
OpenCAL++: An object-oriented architecture for
transparent Parallel Execution of

Cellular Automata models
Andrea Giordano∗, Donato D’Ambrosio†, Davide Macr̀ı ∗,

Rocco Rongo†, Gladys Utrera‡, Marisa Gil‡, William Spataro†
∗ICAR-CNR, Rende, Italy

† University of Calabria, Department of Mathematics and Computer Science, Italy
‡Universitat Politècnica de Catalunya. BarcelonaTECH, Spain

Abstract—Cellular Automata (CA) models, initially
studied by John von Neumann, have been developed
by numerous researchers and applied in both aca-
demic and scientific fields. Thanks to their local and
independent rules, simulations of complex systems can
be easily implemented based on CA modelling on
parallel machines. However, due to the heterogeneity
of the components - from the hardware to the soft-
ware perspective-the various possible scenarios running
parallelism in today’s architectures can pose a chal-
lenge in such implementations, making it difficult to
exploit. This paper presents OpenCAL++, a trans-
parent and efficient object-oriented platform for the
parallel execution of cellular automata models. The
architecture of OpenCAL++ ensures the modeller a
fully transparent parallel execution and a strong ”sep-
aration of concerns” between the execution parallelism
issues and the model implementation. The code im-
plementing the Cellular Automata model remains the
same whether the execution performs in a shared-,
distributed-memory or a GPGPU context, irrespec-
tive of the optimizations adopted. To this aim, the
object-oriented paradigm has been intensely exploited.
As well as the OpenCAL++ architecture, we present
the description of a simple Cellular Automata model
implementation for illustrative purposes.

Index Terms—Parallel Computing, Cellular Au-
tomata, Modelling and Simulation

I. Introduction
Complex systems modeling is in general a very compute-

intensive task as their formalization usually relies on in-
tractable differential equations. However, tasks that are in-
volved in complex systems simulation can strongly benefit
of alternative approaches in which the system is approxi-
mated by its decomposition in many interacting (simple)
entities. Among these methods, Cellular Automata (CA)
are one of the first parallel computing abstract models
and have proved to be particularly suitable for systems
whose behavior can be described in terms of local in-
teractions [1]. Originally studied by John von Neumann
to study self-reproduction problems [2], CA models have
been developed by numerous researchers and applied in
both theoretical and scientific fields (e.g., [3], [4], [5], [6],
[7]), [8]). Thanks to their local and independent rules,

simulations of complex systems that are based on CA
modeling can be easily implemented on parallel machines.
Even though Parallel computing [9] has undoubtedly
proved its effectiveness in many application scenarios [10],
overheads can arise due to the parallelization process itself,
that can reduce the obtainable benefits (e.g., [11], [12],
[13], [14]). To reduce this overhead, different strategies
have been envisioned ( [15], [16]. Moreover, the low-level
implementations of CA execution must be devised for each
parallel execution context, such as shared memory (e.g.,
OpenMP) and distributed memory (e.g., MPI) architec-
tures and modern GPGPU (e.g., CUDA or OpenCL).
The choice of the suitable execution context based on
hardware availability is a key factor for providing dramatic
computational improvements in computational results. On
the other side, parallel programming requires strong tech-
nical expertise, let alone considering the different parallel
execution contexts and adopted optimization strategies.
Indeed, different high level CA modeling APIs were pro-
posed in the literature in attempting to mitigate these
issues. However, in general, these solutions [17]–[19] lack
a full portability across different execution contexts and
parallelization strategies requiring the model program to
be adapted from case to case.

In this article, we present OpenCAL++, a platform
for transparent and efficient parallel execution of CA
models. Differently from the aforementioned solutions,
OpenCAL++ makes parallelism transparent to the mod-
eller and addresses many aspects of the underlying for-
mal computational paradigms and optimization strategies.
Moreover, it implements a set of load balancing strategies
to accelerate the computation. The adoption of a fully
object-oriented approach enables the full transparency of
the code and a ”plug-and-play” feature that allows to
easily insert new parallel optimization strategies and new
parallel execution contexts.

