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RESUMO 

O Brasil é destaque na produção mundial de uvas e demonstra uma constante evolução 

ao longo de sua histórica, desde 1980, com o Estado do Rio Grande do Sul, no topo da lista de 

produtores. Diversas regiões produtoras de uvas e vinhos no Brasil tem organizado suas 

atividades no sentido de se tornarem reconhecidas como “Indicações de Procedência” (IP), 

dando tipicidade e caráter regional aos seus produtos. Esta caracterização requer descrições dos 

impactos das condições ambientais e do trabalho humano. A utilização de dados adquiridos por 

sensoriamento remoto, incluindo dados proximais hiperespectrais e de satélites, permitem 

classificar e caracterizar as variedades de uvas e suas respectivas unidades produtoras de 

diversas localidades, sob condições climáticas e antrópicas diferenciadas. Esta tese tem como 

principal objetivo desenvolver uma metodologia para aquisição de dados, treinamento de 

modelos de hiperespectrais por sensor proximal e imagens via nanossatélite. A área de estudo 

é composta por oito vinhedos comerciais localizados no Rio Grande do Sul, Brasil. Na primeira 

fase deste estudo, a unidade de análise foi a folha isolada da videira em diferentes regiões. 

Posteriormente foi realizado o levantamento dos parâmetros de clorofila, Teor de Sólidos Totais 

(TST) ou °Brix da uva, espectros de reflectância hiperespectral e imagens de nanossatélite em 

parcelas de Cabernet Sauvignon em uma vinícola da Serra Gaúcha. Algoritmos de aprendizado 

de máquina foram aplicados na discriminação de vinhedos por região e por variedade, e na 

estimativa dos parâmetros clorofila e ºBrix da uva. Os modelos Light Gradient Booster Machine 

(LGBM) e Random Forest (RF) obtiveram as melhores acurácias na discriminação espectral 

em regiões do ultravioleta (UV) e visível (VIS). As estimativas apresentaram elevados R² com 

o modelo de regressão RF. O índice de Gini teve maiores valores para comprimentos de onda 

no UV/VIS/NIR e o índice de vegetação Plant Senescence Reflectance Index (PSRI) teve 

melhor desempenho para predição dos parâmetros de clorofila, e o Triangular Greenness Index 

(TGI)/Normalized Difference Vegetation Index (NDVI) para o ºBrix da uva, utilizando como 

dados a reflectância hiperespectral e a reflectância de superfície. Desenvolvimentos futuros 

incluem o levantamento de dados com maior número de planta e variedades, auxiliando a 

compreender as assinaturas espectrais de cada variedade como subsídio para um melhor manejo 

da produção. 

Palavras-chave: Vinhedos, Radiometria, Hiperespectral, Aprendizagem de Máquina 

 



 

ABSTRACT 

Brazil has had an increasing prominence in the production of grapes in the world and the 

country's production history since the 80's demonstrates this constant evolution. At the top of 

the list of producers is the State of Rio Grande do Sul. Several grape and wine producing regions 

in Brazil have organized their activities in order to become recognized as “Indications of 

Origin” (IO), giving their products typicality and regional character. This characterization 

requires descriptions of environmental conditions and the impacts of these conditions and 

human work. The use of remote sensing data, including proximal hyperspectral and satellite 

data, allow us to classify and characterize grape varieties and their respective producing units 

from various locations, under different climatic and anthropic conditions. The main objective 

of this thesis is to develop a methodology for data acquisition, training of plant spectroscopy 

models with a hyperspectral proximal sensor and for nanosatellite imaging. The study area 

consists of eight commercial vineyards found in Rio Grande do Sul, Brazil. In the first phase of 

this study, the unit of analysis was the leaf isolated from the vine in different regions. 

Subsequently, a survey of chlorophyll parameters, Total Solids Content (°Bx) of the grape, 

hyperspectral reflectance spectra and nanosatellite images were conducted in Cabernet 

Sauvignon plots in a Serra Gaúcha winery. Machine learning algorithms were applied in the 

discrimination of vineyards by region and by variety, and in the estimation of the chlorophyll 

and Brix parameters of the grape. The Light Gradient Booster Machine (LGBM) and Random 

Forest (RF) models obtained the best accuracies in spectral discrimination in the ultraviolet 

(UV) and visible (VIS) regions. The estimates showed high R² with the RF regression model. 

The Gini index had higher values for UV/VIS/NIR wavelengths, and the Plant Senescence 

Reflectance Index (PSRI) had better performance for predicting chlorophyll parameters, and 

the Triangular Greenness Index (TGI)/Normalized Difference Vegetation Index (NDVI) for the 

degree Brix, using as data the hyperspectral reflectance and the surface reflectance. Future 

developments include collecting data with a greater number of plants and varieties, helping to 

understand the spectral signatures of each variety as a subsidy for better production 

management. 

Keywords: Vineyards, Radiometric data, Hyperspectral, Machine Learning 
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1 CONSIDERAÇÕES INICIAIS 

O Brasil assume uma posição de destaque na produção mundial de uvas  em constante 

histórica desde 1980. No topo dessa lista se encontra o estado do Rio Grande do Sul, que 

mantém esta posição até o último levantamento, mesmo com o avanço da viticultura no nordeste 

do país. O reconhecimento do mercado interno e externo ocorre graças às condições ambientais 

e climáticas benéficas ao cultivo da vinha, principalmente às variedades de Vitis vinifera, castas 

de origem européia, que compõem 7% da produção de uvas do país, exclusivas para a produção 

de vinhos finos (EMBRAPA, 2022). 

A importância dessa cultura para o país é apresentada, como exemplo, na delimitação 

geográfica de regiões vitivinícolas, as chamadas Indicações Geográficas – IGs, regulamentadas 

e definidas pelo marco legal das IGs no Brasil, sendo separadas em  Indicação de Procedência 

– IP  e Denominação de Origem – DO (BRASIL, 1996). A DO tem como pressuposto que o 

produto, nesse caso o vinho, expressa uma tipicidade atribuída das características da produção 

da uva influenciada pelos dos fatores edafoclimáticos e antrópicos. Alguns autores atribuem 

essa relação ao termo terroir, que estabelece uma delimitação geográfica entre regionalidade e 

tipicidade (VAUDOUR; CAREY; GILLIOT, 2010; VAUDOUR, 2003). 

No auxílio da valorização e proteção da produção de uvas, os dados adquiridos de forma 

remota entram com apoio no embasamento de  decisões técnicas, permitindo uma visão espaço-

temporal do desenvolvimento do vinhedo ao longo do ciclo por meio o vigor vegetativo da 

folha e geometria do dossel. O sensoriamento remoto na viticultura vem sendo aplicado em 

diferentes plataformas de aquisição: Orbitais (DUCATI; SARATE; FACHEL, 2014; 

HELMAN et al., 2018; JOHNSON et al., 2003; KARAKIZI; OIKONOMOU; 

KARANTZALOS, 2016; KNIPPER et al., 2019; SILVA; DUCATI, 2009); Aéreos 

(ACEVEDO-OPAZO et al., 2008; HALL; LOUIS; LAMB, 2003; TARANTINO; FIGORITO, 
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2012; VANEGAS et al., 2018); e proximais(JUNGES et al., 2020; MARTÍN et al., 2007; 

REYNOLDS, ANDREW G. ; BROWN, 2015; RODRÍGUEZ-PÉREZ et al., 2007).  

1.1 Sensoriamento Remoto aplicado à viticultura 

Em sincronia com as definições amplamente discutidas na literatura sobre a definição 

de sensoriamento remoto, podemos citar que na viticultura a detecção remota é um conjunto de 

técnicas e ferramentas para aquisição de dados espectrais, em diversas plataformas. Por 

intermédio da interação do fluxo radiante com a superfície da folha e/ou dossel da videira, os 

sensores remotos captam a energia para quantificar e caracterizar as propriedades biofísicas. As 

tecnologias remotas compõem uma linha de pesquisa e aplicação na viticultura de precisão. 

A padronização das assinaturas espectrais apresentadas na literatura, por imageamento 

via Satélite ou leituras espectrorradiométricas de campo, é desenvolvida com objetivo de 

discriminar/separar espectralmente variedades de videiras. Em alguns trabalhos imagens de 

satélite de média resolução foram utilizados para confeccionar padrões espectrais de parcelas 

de vinhas, identificando na composição do pixel assinatura espectral misturada com outros usos 

da parcela, como sombreamento e cobertura entre fileiras(JOHNSON et al., 2003; SILVA; 

DUCATI, 2009). Em nível de campo, assinaturas hiperespectrais de dosséis vegetativos ou 

folhas são coletadas para identificar variações sutis em comprimentos de onda ou bandas 

específicas (GONZATTI BOMBASSARO, 2016; PITHAN et al., 2021; SCHOEDL et al., 

2012; THUM et al., 2020). A discriminação de assinaturas espectrais entre videiras também 

ocorreu com a análise de imagens de alta resolução de espacial, identificou separabilidade por 

meio das feições espaciais e texturais (KARAKIZI; OIKONOMOU; KARANTZALOS, 2016). 

 A aplicabilidade monitoramento de vinhedos por imagem é interligada ao  interesse de 

reconhecer áreas susceptíveis a receber novos cultivos e ampliar o rendimento de uma parcela. 

A relação da área foliar por índices de vegetação e condições hídricas é comprovada com o uso 
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de imagens de UAV, numa escala de maior  detalhamento (POBLETE-ECHEVERRÍA et al., 

2017; RODRÍGUEZ-PÉREZ et al., 2007; TIAN et al., 2017). 

As características espectrais são usadas para criar zonas homogêneas de produção em 

parcelas, potencializando as características do vinho a sua tipicidade local. A heterogeneidade 

espacial de uma parcela é um fator determinante nas alternâncias da qualidade da uva. A 

variabilidade do vigor do dossel e folhas são parâmetros monitorados remotamente para 

identificar características do desenvolvimento da vinha intra-parcela(GONZÁLEZ-

FERNÁNDEZ; CATANZARITE TORRES; RODRIGUEZ-PÉREZ, 2010). As alterações na 

superfície da folha são utilizadas como indicadores de zoneamentos vitícolas, para mapear 

blocos com diferentes potenciais de qualidade no vinhedo  (BONNARDOT et al., 2012; 

BRAMLEY; HAMILTON, 2004; STREVER, 2003). 

1.2 Aplicações Sensoriamento Remoto Proximal Hiperespectral  

   Há muitos anos fala-se sobre as potencialidades dos sensores hiperespectrais e sua 

aplicabilidade no monitoramento de cultivos agrícolas. O diferencial dos dados hiperespectrais 

está na sua característica principal, um extenso número de bandas ou wavebands (HENNESSY; 

CLARKE; LEWIS, 2020), com bandas estreitas quando comparado ao sensor multiespectral. 

A superioridade na resolução espectral apresenta para o setor agrícola uma expansão no quesito 

qualidade de informação, e aqui os dados hiperespectrais  apresentam um perfil detalhado da 

resposta do alvo agrícola, folha isolada ou dossel (FORMAGGIO; SANCHES, 2017), uma 

sensibilidade espectral sobre as características da parte estrutural/morfológica e alcança fases 

complexas do metabolismo da planta, como reações físico-químicas e composição biológica 

(CABELLO-PASINI; MACÍAS-CARRANZA, 2011; GITELSON et al., 2002; ORDÓÑEZ et 

al., 2018; PEÑUELAS; FILELLA; GAMON, 1995; SLATON; HUNT; SMITH, 2001). 
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O sensoriamento remoto hiperespectral é uma tecnologia altamente precisa na 

determinação do comportamento espectral da vegetação, discriminando vegetais de diferentes 

espécies, sejam agrícolas, invasoras ou nativas de um determinado local (ABBASI et al., 2020; 

ADAM et al., 2012; BASHEER; EL KAFRAWY; MEKAWY, 2019; ZHANG et al., 2014). A 

potencialidade dos sensores hiperespectrais na detecção da vegetação é agregar alta resolução 

espacial com a sensibilidade de centenas de bandas espectrais para determinar características 

intrínsecas das plantas (AKBARZADEH et al., 2018; BERGSTRÄSSER et al., 2015; 

ECKERT; KNEUBÜHLER, 2004; FERREIRO-ARMÁN et al., 2007; GALVÃO; 

FORMAGGIO; TISOT, 2005; LACAR; LEWIS; GRIERSON, 2002; TISOT et al., 2007). Os 

parâmetros de pigmentos fotossintetizantes, textura e estrutura da folha são analisados por 

métodos não invasivos, substituindo análises laboratoriais (STEELE; GITELSON; 

RUNDQUIST, 2008; STEELE et al., 2009). 

