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Review 
SPECIAL ISSUE ON SEXUALLY 

TRANSMITTED INFECTIONS 

ABSTRACT  Etiology: Trichomonas vaginalis is the etiologic agent of trichomo-
niasis, the most common non-viral sexually transmitted disease (STD) in the 
world. Transmission: Trichomoniasis is transmitted by sexual intercourse and 
transmission via fomites is rare. Epidemiology, incidence and prevalence: The 
WHO estimates an incidence of 276 million new cases each year and preva-
lence of 187 million of infected individuals. However, the infection is not noti-
fiable. Pathology/Symptomatology: The T. vaginalis infection results in a vari-
ety of clinical manifestations - in most cases the patients are asymptomatic, 
but some may develop signs typically associated to the disease. Importantly, 
the main issue concerning trichomoniasis is its relationship with serious 
health consequences such as cancer, adverse pregnancy outcomes, infertility, 
and HIV acquisition. Molecular mechanisms of infection: To achieve success in 
parasitism trichomonads develop a complex process against the host cells 
that includes dependent- and independent-contact mechanisms. This multi-
factorial pathogenesis includes molecules such as soluble factors, secreted 
proteinases, adhesins, lipophosphoglycan that culminate in cytoadherence 
and cytotoxicity against the host cells. Treatment and curability: The treat-
ment with metronidazole or tinidazole is recommended; however, cure fail-
ures remain problematic due to noncompliance, reinfection and/or lack of 
treatment of sexual partners, inaccurate diagnosis, or drug resistance. There-
fore, new therapeutic alternatives are urgently needed. Protection: Strategies 
for protection including sexual behavior, condom usage, and therapy have not 
contributed to the decrease on disease prevalence, pointing to the need for 
innovative approaches. Vaccine development has been hampered by the lack 
of long-lasting humoral immunity associated to the absence of good animal 
models. 
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INTRODUCTION 
The flagellate parasitic protozoan Trichomonas vaginalis 
was firstly described by Alfred François Donné in 1836 
from a vaginal discharge. Although the infection has been 
considered as mild and curable sexually transmitted dis-
ease (STD), the high incidence/prevalence and increasing 
resistance to the treatment, as well as the association with 
health complications have raised concern to this disease 
[1]. The diagnostic still presents failures, since the most 

used method worldwide, the wet mount examination, has 
low sensitivity. In addition, the report of positive cases for 
trichomoniasis is not mandatory and there is no vigilance 
system to detect the increasing antimicrobial resistance [2, 
3]. To aggravate the scenario, there is no alternative 
treatment to the current Food and Drug Administration 
(FDA) approved drugs, the nitroimidazoles metronidazole 
(MTZ) and tinidazole (TNZ) [4]. To achieve success in para-
sitism, the trichomonads pathogenesis against host cells is 
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a complex process that includes dependent- and inde-
pendent-contact mechanisms. Moreover, T. vaginalis is 
amitochondriate and presents a large genome with 176 
Mbp distributed into six chromosomes, distinguishing fea-
tures that make it a valuable cellular and molecular model 
[5].  

Overall, excellent papers [6-16] have been published in 
the last 20 years to highlight the importance of T. vaginalis 
infection to human medicine. This article contributes to 
claim the attention of public health policies to control this 
STD. 

 

TRICHOMONAS VAGINALIS AND TRICHOMONIASIS: 
ETIOLOGY, TRANSMISSION, AND DIAGNOSTIC CONSID-
ERATIONS 
The parasite T. vaginalis is the etiologic agent of trichomo-
niasis. The infection occurs in the female and male urogen-
ital tract and humans are the only natural host for the par-
asite [15]. The parasite exhibits a piriform or round shape, 
with four anterior flagella and a well developed undulating 
membrane that are responsible for the characteristic mo-
tility essential for direct diagnosis [6]. T. vaginalis presents 
only the trophozoite stage, although, under stressful condi-
tions, pseudocysts or endoflagellar forms have been de-
scribed [17]. The role of these resistant forms in the trich-
omonads life cycle is still not understood. In addition to its 
unique features, T. vaginalis presents hydrogenosomes 
instead of mitochondria, organelles that are involved in the 
metabolism adaptation to the hostile infection environ-
ment, including specific pathways of cell death [18-20]. 

The pathogen T. vaginalis is transmitted by sexual in-
tercourse and the evidences that corroborate for the clas-
sification of trichomoniasis as STD are: (1) high frequency 
of infection in urethra and/or prostate of male partners of 
infected women; (2) the prevalence of infection is higher 
among female attending in STD clinics and among prosti-
tutes than in postmenopausal women and virgins; and (3) 
the flagellates die outside of the human body, unless they 
are protected from desiccation [6]. Studies that found T. 
vaginalis among young children contribute to maintain a 
high index of suspicion for sexual abuse [21, 22]. Although 
thought to be rare, the nonsexual transmission via fomites 
and possibly water has been described [23]. The pathogen 
has also been isolated from the respiratory tract of infants 
[24] and adults [25, 26]. Undoubtedly, while producing a 
nuisance infection, T. vaginalis must be considered a clini-
cal pathogen rather than commensal organism.  

The trichomoniasis diagnosis must be laboratorial as 
the symptomatology could lead to confusion with other 
STDs. Accurate diagnostic procedures are essential to con-
firm trichomoniasis and direct to the appropriate treat-
ment contributing to control the infection propagation [1]. 
The most used method for diagnosis is the microscopic 
examination of wet mounts, which establishes the diagno-
sis by detecting actively motile organisms [4]. Although this 
is the most practical and rapid method of diagnosis (allow-
ing immediate treatment), it is relatively insensitive. Im-
munodiagnostic such as direct immunofluorescent anti-

body staining is more sensitive than wet mounts, but tech-
nically more complex [4]. Serological ELISA has been re-
ported to present higher sensitivity than microscopy with 
detection of trichomoniasis in asymptomatic population 
[27]. 

Two very sensitive tests approved by the FDA to detect 
T. vaginalis in vaginal secretions include the OSOM 
Trichomonas Rapid Test (Sekisui Diagnostics, Framingham, 
MA), an antigen-detection test using immunochromato-
graphic capillary flow dipstick technology that can be per-
formed at the point of care. The sensitivity and specificity 
for OSOM Test are 82%–95% and 97%–100%, respectively 
[28]. The other test is the Affirm VP III (Becton Dickinson, 
Sparks, MD), a DNA hybridization probe test that evaluates 
for T. vaginalis, Gardnerella vaginalis, and Candida albicans, 
with sensitivity and specificity of 63% and 99.9%, respec-
tively [29]. Although very efficient, both tests are not 
cleared for use with specimens obtained from men [4]. 