The paper is organized as follows. In Section II the
parallel execution of CA models is discussed, while Section
III presents optimization techniques for CA parallel exe-
cution. Section IV describes the OpenCAL++ platform
object-oriented aspects, while Section V shows a simple

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of 
any copyrighted component of this work in other works. http://dx.doi.org/10.1109/PDP59025.2023.00045



CA implementation for illustrative purposes. Eventually,
conclusions and future developments are given in Section
VI.

II. Parallel Execution of Cellular Automata
The Cellular Automata (CA) computational paradigm

can be easily adopted to model and simulate complex
systems characterized by a high number of interacting
elementary components. Due to their implicit parallel na-
ture, CAs can be productively parallelized across multiple
parallel machines to scale and speed up their execution.
Execution of CA on both sequential and parallel comput-
ers consists in a step-by-step evaluation of the transition
function for each cell of the cellular space. In what follows,
implementation issues of the parallel execution of CA
referred to the three main parallel execution contexts are
summarized.

A. Distributed memory

Cellular Automata

Region 1

(Node1)

Region 2

(Node 2)

Region 4

(Node 4)

Region 3

(Node 3)

Region 1

(Node1)

Region 2

(Node 2)

Region 4

(Node 4)

Region 3

(Node 3)

Mono-dimensional

Partitioning

Two-dimensional

Partitioning

Fig. 1: Distributed context: the cellular space is parti-
tioned into regions associated with parallel computing
nodes. Two alternative types of partitioning are shown:
uni-dimensional and two-dimensional.

The parallelization of CA execution on distributed
memory systems can be efficiently achieved by partitioning
the initial cellular space into different regions (or ter-
ritories), which are assigned to the different processing
elements (node) (e.g., [12], [20], [8]), as shown in Figure 1.

Each node is responsible for executing the transition
function of all the cells belonging to the region it manages.
As previously stated, the computation of a transition
function of a cell is based on the states of the cell’s
neighbourhood. When a cell is located at the edge of
a region, its neighbourhood can overlap more regions
(see Figure 2). Hence, the transition function execution
of these cells requires information belonging to adjacent
computing nodes. For this reason, in a distributed memory
context, the states of border cells (often called halo cells in
CA literature) need to be exchanged, at each computing

step, among adjacent nodes in order to keep the parallel
execution consistent. The border area of a region (the
halo cells) is divided into two different sub-areas: the local
border and the mirror border (see Figure 3). The local
border is managed by the local node and its content is
replicated in the mirror border of the adjacent node.

Linear

Partitioning

Bidimensional

Partitioning

Cell

Neighbourhood

Node 1 Node 2

Node 1 Node 2

Node 3 Node 4

Fig. 2: A cell’s neighbourhood overlapping more regions.

Borders{{

Local Border

Mirror Border

Local Border

Mirror Border

Node 1

Node 2

Node 1 Node 2

Fig. 3: Border areas of two adjacent nodes in the case of
uni-dimensional partitioning

To summarize, the parallel execution of a CA model
consists in each parallel node executing the following
execution loop:

Algorithm 1: CA parallel execution
1 for each step do
2 SendBorder()
3 ReceiveBorder()
4 for each cell C do
5 N=getNeighbourhood(C)

C-newState=transitionFunction(C,N)
6 swapReadWriteMatrices()

B. Shared memory
The parallel execution of CA in a shared memory

context can also exploit space partitioning as for the
case of distributed memory one. In this case, though, the
processing elements are now parallel thread, instead of the
computing nodes, each managing a different portion of CA
space, while halo border exchanges are no longer needed
since each thread has access to the entire memory. As a
consequence, the parallel loop for the shared memory case



is the same as in Algorithm 1 except for the SendBorder()
and ReceiveBorder() calls.

