
A Software-Only Approach to Enable Diverse Redundancy
on Intel GPUs for Safety-Related Kernels

Nikolaos Andriotis‡,†, Alejandro Serrano†, Sergi Alcaide†,
Jaume Abella†, Francisco J. Cazorla†

‡ Universitat Politècnica de Catalunya (UPC)
† Barcelona Supercomputing Center (BSC)

Yang R. Peng⋆, Andrea Baldovin⋆,
Michael Paulitsch⋆, Vladimir Tsymbal⋆

⋆ Intel Corporation, Germany

Abstract—Autonomous Driving (AD) systems rely on object
detection and tracking algorithms that require processing high
volumes of data at high frequency. High-performance graphics
processing units (GPUs) have been shown to provide the required
computing performance. AD also carries functional safety requi-
rements such as diverse redundancy for critical software tasks
like object detection. This implies that software must be executed
redundantly (in a single GPU for efficiency reasons), and with
some form of diversity so that a single fault does not cause the
same error in both redundant executions. Unfortunately, high-
performance GPUs lack explicit hardware means for diverse
redundancy and software-based solutions with limited guarantees
have only been provided for NVIDIA GPUs. This paper presents
a software-only solution to enable diverse redundancy on Intel
GPUs achieving, for the first time, strong guarantees on the
diversity provided. By smartly tailoring workload geometry and
managing workload allocation to execution units with thread-
level wrappers, we guarantee that redundant threads use physi-
cally diverse execution units, hence meeting diverse redundancy
requirements with affordable performance overheads.

Index Terms—Cache coherence, multicore real-time systems,
contention

I. INTRODUCTION

Safety-related functionalities in autonomous systems (e.g.,
autonomous cars and single-pilot planes) require increasing
levels of computing performance for functionalities like object
detection and tracking. Those functionalities generally build on
matrix operations such as those in Deep Neural Networks [21],
operate large matrices (e.g., images from high-resolution cam-
eras), and have real-time constraints since decisions are taken
while vehicles are in operation conditions. Hence, powerful
accelerators such as GPUs are often the choice in industry to
realize performance-demanding functionalities.

Safety-related functionalities must also meet a number
of safety requirements, in line with domain-specific safety
standards like ISO26262 for automotive systems [14]. For
instance, in the context of Autonomous Driving (AD), func-
tionalities like object detection and tracking inherit the highest
integrity level – Automotive Safety Integrity Level (ASIL1)
D – and therefore, must implement some form of diverse
redundancy to avoid the so-called Common Cause Failures
(CCFs), i.e. failures experienced in redundant systems due to
a single (shared) fault. For instance, a CCF occurs when two

1ASIL ranges from D (highest integrity) to A (lowest integrity). There is
an additional level called Quality Managed (QM) for components with no
safety hazards, and hence no safety requirements.

redundant components (e.g., two identical cores) experience
a fault affecting both of them simultaneously (e.g., a voltage
drop), and such fault leads to identical errors (e.g., if both
cores are fully synchronized and their state is identical). In
the case of computation, this is generally addressed using Dual
Core Lockstep (DCLS) for computing cores so that identical
cores execute the same process with some cycles of staggering.
Hence their state is never identical and any fault is expected to
lead to different errors. In the worst case, the system can detect
them and trigger appropriate mitigation. This is, for instance,
the solution used by different Infineon AURIX microcontroller
families [9].

Safety-related computation requiring GPUs (e.g., camera-
based object detection) needs specific software solutions to
prevent CCFs to occur since, to the best of our knowledge,
commercial off-the-shelf (COTS) GPUs do not implement
DCLS. Solutions with redundancy across multiple GPU de-
vices increase costs and reliability concerns severely due to
the increased number of physical components and off-chip
communication to retrieve and compare results from both
GPUs. In fact, in the context of CPUs, these concerns pushed
for the adoption of on-chip DCLS as implemented by the
aforementioned AURIX microcontroller.

To achieve some form of diverse redundancy support in a
single GPU, some works propose hardware changes [3]. Un-
fortunately, those solutions cannot be applied to COTS GPUs.
Other works provide some guarantees for NVIDIA GPUs
by running redundant kernels concurrently and staggered by
exploiting the way CUDA – the NVIDIA API to manage
kernel execution – dispatches kernels onto the GPU [4], [5].
The latter solution leads to diversity while the execution
of both redundant kernels overlaps since they use disjoint
resources by construction, but no guarantee is given when no
overlapping occurs and, by construction, part of the execution
does not overlap. In particular, whenever one kernel finishes,
the other one could use the same resources used by the former
kernel, hence losing diversity. Moreover, the particular solution
used in [4], [5] is NVIDIA specific (relies on CUDA) and
cannot be exported to Intel GPUs, which are the target of our
work.