Autores tem utilizado regiões espectrais na região do visível, especificamente  nas 

regiões do verde, vermelho e infravermelho para mensurar o espectro de reflectância 

hiperespectral oriundos de espécies de videiras (HUNT JR. et al., 2011; RENZULLO; 

BLANCHFIELD; POWELL, 2006). O infravermelho próximo é sensível pela área foliar, 

densidade da folha(DOGAN et al., 2018; QIN et al., 2010). Já a região espectral do  

infravermelho médio apresenta relações com a estimativo no conteúdo de água, celulose e 

proteínas das folhas (KOKALY, 2001; ORDÓÑEZ et al., 2018; VILLACRÉS et al., 2021). 

1.3 Justificativa e Hipótese do Trabalho 

O Rio Grande do Sul  é um Estado com significativo número de implementações de 

Indicações Geográficas (IGs) no Brasil, o que no caso da produção de vinhos representa uma 

notoriedade e reconhecimento mais amplo para suas fronteiras vitícolas. O desenvolvimento de 

técnicas e ferramentas para auxiliar na identificação e implementação de IGs é necessário, e é 

grande o potencial da detecção remota para este objetivo, incluindo a implementação de 
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modelos espectrais, que possa fornecer informações precisas sobre estado de saúde dos 

vinhedos. A demanda de informações de campo precisa e precoce, não somente na questão 

espacial, mas também espectral, auxilia o produtor na organização de planos de controle e ações 

efetivo, com a finalidade de manter e elevar a qualidade de suas uvas. 

 A delimitação do local de produção da uva é uma forma para reconhecer e identificar a 

tipicidade dos vinhos dali derivados, e para isto pode-se utilizar dados proximais ou remotos 

como fontes de informações na busca da identidade de regiões produtoras e suas variedades. O 

sensoriamento remoto hiperespectral é uma ferramenta importante para discriminação de 

variedades de uvas das espécies de Vitis vinifera no local onde são cultivadas, a partir do 

espectro de reflectância hiperespectral da folha isolada. Para isto, pode-se vincular dados de 

campo com sensores orbitais para monitoramento diário da evolução do cultivo, visando uma 

calibração das condições da vinha frente as variações espectrais, advindas das características 

espaciais e temporais do vinhedo ao longa da safra.  

Nesta perspectiva os modelos de aprendizagem de máquina surgem como apoio às 

análises dos espectros de reflectância hiperespectral e para as imagens multiespectrais, na 

criação de modelos de redução dimensional, classificação de variedades/região e a predição dos 

parâmetros de clorofila e grau ºBrix da uva. Este trabalho tem como hipótese de que a 

espacialização de vinhedos e a discriminação de variedades, como pré-condição à 

caracterização de IGs, são possíveis, baseadas na coleta e análise de dados 

hiper/multiespectrais, permitindo classificar e caracterizar de forma não-invasiva a interação 

das condições ambientais e características das variedades, em um estudo aplicado em vinícolas 

localizadas no Rio Grande do Sul, sob condições climáticas e antrópicas diferenciadas.  A 

unidade de análise em nível de folha representa um fator inovador no campo, já que as 

características das vinhas não são tão variantes em parcelas pequenas, como é o caso de parcelas 

localizadas no RS. 
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1.4 Objetivo Geral 

O trabalho tem como seu principal objetivo desenvolver metodologias para, a partir de 

dados orbitais e proximais,  classificar vinhedos, derivar pigmentos fotossintéticos e o ºBrix da 

uva, em diferentes ambientes de cultivo.  

1.5 Objetivos específicos  

 Aplicar técnicas de aprendizagem de máquinas na redução da dimensionalidade em 

espectros de reflectância, identificando variáveis relevantes nas análises, como índices e 

comprimentos de onda específicos.  

 Aplicar técnicas de aprendizagem de máquina para discriminar regiões produtoras e os 

tipos de variedades de videiras por meio do sensoriamento remoto hiperespectral.  

 Verificar a relação dos parâmetros de clorofila (Chl a, Chl b, Chl (a+b), Chl(a/b)) com 

espectros de reflectância em nível de folha em diferentes parcelas de Cabernet Sauvignon. 

 Estudar a relação do grau Brix da uva, com dados de sensores remotos e proximais.   

2 MATERIAL E MÉTODOS  

2.1 Área de Estudo  

Oito vinícolas localizadas no Rio Grande do Sul (Figura 1) foram selecionadas, e 

encontram-se distribuídos em um território de cerca de 500 km de largura, em diferentes tipos 

de rochas. As vinícolas são: a) Fazenda Almadén (W1) em Santana do Livramento; b) Adega 

Boscato em Nova Pádua, com dois vinhedos (W2 e W3, separados por dois quilômetros); c) 

Fazenda Chandon (W4) na Encruzilhada do Sul; d) Fazenda Luiz Argenta (W5) em Flores da 

Cunha; e) Adega Miolo em Bento Gonçalves (W6); f) Fazenda Miolo Seival (W7) em Candiota: 

g) Terra Sul (W8). Analisamos vinhas e suas respectivas folhas, das seguintes variedades de 

uvas: Cabernet Sauvignon (V1), Chardonnay (V2), Merlot (V3), Petit Verdot (V4), Pinot Grigio 



18 
 

(V5), Pinot Noir (V6), Riesling Italic (V7), Sauvignon Blanc (V8), Syrah (V9), Tannat (V10), 

Tempranillo (V11), and Viognier (V12).  

 

Figura 1. Mapa de Localização das vinícolas escolhidas como área de estudo neste trabalho. 

2.2 Leituras de campo  

Os trabalhos de campo foram realizados no período do verão do sul do Brasil, 

compreendendo o estágio fenológico da videira com maior densidade de folhas no dossel e 

vigor vegetativo. Optou-se por coletar os dados em dias ensolarados sem cobertura de nuvens, 

entre os horários das 10h até as 14 h, contemplando um padrão de exposição solar da videira. 

As dificuldades de locomoção entre parcelas e fileiras, foram solucionadas com a seleção das 

plantas centrais de cada parcela e as folhas do terço média da planta. As leituras 

espectrorradiométricas foram realizadas com o sensor proximal Field Spec 3 ASD®, onde 

foram acopladas ao sensor as folhas e medidas realizadas na parte adaxial da folha.  
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Em particular e no ponto de vista estratégico, as coletas de dados na vinícola Luiz Argenta 

foram realizadas de forma diferenciada das demais. Para contemplar um estudo de análise de 

escala local, em nível de parcela, foram coletados os parâmetros de clorofila, na parte adaxial 

da folha,  com o aparelho ClorofiLOG®, um Clorofilômetro que mensura o conteúdo de 

clorofila na folha. Os parâmetros registrados são: Clorofila a(Chl a), Clorofila b(Chl b) e a 

Clorofila Total(Chl (a+b), razão das clorofilas (Chl (a/b). Logo após, iniciou-se as leituras 

espectrorradiométricas nas folhas isoladas, em seis parcelas cultivadas com a variedade 

Cabernet Sauvignon. As leituras em campo serão detalhadas no próximo tópico. 

2.3 Tratamento  dos dados hiperespectrais   

As leituras de campo compreenderam a utilização de dois sensores: O 

espectrorradiômetro e o clorofilômetro para medidas tomadas na parte adaxial da folha da 

videira. O primeiro trata da reflectância hiperespectral, com alcance espectral de 350-2500nm, 

compreendendo 2151 comprimentos de onda. Os espectros foram manipulados em ambiente 

computacional Python, para modelagem dos dados no formato ASD®, tornando manipuláveis 

em formatos tabulares convencionais, e inseridos no aplicativo Excel e manipulados com as 

bibliotecas: Pandas, Matplot, Numpy, Scikit-learn, seaborn para análise exploratório de dados. 

Os espectros de reflectância hiperespectral foram carregadas no programa ViewSpec®, e 

transformadas para um arquivo no formato ASCII e posteriormente integradas as funções de 

bibliotecas em python para filtragem dos dados(Savitzky-Golay Filter) para retirar valores 

ruidosos dos espectros no range(350nm-2500). Uma função de ajuste de patamar entre as 

regiões do NIR e SWIR1 foi aplicada antes das análises. A  queda de patamar foi ajustada para 

alguns espectros aplicando a função Jump Correction. E por último a normalização dos dados, 

por meio da Função Normalize.  

 O segundo levantamento foi utilizado o ClorofiLOG®, aparelho  usado para medir os 

parâmetros de clorofila da folha, a partir do índice Falker®. As leituras foram copiadas do 
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aparelho e exportadas no formato de texto e posteriormente conRevivertidas para o formato de 

tabelas. Os dados foram tabulados em campo de forma organizada em cada ponto de coleta, e 

digitalizados para uma planilha no formato Excel®. As tomadas de medidas em campo foram 

organizadas de forma tabular e inseridas num banco de dados relacional (PostgresSQL©)  

2.4 Processamento das imagens  

As imagens adquiridas comtemplam do dia 16 de dezembro de 2017 até 28 de fevereiro 

de 2018. Essas datas estão próximas aos dias de campo realizado na vinícola Luiz Argenta. Os 

produtos baixados do site da empresa Planet’s LandScope são nomeados como 3B, com 

correção atmosférica e geométrica, com valores dos seus pixels em reflectância de superfície. 

As imagens foram normalizadas pela técnica de Ponto Flutuante Invariante(PFI) desenvolvida 

em ambiente R, utilizando uma imagem como referência, a primeira data. O produto 

normalizado, foram coletadas as amostras de treinamento em cada ponto amostral. Uma área 

de abrangência foi realizada em torno de cada ponto coletada, totalizando uma área de 9m².  

2.5   Modelos de Aprendizagem de máquina  

O tratamento dos dados concluído, iniciou-se o processo de redução da dimensão dos 

dados, no qual foi selecionado os comprimentos de ondas e os  índices de vegetação 

hiperespectrais. As técnicas utilizadas foram: Band ratios: Uma divisão espectral entre os 

espectros de reflectância médio para cada variedade e propriedade, com objetivo de identificar 

variações espectrais sutis na reflectância hiperespectral de cada folha isolada; e a Análise de 

Componentes Principais por Kernel – ACPK, uma técnica de análise fatorial para reduzir as 

dimensões em componentes principais, aglutinando o conjunto de informações importantes em 

poucas variáveis. O diferencial desse modelo e a função adicional, que utiliza o Kernel para 

estimar as componentes em outras dimensões, fugindo da linearização dos dados.  

 Primeiramente, foi aplicada à classificação dos dados para discriminar 

propriedades(localizadas sob diferentes regiões) e variedades de uva, espécies típicas para 
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cultivos de vinho fino.  Os modelos de aprendizagem de máquina implementados foram 

LGBM(Light Gradient Booster Machine), RF(Random Forest), CDA(Canonical Discriminant 

Analysis), SVM( Support Vector Machine). A avaliação das diferenças entre as medianas foi 

realizada pela aplicação do teste não paramétrico KrusKal-Wallis, considerando o nível de 5% 

de significância.  Nas análises preditivas dos parâmetros de clorofila foram criados modelos a 

partir dos algoritmos PLSR(Partial Least Square Regression) e RFR(Random Forest 

Regression). E por final, foi desenvolvida uma análise utilizando as imagens do Planet 

Landscope e proximal, para estimar os dados de ºBrix da uva em diferentes parcelas de Cabernet 

Sauvignon. Logo mais, é descrito um esquema gráfico(Figura 2) descrevendo de forma 

resumida as etapas metodológicas da tese. 
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Figura 2.  Esquema de rotinas desenvolvidas durante e execução do projeto de doutorado. Cada 

etapa do projeto é descrita de forma geral, para ilustrar cada processo de desenvolvimento do 

trabalho, iniciando com o delineamento das coletas até os parâmetros de classificação e 

predição dos dados. 
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3 RESULTADOS E DISCUSSÃO  

Nesta etapa do trabalho serão apresentados os três artigos desenvolvidos durante à 

execução da metodologia proposta pela tese, intitulados: 

Artigo 1: Aceito para publicação na revista Ciência Rural 

Proximal hyperspectral analysis in grape leaves for region and variety identification 

 

Artigo 2: Submetido para revista Ciência Rural 

Hyperspectral data analysis for chlorophyll content derivation in Cabernet Sauvignon 

vines 

Artigo 3: Submetido para revista Journal Applied Remote Rensing – JARS 

Estimation of degree Brix in grapes by proximal hyperspectral sensing and nanosatellite 

imagery through the Random Forest Regression algorithm 
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3.1 ARTIGO 1: Proximal hyperspectral analysis in grape leaves for region and variety 

identification 

Diniz Carvalho de Arruda1      Jorge Ricardo Ducati1      Adriane Brill Thum2    

Tássia Fraga Belloli1      Rosemary Hoff 3 

ABSTRACT 

Reflectance measurements of plants of the same species can produce sets of data with 

differences between spectra, due to factors that can be external to the plant, like the environment 

where the plant grows, and to internal factors, for measurements of different varieties. This 

paper reports results of the analysis of radiometric measurements performed on leaves of vines 

of several grape varieties and on several sites. The objective of the research was, after the 

application of techniques of dimensionality reduction for the definition of the most relevant 

wavelengths, to evaluate four machine learning models applied to the observational sample 

aiming to discriminate classes of region and variety in vineyards. The tested machine learning 

classification models were Canonical Discrimination Analysis (CDA), Light Gradient Boosting 

Machine (LGBM), Random Forest (RF), and Support Vector Machine (SVM). From the results, 

we report that the LGBM model obtained better accuracy in spectral discrimination by region, 

with a value the 0.93, followed by the RF model. Regarding the discrimination between grape 

varieties, these two models also achieved better results, with accuracies of 0.88 and 0.89. The 

wavelengths more relevant for discrimination were at ultraviolet, followed by those at blue and 

green spectral regions. This work points toward the importance of defining the wavelengths 

more relevant to the characterization of the reflectance spectra of leaves of grape varieties and 

reveal the effective capability of discriminating vineyards by their region or grape variety, using 

machine learning models.  