C. GPGPU execution
The GPGPU paradigm enables an efficient parallel ex-

ecution of CA models by assigning each cell to a different
GPGPU thread ( [21]). The CA space domain is initially
transferred from the host memory to the device (global)
memory. Afterwards, no host-memory transfers, which is
a typical bottleneck of GPGPU computations, are fur-
ther required. A further improvement of computational
performances can be obtained by exploiting the device
shared memory [22]. In addition, especially when the CA
domain is particularly large, a multi-gpu approach can be
considered, consisting in different GPGPU devices com-
municating among each other. In both shared memory and
multi-gpu approaches, the space partitioning and border
exchange methodology described for the distributed mem-
ory case (see section II-A) can also efficiently exploited.

III. Parallel Execution Optimization strategies
The execution time of a parallel application executed on

N nodes, TN , can be expressed as [23]:

TN = T1

N
+ TO = T1

N
+ Tcomm + Tidle + Tconf (1)

where T1 is the sequential time, i.e., the time to ex-
ecute the computation on a single node, and TO is the
overhead time added by the parallelization process itself.
The overhead time can be seen as the sum of three main
contributions related, respectively, to the time needed for
setting up and transmitting data between nodes (Tcomm),
the idle time experienced by faster nodes that need to
wait for slower nodes (Tidle) and the time needed to
solve conflicts, i.e., manage contentions on shared data
(Tconf ). It is easy to realize that the time needed to solve
conflicts can be considered negligible in the case of parallel
execution of CA, while Tcomm and Tidle, related to the
communication and synchronization burden, respectively,
can strongly impact on the overall performance resulting
in poor scalability. The optimization strategies presented
in what follows are aimed for improving parallel perfor-
mances by attempting to reduce, to different extents, the
communication burden and the synchronization burden.

A. Communication/Computation interleaving strategy
The Communication/Computation interleaving [24]

strategy aims to reduce the synchronization burden by
moving the transition function computation of a large set
of cells between the SendBorder() and ReceiveBorder()
operations (see Algorithm 1). This is possible by consid-
ering that only cells located at the edge part of a region
actually have neighbour cells falling into the halo border
area, and so the transition function for all the other cells
can be computed before receiving borders from neighbour
regions.

Moving the transition function computation before the
ReceiveBorder() operation results in having the ex-
change of halo borders and the transition function com-
putation occurring at the same time, enhancing the de-
gree of parallelism of the system and, consequently, the
performances.

B. Multi-border strategy

The Multi-border strategy [24] reduces the number of
synchronization points by adding some redundant compu-
tation. In particular, the exchange of borders is carried
out each k steps, with k > 1 (instead of each step). At
each border exchange operation, k borders are actually
exchanged. After this multi-border exchange operation,
each region has the border located at the more external
part working as halo replica as usual, and so the transition
function for all the cells can be computed, including the
remaining borders. In this way, the second more external
border can now work as halo replica for the third more
external border, and so forth. After k steps the k border
has to be exchanged again.

C. Look-ahead strategy

As previously stated, in the CA context synchronization
among different nodes is mandatory at each computational
step in order to maintain consistency. The aim of the Look-
ahead strategy [16] is to relax the synchronization burden
by exploiting the so-called lookahead concept, which is
derived from the Discrete Event Simulation research field
[25]. In particular, the algorithm reduces the number
of border exchange phases, which otherwise would be
required at each computational step, by computing at
runtime the (minimum) number of CA steps that a node
can carry out without affecting the border cells that are
of interest of adjacent nodes.