As now updated by the STDs Treatment Guidelines 
from The Centers for Disease Control and Prevention (CDC, 
US) [4] the culture of the parasite is no longer considered 
the gold standard for diagnosing T. vaginalis infection once 
effective molecular detection methods are available. Cul-
ture has a sensitivity of 75%–96% and a specificity of up to 
100%, but results are not available for 3 to 7 days. In wom-
en, examination should be performed on vaginal secretions. 
In men, anterior urethral or prostatic secretions should be 
examined, although urine can also be screened for T. 
vaginalis in both sexes and under nucleic acid amplification 
tests (NAATs). The APTIMA T. vaginalis assay (Hologic Gen-
Probe, San Diego, CA) detects RNA by transcription-
mediated amplification from vaginal, endocervical, or urine 
specimens from women with a clinical sensitivity of 95.3%–
100% and specificity of 95.2%–100% [30]. 

In general, both guidelines from East European coun-
tries [31] and from CDC [4] recommend the following pro-
cedures for the laboratory diagnosis of trichomoniasis: (i) 
to perform diagnostic testing in all women with vaginal 
discharge, especially in high prevalence settings (e.g., STD 
clinics) and for asymptomatic persons at high risk for infec-
tion (e.g., persons with multiple sex partners, exchanging 
sex for payment, illicit drug use, or a history of STD); (ii) to 
employ NAATs or culture if no trichomonads are detected 
on microscopic examination of the wet mount preparation 
and there is a strong indication of infection. It is our under-
standing that highly sensitive (e.g., NAATs or culture) tests 
are not feasible in most laboratories especially from devel-
oping countries. In such cases, the wet mount examination 
of vaginal and urethral secretions and the urine sediment 
with careful specimen preservation and immediate micro-
scopic examination can improve diagnostic sensitivity. Alt-
hough T. vaginalis may be an incidental finding on a Papan-
icolaou test, neither conventional nor liquid-based Pap 
tests are considered diagnostic tests for trichomoniasis, 
because false negatives and false positives can occur [4]. In 
addition, stained smears by Giemsa or Leishman at clinical 
settings are being discouraged [31]. 
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TRICHOMONIASIS IN NUMBERS 
Trichomoniasis is the most common non-viral STD in the 
world. The WHO estimative performed in 2008 shows an 
incidence of 276 million new cases each year and a preva-
lence of 187 million of infected individuals with ages be-
tween 15 and 49 years-old [2]. The incidence of infection 
depends on several factors including age, sexual activity, 
number of sexual partners, other STDs, menstrual phase, 
diagnosis techniques, social, and economic conditions. The 
prevalence is high among low social income patients from 
gynecologic and STDs clinics. The flagellates do not survive 
outside the human body unless they are protected from 
drying. Live T. vaginalis has been found in urine and in se-
men after several hours of exposure to air [6].  

The worldwide prevalence of trichomoniasis is much 
higher than other curable STDs such as gonorrhea and 
syphilis, both counting for 36.4 million cases, and Chlamyd-
ia infection, with 100.4 million of infected adults. In the 
USA, several studies have determined the trichomoniasis 
prevalence in the range of 2.5% to 26.2% [32-40]. Consid-
ering the Asian continent, consistent survey reports re-
vealed prevalence values of 7.8% in South Korea [41] and 
8.5% in India [42]. Trichomoniasis prevalence varied from 
8.4% to 48% among Indigenous patients in Australia [43, 
44]. The Nordic countries in Europe account with 1.5% for 
the trichomoniasis prevalence [45] and in South Africa the 
prevalence was 6.5%, excluding co-infection cases with HIV 
[46]. Studies in Latin America revealed similar prevalence 
values of 7.6% in Argentina [47] 7.8% in Chile [48] and 9.1% 
in Peru [49]. In Brazil, prevalence ranged from 2.6% to 20% 
among women [50-53] and the Health Ministry estimates a 
general prevalence of 15% [54]. These uncertain data are 
due to the limitations in sample selection, since it is not 
representative of the Brazilian population in general. 

In this context, Secor et al. [1] alert to the classification 
of trichomoniasis as neglected disease since the prevalence 
data are underestimated due to failures in diagnosis as 
consequence of insensitive methods or lack of testing in 
asymptomatic patients, and limited knowledge related to 
infection duration [55]. Moreover, trichomoniasis is not 
notifiable, and there is no vigilance system to detect drug 
resistance, with low attention in the public health pro-
grams for STDs control [2, 3]. As a consequence of this 
overlooking, high costs and healthcare burden associated 
to trichomoniasis account to $24 million per year in the 
United States [56]. The health complications caused by T. 
vaginalis aggravate the situation, as unrecognized costs 
with pregnancy adverse outcomes, infertility, cervical and 
prostate cancers are of concern. The estimated cost of the 
T. vaginalis-attributable HIV infections is approximately 
$167 million per year [57]. 

 

THE TRICHOMONIASIS CLINICAL SPECTRUM AND 
HEALTH CONSEQUENCES 
The T. vaginalis infection results in a variety of clinical man-
ifestations - in most cases the patients are asymptomatic, 
but some may develop signs typically associated to the 
disease. Moreover, beyond the symptoms, the main issue 

concerning trichomoniasis is its relationship with serious 
health consequences such as cancer [58-60], adverse preg-
nancy outcomes [61-64], infertility [65, 66], and HIV trans-
mission and acquisition [67, 68]. 

Studies have shown a wide divergence in the statistics 
on symptomatology of trichomoniasis. A couple of years 
ago, the infection was traditionally known as symptomatic 
in women and asymptomatic in men. The data of sympto-
matic women ranged between 50-75% [6, 7, 69] while in 
men the percentage was 15-50% [7, 70]. Currently the sce-
nario is changing and recent data have mentioned that 
around 80% of T. vaginalis infections are asymptomatic in 
both men and women [16, 32, 71]. 

The preferential cells infected by the parasite are those 
of squamous epithelium. In women, the major infection 
site is the vagina but urethra and endocervix are also 
reached by the trophozoites [7, 69, 72]. The normal vaginal 
pH is 4.5 and it is increased to 5 or more in presence of T. 
vaginalis. This enhancing of pH promotes the reduction of 
Lactobacillus acidophilus presence – the healthy microbio-
ta which protects the vaginal epithelium – and consequent-
ly, contributes to the multiplication of anaerobic bacteria 
responsible for the bacterial vaginosis [6, 12]. This disturb-
ance of genital tract site does not necessarily lead to a 
symptomatic condition. Although most of the literature 
establishes the incubation period of trichomoniasis as 4 to 
28 days, this period is not clearly known yet [73], and one 
third of women become symptomatic within 6 months [6]. 