Keywords: vineyards, hyperspectral, spectroradiometer, machine learning. 
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RESUMO 

Medições de refletância de plantas da mesma espécie podem produzir conjuntos de dados com 

diferenças entre os espectros, devido a fatores que podem ser externos à planta, como o 

ambiente onde a planta cresce, e fatores internos, para medições com diferentes variedades de 

plantas. Este artigo reporta resultados da análise de medições por espectroradiometia efetuadas 

em folhas de vinhas de diversas variedades e em diversas regiões. O objetivo desta pesquisa 

foi, após a aplicação de técnicas de redução de dimensionalidade para a definição dos 

comprimentos de onda mais relevantes, avaliar quatro modelos de aprendizado de máquina 

aplicados à amostra observacional visando discriminar classes de região e variedade. Os 

modelos de classificação de aprendizado de máquina testados foram Canonical Discrimination 

Analysis (CDA), Light Gradient Boosting Machine (LGBM), Random Forest (RF) e Support 

Vector Machine (SVM). A partir dos resultados, relatamos que o modelo LGBM obteve melhor 

acurácia na discriminação espectral por região, com valor de 0,93, seguido pelo modelo RF. 

Relativamente à discriminação entre castas, estes dois modelos também obtiveram melhores 

resultados, com acurácias de 0,88 e 0,89. Os comprimentos de onda mais importantes para as 

discriminações procuradas estiveram na região do ultravioleta, seguidos do azul e do verde. 

Este trabalho aponta para a importância de detectar os comprimentos de onda mais relevantes 

para a caracterização dos espectros de reflectância das folhas de diferentes variedades de vinhas, 

e revela a capacidade efetiva de discriminar vinhedos por suas regiões ou variedades, usando 

modelos de aprendizado de máquina. 

Palavras-chave: Vinhedos, hiperespectral, aprendizagem de máquina 

3.1.1 INTRODUCTION 

The spectral response of vegetation expressed by its reflectance has been known to be a 

way to characterize different vegetal species, with applications in surveys and monitoring of 

forests, crops and other land uses ( ZHANG, C. et al., 2014; MIRZAEI et al., 2019). Several 
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studies have applied techniques of remote sensing for data acquisition, including satellite or 

aerial imagery and/or field or laboratory spectroradiometer. In the first cases, the spectral 

resolution, in general, tends to be moderate, and only the main spectral features are acquired; 

even with this limitation, classifications with significant accuracies have been accomplished in 

studies on vineyards (KARAKIZI et al., 2016; MOGHIMI et al., 2020; SILVA & DUCATI, 

2009) using conventional classification algorithms. In the latter cases, using a 

spectroradiometer extremely high spectral resolution can be attained, showing minute details 

of a spectrum, and allowing to detect subtle spectral features of vine leaves; these features 

express degrees or states of pigmentation, cell structure, and water content which, besides 

depending on intrinsic biological descriptors, can be influenced by environmental and 

geographical factors (CEROVIC et al., 2012; SMIT et al., 2016; THUM et al., 2020). 

From this perspective, spectral data is valuable in studies focused on vine development 

in geographical contexts, since the high density of information carried by a high-resolution 

spectrum allows searching for differentiation between cultivars and from external influences 

caused by climate, soil, management, or other effects. Results from such studies are helpful to 

the characterization of viticultural regions aiming to distinguish themselves from other regions, 

contributing to the formation of a set of descriptors necessary to the attribution of a label of 

typicity of which AOC (Appellation d’Origine Controlée), IGT (Indicazione Geografica Tipica) 

or AVA (American Viticultural Area) are examples. Such characterizations, when coming from 

data of plant spectroscopy, have been achieved mainly through the use of conventional 

classification algorithms (SILVA & DUCATI, 2009; KARAKIZI et al., 2016), but few results 

have been reported of applications of Machine Learning models which, with present 

computational resources, can outperform already existent classification methods (ANGUITA 

et al., 2010). 
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This paper reports the results from spectroradiometric field measurements performed on 

vineyards located in southern Brazil, where we investigated their potential to discriminate vines 

by their locations or by variety. Here, the location factor is dominated by environmental 

constraints (soils, climate), while the variety factor tends to be dominated by biological (genetic 

characteristics) constraints. Both factors have significant impacts on plant metabolism and 

development (WHITE, 2009), influencing leaf structure and chemical composition and, 

therefore, its reflectance spectrum (THUM et al., 2020). Specifically, the objectives of this 

research were: a) To discriminate vineyards by region and variety from leaf reflectance data; b) 

To select a technique to reduce the number of wavelengths necessary for the first objective; c) 

To select, from a selected set of Machine Learning techniques, the ones with the best 

performances in the classification process. 

3.1.2 MATERIALS AND METHODS 

3.1.2.1 Study area 

As study areas, eight vineyards were selected in Rio Grande do Sul, which is the 

southernmost state in Brazil. These vineyards are distributed over a territory of about 500 km 

wide, on terrains of different types of rocks, and belong to the following wineries: a) Almadén 

Estate (W1) in Santana do Livramento, in the Campanha Gaúcha wine region, with sandstone-

based soils from the Guará Formation (WILDNER et al. 2008); b) Boscato Winery in Nova 

Pádua, with two vineyards (W2 and W3, two kilometers apart) on acidic volcanic rocks 

(rhyolite, rhyodacite and dacite) of the Palmas Formation (IBGE 2018, ROSSETI et al. 2017); 

c) Chandon Estate (W4) in Encruzilhada do Sul, on the gneiss of the Arroio dos Ratos Gneissic 

Complex (WILDNER et al. 2008); d) Luiz Argenta Estate (W5) in Flores da Cunha, over acidic 

volcanic rocks (rhyolite, rhyodacite and dacite) of the Palmas Formation (IBGE 2018, 

ROSSETI et al. 2017); e) Miolo Winery in Bento Gonçalves (W6) in the Serra Gaúcha wine 

region, with soil on acidic volcanic rocks (rhyolite, rhyodacite and dacite) of the Palmas 
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Formation (IBGE 2018, ROSSETI et al. 2017); f) Miolo Seival Estate (W7) in Candiota, in the 

wine-growing region of Campanha Gaúcha, whose soils are a transition between sandstone and 

claystone of the Rio Bonito and Palermo Formations (CAMOZZATO & LOPES, 2012); g) 

Terra Sul Winery (W8) in Pinheiro Machado, in the Serra do Sudeste wine region, with soils 

based on granitic rocks from the Pinheiro Machado Granitic-Gneissic Complex (WILDNER et 

al. 2008). From this description, it can be seen that the studied vineyards are over different soils, 

with varying amounts of sand, clay and organic matter. The balance of these soil components, 

meaning the variation in mineral content, play an important role in reflectance spectra, not only 

on the spectra of soils themselves (DEMATTÊ, 2002), but also on the spectra of vegetation 

growing on it (THUM et al. 2020), since many elements are important to plant metabolism; for 

example, CONRADIE (1981), SCHREINER et al (2006) and SCHREINER (2016) reported as 

elements like phosphorus potassium, calcium and magnesium move along vine tissues. It is 

known that different soils have different mineral availability to plant metabolism (WHITE, 

2009), with an impact on leaf reflectance spectra (THUM et al. 2020). We note for the regions 

presently under study that iron availability (associated with clay content) changes greatly, 

possibly leading to significant changes on plant reflectance spectra. As additional information, 

we briefly discuss the reason of dividing Boscato Estate in two parts (W2 and W3). From a 

previous investigation of this winery (THUM et al., 2020), it was found that W2 (5.38 hectares) 

has elevations from 666 to 688m, and W3 (7.93 hectares) has elevations from 747 to 785m; in 

addition to the fact of W3 is at higher elevations, W3 displays steeper slopes. Furthermore, out 

of 21 measured agronomical parameters (data not presently shown), only 3 (P, Ca, Zn) had 

larger variability in W2; W2 is, therefore, much more homogeneous. Finally, measured soil 

profiles in W2 are deeper across that vineyard, what points for a likely reason of the larger 

variability of soil traits in W3, since shallower soils in a more rugged terrain would tend to put 

the surface in closer contact with deeper horizons and the bedrock, these two layers acting as 
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mineral suppliers. This condition of soil diversity in terrains seating on the same bedrock 

supplies an opportunity for assessing the limits of classification performances of the set of 

Machine Learning techniques to be presently tested. We also note that estates W1 and W7 are 

located at areas covered by the “Campanha Gaúcha” viticultural region; W2, W3 and W5 are 

in the “Altos Montes” viticultural region; W4 and W8 are at the “Serra do Sudeste” viticultural 

region; and W6 is at the “Vale dos Vinhedos” viticultural region. The distribution of these 

locations over the State’s territory is shown in Figure 1. 

As grape varieties or cultivars we selected twelve of those more commonly found in the 

chosen regions, which are: Cabernet Sauvignon (V1), Chardonnay (V2), Merlot (V3), Petit 

Verdot (V4), Pinot Grigio (V5), Pinot Noir (V6), Riesling Italic (V7) (also known as 

Welschriesling), Sauvignon Blanc (V8), Syrah (V9), Tannat (V10), Tempranillo (V11), and 

Viognier (V12). These twelve grape varieties are not present in all eight locations; for example, 

the Chandon Estate only has Pinot Noir, Chardonnay and Riesling Italic, and at Boscato only 

Cabernet Sauvignon and Merlot were measured. Detailed information on number of 

measurements is provided in Table 1. The climate in all regions is subtropical with well-defined 

seasons; however, the Serra Gaúcha region tends to have summers with higher humidity. We 

visited in total seventy-eight vine parcels.  

3.1.2.2 Leaf reflectance acquisition  

Field spectroscopic measurements were performed with a Malvern Panalytical Spectral 

Devices (ASD, Westborough, MA, USA) FieldSpec® 3 spectroradiometer, which has spectral 

sensitivity between 350nm and 2500nm, using the Leaf Clip sensor. Field trips were performed 

in December 2018 and January 2019, since these dates correspond to a period in the 

phenological cycle where grape leaves are already well-developed, in the stage of growth and 

ripening of berries represented on the BBCH scale in the sub-stages 81 to 83 (LORENZ et.al., 

1995). 
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In each estate, we selected vine parcels with areas of about five hectares. At each parcel 

we chose rows centrally localized, at each row we selected four plants, and at each plant we 

measured four fully developed leaves at their adaxial sides. Calibration of the sensor, through 

optimization and measurement of the white reference plate of the Leaf Clip probe, was 

conducted before making the spectroradiometric readings. Every spectrum was recorded at one-

nanometer intervals, resulting in 2151 reflectance values for the observed spectral domain (350 

nm to 2500nm). The final sample had 3006 spectra corresponding to measurements of 1002 

leaves (three spectra per leaf); however, the measurements used for the analyses were 2967 in 

total since 39 spectra were detected as being erroneous for several factors and were excluded. 