D. Load Balancing strategy

One of the worst source of performance degradation
in parallel systems is due to the synchronization burden
related to the not balanced workload assignment to the
processing elements. In such a scenario, the least loaded
processing elements have to wait the most loaded ones.
This is particularly significant in CA execution scenario
where the processing elements need to synchronize each
other at each step. In addition, in CA modelling natural
phenomenon, such as lava flow, fire spreading, and so
forth, the unbalanced workload condition comes directly
from the unpredictability of the natural phenomenon evo-
lution resulting in different regions of the space domain
being more affected by a given physical condition (e.g.
presence of lava, fire, water, etc.). In the Load Balancing
(LB) strategy [26], the computational load is dynamically
(and optimally) balanced among the parallel processing
elements during the simulation.



IV. The OpenCAL++ platform
The OpenCAL++ is a C++ platform for transparent

and efficient parallel execution of cellular automata mod-
els. A cellular automata model executed on the Open-
CAL++ platform is made up of 4 main software entities:
the cell class, the model object, the space object and the
engine object. The first two entities are those of interest
for the cellular automata modeller, while the latter two
are OpenCAL++ own objects defining how the parallel
execution must be carried out. The architecture of Open-
CAL++ ensures a full transparent parallel execution and
a strong “separation of concerns” between the parallel
execution issues and the model implementation. Roughly
speaking, OpenCAL++ allows the modeller to be com-
pletely unaware of the parallel execution context, that is,
the code implementing the cellular automata model re-
mains the same regardless if the parallel execution is based
on a shared or distributed memory context, and regardless
of the parallel execution optimization adopted, such as
the multi-border strategy or load balancing. To this aim,
the object-oriented paradigm has been strongly exploited.
In particular, four “abstract” base classes are envisioned
defining the basic features of the 4 main software involved
entities. Such entities have to be implemented by defining
subclasses of the four base classes. In the following, a brief
description of such base classes is reported.

• Cell class: This is the base class that represents
the status of a single cell of the cellular automata.
For instance, in a landslide CA model, a subclass
of Cell could host the status of the landslide
(i.e., the debris amount and the altitude) in a
generic point of space. The specific Cell subclass
is used to define the other relevant classes through
the C++ template feature. For example, in a
landslide model supposing the Cell subclass is
called LandslideState, the other base classes are
specified as follows: Model2D<LandslideState>,
Space2D<LandslideState>,
Engine2D<LandslideState>. The abstract function
of Cell must be implemented by subclasses in order
to specify how to serialize/deserialize the status of a
cell (for file writing purposes) and how to visualize it
in terms of RGB coloring. This issue will be better
clarified in the following (see Section IV-A and V).

Fig. 4: Examples of Model2D subclasses.

• Model2D class: This is the base class for the def-
inition of the CA model. The modeller is in charge

of defining a subclass of Model2D by implementing
its abstract function init and transitionFunction.
The init implementation defines the initialization
of the CA, while the transitionFunction imple-
mentation defines the generic cell transition func-
tion at a generic CA time step. The code of init
and transitionFunction consists in regular C/C++
code where the reading and writing operations on
CA domain space transparently occur by means of a
specific high level API supplied by the Space2D base
class. An OpenCAL++ application thus consists of a
subclass of Model2D, furtherly specified by a subclass
of Cell as template class (see Figure 4).

Fig. 5: Space2D subclasses hierarchy.

• Space2D class: This is the ancestor of all the classes
managing the CA domain. Each subclass of Space2D
implements all the abstract functions of Space2D that
represent an API to be used by the modeller to
read/write the CA domain. The Space2D subclasses
are in charge of implementing all the technicalities
of the specific parallel paradigm and optimization
strategy they are referred to. As a consequence, these
subclasses are naturally arranged in a hierarchical
manner (see Figure 5). For example, Space2DMpi is
a direct subclass of Space2D and is in charge of man-
aging the halo border exchange by MPI message ex-
changes, as typically required in a distributed memory
context. Space2DMpiLB is a subclass of Space2DMpi
class and it adds, to the Space2DMpi features, the
code required for achieving load balancing. It imple-
ments the basic strategy for load balancing, while its
subclasses, Space2DMpiLB2 and Space2DMpiLB3, refer
to more advanced load balancing strategies.