Among the symptomatic women, the main complaints 
are vaginal discharge, pruritus, odor, and irritation [72]. 
The vaginal discharge is a classical signal of trichomoniasis 
and it is due to intense leukocytic infiltration within the 
genital tract as a result of the death of epithelial cells 
which promotes inflammation and leads to an increased 
number of polymorphonuclear leukocytes in vaginal fluid 
[74]. The typical discharge is recognized as frothy and yel-
low/green; however, the aspect and consistency of it may 
be widely variable among the patients [70, 73]. Moreover, 
the vagina and cervix of women with trichomoniasis may 
be erythematous and edematous, and when punctuate 
hemorrhagic spots are found on the mucosa this condition 
is known as colpitis macularis or “strawberry cervix”. This 
clinical sign is the most specific indicative of trichomoniasis 
although it is clinically diagnosed only in 2-5% of women 
[7]. Some patients have still reported dysuria and lower 
abdominal pain. It is important to highlight that the infec-
tion symptoms are cyclic and more intense around the 
menses period because of the effect of iron on parasite 
pathogenesis [6]. These clinical features may be associated 
with vaginitis, cervicitis and other complications. Endome-
tritis, adnexitis, pyosalpinx, and atypical pelvic inflammato-
ry disease are all disorders of the female genital tract re-
lated to T. vaginalis infection [55, 75]. Importantly, tricho-
moniasis may also impact on the pregnancy course, caus-
ing low birth weight, premature rupture of membranes 
and preterm delivery [64]. There are some evidence that T. 
vaginalis infection can be transmitted vertically leading to 
cases of vaginal and respiratory infections in neonates; 
fortunately, the clinical improvement in these patients was 
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reported after MTZ treatment or even with only supportive 
care [24]. Another important issue regarding complications 
of trichomoniasis in women is its involvement with an in-
creased risk of cervical cancer. Some studies have pointed 
T. vaginalis as a predictor for cervical neoplasia since there 
is a high relative risk of preinvasive lesion and invasive can-
cer in patients with trichomoniasis [60]. A meta-analysis 
found that the parasite was associated with a 1.9-fold risk 
of this cancer [58]. 

The spectrum of trichomoniasis in men is less well 
characterized than in women once the infection is com-
monly self-limited and transient [12, 73]. These character-
istics may be associated to the oxidative nature of male 
genital fluid that is hypothesized to be inhibitory to certain 
pathogenic factors as well as to the zinc concentration in 
prostatic fluid which acts as cytotoxic factor [66]. However, 
T. vaginalis is a recognized cause of urethritis accompanied 
by scanty, clear to mucopurulent discharge, dysuria, and 
mild pruritus or burning sensation immediately after sexual 
intercourse [6]. Other complications include prostatitis, 
balanoposthitis, epididymo-orchitis, and possibly infertility. 
There is not a consensus on the relationship between 
trichomoniasis and fertility, but in recent studies the para-
site has been considered a contributing factor to male sub-
fertility or infertility. As possible mechanisms involved in 
this case are the chronic infection, the cell lysis with toxici-
ty to the sperm and the inflammatory process [66]. T. 
vaginalis may be also related to cancer in men. To date, 
there are few studies investigating the association be-
tween the protozoan infection and prostate cancer risk 
[76-78]. Although conflicting results have been found re-
garding T. vaginalis serostatus and prostate cancer, recent 
evidences strongly suggest this association [77, 78]. The 
frequent chronic course of the infection in men turns pos-
sible that the parasites ascend to the prostate and estab-
lish a site of inflammation that may lead to prostate cancer 
[79]. 

Certainly, one remarkable aspect in T. vaginalis infec-
tion is its positive association with both transmission and 
acquisition of HIV. The evidences that corroborate to this 
concern are substantial although still underappreciated 
[80-82]. Studies have shown that trichomoniasis is associ-
ated with as much as a 2.7-fold increase in the risk of HIV 
acquisition [16]. This data is especially significant taking 
into account the high prevalence of trichomoniasis within 
the general population, and in particular within risk groups 
[7]. Some approaches (e.g., mathematical modeling) have 
been developed to estimate the number of transmitted 
HIV infections attributable to T. vaginalis, and the high 
efficacy of these methods are closely related to the need of 
improving the parasite diagnosis [68]. The main discussed 
mechanisms by which T. vaginalis may enhance HIV acqui-
sition are microhemorrhages in the mucosa caused by the 
flagellated, inflammatory response of vaginal, exocervix, 
and urethral epithelia followed by the recruitment of tar-
get immune cells, of secretory leukocyte protease inhibitor, 
and association with increased HIV viral load in genital se-
cretions [68, 82]. Finally, the T. vaginalis control, through 

prevention, diagnosis and treatment, may have a pivotal 
impact on preventing HIV acquisition and transmission.  

 
PATHOGENICITY – OPENING THE “BLACK BOX” OF 
TRICHOMONAS VAGINALIS INFECTION 
The T. vaginalis infection is very complex with a broad 
range of symptoms which may be attributed to distinct 
pathogenic process mediated by the parasite through con-
tact-dependent and -independent mechanisms [8]. The 
colonization of the infection site is initiated when the para-
site triggers cellular damage in the host tissue by secreting 
a wide variety of molecules, known as cytolytic factors. 
Trichomonas vaginalis factor (TvF), a 250 kDa cytolytic ef-
fector, causes cell rounding and clumping without lysis [83]. 
Another soluble factor released into the medium by the 
parasite in contact with cells is a glycoprotein with 200 kDa, 
known as cell-detaching factor (CDF) which promotes cell 
detachment [84]. In T. vaginalis, high levels of proteolytic 
activity were attributed to cysteine proteases (CPs), pro-
teins localized in parasite surface, although only a few CPs 
have been demonstrated and characterized [85]. It has 
been shown that the parasite could modulate cell recogni-
tion and adhesion to the epithelial host cells through the 
proteolytic activity mediated by T. vaginalis CPs [86]. In 
addition to the essential role for the colonization in the site 
of infection, these proteins play an important function in 
evading host immune defenses, since they degrade IgA and 
IgG antibodies as well as human extracellular matrix and 
complement proteins [87, 88]. The synthesis and proteolyt-
ic activity of certain CPs are modulated by environmental 
factors such as iron, pH, temperature, and polyamines [89]. 

