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ABSTRACT 

A method for estimating health conditions is required to monitor daily health conditions. 
Various types of data have been used in healthcare studies; however, imaging data are superior 
because they allow quick and remote measurements. Thermal face images can be measured 
safely and economically using infrared thermography. Many physiological and psychological 
states have been evaluated based on the data from these images. A previous study, using short-
term experiments, confirmed that an anomaly detection model constructed using a variational 
autoencoder enables the detection of anomalous states of thermal face images. A long-term 
experiment is essential to estimate long-term fluctuating human states, such as health conditions. 
The purpose of this study is to construct a facial skin temperature-based anomaly detection 
model for human health conditions. The authors obtained thermal face images with health 
condition questionnaires for approximately a year. Based on the questionnaire responses, the 
thermal images in good and poor health conditions were labeled “normal state” and “anomaly 
state,” respectively. The facial skin temperature-based anomaly detection model for health 
conditions was constructed using a variational autoencoder with only thermal face images in the 
normal state. The AUC, which represents anomaly detection performance, was 0.70. In addition, 
an increasing trend of the performance of the model by learning a wider area of skin temperature 
was confirmed. 
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1 INTRODUCTION 

Everyone knows the importance of understanding their own health conditions and dealing with 
them appropriately. An increasing number of companies are focusing on providing healthcare for 
their employees. To realize daily health monitoring, a method for estimating the health conditions 
is required because it is difficult for people to be fully aware of their psychological and physical 
issues. In healthcare studies, the application of machine learning methods has been increasing, 
and deep learning methods, in particular, have demonstrated high performance and potential for 
multiple tasks (Miotto et al., 2018). Deep learning methods can effectively obtain information 
from complex data, such as biometric data. Various types of data used in these studies include 
health records (Solares et al., 2020), genomic data (Fakoor et al., 2013), electroencephalogram 
data (Acharya et al., 2018), and magnetic resonance imaging data (Liu et al., 2014). 

Imaging data are superior because they allow quick and remote measurements, and thermal 
face images are often used in studies to estimate physiological and psychological states. A thermal 
face image is the skin temperature image of a face and can be measured quickly, remotely, safely, 
and economically using infrared thermography (Ring, 2014). Skin temperature varies with the 
amount of skin surface blood and is controlled by the autonomic nervous system. Therefore, it is 
a reliable tool that estimates physiological and psychological states (Ioannou, Gallese, & Merla, 
2014). Based on this information, evaluations of various human states such as stress (Engert et 
al., 2014), emotions (Ebisch et al., 2012), and drowsiness (Bando, Oiwa, & Nozawa, 2017) have 
been performed. Studies applying deep learning to thermal face images have estimated some 
human states such as drunkenness (Koukiou & Anastassopoulos, 2015), exercise-induced fatigue 
(Lopez, del-Blanco, & Garcia et al., 2017), and drowsiness (Adachi, Oiwa, & Nozawa, 2019). In 
these studies, estimations were conducted using classification models. 

Estimating human health conditions using classification models requires training the model 
using thermal face images under poor as well as normal health conditions. Generally, obtaining 
thermal images under poor health conditions is much more challenging than obtaining them 
under normal health conditions. Anomaly detection methods can solve this problem. A variational 
autoencoder (VAE) (Kingma & Welling, 2013), known as a deep generative model, enables the 
construction of anomaly detection models using only the normal data (An & Cho, 2015). Thus, an 
anomaly detection model for human health conditions is constructed, without the use of thermal 
images under poor health conditions, using the VAE.  

Masaki et al. confirmed that an anomaly detection model constructed using the VAE enabled 
the separation of two states of thermal face images (Masaki et al., 2021). Two states of the 
thermal face images were obtained in a short-term experiment; one state was obtained when 
the subject was just set in a chair, and the other state was obtained when the subject raised their 
blood pressure by breath-holding. Takano et al. performed anomaly detection considering diurnal 
variations in thermal face images (Takano et al., 2022). Thermal face images in normal and 
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anomalous states were obtained every hour in a 16-hour experiment using the method described 
by Masaki et al. In these studies, thermal face images were obtained during the experiment in a 
day, and high blood pressure caused by breath-holding was defined as an anomalous state. 
However, obtaining thermal face images through a long-term experiment is essential to estimate 
long-term fluctuating human states, such as health conditions. Additionally, defining poor health 
conditions as anomalous states is needed to evaluate an anomaly detection model for health 
conditions. The purpose of this study is to construct a facial skin temperature-based anomaly 
detection model for human health conditions. To achieve this, thermal face images were 
obtained for approximately one year, and an anomaly detection model was constructed. Finally, 
the performance of the constructed model was evaluated using thermal images under good and 
poor health conditions.  