• Engine2D class. Its subclasses are in charge of im-
plementing the basic control loop for the specific
paradigm/strategy adopted.

A. The Visualizer module
OpenCAL++ comes with a built in tool for “offline”

visualization. In particular, during the parallel execution,
the Space2D subclasses can optionally dump the state of



all the CA space domain into a file at each step. Each
computing node writes its own file. After the parallel
execution is terminated, the OpenCAL++ visualizer is
in charge of reading the output files produced by all
the nodes in order to “reconstruct” the CA space and
then visualize it. The Cell virtual methods have been
devised specifically for these purposes. In particular, the
stringEncoding method has to be implemented in Cell
subclasses in order to supply a string representation of the
state of a cell. This method will be called by the Space2D
subclasses when it has to write the CA space domain
into a file. The method composeCell does the opposite
operation reconstructing the state of a cell starting from
a cell state string representation. Finally, the method
outputValue returns an RGB color based on the cell state.
The visualizer reconstructs the whole CA space domain by
reading from the output files of all the nodes and properly
calling composeCell for each cell. Afterwards, all cells
are displayed on the screen based on the returned values
of outputValue. In the following, we introduce a simple
example of OpenCAL++ CA model that possibly better
clarifies these issues.

V. A simple CA model Implementation: The Ball
CA Model

In this section, we introduce a straightforward CA
model example consisting in a “ball” moving through
space. In particular, the CA cell state can be either ‘active’
or ‘inactive’. The CA initial configuration concerns of a
set of ‘active’ cells, that are the ones falling inside a
given circle, surrounded by all the other cells set to be
‘inactive’. The transition function, applied to a generic cell
c, simply copies the state of a neighbour cell, i.e., the one
in the opposite direction w.r.t. the moving direction on
the state of the cell c. The overall effect is to move the
entire ball of active cells throughout the CA space domain
along the given moving direction. This simple CA model
can be used as a “Hello World” test for a CA execution
platform (as OpenCAL++). However, it can be also very
useful in reproducing a load imbalanced condition when
the computational load changes dynamically during the
advancement of the CA execution.

In the following, the code implementing the Ball CA
model using OpenCAL++ is reported. As previously
stated, the code of a OpenCAL++ model is made up
of 2 main parts: a subclass of the OpenCAL++ base
class Cell, and a subclass of the OpenCAL++ base class
Model2D where the subclass of Cell is used as template
class. First, let’s have a look at the Cell subclass code:

#ifndef BallCell_H
#define BallCell_H

#include "../../Cell.h"

rgb outputColor(0, 0, 0);

class BallCell : public Cell
{
private:

int state;
public:

BallCell(int state)
{

this->state = state;
}

void setState(int s)
{

state = s;
}

int getState()
{

return state;
}

void composeCell(char *str)
{

this->state = atoi(str);
}

char *stringEncoding()
{

char *zstr = new char[1];
sprintf(zstr, "%d", state);
return zstr;

}

rgb *outputValue()
{

if (state == 0)
outputColor = rgb(255, 0, 0);

if (state == 1)
outputColor = rgb(0, 0, 0);

return &outputColor;
}

};
#endif

One can easily see that the cell state is just an integer
variable, ‘state’, hosting the value 0 for an inactive cell
and 1 for an active one. The method stringEncoding
converts this state variable to a one-character string for
output dumping purposes. The method composeCell does
the opposite operation reconstructing the state variable
starting from a one-character string. Finally, the method
outputValue returns an RGB color to be used in the
visualization phase by assigning the red color for active
cells and the black color for the inactive ones.