Red blood cells are a main source of iron and lipids for 
T. vaginalis metabolism and erythrocytes lysis mediated by 
the parasite have already been demonstrated in vivo. It has 
already been suggested that haemolytic activity contrib-
utes to acquisition of nutrients, mainly iron, and these 
mechanism may be responsible for the exacerbation of 
symptoms observed during and following menstruation 
[90]. Haemolysis is considered a complex process possibly 
involving several molecules as surface CPs, pore-forming 
proteins (PFPs), and phospholipase-A-like proteins, which 
have already been demonstrated as cytolytic factors in T. 
vaginalis [91-95]. Haemolysis involves the regulation of 
temperature, concentration of Ca++ and pH (as acid envi-
ronment is required) and the activity of PFPs [96]. These 
PFPs contribute to cell lysis and death by forming trans-
membrane channels in the lipid membrane of target cells 
which leads to osmotic lysis [97].The presence of these 
PFPs have already been observed in other parasitic protists 
such as Entamoeba histolytica [98] and Naegleria fowleri 
[99] known as amebapores and naegleriapores, respective-
ly. These PFPs are members of a conserved family of 
saposin-like proteins (SAPLIPs) that are found in phyloge-
netically distant organisms (e.g., protists and mammals). 
Several functions have been attributed to these proteins, 
however the interaction with lipids is a common hallmark 
attributed to this family. Twelve SAPLIP predicted genes 
(TvSaplip1 and 12) have been identified in T. vaginalis by 
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genomic analysis. Based on the characteristics displayed by 
TvSaplips family, these predicted proteins named tri-
chopores, are good candidates as effectors contributing to 
the cytolytic effects of T. vaginalis. Taking into account the 
heterogeneous nature of SAPLIP activities, it is not plausi-
ble to attribute to all TvSaplips the direct involvement in 
the cytopathogenicity of this parasite and other biological 
roles may be involved [100]. 

Recent studies demonstrated the secretion of exo-
some-like vesicles by the parasites beyond protein and 
soluble factors. Genetic studies identified tetraspanins, 
proteins that are markers of exosomes [101]. T. vaginalis 
exosomes are about 50-100 nm in diameter and contain 
RNA and a variety of proteins. Remarkably, T. vaginalis 
exosomes demonstrated to bind to host cells and modu-
late parasite virulence against vaginal and prostate cells. 
Moreover, these vesicles demonstrated to have immuno-
modulatory properties, enhancing the possible role of the 
secreted molecules in the establishment of the infection 
[102].  

Also important in modulating parasite-host cell interac-
tion, another factor has been described, the T. vaginalis 
macrophage migration inhibitory factor (TvMIF) which is 
47% similar to human macrophage migration inhibitory 
factor (HuMIF), a proinflammatory cytokine [103]. It has 
been shown that TvMIF binds with high affinity to the hu-
man CD74 MIF receptor which activates cascades involved 
in cell proliferation and invasion. The presence of anti-
TvMIF antibodies indicates that the factor is released by T. 
vaginalis and may result in inflammation and cell prolifera-
tion, thus activating pathways that contribute to the pro-
motion and progression of prostate cancer [103]. 

The multifactorial nature of trichomonal pathogenesis 
also involves a sequence of events, where contact-
dependent mechanisms play crucial roles. Upon contact 
with host cells, the parasite undergoes a drastic morpho-
logical shift. The free-swimming piriform trophozoites 
transform into an ameboid form leading to a tight associa-
tion to the target cells [8]. Actin proteins participate at this 
step inducing the cytoskeletal rearrangement and cellular 
proliferation. In this way, Gould et al. [104] showed the up-
regulation of actin and actin-associated genes of T. vaginal-
is after contact with vaginal epithelial cells (VECs). While α-
actinin is distributed throughout the cytoplasm when the 
cell is pear-shaped, the protein localizes only at the cell 
periphery when the trophozoites are in the ameboid form. 
The morphological transition from pear-shaped flagellates 
to tissue-feeding and actively dividing amoeboid organisms 
occurs in a few minutes and represents a crucial step of the 
infection process [10]. 

The typical mucous layer covering the VECs is part of 
the non-specific host defenses [105]. The parasite can 
cross this barrier by binding and degrading mucin - a large 
glycoprotein with gel-like property that forms a lattice 
structure and serves as a formidable physical barrier to 
microbial invasion. T. vaginalis binds to mucin, possibly via 
lectin-like adhesion, and secretes mucinases able to de-
grade the protein over a pH range of 4.5-7.0 [106]. Directly 
related to those processes is cytoadherence – the major 

event of T. vaginalis pathogenesis. The mechanisms of cell 
adhesion are extensively studied in the parasite and up to 
now three major classes of molecules show evidence to be 
involved in the cytoadherence: lipophosphoglycan, adhe-
sins and a collection of membrane proteins that have been 
recently identified through genomics and proteomics [87]. 

The T. vaginalis lipophosphoglycan (TvLPG) is one of 
the most abundant components of the glycocalyx - the 
outer layer of the cell membrane formed by different car-
bohydrate-associated molecules – that binds to galectin-1 
and -3 receptors in the host cells [107, 108]. TvLPG plays a 
role in the parasite-host cell interaction to VECs once T. 
vaginalis mutant cells deficient in TvLPG glycosylation 
showed reduced adherence and cytotoxicity to human 
cervical cells [109]. This molecule also participates in para-
site virulence modulating inflammatory responses of epi-
thelial cells and macrophages [110]. 

The second class of T. vaginalis proteins related to ad-
herence comprises the named adhesins - five proteins 
(AP120, AP65, AP51, AP33, and AP23) that apart from AP23, 
are abundant metabolic enzymes primarily involved in car-
bohydrate metabolism and found in the hydrogenosome 
[111]. Conversely, it has been already demonstrated that 
these proteins are also present on parasites surface [112, 
113], contributing to the hypothesis of their dual function: 
metabolic proteins and adhesins [114]. This family of pro-
teins also participates in the molecular mimicry mecha-
nisms involved in immune evasion [8]. Apart from the stud-
ies showing the surface localization of the adhesins, it has 
already been shown that these proteins are exclusively 
situated in the hydrogenosomes [115] and that they lack 
some features that are present in true adhesion proteins 
like transmembrane domains [115]. The precise role of the 
adhesins in pathogenesis is still uncertain as some studies 
have already verified the interaction of these proteins with 
the host cell surface [116, 117] in contrast with authors 
that demonstrated that T. vaginalis binds to cell target in 
the absence of membrane proteins [118]. In agreement 
with the hypothesis that attributes a lack of adherence 
specificity for the adhesins, data demonstrated that AP51 
and AP65 bind to haem and haemoglobin, a feature that 
evidences a function in the nutrient acquisition and me-
tabolism, not related to adhesion properties [119]. More 
studies, especially on the molecular basis are required in 
order to support that T. vaginalis adhesins acts as dual 
function proteins, verifying specific binding in cell targets 
as the recruitment of these proteins to the surface of the 
parasite.  