This paper overcomes the limitations of existing software-
only solutions for COTS GPUs, and presents a software-
only solution to achieve diverse redundancy on Intel GPUs
with strong guarantees on the diversity achieved. Our solu-
tion builds on a software layer that overrides the hardware

© ACM 2023. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was
published in Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing (SAC '23). Association for Computing
Machinery, New York, NY, USA,
451–460, http://dx.doi.org/10.1145//3555776.3577610

Fig. 1: Usual decomposition patterns for ASIL-D items.

scheduler decisions with no hardware changes, and schedules
redundant software threads onto hardware threads in different
GPU “regions” (i.e., subslices). In particular, we bring the
following contributions:

• A software-only mechanism providing strong guarantees
on the diverse redundancy achieved on Intel GPUs by
controlling the particular part of the computation carried
out by each hardware thread.

• An easy-to-integrate implementation on any kernel by
building on prolog and epilog routines to bound the
original (unmodified) GPU kernel code.

• Reduced execution time overheads, around 9% on av-
erage for several matrix multiplications, w.r.t. the non-
diverse redundant execution of GPU kernels.

While our solution has been realized on Intel GPUs building
on some available features for those GPUs, nothing precludes
the adoption of our solution for other GPU families if they
provide analogous features.

The rest of the paper is organized as follows: Section II
provides some background on automotive requirements rele-
vant for our work and on Intel GPUs. Section III presents
our approach to achieve diverse redundancy on Intel GPUs
with strong guarantees. The effectiveness of our approach
is evaluated in Section IV. Related work is discussed in
Section V. Finally, Section VI presents the main conclusions
of this work and discusses future work.

II. BACKGROUND

A. The Need for Diverse Redundancy
Complying with high-integrity requirements (e.g., ASIL-D

in automotive systems) is generally expensive due to the cost
needed to reach specific low failure rates. Hence, solutions
based on ASIL decomposition are often used, where a com-
ponent is decomposed into multiple ones. Safety requirements
become less stringent for individual components based on the
specific decomposition pattern, whereas the overall integrity
level reached by their composition is the target one.

Random hardware faults (e.g., particle strikes, voltage
droops, etc.) cannot be avoided by design and appropriate
safety measures must be included in the design to detect and
manage those faults. A correct management may require either
providing fault tolerance or reaching a safe state within a given
time limit upon the detection of an error. The particular safety
measure to implement and its particular realization relates
to the integrity level (ASIL in automotive) decomposition
pattern followed. The most popular ones in the particular
context of automotive are illustrated in Figure 1. On the left,
we have the case of a fail-operational ASIL-D component
where safety cannot be managed separately of the functionality
and hence, resulting components in the decomposition also

inherit some ASIL. On the right, we have the case of fail-safe
systems where a monitor can inherit the ASIL and preserve
the overall safety of the component, whereas the functionality
is relieved from any safety requirement, hence becoming
QM. The relevant pattern in AD (our target) is the one in
which an ASIL-D component is decomposed into two ASIL-
B redundant components [3], [4]. Each component can have
lower integrity requirements as long as they achieve a sufficient
degree of independence (diversity), meaning that they are not
subject to CCFs. This pattern is needed for the GPU in our
work because it inherits safety requirements (i.e., it runs ASIL-
D AD software components), and no safe state can be achieved
since continuous service must be provided in AD systems
(they are fail-operational). As explained before, this diverse
redundancy is achieved on CPUs implementing some form
of on-chip DCLS for computing components (e.g., Infineon
AURIX microcontrollers [9]) due to effectiveness and cost
reasons related to (i) designing and verifying a single core
design, (ii) using the same software on both cores, and (iii)
keeping redundancy on-chip to reduce procurement costs and
reliability risks due to additional physical components.