The code below implements the subclass of Model2D:

#include "ballCell.h"



#include "../../Model2D.h"
#include "dummy.h"
#include <math.h>

int centerX;
int centerY;
int radious;

int dirX;
int dirY;

const int dummyIteration = 100;

class Ball : public Model2D<BallCell>
{

public:
void init()
{

RangeCoord d = space->getDimension();
for (int y = d.minY; y < d.maxY; y++)
{

for (int x = d.minX; x < d.maxX; x++)
{

int state = 0;
if (sqrt(pow(x - centerX, 2) +

pow(y - centerY, 2)) < radious)
state = 1;

BallCell c(state);
space->initCell(x, y, c);

}
}

}

void transitionFunction(int x, int y)
{
BallCell cNeigh = space->getCell(x - dirX, y - dirY);
BallCell c = space->getCell(x, y);

if(c.getState() == 1)
c.setState(cNeigh.getState());
space->setCell(x, y, c);
}

};

Notice that the previously illustrated BallCell is used
as a template class. The init function supplies the CA
initial configuration by setting, as active cells, the cells
falling inside the circle defined by centerX, centerY and
radious. The setting of these latter variables, not reported
here for brevity issues, is carried out in the main function
where also the space object is created and linked the to
Ball class, and specifically to its variable space, which can
be used for reading/writing the space through the well-
defined Space2D API. In particular, in the init method,
the getDimension space method is used for retrieving the
CA space dimension, and the initCell is used to initialize
a CA space cell. The transitionFunction uses the space
methods getCell and setCell for copying the neighbour
cell state in the cell for which the transition function is

called. It is important to emphasize here that both the
BallCell and Ball codes do not contain any reference
to the specific execution context or optimization strategy
adopted. Thus, the same code can be used, for example,
with the load balancing feature or multiborder strategy
without even changing a line of code. The last part worth
of discussion is the ‘main’ function, i.e., the code where the
execution begins. In the main function, all the relevant
objects are created and linked together and the parallel
execution is started. This is the only part of the code where
the “user” has to indicate what execution context/strategy
they want to exploit.

In the code below, one can see a main function code
example:

int main(int argc, char *argv[])
{

int infoFromFile[8];
char *outputFileName = new char[256];
readConfigurationFile(infoFromFile, outputFileName);

int dimX = infoFromFile[0];
int dimY = infoFromFile[1];
int borderSizeX = infoFromFile[2];
int borderSizeY = infoFromFile[3];
int numBorders = infoFromFile[4];
int nNodeX = infoFromFile[5];
int nNodeY = infoFromFile[6];
int nsteps = infoFromFile[7];

int stepLB = 100;

Space2DMpiLB<BallCell> space(dimX, dimY, borderSizeX,
borderSizeY, nNodeX, nNodeY, nsteps, outputFileName);

Ball ball;
ball.setSpace(&space);

Engine2DMPILB<BallCell> engine;
engine.setModel(&ball);
engine.setSpace(&space);
engine.setNsteps(nsteps);
engine.setStepLB(stepLB);
engine.start();

delete[] outputFileName;

return 0;
}

In this example, the chosen Space2D subclass
is the one that also implements load balancing,
Space2DMpiLB, and the same applies for the Engine2D
subclass (Engine2DMPILB). For both Space2DMpiLB and
Engine2DMPILB, the BallCell class is used as a template
class. Once all the objects are created, they need to be
linked together. In particular, the space object is linked
to the model object (ball), and both the space and the
model objects are linked to the engine object that is
finally used to start the CA execution through the calling
of its start method.



VI. Conclusions
In this paper, we present the first release of Open-

CAL++, an object-oriented platform for the parallel exe-
cution of cellular automata. In OpenCAL++, the parallel
execution context is entirely transparent to the modeller,
who can concentrate on the code development regardless
of whether the execution runs on a shared-, distributed-
memory or GPGPU context. Moreover, OpenCAL++ can
transparently exploit some optimizations, such as Load
Balancing features, which have proven to be proper sup-
port for speeding up simulations.