Some studies have already demonstrated the regula-
tion of adherence levels promoted by environmental regu-
lation in the adhesins synthesis and metabolism. High lev-
els of iron present in a complex supplemented medium 
lead to increased levels in trophozoites adherence [120]. 
The increase was specially attributed to iron as parasites 
cultured in a low-iron medium and in the presence of salts 
other than iron were unresponsive to changes in adher-
ence levels [120]. Additionally, it was demonstrated that 
the higher adherence levels were a result of increased 
gene expression of AP65, AP51, AP33, and AP23 adhesins 
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[120]. Regarding the localization and compartmentalization 
of these proteins in T. vaginalis under contact with epithe-
lial cells, it was already verified that high-iron-grown para-
sites co-expressed adhesins on the surface and intracellu-
larly in contrast with low-iron parasites [121]. More signifi-
cantly, the study showed that MR100 trichomonads, a 
drug-resistant isolate lacking hydrogenosome proteins and 
adhesins, presented non-adherent profile [121]. Besides 
iron modulation, T. vaginalis adhesion under contact with 
epithelial cells may also be regulated by other environmen-
tal mechanisms. When comparing the interaction of T. 
vaginalis adhesins with epithelial cells of fresh clinical and 
long-term-grown isolates it has been shown that fresh iso-
lates presented greater amounts of adhesins, which corre-
sponded to higher levels of cell adherence [117]. These 
data suggest that some virulence factors that are still pre-
sent in fresh clinical isolates may interact and regulate the 
adhesin metabolism and expression [117].  

The last group of molecules speculated to be associat-
ed to the parasite adherence are the surface proteins, as 
BspA (Bacteroides surface protein A)-like. BspA-like are the 
largest surface protein family identified in T. vaginalis with 
evidence of expression for 721 members [104, 122]. Bacte-
rial BspAs are able of mediating binding to host epithelial 
cells, extracellular matrix proteins and cell aggregation [8, 
122]. Similarly, T. vaginalis BspA-like proteins are strong 
candidates of surface proteins mediating interaction with 
various mucosal hallmarks including: mucus, VEC, urethra 
epithelial cells, and vaginal microbiota [122]. In silico analy-
sis reveals other transmembrane proteins that are possibly 
involved in the host-parasite interaction, which comprise 
the GP63-like, subtilisin-like, serine proteases, and calpain-
like cysteine proteases [115]. However, although genomic 
and proteomic analyses have identified these proteins on 
the parasite surface, none of them have been character-
ized in detail and their putative role in host-parasite inter-
actions is only hypothesized [10]. 

 Another important factor contributing to T. vaginalis 
pathogenesis is the high cytotoxic potential of the parasite. 
Its ability to promote cytolysis followed by phagocytosis is 
what triggers the disruption of cell monolayers [8]. Many 
are the factors involved in these processes, including con-
tact-independent mechanisms. When attached to the par-
asite, the host cells may be phagocyted both by a ‘sinking’ 
process without any apparent participation of plasma 
membrane extensions as by the classical phagocytosis 
where pseudopodia are extended toward the target cell. 
Dramatic changes in the distribution of fibrillar actin have 
also been reported, which may facilitate the ameboid mor-
phological transformation observed during phagocytosis 
[123]. After the internalization of bacteria, yeasts and cells 
such as VECs, cervical and prostate cells, leucocytes and 
erythrocytes, the parasite digests the material in lysosomes 
[124]. Hemolysis is another issue closely related to T. 
vaginalis cytotoxicity since the erythrocyte lysis is one 
source of important nutrients such as lipids and iron [90]. 
This process is mainly contact-dependent and surface cys-
teine proteases, pore-forming proteins and phospholipase-
A-like proteins are involved [93, 125].  

The host defense in response to T. vaginalis infection 
involves multiple mechanisms such as non-immunological 
factors, non-specific and specific mechanisms of the innate 
immune response [55, 73]. Non-immunological factors 
include the effects of environmental elements such as iron, 
zinc and polyamines, which directly modulate the expres-
sion of virulence genes in the parasite [8]. In this sense, it 
was already shown that iron mediates T. vaginalis re-
sistance to complement lysis due to proteinase degrada-
tion of C3 on the trichomonal surface [126]. 

The immune system of mucous layer is the first line of 
defense against pathogenic organisms in the urogenital 
tract and involves both innate and adaptive immune re-
sponses, including cellular and humoral immunity. Tricho-
moniasis does not produce an effective permanent immun-
ity, which may lead to recurrent infection, consequently, 
innate immunity response has become crucial in the infec-
tion control [55]. Upon contact with host cells and binding 
through LPG, T. vaginalis trophozoites trigger an inflamma-
tory response in the VECs through the release of cytokines 
and chemokines, mainly interleukin-8 (IL-8), interleukin-6 
(IL-6) and macrophage inflammatory protein (MIP-3α) [55]. 
IL-8 production and release is also mediated by human 
neutrophils, major immune cells recruited to the site of 
inflammation and the predominant inflammatory cells 
found in the vaginal discharges of patients infected with T. 
vaginalis [127]. Additional innate immune mediator in-
duced by T. vaginalis is nitric oxide, which is produced by 
several cell types such as neutrophils and macrophages. It 
was already demonstrated that T. vaginalis trophozoites in 
contact with human neutrophils are able to stimulate the 
release of high levels of nitric oxide through the nitric oxide 
synthase [128]. 

Despite the predominance of innate immune responses, 
adaptive immunity mediated by the production of parasite-
specific antibodies may play an important role in the infec-
tion control by host cells, since IgA and IgG immunoglobu-
lins are detected in vaginal secretions of symptomatic 
women [129]. In man, IgG1 and IgM antibodies detected 
may be involved in the establishment of symptomatic 
trichomoniasis, compared to asymptomatic cases [130]. 
However, all antibodies produced and/or secreted during 
trichomoniasis only promote a limited protection to the 
parasite gradually declining after the eradication of infec-
tion in a period of six to twelve months. After infection, T. 
vaginalis specific antibodies and memory B cells are not 
found in the circulation, leaving the host without defense 
mechanisms against a possible reinfection [131]. For this 
reason, it becomes so complex to establish the presence of 
antibodies in the diagnosis of trichomoniasis as well as to 
progress in research for effective vaccines.  