3.1.2.3  Pre-processing of spectra 

To mitigate the noise interference in the spectra, and to smooth the spectral breaks at the 

sensor’s interfaces, we used the Savitzky-Golay filter and slice correction. The library packages 

used were SciPy, signal Filter, and Coefficients (VIRTANEN et al., 2020). Since high-

resolution spectra tend to carry redundant information over neighboring wavelengths, a feature 

that tends to increase processing time of classification tasks with no sizable gains, the next step 

was to decrease the number of wavelengths by means of two spectral reduction techniques 

applied to the database, which were: Spectrum Ratio (SR) and Kernel Principal Component 

Analysis (KPCA). 

3.1.2.4 Spectrum Ratio (SR) 

The SR technique was applied after a normalization procedure was performed on each 

original spectrum. Since in each acquisition the sensor can receive a particular influx of energy, 

recorded levels of reflectance can vary from one spectrum to another; that is, each spectrum 

comes from the acquisition of a certain amount of energy across the observed wavelength 

domain, implying in a specific area under the spectral curve. The SR technique consists in the 

direct comparison of two spectra at the same scale, and so, original spectra were transformed 
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through a normalization procedure described elsewhere (PITHAN et al., 2021); we note that 

normalization is an operation that does not change the shape of any spectrum. 

The Estates group had eight vineyards, so comparisons between them, by pairs, allowed 

twenty-eight combinations; for each estate, a mean spectrum was derived from all 

measurements, and this spectrum was divided by the mean spectrum of each other estate, an 

operation that, applied to all eight vineyards, resulted in twenty-eight “spectrum-ratios.” The 

same procedure was followed for the Varieties group where, for twelve varieties, we obtained 

sixty-six possible “spectrum ratios”. A typical “spectrum-ratio” has values around unity for all 

wavelengths, except at those wavelengths were spectral differences between classes (in Estates 

or in Varieties) exist. In this sense, the technique reveals where differences between classes 

exist, knowledge to be used in classification tasks. 

The spectra were subjected to non-parametric correlations tests for the whole spectral 

domain. First, a correlational test, the Spearman rank correlation model, was used to evaluate 

collinearity between the 2151 wavelengths. The coefficient of determination (R²) was used to 

adjust the correlations for each wavelength. Wavelengths having statistical significance 

expressed by a p-value < 0.05 were selected. Additionally, and to address the level of statistical 

significance, the Kruskal-Wallis H test was used to assess the real differences between the 

sample groups. Levels of statistical significance, α (0.05), were determined to verify the 

difference in statistical distributions of the sub-groups internal to each main group (Estates and 

Varieties). 

3.1.2.5  Kernel Principal Component Analysis (KPCA) 

KPCA, the second spectral dimension reduction technique, is a technique for 

transforming original data into components of uncorrelated variables, using Principal 

Component Analysis with extension Kernel in dimensionality reduction to create reliable 
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compositions, since the determination of decision limits between classes is performed in a non-

linear way (Fauvel et al., 2009). 

3.1.2.6  Hyperspectral Classification 

The classification of reflectance spectra was performed from both input techniques, 

KPCA and SR. Four Machine Learning (ML) algorithms were used in processes, developed in 

Python language using the Scikit-Learn package and using the libraries Pandas and NumPy for 

the preparation of matrix and tables. The four ML algorithms selected for the spectral 

classification process were: a) Canonical Discriminant Analysis (CDA), which is a multivariate 

analysis algorithm with a procedure for grouping individuals from a previously defined group 

into exclusive classes of a group of independent variables (LARK, 1995); b) Random Forest 

(RF), a model tolerant of noisy data which evaluates correlations between variables using a 

random vector. The RF performance is high in setting spectral reflectance measurements, 

because of its low sensitivity to outliers (FLETCHER & REDDY, 2016; HONG et al., 2019); 

c) Support Vector Machine (SVM), a classifier that discriminates using separation hyper planes 

with support vectors, limiting the division area between the classes (MA & GUO, 2014); and 

d) Light Gradient Boosting Machine (LGBM), a gradient structure that uses learning algorithms 

on trees that grow vertically (FAN et al., 2019).  

The training samples were selected at random from a data set with 70% (n = 2077) of reflectance 

spectra, with the remaining 30% (n = 890) being reserved for testing and validation of ML 

models. The quality of the validation procedure was evaluated by comparing some commonly 

used indicators of the performance of ML algorithms, such as Classification Accuracy, Area 

Under the ROC Curve (AUC), F1 Score, and Kappa, besides other parameters for validation 

metrics as Precision, Recall and Support. Finally, the wavelengths more relevant for the 

classifications were revealed through calculation of the Average Impact Magnitude parameter, 
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using values from the SHAP library which allow identification of the more notable features to 

the model, thus explaining the output of the machine learning model being studied. 

3.1.3 RESULTS AND DISCUSSION 

Average spectra for each Estate and each Variety classes are provided in Figure 2. As 

expected, all spectra display the usual features typical of healthy vegetation, with subtle 

differences between classes which will be further discussed in what follows.  

Results from the correlational Spearman test by coefficients are shown in Figure 3, where 

in Figures 3a and 3b R2 values are presented. Values of R2 as high as 0.6 were observed for the 

spectral ranges corresponding to the UV (350 to 399nm), NIR (780nm), and SWIR (1100 to 

2300nm) for both groups. In the figures, areas next to the main diagonal have strong 

associations between their wavelengths, while coefficients with lower R2 values, the darkest 

colors, indicate the low collinearity between wavelengths. Figures 3c and 3d show the p-values, 

where it can be seen that the wavelengths located at the main diagonal or nearby present 

determination coefficients above 0.9 and p-values < 0.05, indicating statistical significance. 

After a correlational analysis has identified the spectral regions with low correlation (p-value < 

0.05), fourteen wavelengths were selected as indicators of the most conspicuous spectral 

differences between the studied classes as revealed by the SR technique. These wavelengths 

were:  350nm; 358nm; 365nm; 467nm; 574nm; 705nm; 1350nm; 1410nm; 1420nm; 1723nm; 

1850nm; 1894nm; 2306nm; and 2500nm.  

Results from the non-parametric Kruskal-Wallis test for the fourteen wavelengths 

indicated significant differences (p < 0.05) at 365nm, 1350nm, 1420nm, 1850nm and 2306 nm 

at all Estates. The feasibility of spectral separability between classes within the Estates group 

has been previously reported, leading to the discrimination between vineyards located in 

different regions, a perception linked to the terroir concept expressing the soil-plant-climate-

management relationship (CEMIN & DUCATI, 2011; THUM et al., 2020). In the Varieties 
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group, the wavelengths 350nm, 358nm, and 574nm are the more suited to variety separation, 

while at 2500nm little separation is achieved. These results, therefore, suggest that: a) variations 

either in region or in variety have a significant effect in the ultraviolet reflectance of vines (at 

350nm, 358nm, and 365nm); b) concerning chlorophyll, these variations do not have a major 

effect on the 467nm band, and none at all at the 660nm band; c) a significant effect at near-

infrared (NIR) bands was observed for region variation, and here it can be noted that in former 

studies a group of grape varieties was discriminated by hyperspectral sensors, pointing out the 

VIS and NIR spectral regions as crucial in the separability of vineyards (KARAKIZI et al., 

2016; MIRZAEI et al., 2019); and d) the water absorption bands usually observed in vegetation 

(at 1450nm, 1950nm, and 2500nm) seem to have little importance on differentiation of vines 

induced by variation of region or variety. 

The models' performance is presented in Table 2. The highest predictive accuracies for 

classification are those of the LGBM algorithm, with a maximum accuracy range of 0.99. For 

both the Estate and Variety groups, the best performances were attained by LGBM, followed 

by RF. For the dimensionality reduction, the best performance came from the SR technique but 

the KPCA method also yielded satisfactory results. Comparing KPCA and SR performances, 

the set of wavelengths extracted by SR showed an increase in performance from 0.91 to 0.93 

(Estate) and 0.69 to 0.88 (Variety) using the LGBM algorithm and for RF accuracy raised from 

0.74 to 0.92 (Estate) and from 0.45 to 0.89 (Variety). The CDA and SVM algorithms did not 

perform well by KPCA but showed significant improvements in their metrics for discrimination 

by SR. 

The spectral separation between classes internal to the groups (Estates or Varieties) is 

shown in Figure 4, which displays the AUC values derived from the LGBM algorithm, the one 

with best performance, for both KPCA and SR. In this Figure it is possible to assess the 

separability between classes by inspecting the relations between true or false positives; the more 
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AUC values are near 1, the better the separation. Most AUC values were above 0.90, with the 

best fits to the discrimination being obtained by the SR method. For example, in Figure 4, using 

as input data the set generated by the SR method, for the class W6 the AUC value was 0.95, 

while using KPCA we had AUC = 0.90; at the Varieties Group, for V8 we had AUC = 0.99 

from SR and AUC = 0.70 from KPCA. Therefore, significant separability for both groups was 

achieved using the LGBM model with both reduction methods, with some advantage to SR. 

The classification metrics (Figures 5a and 5b) presents the performance of each class 

through wavelengths extraction by SR. In Figure 5a, the vineyards W4 and W6 obtained the 

smallest Recall (0.606 and 0.722) and F1-Score (0.684 and 0.765). With respect to separation 

between W2 and W3, which are 2km apart and on the same bedrock, inspection of Figure 5a 

reveals that classes W2 and W3 display similarity between True Positive and False Positive 

values, having AUC values near 1; therefore, these two classes show similar classification 

accuracies, being nevertheless separable, what can be explained by the fact that, even if being 

on the same bedrock, they have different soil profiles, with a possible influence on plant 

development. It can be noted that W2 and W3 belong to the same owner and have the same 

management, what excludes differentiation due to anthropogenic factors. Still focusing on 

Figure 5a, it can be seen that estates W1 and W7, both located at the Campanha Gaúcha 

viticultural region, are fairly separated, indicating non-negligible spectral differences; this fact, 

added to the one that W7 is on a transition of sandstone to clay, reinforces current perceptions 

that the presently established limits of this viticultural region are too wide, pointing to the future 

need of its division in more uniform territorial units. In Figure 5b, the result of classification 

between varieties indicates for V7 and V8 the smallest Recall (0.667 and 0.444) and F1-Score 

(0.800 and 0.615). The lowest precision was shown by V3, with a value of 0.647. Estates W5 

and W8 and varieties V1, V2, V6, V10, V11, and V12 obtained the best performances, all of 
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them with values of F1-Score above 0.9. Furthermore, both groups obtained good 

discrimination accuracy, indicating the feasibility of spectral separability at leaf level. 

Finally, the average Impact Magnitude of the wavelengths on the LGBM model using 

feature extraction by the SR method is shown in Figures 5c and 5d. The ultraviolet wavelengths 

(358nm, 574nm, and 365nm, in order of importance) presented a greater average impact 

magnitude for discrimination between Estates. The Variety classes displayed a similar average 

impact magnitude. The wavelengths in these spectral regions (green, blue, and ultraviolet) are 

important to detect changes in reflectance due to changes in pigment content (MERZLYAK et 

al., 1999), carotenoids(GITELSON et al., 2002), and anthocyanins(PROSHKIN et al., 2021) at 

leaf level. 

Two more perceptions have to be noted. The spectral differences between classes, 

especially those revealed in the fourteen wavelengths described above, are subtle, as reported 

elsewhere (DELALIEUX et al., 2007; ETTABAA & SALEM, 2018); in fact, taking as 

reference the usual range of reflectance values (from zero to unity), the conspicuous differences 

revealed by the spectrum-ratio technique are of the order of 10-4 or even smaller. Their detection 

is due to the extreme signal-to-noise ratio of the measurements taken with the equipment 

presently employed, leading to the significant detection of faint spectral features. A lengthy 

discussion of this point can be found at former research reported by our group (PITHAN et al, 

2020). Finally, the results presented here do not suggest a capability, from our data and analysis, 

to separate between red and white grape varieties (classes V1, V3, V4, V6, V9, V10 and V11 

are red grapes); however, it was reported by SILVA & DUCATI (2009) that, using ASTER 

satellite data, these two greater classes can be discriminated. This is intriguing, since the 

spectral resolution of ASTER images is much coarser. A possible explanation may come from 

the classification algorithm used on the images, the maximum likelihood, which was not 

presently used.  
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From these results, it seems that purely environmental variations (bedrock, climate) are 

not decisive to differentiation within the Estates group, since, for example, the Estates on 

volcanic rocks (W2, W3, W5 and W6), all of them with a more humid climate, do not form a 

separate group. This suggests that more complex processes are involved in the construction of 

reflectance spectra of vines (or of vegetation in general) confronted to environmental changes. 