Future work will extend the platform to multi-
dimensional models (e.g., 3D) besides enhancing the
multi-GPU version, which can fully exploit the com-
putational power of current parallel machines. Open-
CAL++ is currently freely available on GitHub at
https://github.com/alessioderango/oopencal

Acknowledgements
The authors gratefully acknowledge Alessio De Rango

from the Department of Environmental Engineering of
the University of Calabria (Italy) for his support in the
implementation and testing phases of the OpenCAL++
library.

This research was funded by the Italian “ICSC National
Center for HPC, Big Data and Quantum Computing”
Project, CN00000013 (approved under the Call M42C –
Investment 1.4 – Avvisto “Centri Nazionali” – D.D. n. 3138
of 16.12.2021, admitted to financing with MUR Decree n.
1031 of 06.17.2022)

References
[1] A. De Rango, L. Furnari, A. Giordano, A. Senatore,

D. D’Ambrosio, W. Spataro, S. Straface, and G. Mendi-
cino, “Opencal system extension and application to the three-
dimensional richards equation for unsaturated flow,” Computers
and Mathematics with Applications, vol. 81, pp. 133–158, 2021.

[2] J. von Neumann, Theory of Self-Reproducing Automata. Uni-
versity of Illinois Press, Champaign, IL, USA, 1966.

[3] S. Wolfram, “Universality and complexity in cellular automata,”
Physica D, no. 10, pp. 1–35, 1984.

[4] C. Aidun and J. Clausen, “Lattice-boltzmann method for com-
plex flows,” Annual Review of Fluid Mechanics, vol. 42, pp. 439–
472, 2010.

[5] V. Ntinas, B. Moutafis, G. Trunfio, and G. Sirakoulis, “Parallel
fuzzy cellular automata for data-driven simulation of wildfire
spreading,” Journal of Computational Science, 2016.

[6] M. Macri, A. De Rango, D. Spataro, D. D’Ambrosio, and
W. Spataro, “Efficient lava flows simulations with opencl: A
preliminary application for civil defence purposes,” in 2015 10th
International Conference on P2P, Parallel, Grid, Cloud and
Internet Computing (3PGCIC), 2015, pp. 328–335.

[7] L. Furnari, A. Senatore, A. De Rango, M. De Biase, S. Straface,
and G. Mendicino, “Asynchronous cellular automata subsurface
flow simulations in two- and three-dimensional heterogeneous
soils,” Advances in Water Resources, vol. 153, p. 103952, 2021.

[8] A. De Rango, D. Spataro, W. Spataro, and D. D’Ambrosio,
“A first multi-gpu/multi-node implementation of the open com-
puting abstraction layer,” Journal of Computational Science,
vol. 32, pp. 115–124, 2019.

[9] V. Kumar, “Introduction to parallel computing, 2nd ed,”
Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc.,, 2002.

[10] M. Macri, A. Rango, D. Spataro, D. D’Ambrosio, and
W. Spataro, “Efficient lava flows simulations with opencl: A
preliminary application for civil defence purposes,” Proceedings
- 2015 10th International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing, 3PGCIC 2015, pp. 328–335,
2015.

[11] A. Y. Grama, A. Gupta, and V. Kumar, “Isoefficiency: Mea-
suring the scalability of parallel algorithms and architectures,”
IEEE Parallel & Distributed Technology: Systems & Applica-
tions, vol. 1, no. 3, pp. 12–21, 1993.

[12] F. Cicirelli, A. Forestiero, A. Giordano, and C. Mastroianni,
“Parallelization of space-aware applications: Modeling and per-
formance analysis,” Journal of Network and Computer Applica-
tions, vol. 122, pp. 115–127, 2018.

[13] J. Was, H. Mróz, and P. Topa, “Gpgpu computing for micro-
scopic simulations of crowd dynamics,” Computing and Infor-
matics, vol. 34, no. 6, pp. 1418–1434, 2016.