Regardless of several innate and adaptive responses 
triggered by the host cells in order to control the infection, 
T. vaginalis evolved diverse immune evasion mechanisms. 
The secretion of proteases, specifically CP which degrades 
human immunoglobulins, not only keeps the survival of the 
parasite but also supplies nutritional demands trough he-
molytic properties [125]. Another important evasion 
mechanism comprises molecular mimicry in which parasite 
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covers its membrane with molecules homologous to host 
proteins. The T. vaginalis adhesins (AP65, AP51 and AP33) 
are homologous to host metabolic enzymes and plasma 
proteins, in attempt to avoid the recognition by the host 
immune system [8]. The secretion of immunogenic soluble 
proteins into the infection site by the parasite seems to 
neutralize circulating antibodies and facilitates the contin-
uous colonization and infection of the vagina [7]. Despite 
all the immune responses mediated by the host cells, T. 
vaginalis is able to evade those mechanisms and displays 
the whole pathogenic potential which turns trichomoniasis 
a chronic and persistent infection. 

Finally, T. vaginalis may exert a “Trojan horse” role in 
the microbial environment, since it can have a symbiosis 
relationship with Mycoplasma hominis, a small bacterium 
associated with urogenital and respiratory system infec-
tions [132]. Studies demonstrated that the association of 
both microorganisms presents prevalence values greatly 
ranging from 20 to 92% [132-135] and it might influence 
the cytopathogenic effect of T. vaginalis on epithelial cells 
and inflammatory responses [136, 137]. In addition, a 
strong relationship between M. hominis co-infection and 
MTZ resistance in vitro was shown [135] contrasting to 
studies that revealed the lack of this correlation [133, 134]. 

Besides M. hominis, T. vaginalis can also be infected 
with four viruses, known as T. vaginalis virus (TVVs) that 
are members of the Totiviridae family [138]. Large variabil-
ity is found in the prevalence values, from 13 to 90% of T. 
vaginalis isolates harboring TVVs [134, 139, 140]. The par-
ticipation of the virus in the virulence of T. vaginalis is un-
der investigation. An association between the presence of 
viruses and expression of immunogenic proteins on the 
trichomonal surface, variations in protozoan phenotypes, 
and upregulation of certain virulence factors has been 
shown [141]. Notably, Fichorova et al. [142] suggest focus 
in TVVs as targets for new therapeutic paradigms thus pre-
venting the inflammatory sequelae caused by virus-
harboring parasites. 

Efforts have been made to know how T. vaginalis suc-
ceeds parasitism and infection, and the studies on genomic, 
proteomic and transcriptomic have brought considerable 
advances on the information on gene and protein expres-
sion that contributes to the comprehension of several bio-
logical functions [143]. One of the cornerstones that par-
tially explain the parasite complexity is the extensive gene 
duplication and presence of multiple gene families in the T. 
vaginalis genome as well as the impressive percentage of 
86% hypothetical proteins [5, 143]. The publication of the 
first T. vaginalis genome in 2007 resulted in considerable 
advances in the knowledge of the biology of the parasite 
and continuous efforts on the “omics” database, TrichDB, 
are being stimulated to contribute to solve the remaining 
gaps in the field. Huang et al. [144] constructed a proteo-
me reference map of T. vaginalis by using two-dimensional 
electrophoresis combined with matrix-assisted laser de-
sorption ionization time-of-flight mass spectrometry analy-
sis and found that proteins related to carbohydrate me-
tabolism represented the most abundant category in the T. 
vaginalis trophozoite stage [144]. Following this initial 

analysis, several recent reports at the transcriptomic level 
have demonstrated the parasite responses to stress condi-
tions such as glucose and iron restrictions by using next 
generation RNA sequencing [145, 146]. Glucose restriction 
elicits trichomonads antioxidant ability and autophagy to 
maintain survival trough a metabolic reprogramming. In 
the same way, nitric oxide exerts a cytoprotective effect on 
iron-deficient T. vaginalis by maintaining the hy-
drogenosomal membrane potential [146]. Furthermore, 
the transcription of iron-regulated and iron-independent 
gene copies was analyzed and multiple gene copies were 
shown to be advantageous for the parasite to differentially 
express genes and proteins under stringent regulation in 
variable environmental conditions [147]. Besides nutrients 
metabolism, functional analysis showed the effects of cold 
temperature on cellular pathways including H2O2 tolerance, 
activation of the ubiquitin-proteasome system, induction 
of iron-sulfur cluster assembly, and reduced energy me-
tabolism and enzyme expression [148]. Moreover, consid-
ering the crucial pathogenic process of cytoadherence, 
integrated transcriptomic and proteomic approaches re-
vealed that cysteine peptidase, glyceraldehyde-3-
phosphate dehydrogenase, and stress-related proteins 
were upregulated in the fibronectin-adherent parasites, 
indicating that these genes and proteins may play critical 
roles in the response to adherence [149]. Another ap-
proach to investigate protein expression was the phospho-
proteome involved in the morphological alterations from 
the pear-shape form to ameboid and pseudocysts in T. 
vaginalis, where a total of 93 phosphopeptides originating 
from 82 unique proteins involved in these processes were 
found [150]. Next-generation sequencing-based RNA se-
quencing was also employed to analyze the transcriptome 
of T. vaginalis in response to tetracycline, a broad-
spectrum antibiotic with activity against several protozoan 
parasites [151]. Tetracycline was cytotoxic against MTZ-
sensitive and -resistant T. vaginalis isolates, inducing some 
features resembling apoptosis, altering the transcriptome 
via aminoacyl-tRNA synthetases and carbohydrate metabo-
lism, and causing disruption on the hydrogenosomal mem-
brane potential and antioxidant system. Altogether, these 
data revealed the potential of tetracycline as alternative 
therapeutic choice for treating MTZ-resistant T. vaginalis 
[151].  

Overall, this intriguing extracellular pathogen estab-
lishes infection through coordinated crucial steps: morpho-
logical alteration from pear-shaped to ameboid forms fol-
lowed by cytoadherence and release of virulence factors. 
This complex mechanism leads to tissue colonization with 
immune evasion, culminating in a good parasitism success. 
Although these pathogenic mechanisms have been pro-
gressively revealed, the continue efforts to elucidate the 
“trichomonads black box” are required. 