2 METHODS 

2.1 Data collection 

2.1.1 Experiment systems 

Thermal face images with health conditions questionnaires were obtained for approximately a 
year (September 2020 to November 2021). The subjects constructed of 33 healthy adult males 
aged 21–51 years. The measurement environment is illustrated in Figure 1. An infrared 
thermography camera (Boson, FLIR Systems, Wilsonville, OR, USA) was placed at 1.0 m in front of 
the subject. A tablet (iPad, Apple, Cupertino, CA, USA) was placed near the camera to complete 
the questionnaire. The measurement was conducted at a room temperature range of 25.3–30.9 
°C at the subject’s discretion. The temperature resolution of the camera was 0.1 °C. The size of 
the thermal image was 256 × 320 pixels. An example of a measured thermal images is shown in 
Figure 2.

Figure 1. Measurement environment 
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Figure 2. Example of measured thermal image

The subjects were asked to complete the questionnaire immediately after measuring their 
thermal images. The screen for answering the questionnaire is shown in Figure 3. The 
questionnaire consisted of four questions regarding health conditions, and the participants 
choose only one answer for each question.

Figure 3. Screen for answering the questionnaire 

2.1.2 Definitions of Normal and Anomaly 

The obtained thermal face images were labeled as “normal state” and “anomaly state” based 
on the questionnaire answers. If all answers were “Very True,” the thermal image was labeled as 
“normal state,” indicating good health conditions. If at least one answer was “Not at All True,” 
the thermal image was labeled as “anomaly state,” indicating poor health conditions. Among 
obtained 612 thermal images, 175 were labeled as “normal state,” and 66 were labeled as 
“anomaly state.” 371 thermal images not labeled as “normal state” or “anomaly state” were not 
used in this study.  

2.2 Model construction 

2.2.1 Overview of VAE framework 

VAE is an autoencoder-type network, as shown in Figure 4. The input and output data have the 
same dimensions, and the latent variables have fewer dimensions than the input data. The VAE 
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comprises an encoder, which transforms the input data into the latent variables, and a decoder, 
which reconstructs the input data from the latent variables. The difference between the input 
and the reconstructed input is called the reconstruction error. Training is performed to minimize 
the reconstruction error. Through this process, the VAE learns the probability distribution of 
latent variables to reconstruct the input data. An anomaly detection model is constructed under 
the framework of semi-supervised learning using only the normal data for training the VAE. The 
reconstruction error calculated by inputting data into the trained VAE indicates the anomaly 
degree of the data.

Figure 4. Overview of VAE 

2.2.2 Model construction using VAE 

The anomaly detection model was constructed using 109 thermal face images in the normal 
state. Model performance evaluation was conducted using 66 thermal face images in both, the 
anomaly state and as well as the normal state; these images were not used for model construction. 
The thermal face image was cut out from the thermal image based on 68 facial landmarks. Facial 
landmarks were obtained using a method proposed by Nagumo et al. (Nagumo et al., 2021). The 
examples of thermal image with 68 facial landmarks and cut-out image are shown in Figure 5; the 
red plots are facial landmarks, and the black square frame represents the cut-out area 

Figure 5. Examples of thermal image with facial landmarks and cut-out thermal face image 

Each thermal face image was resized to 66 × 66 pixels. The mean and standard deviation of 
the pixel values were set to 0 and 1, respectively, using z-score normalization. The VAE was 
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trained using 100,000 patches that were randomly cut from 109 resized thermal face images in 
the normal state. The patch size was set to 𝑆𝑆𝑝𝑝 × 𝑆𝑆𝑝𝑝  pixels, and 𝑆𝑆𝑝𝑝was selected from 𝑆𝑆𝑝𝑝 ∈
{8, 16, 32, 64} . The dimensions of the latent variables 𝑁𝑁𝑧𝑧  were selected from 𝑁𝑁𝑧𝑧 ∈
{2, 8, 16, 32, 64}. Nine models were constructed for each condition, considering the variations in 
model performance. 

2.3 Anomaly detection 

Anomaly detection was performed by plotting the thermal face images based on the mean 
unregularized score (Matsubara et al, 2020). The unregularized score 𝑀𝑀𝑉𝑉𝑉𝑉𝑉𝑉 was calculated by 
applying a thermal face image for evaluation to a trained VAE. The equation for the unregularized 
score is as follows.  