In the context of GPUs, DCLS has not been realized yet to
the best of our knowledge due to its associated complexity
and cost. Hence, one can only resort to DCLS-less COTS
GPUs, since deploying two GPU devices brings increased
costs and reliability concerns. In fact, solutions preserving
diverse redundancy on-chip (i.e. on a single GPU device)
are strongly preferred, in line with solutions for CPUs [9].
Recent work has shown that single-GPU diverse redundancy is
feasible for NVIDIA GPUs [4], [5]. Those software solutions
build on sizing kernels so that they do not use more than half
of the resources in the GPU, so they can be run redundantly
and simultaneously. Further, redundant kernels naturally are
expected to use disjoint computing resources based on the
assumption that resources cannot be simultaneously allocated
to multiple kernels. Staggering is achieved via the sequential
start of the kernels from the CUDA runtime. However, the
initial part of the head replica (i.e., the one starting execution
first) until the trail replica (i.e., the one starting execution last)
starts, as well as the final part of the trail replica after the head
one finishes, execute in isolation and, potentially, could use
computing resources later or formerly used by the analogous
computation in the replica, hence challenging diversity. While
this is not generally expected, it could potentially happen and
impair the assumption of disjoint usage of compute resources.

In this work, we focus on Intel GPUs, which are becoming
increasingly attractive for the automotive domain [17]. We
leverage their advanced observability features, such as the
ability to determine the particular hardware thread where each
individual software thread runs. Building on that information,
we propose a software-only mechanism that provides diverse
redundancy and guarantees that strict diversity is achieved
for all computation, hence avoiding the uncertainties of the
aforementioned solution for NVIDIA GPUs by construction.
Our approach can be generalized to GPUs other than Intel
ones if those provide analogous support to the Intel intrinsics
that allow any software thread identify the hardware thread
where it is running.

Fig. 2: Schematic of the geometry of the Xe
LP GPU used in

this work [11].

B. The Intel Xe
LP GPU and Support for Diverse Redundancy

GPUs consist of several computing elements capable of
performing a large number of regular computations in par-
allel with high throughput. Conceptually, a GPU architec-
ture organizes the computing elements into groups and sub-
groups based on whether software threads can be scheduled
simultaneously or independently and whether there are shared
resources per group or sub-group.

In the case of the Intel Xe
LP GPU considered in this

work [12] (see Figure 2), computing elements are referred to as
Execution Units (EUs). Each EU can execute up to 7 hardware
threads (HTs) that share the arithmetic logic units (ALUs)
in the EU. EUs are grouped into subslices (SS) so that each
SS has 8 EUs (and hence 8x7 = 56 HTs) sharing some SS-
local components including an instruction cache and a thread
scheduler. SS are organized into pairs called Dual Subslices
(DSS) that include exactly 2 SS each (so 2x8x7 = 112
HTs). The GPU includes one or several DSS in the Slice,
which share some Slice-global shared resources for graphic
processing as well as cache memories. The GPU used in this
work has 6 DSS, with 2 SS per DSS, 8 EUs per SS, and 7 HTs
per EU, as measured empirically with the appropriate GPU
intrinsics [13], therefore with 672 HTs in the GPU. Note that
the description of the Xe

LP architecture in the corresponding
technical reference manuals [10], [12], as well as the actual
GPU implementation used in this work, include a single Slice
with all the aforementioned components. However, as we
describe later, our solution works analogously independently
of the number of Slices.

Since SS do not share resources other than unique resources
at Slice-level granularity, when redundant threads are executed
across different SS, they share only non-replicated components
in the GPU such as the L3 cache, the shared graphics resources
and the hardware scheduler. Regarding shared caches and other
shared components used for general-purpose computation, we
provide specific considerations in Section III-A. Regarding

graphic-specific hardware sub-blocks of the GPU (e.g., pixel-
related blocks), they are not used by general-purpose compu-
ting AD workloads, so preventing CCFs in those sub-blocks is
unnecessary. Finally, the hardware scheduler at the Slice level
is likely not replicated, and hence, a potential source of CCFs.
Despite that, our approach mitigates a significant fraction of
those failures by scheduling redundant software threads to
different SS at different times. In any case, if replication is
eventually physically added for the hardware scheduler, it will
incur negligible hardware costs since most of the GPU area is
devoted to EUs, caches, and graphics-specific resources.

Overall, in the scope of this work we address the diverse
redundancy of the computing components, which will be
achieved if the following two conditions hold:

1) CONDspace. Redundant threads execute on different
computing components (e.g., different SS).

2) CONDtime. Redundant threads run with some stagger-
ing (i.e., they do not execute exactly at the same time).

III. DIVERSE REDUNDANCY APPROACH

A. Rationale

Implementing software-based diverse redundancy requires
the kernel to be replicated so that it can be executed twice
and the results can be compared upon completion. Each replica
of the kernel will spawn the exact same number of software
threads that perform identical work.