 

TREATING TRICHOMONIASIS: ARE WE SUCCEEDING? 
Considering the whole spectrum of clinical manifestations 
and the complications arising from the infection, T. 
vaginalis vaginitis requires prompt and effective treatment. 
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Nitroimidazole drug family, mainly represented by MTZ 
and TNZ, has been used as antitrichomonal agents for 
more than 30 years, being MTZ the treatment of choice 
[13]. This class of drugs is the only one approved by the 
FDA for T. vaginalis infection treatment. These medications 
are widely available in public health systems and quite 
inexpensive, especially MTZ. TNZ has a longer half-life and 
reaches a higher genitourinary tract drug level than MTZ, 
but it is more expensive [9]. Therapeutic approaches used 
in the treatment of trichomoniasis are local intravaginal 
applications, systemic oral medication and the association 
of both. There is also evidence that a spontaneous cure 
rate in the order of 20–25% is achieved [152]. As T. 
vaginalis in women frequently infects the urethra and 
paraurethral glands cure and local medication reaches just 
around 50%, the oral medication treatment is preferred. A 
Cochrane review described that in most trials single dose 
treatment with any nitroimidazole drug leaded in 
trichomonicidal actions upon 90%. Despite rarely severe, 
side effects appeared to be relatively common and dose 
related [152].  

According to the 2015 STD Treatment Guidelines from 
CDC the recommended regimens for treating 
trichomoniasis correspond to 2 g MTZ or TNZ orally in a 
single dose [4]. MTZ gel is considered less efficacious than 
oral treatment (fewer than 50%) since topical preparations 
cannot achieve therapeutic levels in the urethra or 
perivaginal glands. As an alternative regimen, 500 mg oral 
dosage of MTZ can be used twice a day for 7 days [4]. 
Distinct recommendation is given by the United Kingdom 
on the Management of Trichomonas vaginalis 2014, where 
TNZ 2 g orally in a single dose is considered an alternative 
regimen and the recommended regimen is based on the 
two possible doses of MTZ treatment [153]. In order to 
compare the efficacy of different regimens of MTZ and TNZ 
some studies were already conducted. MTZ in two 
different single doses (1.5 or 2.0 g) demonstrated 
equivalent efficacy for trichomoniasis treatment [154]. The 
multidose regimen (500 mg twice a day for 7 days) was 
more effective than the single dose (2 g orally) for the 
treatment of trichomoniasis among co-infected HIV-T. 
vaginalis subjects [155]. It is important to emphasize that 
this study was the first to evaluate the effectiveness of 
treatment for trichomoniasis among HIV-infected women. 
These data suggest that the recommended standard 
regimen of MTZ may need to be reconsidered for HIV-
infected women reinforcing that more studies are 
necessary to investigate optimal treatment regimens for 
distinct patient populations presenting co-infecting 
pathogens. A different approach was evaluated using 
single-dose intravaginal MTZ (2 g) in comparison to single-
dose oral MTZ (2 g) which demonstrated that the 
intravaginal use was inferior to single-dose oral MTZ, failing 
as an alternative therapy [156]. Several other antimicrobial 
preparations, mostly used for bacterial vaginosis treatment 
are also used for T. vaginalis infection, although with lower 
effectiveness than MTZ [4]. The overall cure rates are not 
significantly different between MTZ and TNZ regimens and 
no significant differences in adverse events across 

treatment were obtained [152, 157]. The side effects are 
also a disadvantage for the treatment with MTZ or TNZ.  

In relation to possible side effects during treatment, 
patients should be recommended not to ingest alcohol for 
at least 48 to 72 hours due to possible toxicity effects. 
Referring to allergies, hypersensitivity reactions have been 
described in patients using both MTZ and TNZ and it is 
unknown whether there is cross-reactivity between the 
two agents [152]. Considering that nitroimidazoles are the 
only therapeutic option available, it is important to take an 
accurate history to establish that a true allergy exists 
otherwise standard treatment will be unviable. 
Furthermore it is not well established if TNZ is well 
tolerated in a patient with MTZ allergy. Adverse reactions 
which may occur include anaphylaxis, skin rashes, pustular 
eruptions, pruritus, flushing, urticaria, and fever [158]. 

Vaginal trichomoniasis has been associated with 
adverse pregnancy outcomes, particularly preterm delivery 
and low birth weight [61]. Multiple studies and meta 
analyses have not demonstrated an association between 
MTZ use during pregnancy and teratogenic or mutagenic 
effects in newborns and infants [159-161]. Symptomatic 
pregnant women should be treated at diagnosis, although 
some clinicians prefer to delay treatment to the second 
trimester. The safety of TNZ in pregnant women, however, 
has not been well established. In lactating women who are 
administered MTZ, avoiding breastfeeding during 
treatment and for 12–24 h after the last dose will diminish 
the exposure to MTZ. For women treated with TNZ, 
interruption of breastfeeding is recommended during 
treatment and for 3 days after the last dose [152, 162].   

The reliance on a single therapeutic class is problematic 
since resistance to nitroimidazoles is becoming widespread 
in T. vaginalis isolates. There is very limited information on 
the prevalence of resistance to MTZ among clinical isolates 
of T. vaginalis, especially because no surveillance systems 
are implemented to detect treatment failures due to 
resistance and antibiotic susceptibility testing for T. 
vaginalis is not standardized. Studies indicate an increasing 
prevalence of 2.5 to 9.6% of MTZ-resistant isolates [3, 163, 
164]. Although the low prevalence of nitroimidazoles 
resistance occurs, more studies focused on this research 
area are urgent, as only two agents are available for 
treatment. Recent works are exploring genomic sequences 
aiming to identify possible target candidate genes in T. 
vaginalis drug resistance based on the role of these 
sequences in other organisms [143]. It has already been 
shown that T. vaginalis presents homologs of bacterial 
nitroreductases and nitroimidazole reductases that are 
lacking in the majority of eukaryotes are related with 
reduced susceptibility to MTZ in Helicobacter pylori and 
Bacteroides [165]. It is not still clear if these genes are 
associated with nitroimidazole sensitivity in the parasite, 
but it was demonstrated that these enzymes might 
activate MTZ in cytosol and hydrogenosome, opposing to 
previous reports of activation occurring exclusively by the 
hydrogenosomal enzymes pyruvate ferredoxin 
oxidoreductase and hydrogenase [166]. More recently, 
[167] it was demonstrated the down-regulation or even 
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absent activities of flavin reductase and alcohol 
dehydrogenase in T. vaginalis strains with high levels of 
MTZ resistance while thioredoxin activity was nearly equal 
in all strains evaluated, conflicting with previous data that 
indicated the contribution of these enzymes in resistance 
[168, 169]. It is important to emphasize that clinical 
resistance to MTZ in T. vaginalis, also known as aerobic 
resistance, is fundamentally different from high-level MTZ 
resistance induced in the laboratory, named anaerobic 
resistance [143]. The anaerobic resistance is induced in the 
absence of oxygen and is a consequence of a loss of drug 
activating enzymatic pathways which are responsible for 
the reducing of the prodrug MTZ to toxic intermediates 
[166]. On the other hand, aerobic MTZ resistance seems to 
be related to elevated intracellular oxygen concentrations 
in consequence of diminished oxygen scavenging capacity 
which interferes in the activation of nitroimidazoles [170]. 
Taking into account the distinct profile observed in T. 
vaginalis isolates the development novel assay methods 
for detection and the identification of molecular 
mechanisms of resistance in the parasite are urgent [143]. 