3.1.4 CONCLUSION 

In this research, we investigated the potential of field hyperspectral leaf reflectance 

measurements to differentiate grape varieties and grape production regions. Our results have 

demonstrated that such separability is indeed possible, with significant accuracies. Acquiring 

spectral information about the vines in situ, without removal of leaves for laboratory analysis 

represents a gain both in costs and in logistical preparations. Due to its extreme signal-to-noise 

ratio, allowing the detection of subtle spectral features, the hyperspectral proximal sensor data 

presently used was a crucial tool in the detailing of faint leaf traits, making possible to 

discriminate grapevine varieties and the influence of environmental aspects. In this sense, our 

results can contribute to the comprehension of terroir issues related to regional variations, as 

discussed by VAN LEEUWEN & SEGUIN (2006). In fact, focusing on the presently 

demonstrated capability of spectrally separating regions, even when the bedrock is similar 

(being the cases of estates W2, W3, W5, and W6, all on volcanic acidic rocks), we saw that the 

geological similarity was not a confounding factor; these classes were fairly separated, 

suggesting that additional discriminating factors, like climate, also play a role on plant 

development leading to specific spectral traits in leaf reflectance. 

The wavelength extraction by the SR technique demonstrated advantages over the KPCA 

method when both were used for classification with the LGBM algorithm. This paper points 

towards the feasibility of the spectral discrimination of grapevines at leaf level, using a non-
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destructive method, for identification of vine varieties and their region, with applications 

valuable to the producer, allowing building a spectral library of grape wines.  
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Figura 3. Study area location map. 

 

 

 

 

 

 

 

 

 

 

 

 



46 
 

 

Figura 4. Reflectance spectra of field-measured vines. a) Estates; b) Varieties. 
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Figura 5. Coefficient of determination R2 and p-value of the spectrum-ratios between the 

averages of each class. (a), (c), Estates; (b), (d), Varieties. The shaded scale shows values of 

the spectral regions with low collinearity. 
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Figura 6. Area Under Curve (AUC) expressing the performance of the LGBM algorithm, using 

wavelengths selected by the KPCA method ((a) and (c)) and by the Spectrum Ratio method ((b) 

and (d)). Correspondences between Wn and Vn to their respective estates and varieties are given 

in Table 1. 
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Figura 7. Validation Metrics (a) and (b) and Average Impact Magnitude (c) and (d) to evaluate 

the performance of the LGBM algorithm, using wavelengths selected by the Spectrum Ratio 

method. Correspondences between Wn and Vn to their respective estates and varieties are given 

in Table 1.  
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Tabela 1. Results obtained for spectral discrimination between the Leaf reflectance measured. 
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V1- Cabernet Sauvignon 0 237 143 0 223 159 0 105 
V2- Chardonnay 132 0 0 93 60 0 100 30 

V3-Merlot 144 96 338 0 60 0 97 80 
V4-Petit Verdot 0 0 0 0 0 0 0 30 
V5- Pinot Grigio 0 0 0 0 0 0 0 30 
V6- Pinot Noir 0 0 0 96 121 0 100 46 

V7-Riesling Italic 132 0 0 48 61 0 0 0 
V8 - Sauvignon Blanc 0 0 0 0 0 0 0 20 

V9 - Syrah 0 0 0 0 121 0 0 0 
V10 - Tannat 0 0 0 0 0 0 0 56 

V11 - Tempranillo 0 0 0 0 0 0 0 30 

V12 - Viognier 0 0 0 0 0 0 0 30 
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Tabela 2. Results obtained for spectral discrimination between the Leaf reflectance measured. 

Class Reduction Model Accuracy AUC F1 Kappa 

Estate 

KPCA 

LGBM 0.91 0.99 0.91 0.89 

RF 0.74 0.97 0.71 0.69 

CDA 0.50 0.71 0.50 0.42 

SVM 0.48 0.00 0.39 0.38 

SR 

LGBM 0.93 0.99 0.93 0.92 

RF 0.92 0.99 0.92 0.90 

CDA 0.92 0.99 0.92 0.91 

SVM 0.61 0.00 0.55 0.54 

Variety 

KPCA  

LGBM 0.69 0.92 0.67 0.60 

RF 0.45 0.82 0.36 0.24 

CDA 0.17 0.53 0.16 0.07 

SVM 0.31 0.00 0.24 0.12 

SR 

LGBM 0.88 0.98 0.88 0.86 

RF 0.89 0.98 0.89 0.87 

CDA 0.67 0.91 0.66 0.59 

SVM 0.41 0.00 0.36 0.24 
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3.2 ARTIGO 2: Hyperspectral data analysis for chlorophyll content derivation in 

Cabernet Sauvignon vines 

Diniz Carvalho de Arruda, Jorge Ricardo Ducati, Rosemary Hoff 

 

ABSTRACT  

Quality and yield of a vineyard are related to canopy biomass and leaf vigor, and 

proximal and remote sensing techniques have been used as alternatives to conventional methods 

to estimate these parameters, producing imagery and spectral information on leaf and canopy 

which can be used to those data retrieval. Knowledge on chlorophyll content is crucial to plant 

health assessments, and this information can be directly obtained through specific sensors. 

However, chlorophyll indices can also be extracted from reflectance spectra obtained for an 

ample range of applications. In this perspective, relations between chlorophyll indices obtained 

by direct measurements and derived from field radiometry were investigated, with the objective 

of assess the accuracy of predicted chlorophyll content by indirect measurements. The 

investigation was performed on Cabernet Sauvignon vines on a commercial vineyard, being 

based on direct chlorophyll surveys, vine leaf spectroradiometry and the derivation of 

Hyperspectral Vegetation Indices (HVIs), with data acquisition being performed on two stages 

of the vegetative cycle. Direct chlorophyll data was compared with predicted indices using two 

machine learning algorithms: Partial Least-Squares Regression (PLSR) and Random Forest 

Regressor (RFR), using data from reflectance spectra and derived HVIs. Results for estimates 

indicated that the higher coefficients of determination expressing the correlation between 

measurements and predictions were obtained for Chl a and Chl(a/b) modeled by the RFR 

algorithm, with R2 values as high as 0.8 and Root Mean Squared Errors as low as 0.093. With 

respect to HVIs, the Plant Senescence Reflectance Index (PSRI) calculated for the second 
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acquisition run, corresponding to leaves reaching senescence was the one which produced the 

highest percentage of prediction explanations, as attested by the Gini index. This study can 

bring a significant contribution to the development of non-invasive techniques to vine 

monitoring, contributing to vineyard management by allowing fast, low-cost, real-time 

interventions by the producer. 

Keywords: Hyperspectral, Vineyards, Partial Least-Squares Regression, Random Forest 

Regressor.  

3.2.1 INTRODUCTION  

Quality and yield of a vineyard are related to canopy biomass and leaf vigor. Along the 

vegetative cycle, leaf vigor is an important indicator of plant health status (Bergsträsser et al., 

2015; Lacar et al., 2002). In this perspective, remote detection techniques have been applied in 

studies based on plant spectral patterns, and focused to analyze vegetative development, 

phenological dynamics, management practices and a diversity of stresses due to biotic and 

abiotic attacks (Junges et al., 2019; Loggenberg, 2018; Lv et al., 2018; Pithan et al., 2021; Thum 

et al., 2020; C. Zhang et al., 2013).  

Chlorophyll levels are important indicators to the monitoring of nitrogen content in 

leaves, their determination being conventionally done by laboratory techniques applied on 

field-collected samples. As the characteristic plant green shades are due to  the reflected light 

after interaction of illuminating radiation with leaf photosynthesizing pigments, chlorophyll 

amounts can be estimated by non-destructive methods (Fassnacht et al., 2015; Ordóñez et al., 

2018; Steele et al., 2008a) like reflectance analysis at hyperspectral resolutions, allowing to 

map with improved performance the spectral properties of plant leaves at visible and near 

infrared wavelengths, studying color changes, hemispherical reflectance and subtle variations 

in leaf tissues (Meneses et al., 2019; Zhao et al., 2014). Chlorophyll levels are also sensitive to 
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water stress and to soil type (Mitra et al., 2018). Data from plant spectroscopy can be used to 

predictive models, providing estimations of plant physiological and morphological traits as an 

alternative to conventional methods. In terms of remote sensing, the use of hyperspectral 

sensors to the detection of variations in leaf pigmentation is an improvement compared to 

multispectral data, as more detailed information becomes available. 

Ample use has been made of spectroscopy to estimate vine descriptors (Power et al., 

2019). However, in hyperspectral data the large number of spectral bands tends to have a 

negative impact on the metrics expressing the performance of estimating models, a problem 

which is addressed by the use of dimensionality reduction techniques (Loggenberg et al., 2018; 

Saheb Ettabaa & ben Salem, 2017; L. Zhang et al., 2019) where machine learning algorithms 

perform a crucial role. Through machine learning models to data analysis, it is possible to 

regularize and reduce the number of wavelengths necessary to build structured spectral 

libraries. Models Partial Least Squared Regression (PLSR) and Random Forest Regression 

(RFR) are examples of robust algorithms to the characterization and analysis of spectral data, 

dimensionality reduction and parameters prediction using non-invasive methods (Cheng & Sun, 

2017; El-Hendawy et al., 2019; Feng et al., 2017; Kawamura et al., 2017). 

Furthermore, the arrival of new methods for data acquisition by in situ proximal remote 

sensing increased the potential to monitoring plant phenological dynamics during the growing 

cycle. Therefore, the objectives of this study were: a) to analyze the relations of chlorophyll 

parameters with plant hyperspectral spectroscopy, at leaf level, in commercial vineyards; b) to 

assess the performance of two machine learning models, PLSR and RFR, to attain the first 

objective; and c) to reveal the wavelengths more relevant to these tasks. It was expected that 

this study would bring a significant contribution to the development of non-invasive techniques 

to vine monitoring, contributing to vineyard management by allowing fast, low-cost, real-time 

interventions by the producer.  
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3.2.2 MATERIAL AND METHODS  

3.2.2.1 Study area  

As study area the Luiz Argenta Winery was chosen, due to its easy access and favorable 

topography. This estate is in a viticultural region called Vinhos dos Altos Montes (High Hills 

Wines), a geographical denomination (“Indicação de Procedência”) located in north-east of Rio 

Grande do Sul State in south Brazil. Coordinates are 29º 01’ 23.37” S and 51º11’02.23” O, 

being at a larger wine region called “Serra Gaúcha”. The area with vines covers about 48 

hectares with several Vitis vinifera grape varieties, with focus in the production of quality wines. 

All measurements were performed during the 2017/2018 season.  

The grape variety Cabernet Sauvignon was chosen for the study, and specific parcels 

were selected considering ease of access, topography, uniformity, and availability of 

information on soils. Six vine plots were studied, and following the estate use they were called 

4a, 4b, 16a, 16b, 19a, and 19b. Vines were planted in trellis driving system, on Paulsen 1103 

rootstocks, distance between rows were 2.8m following east-west orientation (plots 4a, 4b, 16a, 

16b) or north-south (19a, 19b), and distance between plants were 1.45m. These vineyards had 

conventional management with treatments on an approximate weekly basis. All plants used for 

the study were marked prior to the beginning of measurements.  

To follow the evolution of spectral behavior of plants, measurements were performed 

in phases 81 and 83 of the vegetative cycle according to the BBCH scale (LORENZ et al., 

1995). The first data acquisition was done on December 16, 2017, during the stage of the 

phenological cycle known as véraison, meaning the phase during which the berries acquire dark 

pigmentation.  The second acquisition run took place on February 27, 2018, during the final 

ripening and harvest. 
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3.2.2.2  Data acquisition and treatment  

3.2.2.2.1  Chlorophyll and radiometric in situ measurements  

All measurements in this study took place during a four-hour interval between 10AM 

and 2PM, to ensure uniformity of plant conditions leading to uniformity in acquired data; 

reasons for this protocol are presented in more detail in Thum et al. (2020), added to the fact 

that earlier measurements tend to be done over humid leaves, affecting leaf spectral features.    

A sample of 24 plants was selected, meaning four plants per parcel, located in the two central 

rows of each vine plot. 