1) CONDspace: This condition requires that replicated
software threads use different computing resources. If we
allow them to be mapped to different HTs of a given EU,
they could potentially share intra-EU and intra-SS resources,
therefore with the risk of experiencing a CCF. Analogous
reasoning applies if we map threads to different EUs within
the same SS since they will share intra-SS resources. Hence,
threads have to be mapped to different SS. Also note that, since
SS do not share any resource within a DSS, it is irrelevant
whether the SS where redundant threads are executed belong
to the same DSS or not.

In our case, for simplicity of the implementation, since there
are 2 SS per DSS, we enforce one of the replicated kernels to
use SS0 of all DSS, whereas the other kernel is restricted to use
SS1 of all DSS. In this way, by managing the SS identifier,
i.e. SS0 or SS1, we can make replicated kernels use sepa-
rate and symmetrical resources, which prevents CCFs while
maximizing performance allocating homogeneous resources to
(homogeneous) redundant kernels.

Redundant threads of replicated kernels use different (repli-
cated) data. When redundant data is mapped to different sets
of shared caches – due to memory alignment – the data is
stored in diverse locations across kernels (i.e., a given datum
and its replica are stored in cache lines in different cache sets).
When both kernels map their data to the same cache set, since
kernels are scheduled and run simultaneously, each thread will
access a redundant copy of the data that is naturally located
in different cache lines of that set, preventing a CCF.

2) CONDtime: Regarding CONDtime, our approach
does not exercise explicit control on the time dimension. How-
ever, redundant threads use replicated data, so data fetched
cannot be shared across redundant threads, which generate

Fig. 3: Example with work split arbitrarily, and mapping fully
controlled by the hardware scheduler.

independent data load and store requests, therefore naturally
serialized in the access to shared caches or DRAM memory.
Hence, while accesses may occur with limited staggering,
some staggering exists and, as shown in commercial DCLS
processors [9], 2-3 cycles of staggering suffice in general.

In line with previous work [4], [5], not all CCFs can be
prevented with software only means, like those related to the
use of unique hardware components in the GPU (e.g., thread
scheduler, and decode logic of shared caches). Yet, due to the
staggering across redundant threads, some diversity exists and
it depends on the physical implementation of the GPU whether
time diversity is enough to compensate the lack of space
diversity in unique components. Also, by using replicated data,
hence in different memory locations, addresses accessed by
redundant threads differ, which brings an additional source
of diversity particularly relevant for components where those
addresses are managed (e.g., shared caches).

B. Context
We realize our redundancy concept within a single kernel,

which factors out the effects of the serial kernel scheduling
of the runtime [6], and additionally simplifies debugging and
result analysis. Note, however, that our approach can be fully
applied to the case of multiple kernels.

We have generated intra-kernel redundancy duplicating data
(and computation) by adding an additional dimension to the
data used, so that the index for such dimension can only be ‘0’
or ‘1’. As we show later, this allows replicating also the work
cleanly without further modifications in the original code.

For the sake of commodity, we refer to each of the two
intra-kernel replicas as virtual kernels or vkernels for short
since, as explained, we embed two such kernels (vkernelA and
vkernelB) into a single kernel to ease result interpretation.

C. Overall Strategy
Ideally, we would like to instruct the hardware scheduler

on what SS to allocate to different threads to guarantee that
vkernelA runs only in SS with SS id 0 (Sall

0 for short), whereas
vkernelB runs only in Sall

1 . However, we lack that control
and the hardware scheduler has freedom to map a software
thread to any HT in any EU of any SS of any DSS. This is
illustrated in Figure 3 in which we have both vthreads split
into 36 software threads (18 for each vthread). There are 2
DSS, each one with 2 SS, with each SS having 4 HTs. The
organization of those HTs into EUs (e.g., 1 EU with 4 HTs,

Fig. 4: Example with work split as appropriately, and mapping
overridden by our software strategy.

2 EUs with 2 HTs each, etc.) is irrelevant for this example.
As shown, since no control is applied, the software threads
of a given vkernel (e.g., vkernelA) can be run on HTs of any
SS. In the example, we can see how some software threads of
vkernelA run in Sall

0 and some others in Sall
1 . The situation for

vkernelB is analogous, with some redundant software threads
(i.e., the same software thread in both vkernels) running in the
same HT (or the same EU), hence using the same computing
resources and hence, failing to avoid CCFs. This is illustrated
in the figure with the red circles.

In order to exercise the control needed to override the work
allocation performed by the hardware scheduler, we assume
that the hardware scheduler allocates all HTs in a round-robin
manner – if idle – so that, given N HTs, a particular HTi

is allocated again exactly after allocating other N − 1 HTs
assuming that they are all idle prior to allocation. In our test
environment this assumption held in all our experiments. In
our particular GPU with 672 HTs, this implies that, if the GPU
is idle and we intend to run 672 software threads, each HT
will be allocated to exactly one software thread.