Considering the possible failures during MTZ treatment 
either by adverse reactions or by the emergence of 
resistant clinical isolates, the development of an 
alternative treatment is recommended. The search for 
antiparasitic drugs has focused on the identification of 
active natural products from plant and marine 
microorganism extracts and compounds with promising 
anti-T. vaginalis activity (read more in Vieira et al. [171]). 
The characterization of parasite biochemical and molecular 
targets such as flavin reductase 1, pyruvate-ferredoxin 
oxidoreductase, ferredoxin, and nitroreductases [172, 173] 
is also a potential strategy for new therapeutics. In 
addition, the development of topic adjuvant treatments 
and the strategy of repositioning available compounds are 
included in the pharmacological approaches to expand the 
trichomoniasis treatment repertoire.  

Another research area on new treatment for 
trichomoniasis and vaginal infections may be focused in to 
repurpose compounds for use in a new therapeutic 
application and on revisited drugs, which use has been 
discontinued for one specific approach but may be 
effective in another pathogenic context. In the first 
scenario, Goodhew and Secor [174], screened for 1040 
drugs of the US Drug Collection Library for activity against 
susceptible and resistant T. vaginalis isolates. The study 
shows that among all those drugs no one was as effective 
as any of the 5-nitroimidazole drugs reinforcing the 
limitation in developing new therapeutic alternatives for 
the current therapy. Still of concern is the repurposing of 
miltefosine, a synthetic lipid analogue used for the 
treatment of cutaneous metastasis from mammary 
carcinomas and oral treatment of visceral leishmaniasis has 
already demonstrated anti-T. vaginalis activity in 
susceptible and resistant isolates [175, 176]. Other 
promising candidate is pentamycine, a macrolide antibiotic 
used for fungal and bacterial vaginitis with high activity 
against T. vaginalis. The effect is prompt and independent 
of under-lying MTZ resistance [177]. 

Although effective clinical treatment is widely available, 
T. vaginalis infection remains one of the most common 
STDs which answers the initial question – no, we are not 
succeeding in treating trichomoniasis. Reinfection by 
partners appears to be a major problem, especially when 
typical symptoms of the infection are absent. According to 
the most important guidelines, sexual partners should be 
treated simultaneously. Patients should be advised to 
abstain from sex at least one week and until they and their 
partner(s) have completed treatment and patient and 
partners are asymptomatic. 
 
STRATEGIES TO PREVENT OR CONTROL 
TRICHOMONIASIS 
Strategies for trichomoniasis protection including sexual 
behavior, condom usage, and therapy have not contribut-
ed to the decrease on disease prevalence, pointing to the 
need for novel innovative approaches for protection. The T. 
vaginalis infection is curable but is currently far away to be 
controlled. The treatment with MTZ or TNZ is recommend-
ed by the CDC; however, cure failures remain problematic 
due to noncompliance, reinfection and/or lack of treat-
ment of sexual partners, or inaccurate diagnosis since 
symptoms resemble other STDs. Moreover, increasing 
numbers of T. vaginalis isolates resistant to MTZ argue in 
favor to improve prevention tools and new treatment al-
ternatives [3, 164]. Multipurpose prevention technologies 
are new, all-in-one tools being developed to protect 
against HIV, other STDs, and unintended pregnancy that, 
once validated, will certainly contribute to the control of 
these infections in the future [178]. 

Vaccine development has been hampered by the lack 
of long-lasting humoral immunity associated to the ab-
sence of good animal models [11]. Only two candidates for 
trichomonal vaccine have been submitted in clinical trials 
in the last 50 years, with no success [179, 180]. Recently, 
Smith and Garber [181] have tested a FDA approved adju-
vant, Alhydrogel, formulated with live, whole cell T. 
vaginalis in the mouse immunized model, with potential 
applicability. Among the animals tested as in vivo model for 
T. vaginalis infection: mouse, rat, hamster, guinea pig, rhe-
sus monkey (Macaca mulatta), crab-eating macaque 
(Macaca irus), stump-tailed macaque (Macaca arctoides), 
pigtailed macaque (Macaca nemestrina), and squirrel 
monkey (Saimiri sciureus), the pigtailed macaque is the 
most promising model since it naturally harbors lactobacilli, 
has a vaginal pH of 5.5–8.0, sustains infection up to 2 
weeks and responds to MTZ treatment [182, 183].  

A great challenge in trichomoniasis control resides in 
novel vaccine development associated to effective preven-
tion tools. The goal of a vaccine is hard to be achieved due 
to intrinsic difficulties related to the multifactorial parasite 
pathogenesis and new alternatives for the treatment are 
also urgently needed. 
 

CONCLUDING REMARKS AND PERSPECTIVES 
Despite all accurate studies that have been conducted to 
understand Trichomonas vaginalis and trichomoniasis, 
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there is still a lot of knowledge hidden by this audacious 
extracellular pathogen. Our answer to the title is no, we 
are not giving the deserved attention to the most common 
non-viral STD in the world. Why? Probably because the 
infection does not directly cause death and health profes-
sionals in general are not aware about the serious conse-
quences of the disease. Ideally a collaborative effort of 
researchers focused in studies on the T. vaginalis biology 
and pathogenesis, the improvement on diagnosis methods 
and detection of drug resistance in parallel with new 
treatment and prevention options are required to achieve 
the goal of reduction of T. vaginalis burden in humans. 
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