
faults injected at the peripheral blocks present higher 
criticality to the application than the faults injected 
into the SRAM, since only 0.03% of faults in SRAM 
generated errors, whereas for the peripherals this num-
ber is 3.56%. 

Results show that most of the observed errors 
were tolerated by the DTMR system (62% of total 
errors). Additionally, most of the observed SEFIs are 
related to malfunction on the fault injection and moni-
toring blocks, whereas only 0.19% of the total injected 
errors generated critical SEFIs 

As general conclusions, the applied fault injec-
tion methodology showed suitable to intensively test 
the soft error effects on the complex mixed-signal SoC 
under study. Finally, with the fault injection results, the 
previously proposed mixed-signal DTMR technique 
was proved to be effective to tolerate soft errors. 
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