We exercise control on how to make vkernelA and vkernelB
run on Sall

0 and Sall
1 , respectively, as follows:

1) We set the number of software threads to match the
number of HTs (|HT |) (672).

2) We virtually split the work of each vkernel into |HT |
2

software threads with the aim of making each vthread
use half of the GPU computing resources.

3) Each software thread, upon execution, uses the HT, EU,
SS and DSS identifiers to select the piece of work to
execute. In particular, if SS = 0, work from vkernelA
is performed. Else, if SS = 1, work from vkernelB is
performed.

Hence the overall work is split into as homogeneous as pos-
sible execution “chunks”, with each execution chunk mapped
statically to a specific HT in the GPU2, and such mapping
occurs ensuring that all HTs in Sall

0 perform together all work
of vkernelA, and HTs in Sall

1 do the same for vkernelB. As
shown in Figure 4, we first enforce having as many software
threads as HTs (16 in the example). Whenever a HT starts
executing a software thread (e.g., the first HT in SS0 of DSS0),
it performs the work allocated to that physical HT (e.g., the
work in the first row and first column of vkernelA). The

2The particular software thread allocated to a given HT will perform the
corresponding chunk of work mapped to the particular HT where it runs.

Fig. 5: Summary of the default work split and scheduling process (top), and our process to achieve diverse redundancy (bottom).

particular fraction of work to be carried out is selected using
the HT, EU, SS and DSS identifiers. Overall, we achieve a
bijective correspondence between software threads and HTs,
we make each HT execute its corresponding software thread
performing a pre-decided fraction of the work, and moreover
we guarantee that software threads of vkernelA only use HTs
in Sall

0 , whereas software threads of vkernelB only use HTs
of Sall

1 .
The overall process is summarized in Figure 5 that shows

how, in the default process, work is allocated to software
threads statically, and then the hardware scheduler maps
software threads – and hence work – to HTs. However, in our
case, software threads select the work to carry out dynamically
based on the HT where they are run, and hence, we take over
decisions on what HT performs what computation to enforce
diverse redundancy. The next subsection details how work is
split into execution chunks and mapping across HTs is actually
realized.

D. Strategy Realization and Integration

We introduce three changes to the original code to imple-
ment our strategy:

1) We create an additional dimension to the matrices, as
described in Section III-B, to implement the virtual
redundant kernels. Note that such modification relates to
having redundant execution, not to the particular strategy
proposed in this work to enforce diversity.

2) We set the number of software threads to |HT |. This is a
trivial modification to apply in the CPU code where the
kernel is launched.

3) We start each thread selecting the fraction of work to be
carried out based on the actual DSS, SS, EU and HT
ids of the HT where the software thread is run. Those
ids are obtained using appropriate Intel GPU intrinsic
commands [13]. We have tailored such process so that
it is application independent and is encapsulated in a
“prolog” routine call to be added in the user code before
the actual execution of the software thread work.

For evaluation purposes, we have extended the prolog
with additional functionality to record ids and to initialize
appropriate counters, and have added an epilog function to
allow retrieving results from those counters. That functionality
is not really needed and could be dropped, although its impact
in execution time is low in absolute terms, and completely
negligible in relative terms for key workloads (e.g., matrix
multiplications with 1024x1024 matrices).

Note that our solution requires no hardware change and it is
a purely software-only solution realized on COTS Intel GPUs.

1 matrix_multiplication(a, b, c, size){

2 for i in (0,size):

3 for j in (0,size):

4 for k in (0,size):

5 fc[i*size+j] = fc[i*size+j] + fa[i*size+k] * fb[k*size+j];

6 }

Fig. 6: Original matrix multiplication CPU code.

1 __kernel void matrix_mult

2 (

3 const int size,

4 const __global float* A,

5 const __global float* B,

6 __global float* C,

7 __global struct HardwareThreadInfo* info

8)

9 {

10 int i = get_global_id(0);

11 int j = get_global_id(1);

12 if (i < size && j < size)

13 {

14 float acc = 0;

15 for (unsigned int k = 0; k < size; ++k)

16 acc += A[i*size+k] * B[k*size +j];

17 C[i*size+j] = acc;

18 }

19 }

Fig. 7: Original matrix multiplication GPU code.

E. An illustrative example

This section details the application of our method to a
specific example for illustration purposes. We show, step by
step, the specific changes to be applied on the application
code, as well as the application independent routines and
transformations used to achieve diverse redundancy.