Chlorophyll and radiometric data were acquired in succession, beginning with 

transmittance measurements at 635nm, 660nm and 880nm using a Falker CFL1030 (Porto 

Alegre, Brazil) chlorophyll meter (Schlichting et al., 2015), providing chlorophyll a, b and total 

chlorophyll content mediated by calibration using a white reference. These acquisitions were 

followed, for the same leaf, by spectroradiometric measurements using a Malvern Panalytical 

Spectral Devices (ASD, Westborough, MA, USA) FieldSpec® 3 spectroradiometer, which has 

spectral sensitivity between 350nm and 2500nm (Malvern Panalytical, 2020). A typical 

spectrum provides reflectance values between 0.0 and 1.0 at intervals of one nanometer, a 

calibration being made through measurements of a reference plate taken at regular time 

intervals. All measurements were made with an attached Leaf Clip probe, which carries an 

internal halogen light source and also an internal reference plate of Spectralon® (Labsphere, 

Inc., North Sutton, NH, USA). Every 15 minutes calibrations with white reference and 

optimization were performed, following the protocols described by   Pithan et al. (2021) and 

Thum et al. (2020). 

All reflectance field data was recorded in ASD format, and handled in computer 

environment in Python language, where proprietary codes were created to spectra treatment, 
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helped by public libraries. Exploratory data analysis used Panda’s libraries, and the reflectance 

steps frequently found at 1000nm and at 1800nm were corrected using the Specdal library with 

the jump correction function; noisy lines were smoothed by applying the Savitzky-Golay filter. 

3.2.2.2.2 Hyperspectral Vegetation Indices 

Hyperspectral Vegetation Indices (HVIs), which are defined by the use of carefully 

selected wavelengths tuned to plant metabolical functions, may avoid the hyperspectral data 

redundancy problem through the selection of the more informative wavelengths, which are 

sensitive to plant characteristics such as cellular structure and biochemical and physiological 

processes. In this study we used 19 HVIs, calculated from the use of specific, discrete 

wavelengths: Anthocyanin Reflectance Index 1(ARI1) (Gitelson et al., 2001); Anthocyanin 

Reflectance Index 2 (ARI2) (Gitelson et al., 2001); Cellulose  Absorption Index (CAI) (Nagler 

et al., 2003); Chlorophyll Absorption in Reflectance Index (CARI); Carotenoid Reflectance 

Index 1 (CRI1) (Gitelson et al., 2002); Carotenoid Reflectance Index 2 (CRI2) (Gitelson et al., 

2002); Leaf Water Vegetation Index 2 (LWVI-2) (Galvão et al., 2005); Modified Chlorophyll 

Absorption in Reflectance Index (MCARI) (Yang et al., 2006)  Normalized Difference Nitrogen 

Index (NDNI) (Serrano et al., 2002); Normalized Difference Vegetation Index (NDVI) (Rouse 

et al., 1974); Normalized Difference Water Index (NDWI) (Gao, 1996)); Photochemical 

Reflectance Index (PRI) (Peñuelas, Filella, et al., 1995); Pigment Specific Normalized 

Difference 1 (PSND1) (Blackburn, 1998); Pigment Specific Normalized Difference 2 (PSND2) 

(Blackburn, 1998); Plant Senescence Reflectance Index (PSRI) (Merzlyak et al., 1999); Plant 

Senescence Reflectance Index 2 (PSR2) (Merzlyak et al., 1999); Structure Insensitive Pigment 

Index (SIPI) (Peñuelas, Baret, et al., 1995); Vogelman Red Edge 1 (VOG1) (Vogelmann et al., 

2007); and Water Index (WI) (Penuelas et al., 1997). 
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3.2.2.3  Modeling Process and Prediction Assessment 

In this process we generated three data sets and applied the spectral dimension reduction 

process for each one. The three data sets were composed by: i) 2151 variables (only reflectance 

bands), ii) 19 HVIs, and iii) 2170 variables (reflectance bands + HVIs). The prediction response 

variable is represented by the chlorophyll parameters Chl a, Chl b, Chl (a + b), and Chl (a/b). 

We carried out the normalization process for each dataset with the Normalize function, to 

equalize the descriptors variation scale. The machine learning models used for the prediction 

analysis were the Partial Least Squares Regression (PLSR) and the Random Forest Regressor 

(RFR).  

The PLSR is technically employed in the sensor calibration on, and spectral analysis 

associated with infrared spectroscopy and hyperspectral consensus. This is a linear model, easy 

to fit and presents low computational complexity (Cheng & Sun, 2017) and it is effective for 

selecting wavelengths employing score coefficients (MIRZAEI et al., 2019). Leaf traits and soil 

properties were measured non-invasively through PLSR factors, for selection of spectral 

variables and estimation of physical-chemical parameters (El-Hendawy et al., 2019; Thum et 

al., 2020; N. Zhang et al., 2017). The problems of high collinearities among wavelengths were 

solved by maximizing the covariance between measured and predicted (Viscarra Rossel et al., 

2006). Moreover, many authors used this model for reducing the dimensionality of wavelengths 

both at leaf and canopy levels (Abbasi et al., 2020; Mirzaei et al., 2019).  

The second algorithm, Random Forest Regressor, is a method based on predictions 

made in decision trees (estimators) randomly selected (Breiman, 2001). Empirically, it is 

possible to select the number of estimators, as tree depth, to develop the sample bagging, then 

extracting an Ouf of Bag (OOB) percentage (Palmer et al. 2007). To the final model an average 

of the results of the individual iterations was done. The selection of the wavelengths with greater 

impact was made from the importance of variables, calculated by the Gini index    (Nembrini 



59 
 

et al., 2018), which is a way, in the RFR model, to address the magnitude of the relation between 

the wavelengths and the measured parameters. 

Summing up the steps described above, the methodological approach used is this study 

was as follows: 1. In each one of the six vineyards, four plants were selected, and at each plant 

we selected a full-developed leaf, opposed to a grape cluster, under full solar illumination, 

located in the mean third of canopy, in a branch near the main vine trunk; being six parcels, a 

total of twenty-four leaves were selected. 2. Chlorophyll and radiometric measurements were 

performed at two phases of the vegetative cycle. These acquisitions produced, for each leaf and 

phase, a set of chlorophyll indices and a spectrum with 2151 reflectance values. 3. Using 

reflectance values for the required wavelengths, 19 different hyperspectral vegetation indices 

(HVI) were calculated for each leaf. 4. As one of our aims were to predict chlorophyll 

concentrations from radiometric data, three sets of input data were assembled to be applied by 

the two models to be tested (RFR and PLSR). These three data sets were composed by: i) 2151 

variables (only reflectance bands), ii) 19 HVIs, and iii) 2170 variables (reflectance bands + 

HVIs). 

5. Observed and predicted chlorophyll values were compared, and correlation accuracies were 

expressed, for each set of input data, by the following parameters: coefficient of determination 

(R²), coefficient of determination with cross validation (R² (CV)), Root Mean Squared Error 

(RMSE), Root Mean Squared Error with cross validation (RMSE (CV)). 

The model evaluation for prediction performance was made through the metrics R² and 

RMSE (Root Mean Squared Error), using Cross-Validation (CV) and dividing each input set 

in K-Fold 5. The Python library packages used were pandas, Numpy, Scipy, Sk-learn and 

Matplotlib (Pip · PyPI, 2022.) 
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3.2.3 RESULTS AND DISCUSSION  

3.2.3.1 Chlorophyll Parameters   

Variations in chlorophyll levels at the studied Cabernet Sauvignon parcels are shown 

in Figure 1. Among the six parcels, plot 16a presented a large variation in Chl a at the first 

acquisition. Parcels 4b and 16b showed large variations at the second acquisition run. It was 

noted that plot 16a, at the second acquisition run, presented a significant number of clusters 

with anomalies, as they were attained by a late-cycle fungus disease, Glomerella cingulata, 

which occurs at conditions of high temperatures and humidity, coupled with nitrogen excess. 

Other analyzed parameters were the ratios between chlorophylls. Parcels 16a (first acquisition), 

16b(1st), 19a(1st and 2nd) and 19b(1st) presented medians of about 3.0, an indication of plants 

under high luminosity conditions (Lichtenthaler, 1987), what is confirmed by the open 

landscape at the site. Parcels 19a and 19b presented vines with smaller, open canopy, being 

noted that 19a is located has the highest elevation, with exposed, rocky soils and little vegetation 

between rows. The highest Chl a and Chl b concentrations were found at parcels 4a(2nd), 4b(1st) 

and 16a(1st). In general, it was observed that as the vegetative cycle advanced and senescence 

approached a decrease in pigment variability and in the respective ratios took place. 

3.2.3.2 Correlational Spectral Analysis 

The correlograms for the reflectance spectra and the HVIs at both acquisition dates are 

presented at Figure 2. It was seen that graphs a) and c) suggest a decrease of the correlation 

between the more distant wavelengths, and a geometrical delineation between neighboring 

wavelengths, mainly at the NIR spectral range. Graphs b) and c) present positive and negative 

correlations between indices. Changes in leaf characteristics along the cycle lead to a decrease 

in water content, with a reduction in photosynthetic activity and changes in leaf colors, effects 

due to senescence which impact the spectrum (Boyer et al., 1988). 
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3.2.3.3  Prediction of Chlorophyll Parameters  

 The metrics which qualify the chlorophyll predictions from the PLSR model, for the 

three input sets and two acquisition dates, with a total of 24 results, are presented in Table 1.  

As an average, each sub-model had used from two to eight Principal Components (PC) as input 

data for the prediction. The estimate model for Chl b on the second date was the data set reduced 

by PCA with the largest number of wavelengths (892) in the analysis; on the other hand, the 

models for Chl a and Chl (a/b) had the smaller number of wavelengths used on the PCs, being 

eight and nine, respectively. 

As the model’s difficulty to predict chlorophyll levels increased, so increased the 

number of input variables; with the cycle’s progress toward senescence, leaves have smaller 

photosynthetic activity, and leaf chlorophyll content gets smaller leading to color change to 

yellow-orange shades (Boyer et al., 1988; Jensen, 2006). It was noted that those models 

operating to chlorophyll parameters with larger number of input PCs presented a better 

performance as expressed by prediction metrics. 

The estimate of Chl b from the Wavelengths data set was the one which obtained the 

largest R2 (0.622) at the second acquisition run. Predictions using only the HVI data set 

presented lower performances, with R2 < 0.4. However, using the whole input data set, 

Wavelengths + HVI, the PLSR model performed well for Chl a, Chl b and Chl(a+b), with R2 

values above 0.60. Metrics expressed by R2 with cross validation (R2(CV)) were smaller than 

0.462, suggesting insufficient entries to model validation. Finally, Chl(a/b) obtained the 

smallest RMSE at both dates, between 0.115 and 0.250, and similar values for RMSE (CV). 

Going now to the Random Forest Regressor (RFR) model, R2 values larger than 0.876 

were obtained, regardless of the input set (Table 2). Parameter Chl(a/b) got RMSE values 

between 0.18 and 0.20 at the two measuring runs, these being the smaller errors among the 

measured parameters. Wavelengths selected by the model were concentrated at red and red-
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edge spectral regions. Therefore, the RFR model presented higher predictive accuracy that the 

PLSR model. In general, the predictive metrics with cross validation presented values which 

were smaller than the training ones, with R²(CV) around 0.113 and 0.387 and RMSE(CV) from 

0.243 to 3.561. 

For the PLSR coefficients the impact of each wavelength in the estimates of chlorophyll 

parameters are presented in Figure 3. Parameters Chl a and Chl(a/b) presented the lesser 

number of wavelengths in the spectral modeling, with the red and red-edge spectral regions 

presenting high sensitivity to chlorophyll content; in these spectral regions, reflectance depends 

linearly on leaf chlorophyll content (Steele et al., 2008b). For other parameters the model used 

data from several spectral regions, from the visible to SWIR2. A significant increase of 

wavelengths inserted at the Principal Components happened at the second acquisition run. 

The importance of the Gini index to wavelengths and vegetation indices is expressed at 

Figure 4. The index is used to select the variables more relevant to prediction; presently, given 

the HVIs input data set, at first acquisition the most important indices were CAI, CARI and 

PSRI2, and for wavelengths the blue ones were more important. The PRI index was anomalous 

at both acquisitions.  

3.2.4 CONCLUSION 

The results presented in this investigation suggest that chlorophyll content can be 

predicted from hyperspectral data. Collinearity between wavelengths presented some stability 

in specific spectral regions, mainly later in the vegetative cycle, when the second data 

acquisition took place; at this stage, the observed indices tend to be more stable. Parameters 

Chl a and Chl(a/b) were in general the ones with less wavelengths used as input data sets in 

prediction models PLSR and RFR . The PSRI index was an important variable in almost all 
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calibrations done using the RFR model, while PLSR model included a larger variable number 

at second acquisition. 