𝑀𝑀𝑉𝑉𝑉𝑉𝑉𝑉 = �
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The above equation is directly related to the reconstruction error. 𝑁𝑁𝑥𝑥  and 𝒙𝒙𝑖𝑖  represent the 
number of pixels in the image and pixel value, respectively. 𝝁𝝁𝒙𝒙 and 𝝈𝝈𝒙𝒙 are a pair of mean and 
variance vectors for the conditional probability of the latent variables 𝒛𝒛. The mean unregularized 
score was calculated by dividing the unregularized score by the number of pixels.  

3 RESULTS AND DISCUSSION 

An example of thermal face images plotted for model evaluation is shown in Figure 6. 

 
Figure 6. Example of thermal face images plotted for evaluation 

Plotting was performed by the VAE trained under the conditions of 𝑆𝑆𝑝𝑝 = 64 and 𝑁𝑁𝑧𝑧 = 64. The 
red plots are thermal face images in the anomaly state, and the blue plots are thermal face images 
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in the normal state; these images were not used for model construction. The black dotted line 
represents the threshold for anomaly detection. A mean unregularized score at which the sum of 
the true positive rate and the true negative rate is maximum was set as the threshold. The true 
positive rate is the proportion of correct predictions in the anomaly class, and the true negative 
rate is the proportion of correct predictions in the normal class. The equations for the true 
positive and true negative rates are as follows.  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 𝑅𝑅𝑅𝑅𝑃𝑃𝑇𝑇 =  
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇)

(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 + 𝐹𝐹𝑅𝑅𝐹𝐹𝑃𝑃𝑇𝑇 𝑁𝑁𝑅𝑅𝑁𝑁𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇)
(2) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 𝑅𝑅𝑅𝑅𝑃𝑃𝑇𝑇 =  
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇)

(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 + 𝐹𝐹𝑅𝑅𝐹𝐹𝑃𝑃𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇)
(3) 

In this example, the true positive and true negative rates were 0.67 and 0.68, respectively. This 
result indicates that facial skin temperature-based anomaly detection models enable the 
detection of poor health conditions. The receiver operating characteristic (ROC) curve of the 
model under the conditions of 64 for 𝑆𝑆𝑝𝑝 and 64 for 𝑁𝑁𝑧𝑧 is shown in Figure 7.  

  
Figure 7. Example of a ROC curve 

The ROC curve is a two-dimensional graph that plots the true positive rate on the y-axis and 
false positive rate on the x-axis. The false positive rate is the proportion of incorrect predictions 
in the normal class. The equations for the false positive rate are as follows.  

𝐹𝐹𝑃𝑃𝐹𝐹𝑃𝑃𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 𝑅𝑅𝑅𝑅𝑃𝑃𝑇𝑇 =  
(𝐹𝐹𝑅𝑅𝐹𝐹𝑃𝑃𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇)

(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 + 𝐹𝐹𝑅𝑅𝐹𝐹𝑃𝑃𝑇𝑇 𝑁𝑁𝑅𝑅𝑁𝑁𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇)
(2) 
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The area under the ROC curve (AUC) is a single scalar value that represents the expected 
classification performance of a model (Fawcett, 2006). In this example, the AUC of the model was 
0.70. The maximum AUC for each condition is shown in Figure 8. 

Figure 8. Maximum AUC for each model construction conditions 

The overall maximum AUC was 0.70, and the AUC was higher for conditions with a larger patch 
size. This result indicates that learning a wider area of skin temperature improves the 
classification performance of the model. Oiwa et al. concluded that long-term variability of facial 
hue information around the periorbital region could be related to health conditions (Oiwa et al., 
2021). This suggests a relationship between a wide range of facial hue information and health 
conditions. The authors believe that facial skin temperature is also related to health conditions 
because facial skin temperature also varies with the amount of skin surface blood, similar to facial 
hue information. 

4 CONCLUSION 

The purpose of this study was to construct a facial skin temperature-based anomaly detection 
model for human health conditions. The authors obtained thermal face images for approximately 
one year and constructed an anomaly detection model. Finally, the performance of the 
constructed model was evaluated using thermal face images under good and poor health 
conditions. Consequently, thermal face images in poor health conditions were detected using the 
proposed detection model. The AUC of the model with the highest accuracy was 0.70. The AUC 
was improved by learning a wider area of skin temperature. However, continuous data collection 
is required in the future to improve accuracy. Moreover, investigations on the influence of 
ambient temperature and construction of models using other information, such as facial hues, 
are needed to gain better insights. 
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