Figure 6 shows the CPU version of the original code of
a matrix multiplication kernel. It consists of 3 nested loops
where the innermost one computes one cell of the output
matrix. The GPU version of this code is shown in Figure 7,
where we see that the call get_global_id(int) is used
to retrieve the indices for the two dimensions of the loop
that have been parallelized into software threads. In this way,
each software thread computes one cell of the output matrix,
and there are as many software threads as cells has the
output matrix. For instance, if such matrix has 1024x1024
dimensions, there will be 1, 048, 576 software threads that will
be scheduled by the hardware scheduler.

Figure 8 shows the modified GPU code for the software
threads. The code of the called routines is omitted due to space
constraints. As shown, modifications are trivial to apply:

• (Only for debug purposes) We add an additional variable
in the declarations, info, but only for debugging pur-

1 __kernel void matrix_mult

2 (

3 const int size,

4 const __global float* A,

5 const __global float* B,

6 __global float* C,

7 __global struct HardwareThreadInfo* info

8)

9 {

10 {

11 HARDTYPE(float, A, size*size)

12 HARDTYPE(float, B, size*size)

13 HARDTYPE(float, C, size*size)

14 HEADER(size,size)

15 //ORIGINAL CODE

16 int i = get_global_id(0);

17 int j = get_global_id(1);

18 if (i < size && j < size)

19 {

20 float acc = 0;

21 for (unsigned int k = 0; k < size; ++k)

22 acc += A[i*size+k] * B[k*size +j];

23 C[i*size+j] = acc;

24 }

25 //END

26 FOOTER(i,j)

27 }

28 }

Fig. 8: Modified matrix multiplication GPU code.

poses. This declaration would be dropped for a production
version of our solution.

• (Mandatory) We use the HARDTYPE function, which is
in charge of selecting the part of the data to operate
based on the specific SS where the software thread is
allocated (obtained with the intrinsic call intel_get_-
subslice_id()). In particular, as explained before,
each matrix is duplicated by adding an additional (first)
dimension with 2 positions. The HARDTYPE routine sets
the pointer of the matrix to the beginning of the matrix
if the SS id is 0, or shifts it by the size of the original
matrix (hence to the beginning of the second copy of the
original matrix, as if the first dimension was set to 1) if
the SS id is 1. Therefore, we call HARDTYPE for each
of the matrices operated passing as parameters the data
type, the pointer (name) of the matrix, and its size as the
product of the size of its dimensions.

• (Mandatory) We call the HEADER function, which com-
putes the actual part of the work to carry out based on
the actual DSS, SS, EU and HT ids of the HT where
the software thread has been allocated, and creates the
wrapping loops to make the software thread execute its
code as many times as needed for the corresponding
output cells.

• (Mandatory) We finally call the FOOTER function, all
whose statements intend to store debug information back
and would be dropped for a production version of our
solution. The only lines of code truly mandatory are the
braces closing the loops.

Note that the only part of the HEADER and FOOTER calls
that is application dependent is the number of parameters and
their values, since we need as many parameters as dimensions

of the matrices on which to iterate, and those parameters
must be the dimension sizes. Different HEADER and FOOTER
functions must be used if the number of dimensions on which
to iterate differs (e.g., 1, 3, 4, etc. instead of 2), but their code
is analogous to the one for two dimensions.

IV. EVALUATION

This section presents the evaluation framework (platform,
benchmarks and setups evaluated), detailed analysis of the
results for matrix multiplication benchmarks, and summarized
results for all the other benchmarks.

A. Evaluation Framework and Setups

Platform. We used an 11th Gen Intel(R) Core(TM) i7-
1165G7 CPU at 2.80GHz with an Intel(R) Iris(R) Xe Graphics
[0x9a49] GPU. Since it is deployed on a desktop with Linux,
some services related to the display use the GPU periodically
and cannot be disabled. Hence, some experiments are altered
due to this since the scheduling assumption (i.e., round-robin
allocation of HTs) is broken upon the interference of any other
process in the GPU. Whenever this happens, our logs reflect
that at least one HT has been allocate more than one software
thread whereas at least one HT has been allocated none, and
hence, results are discarded. Overall, we repeat experiments
until achieving 6 runs per setup and matrix size without Linux
interference, and report results using execution time averages.
Benchmarks. We build on kernels used in neural networks
such as those implemented in autonomous driving frameworks,
hence being deployed on GPUs and having strict functional
safety requirements imposing the use of diverse redundancy.
Note that, to have full control of the code executed, we
do not use fully optimized APIs and, instead, use simple
implementations of the benchmarks. The list is as follows:

• Matrix multiplication (MxM)3: we consider different
square matrices of NxN rows and columns with N=672,
1024 and 1344 respectively. Sizes 672 and 1344 allow
splitting work uniformly across HTs in the GPU (there are
exactly 672), and hence, remove load imbalance effects.
A different size of 1024 has also been used to account
for those effects.