Forthcoming studies may focus on deeper investigations on effects of radiation on the 

physico-chemical structure of vine leaves, correlating spectroradiometric data with data from 

remote sensors at high resolutions, both in space and time. Data on physiological parameters 

bring more information on environmental effects on leaf characteristics, and extending the 

analysis presently reported to other grape varieties will help to a better understanding on the 

spectral behavior due to genetic factors. 
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Figura 8. Main effects spatial variability among the six plots on the two collection days and 

the interactions among them (KrusKal-Wallis), with repeated measures (P ≤ 0.05) for all leaf 

parameters studied: chlorophyll a concentration (Chl a), chlorophyll b (Chl b), total chlorophyll 

(Chl a + Chl b), chlorophyll ratio (Chl a / Chl b). Each letter represents the statistically 

significant differences between the parameters: a) differs from one plot; b) differs from two 

plots; c) differs from three plots or more. 
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Figura 9. Spearman Correlation Coefficient Rank (r), applied to wavelengths (350nm - 

2500nm) of hyperspectral leaf reflectance and to HVIs, for acquisition dates: Dec. 16, 2017 (a 

and c) and Feb. 27, 2018 (b and d). 
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Figura 10.  Selected wavelengths (highlighted in yellow) with the best coefficients of the  PSLR 

components, at the observed spectral domain (350nm-2500nm), in each prediction; column a 

corresponds to the 1st acquisition date, and b to  the 2nd.  
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Figura 11. Gini Importance to the HVIs(a) and wavelengths(b) in modeling of each chlorophyll 

parameter measured in the field. 
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Tabela 3. Metrics used for the predictions carried out with the PLSR model for the three input 

databases and on the two acquisition dates. The parameters used in the analyses are: principal 

components number (PC), wavelengths numbers (VN), coefficient of determination (R²), 

coefficient of determination with cross validation (R² (CV)), Root mean square error (RMSE), 

Root mean square error with cross validation (RMSE (CV)). 

  Parameters PC  VN R² R²(CV) RMSE RMSE(CV) 

    1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 

W
av

el
en

gt
hs

 

 Chl a 3 5 9 141 0.294 0.551 0.214 0.415 1.995 1.748 2.104 1.994 

Chl b 8 8 332 892 0.585 0.622 0.359 0.432 1.025 1.254 1.274 1.537 

Chl (a+b) 3 6 391 360 0.380 0.579 0.296 0.462 3.073 2.952 3.274 3.336 

Chl (a/b) 7 4 8 157 0.576 0.528 0.471 0.391 0.183 0.214 0.205 0.243 

H
V

Is
 

 Chl a 2 5 6 7 0.286 0.468 0.228 0.336 2.006 1.902 2.086 2.125 

Chl b 3 4 5 5 0.404 0.411 0.317 0.274 1.228 1.565 1.315 1.738 

Chl (a+b) 3 5 4 6 0.345 0.446 0.278 0.311 3.157 3.385 3.316 3.775 

Chl (a/b) 3 4 6 9 0.365 0.352 0.204 0.115 0.225 0.250 0.251 0.293 

W
av

el
en

th
s+

H
V

Is
  Chl a 2 8 273 120 0.293 0.639 0.239 0.383 1.996 1.567 2.070 2.047 

Chl b 2 6 103 203 0.409 0.630 0.354 0.399 1.224 1.241 1.248 1.581 

Chl (a+b) 2 8 9 121 0.333 0.659 0.292 0.380 3.188 2.656 3.283 3.581 

Chl (a/b) 3 4 254 271 0.415 0.500 0.312 0.369 0.215 0.220 0.234 0.247 

 

 

 

 

 

 

 



75 
 

Tabela 4.. Predictions performance metrics for the Random Forest Regressor model for the 

three input databases on the two acquisition dates. The parameters used in the analyses are 

Coefficient of determination (r²); Coefficient of determination with Cross validation (r² CV); 

Root mean square error (RMSE); Root mean square error with Cross validation(RMSE CV). 

  Parameters R² R²(CV) RMSE RMSE(CV) 

    1st 2nd 1st 2nd 1st 2nd 1st 2nd 

R
ef

le
ct

an
ce

 

 Chl a 0.874 0.893 0.113 0.242 0.844 0.853 2.230 2.271 

Chl b 0.897 0.901 0.290 0.337 0.510 0.643 1.341 1.661 

Chl (a+b) 0.877 0.897 0.293 0.288 1.312 1.458 3.403 3.836 

Chl (a/ b) 0.899 0.956  0.258  0.293 0.090  1.250 0.243 1.100  

In
de

x 

 Chl a 0.876 0.909 0.157 0.365 0.836 0.786 2.180 2.078 

Chl b 0.911 0.905 0.391 0.355 0.475 0.629 1.242 1.638 

Chl (a+b) 0.894 0.915 0.282 0.387 1.269 1.327 3.307 3.561 

Chl (a/ b) 0.910 0.902 0.307 0.258 0.085 0.097 0.235 0.268 

R
ef

le
c+

In
d

ex
 

 Chla 0.899 0.905 0.231 0.353 0.793 0.803 2.082 2.097 

Chlb 0.909 0.908 0.375 0.373 0.480 0.617 1.258 1.614 

Chl (a+b) 0.898 0.913 0.304 0.380 1.247 1.338 3.255 3.579 

Chl (a/ b) 0.906 0.911 0.342 0.339 0.087 0.093 0.228 0.253 
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Abstract. The assessment of physiological parameters in vineyards can be done by direct 
measurements or by remote, indirect methods. The latter option frequently yields useful data 
and development of methods and techniques that make them possible is worthwhile. One of the 
parameters most looked for to define the quality status of a vineyard is the degree Brix of its 
grapes, a quantity usually determined by direct measurement. However, other ways may be 
possible, and presently Brix estimations in vineyards using as data sources field radiometry, 
localized Brix measurements and satellite imagery are reported. The investigation was 
developed in a commercial vineyard in south Brazil at two stages of the 2017/2018 vegetative 
cycle. Brix estimates were derived using a machine learning model, the Random Forest 
Regression (RFR) algorithm. Results produced coefficients of correlation between observed 
and predicted degrees Brix as high as 0.89. Analysis of an importance parameter, the Gini index, 
suggested that spectral data at ultraviolet, visible, and near-infrared wavelengths and the 
vegetation indices TGI and NDVI are the most important variables used for the predictive 
model. This methodology is potentially useful for the derivation of vineyard quality parameters 
at situations when specific vineyard conditions, as rugged terrain and large variations in soils, 
turn direct measurements a difficult task.  
 
Keywords: degree Brix, hyperspectral data, Random Forest Regression. 

*Diniz Carvalho de Arruda, E-mail: dinizcarvalho28@outlook.com 

3.3.1  INTRODUCTION 

Grape producers are in constant search for fruit excellency, and for this sake factors that 

have to be in close monitoring include soil fertility, vine susceptibility to pathogen attacks, and 

effects of humidity, temperature, and exposure to sunlight. These procedures are closely related 

to precision viticulture, and one of the techniques employed in such approaches are those of 

remote sensing, supporting the decision-making of producers with the help of remotely acquired 

data carrying information about the vineyard 1–4. Studies using remote sensing technologies can 
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help check plots of land, spatially manage vine vigor characteristics, and qualify homogeneous 

production zones5,6. Medium and high-resolution images are used to delineate vineyards, and 

by spectral indices it is possible to detect stresses related to water status, diseases, and soil 

characteristics 3,7–9 

Moreover, remote sensing is also used at a proximal, near-plant scale, through the use 

of hyperspectral sensors, with the potential to detail the characteristics of vines in a non-

destructive way10–12 Hyperspectral indices were also used to check the grape composition in the 

field and laboratory 13,14 

Furthermore, spectroscopic modeling via proximal and satellite sensors supplies 

information on the progress of vineyard production throughout the harvest. Non-invasive 

methods for monitoring and controlling the nutritional and pathological state of the vineyard 

are essential. Soil macros/micronutrients, air and soil temperatures, solar exposure, rainfall, and 

management are relevant factors when fruit quality is looked for, and for this sake following 

vine development throughout the phenological cycle becomes indispensable. 

One of the most searched parameters related to fruit quality is the berry sugar content, 

which is expressed by the Brix degree (ºBrix), or briefly Brix, a measure of the number of 

dissolved solids in a liquid via its specific gravity, used especially to measure dissolved sugar 

in fruits (15) ºBrix is commonly estimated at the vineyard by devices called refractometers, a 

direct measurement performed on berries, but alternative techniques may eventually prove as 

more practical, for example in occasions where ºBrix have to be known in remote vineyards, or 

in very large surfaces, especially if in this last case the vineyard extends over areas with rugged 

or inhomogeneous soils, where remote sensing techniques may be useful. Such indirect 

determination or prediction of needed parameters and its validation by comparison with direct 

measurements can be done by machine learning models like the Random Forest Regression 
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(RFR), a model tolerant to noisy data which evaluates correlations between variables using a 

random vector. The RFR performance is high in setting spectral reflectance measurements, 

because of its low sensitivity to outliers 16,17. Hence, this study has the objective to estimate the 

grape degree Brix in a commercial vineyard by proximal sensing and nanosatellite imagery 

using the RFR machine learning model. 

3.3.2 MATERIALS AND METHODS 

3.3.2.1  Study area and sampling criteria  

As study area the Luiz Argenta Winery was chosen, for reasons of access facility and 

favorable topography. It is important Brazilian producers of fine wines, located at the 

northeastern part of State of Rio Grande do Sul, in Flores da Cunha municipality. The total 

cultivated area is approximately 48 hectares, and six Cabernet Sauvignon plots were selected, 

this choice of vine grapes of the same variety being made to avoid confusion due to genetic 

differences from two or more different varieties with influences on observable properties.  

Conduction system was espalier trellis, rootstocks were Paulsen 1103, viticultural 

treatments were conventional with weekly applications, row orientation was east-west solar 

exposure (plots 4a, 4b,16a, 16b, following the winery’s naming use) and north-south (plots 19a, 

19b, both at higher elevations with respect to other plots); row spacing was 2.8 meters, with 

1.45 meters between plants at same row. The availability of soil sampling information, easy 

access to the vineyards, and collection time were considered in the selection process of these 

plots. At each plot four plants located at central rows were selected and marked. 

The experiment was conducted in two stages of the grape ripening cycle.  As data 

sources this investigation was based on three input data sets, considered to be fundamental to 

following the evolution of the spectral behavior of the leaves at distinct stages of sugar 

concentration in the grape, as follows: 



79 
 

3.3.2.2  Spectroradiometric   

Field spectroradiometric measurements were performed on December 15, 2017 and 

February 27, 2018. The first date coincides with the veraison stage of the phenological cycle, 

and the second with the phenolic ripeness, being close to harvest time. The equipment used for 

the measurements was a spectroradiometer Field Spec® 3 ASD – Analytical Spectral Devices, 

which performs reflectance measurements at intervals of three to five angstroms, in the 350nm 

to 2500nm domain, including, therefore, the spectral ranges from the ultraviolet (UV) to the 

near and mid-infrared (NIR, SWIR1 and 2)10.  

The Leaf Clip probe accessory was used, and measurements were taken in four leaves 

per plant, in four points for each leaf, on the adaxial part of the selected leaves, opposite to the 

clusters under full light, in the middle third of the canopy, on branches closest to the main trunk, 

for four plants per plot. Calibration measurements were performed with a built-in Spectralon® 

reference plate. 

 Calculations were done to produce a single, average spectrum per plant. At the end of 

each observing run, considering four plants per vine plot and six plots, 24 reflectance spectra 

were available for analysis. On these spectra, corrections for filtering noisy data and reflective 

plateau shifts were performed using Savitzky-Golay18 filters, Jump Correction 19 and 

normalize20 function. 

3.3.2.3  ºBrix measurements 

A refractometer was used to measure the ºBrix of grapes, an expression of soluble solids 

content21. Measurements were made on February 8, 2018 at temperatures between 23ºC to 

30ºC. Four grape clusters were chosen at lower parts of the selected plants, and at each cluster 

the degree Brix was measured at four berries at lower parts of the clusters. Averages were made 

for each plant and the resulting data set had twenty-four ºBrix values. 
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3.3.2.4  Satellite images 

Two images from the Dove-R sensor aboard PlanetScope nanosatellites were acquired 

at dates December 16, 2017, and February 28, 2018. The product level 3B, Surface Reflectance 

(SR), provides images with radiometric and atmospheric correction, projected to plane 

coordinates, with spatial resolution of about three meters. There are four bands: blue (465nm-

515nm), green (547nm – 583nm), red (650nm – 680nm), and NIR (845nm – 885 nm)22.  

Both images were treated to the radiometric normalization process, a process of 

reducing spectral uncertainties, influenced by atmospheric variations from one year to another. 