[14] I. Gerakakis, P. Gavriilidis, N. I. Dourvas, I. G. Georgoudas,
G. A. Trunfio, and G. C. Sirakoulis, “Accelerating fuzzy cellular
automata for modeling crowd dynamics,” Journal of Computa-
tional Science, vol. 32, pp. 125–140, 2019.

[15] A. Giordano, A. De Rango, D. D’Ambrosio, R. Rongo, and
W. Spataro, “Strategies for parallel execution of cellular au-
tomata in distributed memory architectures,” in 2019 27th
Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP). IEEE, 2019, pp. 406–
413.

[16] A. Giordano, D. D’Ambrosio, A. De Rango, A. Portaro,
W. Spataro, and R. Rongo, “Exploiting distributed discrete-
event simulation techniques for parallel execution of cellular
automata,” in Artificial Life and Evolutionary Computation,
F. Cicirelli, A. Guerrieri, C. Pizzuti, A. Socievole, G. Spezzano,
and A. Vinci, Eds. Cham: Springer International Publishing,
2020, pp. 66–77.

[17] M. Cannataro, S. Di Gregorio, R. Rongo, W. Spataro, G. Spez-
zano, and D. Talia, “A parallel cellular automata environment
on multicomputers for computational science,” Parallel Com-
puting, vol. 21, no. 5, pp. 803–823, 1995.

[18] G. Spingola, D. D’Ambrosio, W. Spataro, R. Rongo, and
G. Zito, “Modeling complex natural phenomena with the libau-
toti cellular automata library: An example of application to lava
flows simulation.” in PDPTA, 2008, pp. 277–283.

[19] D. D’Ambrosio, A. De Rango, M. Oliverio, D. Spataro,
W. Spataro, R. Rongo, G. Mendicino, and A. Senatore, “The
open computing abstraction layer for parallel complex systems
modeling on many-core systems,” Journal of Parallel and Dis-
tributed Computing, vol. 121, pp. 53–70, 2018.

[20] A. Giordano, A. De Rango, D. Spataro, D. D’Ambrosio, C. Mas-
troianni, G. Folino, and W. Spataro, “Parallel execution of
cellular automata through space partitioning: the landslide
simulation sciddicas3-hex case study,” in 2017 25th Euromicro
International Conference on Parallel, Distributed and Network-
based Processing (PDP). IEEE, 2017, pp. 505–510.

[21] P. Renc, T. Pecak, A. De Rango, W. Spataro, G. Mendicino,
and J. Was, “Towards efficient gpgpu cellular automata model
implementation using persistent active cells,” Journal of Com-
putational Science, vol. 59, p. 101538, 2022.

[22] D. Spataro, D. D’Ambrosio, G. Filippone, R. Rongo,
W. Spataro, and D. Marocco, “The new sciara-fv3 numerical
model and acceleration by gpgpu strategies,” The International
Journal of High Performance Computing Applications, vol. 31,
no. 2, pp. 163–176, 2017.

[23] A. Grama, A. Gupta, and V. Kumar, “Isoefficiency: measuring
the scalability of parallel algorithms and architectures,” IEEE
Parallel Distributed Technology: Systems Applications, vol. 1,
no. 3, pp. 12–21, 1993.

[24] A. Giordano, A. De Rango, D. D’Ambrosio, R. Rongo, and
W. Spataro, “Strategies for parallel execution of cellular au-
tomata in distributed memory architectures,” in 2019 27th
Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP). IEEE, 2019, pp. 406–
413.

[25] B. Zeigler, Y. Moon, D. Kim, and G. Ball, “The devs envi-
ronment for high-performance modeling and simulation,” IEEE



Computational Science and Engineering, vol. 4, no. 3, pp. 61–71,
1997.

[26] A. Giordano, A. De Rango, R. Rongo, D. D’Ambrosio, and
W. Spataro, “Dynamic load balancing in parallel execution of
cellular automata,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 32, no. 2, pp. 470–484, 2020.