• Rectified Linear Unit activation function (RELU): Tra-
verses a matrix of NxN setting each negative value
to 0, and keeping non-negative values unmodified. The
same dimensions sizes as for MxM are considered for
consistency.

• Local Response Normalization (LRN): performed over a
single matrix. The same dimensions sizes as for MxM
are considered for consistency.

• Matrix (or 2D) convolution (Mconv): it performs the
convolution of a 2D matrix computing each element of
the 2D result matrix as a function of a 3x3 region of the
input 2D matrix. The same dimensions sizes as for MxM
are considered.

• Vector (or 1D) convolution (Vconv): it is applied on a
1D input and computes each element of the 1D result
vector as a function of a region of the input 1D vector.

3Note that we use “MxM” to refer to the benchmark and “N” or “NxN” to
refer to the size of the dimensions of the matrices.

Dimensions used for the vector are N2 so that its size
matches that of the data for MxM (despite being 1D
instead of 2D).

• Matrix multiplication transposed (MxMtrans): this bench-
mark is analogous to MxM, but instead of accessing one
input matrix by rows and the other by columns, both
are accessed by rows to maximize spatial locality when
fetching input data.

• Nearest Neighbor (NN) is a non-parametric supervised
learning method used for classification and regression. In
our case, it is used to find the closest neighbor (based
on the Euclidean distance) in a data set. As for the other
benchmarks we use as input the matrix sizes used by
MxM.

• Stencil 3D (Stencil) is a numerical data processing solu-
tion where an element of a matrix is updated as a function
of some of its neighbors (including itself). In our case,
we compute it as a function of the immediate neighbor
elements in the three dimensions, as well as itself, and
use the same overall data size as for MxM.

Setups. We consider 6 different scenarios:
• Original: the original kernel is run on the GPU matching

each software thread to the computation of one cell of
the result matrix.

• Originalx2: two (Original) (virtual) kernels are embedded
into the kernel. Software threads are analogous to those
of original.

• HalfFree: the Original kernel is split into 336 software
threads (as many as half of the HTs in the GPU). Those
software threads are let to run wherever the hardware
scheduler spawns them.

• HalfConst: analogous to HalfFree, but software threads
are controlled by our software scheme to run only in HTs
whose SS id is 1. Therefore, we constraint the kernel to
use a specific half of the computing resources of the GPU.

• RedunFree: the Originalx2 kernel is split into 672 soft-
ware threads (as many as HTs in the GPU). Those
software threads are let to run wherever the hardware
scheduler spawns them.

• RedunConst: this one is our proposed solution. It is anal-
ogous to RedunFree, but software threads are controlled
by our software scheme to run one of the virtual kernels
only in HTs whose SS id is 0, and the other virtual kernel
in HTs whose SS id is 1. Therefore, we have diverse
redundancy.

Note that those setups allow us comparing Original against
HalfFree and HalfConst expecting a ≈ 2x slowdown due to
using half of the computing resources, if computing resources
are the performance bottleneck. HalfFree is expected to get
its execution time doubled due to using half of the HTs,
and then an additional impact in performance (either positive
or negative) due to the change in terms of software threads
imposed to control the amount of HTs used. Then, HalfConst
is expected to bring some additional performance loss (likely
low) w.r.t. HalfFree due to enforcing the use of specific HTs
for the computation instead of using the first HTs allocated by
the hardware scheduler.

Analogously, those setups allow us to compare Originalx2

Fig. 9: Slowdowns for the MxM for all Half and Redun setups
and matrix sizes considered w.r.t. Original and Originalx2
setups respectively.

against RedunFree and RedunConst expecting no relevant
slowdown. RedunFree will experience some performance im-
pact (either positive or negative) w.r.t. Originalx2 due to
constraining its number of software threads. Then, RedunConst
is expected to bring some additional performance loss (likely
low) w.r.t. RedunFree due to enforcing the use of specific HTs
for the computation instead of using the HTs as allocated by
the hardware scheduler.