The code was developed in a computational environment with the R language, based on the 

normalization method. The radiometric normalization model was done through a PIF – Pseudo-

Invariant Features technique, that is, using control points without radiometric variation, on a 

reference image with Normalized Difference Vegetation Index (NDVI)23. The 2017 image was 

used as a reference and the homologous points, with the least possible radiometric variation, 

band by band (José et al., 2017). A new linear transformation was applied to each band from a 

spectral sampling grid. The normalization method applied in this work was described by 25. 

After the treatment of the images, a pixel sampling procedure was done for the creation 

of the grape Brix prediction models. The selection of pixel samples in the images happened 

with the creation of a buffer with an area of 9 m² around the midway point of the plants selected 

for this study.  

3.3.2.4.1  Vegetation Index 

Vegetation indices are biophysical parameters that provide important information about 

canopy structure and leaf traits of the vegetation26,27 These variables were entered as input data 

into the estimation models and the following Vegetation Indices were calculated from the 

measured reflectance spectra: Normalized Difference Vegetation Index (NDVI)23, Triangular 
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Greenness Index (TGI)28 and Visible Atmospherically Resistant Index (VARI) 29. These indices 

were added as input variables in the predictive models and analyzed on time with the field data. 

3.3.2.5  Random Forest Regression  

Machine learning models are widely used for classification processes 30 and estimation 

(Feng et al., 2017), and presently for prediction the non-parametric algorithm Random Forest 

Regressor (RFR) was used. The RF follows the principle of randomly using decision trees from 

a set of samples (Breiman, 2001). The main parameters of the model are estimators as tree 

depth, scores per bagging, and Out of Bagging (OOB), among others 20. 

The selection of the input features by the RFR algorithm occurs by applying the 

importance criterion for the variables, Gini Index, a multivariate process to the variable that 

best divides the nodes randomly 30,33,34 Majority voting took place to select the best decision 

tree, in the classification process and validation utilizing OOB, a test set, consisting of 36% of 

the total samples (Immitzer et al., 2012). In tasks involving plant spectroscopy, OOB 

validations have supplied low error estimates in the visible and shortwave infrared spectral 

regions16,30,35. 

From the measured Brix values a table was compiled with the descriptive statistics for 

each of the six vine plots, including the maxima, average and minima values, besides 

coefficients of variation. The predicted Brix was estimated both from leaf hyperspectral 

reflectance spectra and from PlanetScope imagery, using the Random Forest Regression 

algorithm; hence, the data base formed by the average values for each plot was used for two 

input groups: ºBrix x Hyperspectral Reflectance and ºBrix x Surface Reflectance and 

Vegetation Indices. For RFR parameters n_estimators = [50,100,250,500] were used; these 

values express the maximal number of trees used at models to predict the Brix values from each 

sensor. Several estimators were tested to assess the performance stability of the model 
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predictions, expressed by the following metrics: Mean Square Error (MSE); Root Mean Square 

Error (RMSE); Coefficient of Determination (R²); Adjusted R² (adj_R²); and Out of Bagging 

(OOB). Processing was done in Python language environment, using libraries found in the 

open-source data manipulation and processing program Anaconda. The libraries used for 

exploratory, predictive, and visual analysis were Pandas, Numpy, MatplotLib, Seaborn, and 

Scikit- Learn. 

After metrics analysis and comparison, the RFR models with 500 decision trees were 

chosen for spacialization using satellite data and the vegetation índices (NDVI, TGI and VARI) 

for the two acquisition dates, maps for predicted Brix being produced.  

3.3.3  RESULTS AND DISCUSSION 

Measurements of grape Brix (Figure 2) showed a coefficient of variation of about 5%-

6%, except for plot 16a which presented the largest variation, around 9%. These results are 

compatible with other works estimating grape Brix values and variations close to summer 

harvest time (Pedro Júnior et al., 2014; Santos et al., 2011). The sugar content showed similar 

values for all plots, an expected behavior since a single variety was studied; however, the 

highest coefficient of variation was found for plot 16a in the second and last data reading, in 

which phytosanitary problems were found in some plants, bunches, and leaves with end-of-

cycle diseases.  

Peak ºBrix values were found at 19a plot; this parcel was the one with lesser density of 

plants and canopies, presenting smaller bunches, on stony soil with exposed surface. The higher 

variations in Brix at first acquisition date can be understood by the fact that at the beginning of 

the grape ripening cycle, in the berry color change, it is normal for the leaves to have gotten 

distinct chlorophyll values, since the plants are in the full phase of photosynthetic activity. 38.  
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The Cabernet Sauvignon grape variety is known for its long, late phenological cycle 

when compared to other varieties. However, the variations between plots can change the 

dynamics of each stage, each plot being days ahead or behind another plots with respect to the 

same stage. Therefore, and ideally, grape harvest does not occur simultaneously for all plots, 

grapes depending on climate-soil-plant interactions for definition of the best ripening. 

 

Figura 12.Descriptive statistics for grape Brix readings, refractometer data measured in situ on 

plants in the six studied Cabernet Sauvignon plots. 

The prediction metrics of the models from both HR and SR input data sets are presented 

in Table 1, with number of estimators between 50 and 500. Predictions with the proximal sensor 

input data (HR) for the first date (1st) presented R2 values above 0.86    independently of the 

number of estimators (1st), and for the second date (2nd) R2 values were between 0.82 and 0.85. 

Still for HR, the OOB metric shows, with 100 estimators, a value of 0.03 and 0.19 for 2nd with 

500 estimators, which were the best scores among all models for input from leaf hyperspectral 

reflectance. The estimation values are compatible with results reported by,39, with R² between 

0.83 and 0.92. 
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Keeping with Table 1, the results of the metrics for the input data from surface 

reflectance (SR) show that in both collection dates R2 values were in the range between 0.84 

and 0.87. The model with 500 estimators obtained the lowest OBB scores, with values of 

0.01(1st) and 0.04 (2nd). 

Tabela 5. Metrics for evaluating grape ºBrix estimates for hyperspectral data (Hyperspectral 

Reflectance, HR) and PlanetScope (Surface Reflectance and Indices, SR). Mean Square Error 

(MSE); Root Mean Square Error (RMSE); Coefficient of Determination (R²); Adjusted R² 

(adj_R²); Out of Bagging (OOB). 

Parameters Estimators

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

50 0.28 0.32 0.53 0.57 0.86 0.84 1.00 1.00 0.11 0.28

100 0.27 0.36 0.52 0.60 0.87 0.82 1.00 1.00 0.03 0.20

250 0.25 0.33 0.50 0.57 0.87 0.84 1.00 1.00 0.05 0.30

500 0.26 0.30 0.51 0.55 0.87 0.85 1.00 1.00 0.08 0.19

50 0.29 0.26 0.54 0.51 0.86 0.87 0.79 0.87 0.06 0.06

100 0.21 0.25 0.46 0.50 0.89 0.88 0.85 0.82 0.14 0.05

250 0.24 0.28 0.49 0.52 0.88 0.86 0.83 0.81 0.08 0.06

500 0.27 0.26 0.52 0.51 0.86 0.87 0.81 0.82 0.01 0.04

SR

adj_R² OOB MSE RMSE R²

HR

 

Figure 3 shows the importance of the bands of each sensor in the estimation. For 

hyperspectral data (Figure 3a) the most important bands on the first date (1st) are concentrated 

in the spectral region of the ultraviolet, red, and near-infrared and some small areas in the 

SWIR2. In the second collection (2nd), the model selected wavelengths of the ultraviolet, blue, 

and SWIR1. For satellite data plus vegetation indices (Figure 3b) the Gini Index was used as 

indicator of importance, and indices VARI, NDVI, and TGI showed their importance to the 

spectral modeling. The NDVI showed relevance in both acquisition dates. TGI Index was only 

relevant in the first collection and B3 in the second collection. TGI is considered as a valuable 

indicator at more advanced phenological stages, at the onset of changes in leaf color and 
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decrease of photosynthetic40,41 NDVI is a measure of the vegetative vigor of a vineyard, where 

high vigor is associated with low water stress, and medium vigor with greater leaf area; in 

general, it is considered that low vigor increases fruit quality parameters 42,43. Spectral regions 

NIR and Red edge are sensitive to physiological changes in plants and to the stage of their 

development38 . 

Figure 5 presents the Brix estimate for the six vine plots. As the cycle progresses and 

grape ripeness approaches, it is possible to identify an increase in Brix (hatchings in dark violet 

shades). From the models it is suggested that rightness rate is high; even at coarser satellite 

resolutions it is possible to survey grape quality, as it is suggested by44. 

 

Figura 13.Gini index for feature selection in the models with 500 estimators: (a) 

Spectroradiometer; (b) PlanetScope. 
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Figura 14.Degree Brix estimates to the six studied vineyards(4a, 4b, 19a, 19b, 16a and 16b). 

(a) December 2017; (b) February 2018. 
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4 CONCLUSION 

The results presented here suggest that the derivations made using the Random Forest 

Regressor were significant, either based in proximal or satellite data; this perception is 

supported by analysis of the metrics evaluating the predictions for both dates. The 

measurements of ºBrix are linked to the vegetative state of the plant and the exchange processes 

between plant and its environment, involving an analysis more complex than only considering 

light reflection by leaves42,43. This is important to set up a better understanding between spatial 

factors and the development and monitoring of vine vegetative vigor.  

The importance and utility of high-resolution sensors like Dove-R was highlighted, as 

well as that using nanosatellite and proximal derived products will help address the impacts of 

management, weather, soil, and climate on vineyard vegetative growth and consequently the 

quality of its grapes. For future studies, the development of a sampling grid with a higher 

quantity of plants, plots, and varieties will help to understand the identity of the spectral 

signatures of the vines and to seek new relationships with other grape quality and quantity 

parameters. 
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6 CONSIDERAÇÕES FINAIS   

Os objetivos propostos nesta tese demonstraram um grande avanço no quesito 

reconhecimento espectral e espacial de vinhedos em diferentes ambientes de cultivos. A 

aplicação dos modelos de espectroscopia, para classificação e predição dos dados  remotamente 

adquiridos e em campo, apresentou métricas de avaliação satisfatórias, o que garante uma 

performance aceitável dos modelos.  

Este estudo demonstrou que a discriminação espectral de variedades e região, utilizando 

algoritmos de aprendizagem de máquina(CDA, LGBM, RF, SVM), são relevantes uma vez que 

ajudam na compreensão das transformações da superfície da folha em diferentes IGs, e a 

identidade espectral para cada variedades ao longo de um espectro hiperespectral. Ademais 

constatou-se regiões espectrais e bandas, que melhor explicam a separabilidade entre as 

vinícolas e variedades. Os modelos de redução da dimensão dos espectros de reflectância 

hiperespectral(Band ration, KPCA), foram cruciais no processo de diminuição do número de 

variáveis e agilidade na execução dos modelos de classificação. 

A estimativa dos parâmetros de clorofila coletados nas seis  parcelas da vinícola Luiz 

Argenta apresentou desempenho favorável a predição utilizando reflectância hiperespectral, 

com destaque para RFR, sua performance foi superior aos PLSR, qualificando como um modelo 

mais adequado para processos preditivos envolvendo sensores hiperespectrais. A regressão para 

os parâmetros de grau brix, tanto por sensor proximal como por nanossatélite, construíram 

valores preditivos similares aos mensurados com refratômetro, ou seja, um 

monitoramento(folhas e dossel), e dossel torna-se adequado no controle da qualidade  da uva, 

pelo menos para apontamentos envolvendo a doçura da uva.  

As folhas e dosséis vegetativos em vinhedos são unidades de análises de difícil 

padronização espectral, as vezes pela similaridade entre suas assinaturas(folhas medidas 
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isoladamente) ou/e influência da estrutura do vigor vegetativo e/ou pela mistura de outras 

classes de usos(dossel mensurado por satélite). Os parâmetros de pigmentos fotossintéticos e 

grau brixº da uva são vinculados aos processos externos, a iteração entre planta e à ambiência, 

isso é complexo de ser analisado pela reflexão da luz. No entanto, o vigor vegetativo da vinha 

está interligado aos fatores espaciais onde a planta é cultivada; identificar características 

específicas nas assinaturas espectrais ao longo das parcelas auxiliará na construção de zonas 

homogêneas e amplificar o número de folhas medidas e datas analisadas ajudará a entender a 

identidade das assinaturas espectrais das variedades de forma temporal (acompanhamento dos 

estágios do ciclo) e relacionar com outros parâmetros de qualidade e quantidade da uva.  
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