Finally, we can compare each of the pairs Original vs Orig-
inalx2, HalfFree vs RedunFree, and HalfConst vs RedunConst
to understand the impact of doubling the workload. Note that
such impact is caused by using redundancy, but has nothing
to do with our mechanism itself. Such overhead relates to the
increased pressure on the computing resources, shared caches,
and memory bandwidth.

B. MxM Results

We first provide a detailed evaluation of the MxM, and then
we analyze a broader set of benchmarks discussing only those
effects differing from the MxM case. We do so because MxM
already exposes most of the relevant scenarios.

Figure 9 shows the slowdown of the 4 non-original setups
w.r.t. the corresponding original setup in each case, as ex-
plained before and indicated in the figure.

Figure 9 shows that the slowdown of HalfFree is around
1.75x across all matrix sizes, hence below the expected 2x.
This occurs because, in the Original setup, there is some
degree of bandwidth saturation to access L3 cache or main
memory. Hence, despite all HTs are allowed to be used in
the Original setup, their real utilization is below 100%, and
therefore, when reducing HT utilization down to 50% for
HalfFree (only half of the HTs are used), execution time does
not double because the real HT utilization does not halve (e.g.,
moving from an 87.5% utilization to 50% could cause a 1.75
execution time increase).

Regarding HalfConst, we note that its slowdown is typically
around 10% higher than that of HalfFree. This is the cost of
constraining what HTs to use.

Comparing RedunFree and RedunConst to Originalx2 we
see that slowdowns are generally around 1x, as expected.
While some performance variations are observed, they gener-
ally relate to workload imbalance, which becomes more visible
for larger matrices. Such variations make slowdowns increase
for larger matrices. Note that, in some cases, RedunFree

Fig. 10: Execution times (in millions of cycles) for the MxM
for all setups and matrix sizes considered.

slowdown may be slightly higher than RedunConst one. This
relates to unfortunate performance imbalance since software
threads execution time is lower for RedunFree on average, but
higher for its maximum.

Figure 10 includes the absolute execution times for com-
pleteness to ease the analysis of the data by the reader, and
also validate that Originalx2 slowdown w.r.t. Original, which
should be around 2x due to performing twice the same amount
of work, is quite close to that ratio in practice across matrix
sizes (between 2.03x and 2.06x).

C. Comparison with NVIDIA-specific Solution

Note that, while the solution proposed to achieve diversity
on NVIDIA GPUs cannot be directly applied on Intel ones, we
can approximate what its expected performance would be. As
discussed before, NVIDIA specific solutions build on the idea
of decreasing the computing resources needed of the kernel
under analysis to match (or not exceed) half of the computing
resources available in the GPU [4]. Then, replicated kernels
are launched simultaneously with the minimum inter-kernel
launch delay so that they run simultaneously but staggered.
However, no explicit control is exercised on the specific com-
puting resources that the threads from each kernel use, which
are determined by the hardware scheduler. Hence, the NVIDIA
solution performance can be approximated with Originalx2
and RedunFree by not constraining how software threads are
mapped to HTs, and letting the hardware scheduler controlling
such mapping. Each of those two configurations corresponds
to different number of software threads, but preserving the
idea behind the NVIDIA solution: each replica uses around
half of the computing resources. As shown, performance for
our solution, RedunConst, is comparable to the one that would
be obtained with the NVIDIA solution, but providing stronger
diversity guarantees.

As explained before, our solution provides stronger guaran-
tees than that existing for NVIDIA GPUs. Our solution can be
applied to other GPU families that provide analogous support
to that of Intel ones so as to allow any software thread identify
the particular hardware thread where it is running.

D. Other Benchmarks Results

Figure 11 shows RedunConst w.r.t. Original for all the
other benchmarks for three different sizes of the problems. As
explained before, the expected slowdown should be generally

Fig. 11: Slowdown of RedunConst w.r.t. Original.

a bit above 2x due to the following reasons: (A) the 2x amount
of computation performed; (B) extra contention arising in the
access to shared resources that were not saturated with the
original load; and (C) the work imbalance brought by the static
allocation of work to HTs performed by RedunConst.

Vconv, and Stencil. We note that the expected behavior is
observed for Vconv and Stencil being such slowdown quite
stable across the three problem sizes considered, namely 672,
1000 and 1344. In particular, Vconv and Stencil exhibit the 2x
slowdown expected due to (A) above, with negligible impact
due to (B) and (C) (between 1% and 8%).

LRN, Mconv, and NN. These three benchmarks also
experience a 2x slowdown due to (A). However, the additional
slowdown due to (C) is significant for the three of them, and
the slowdown due to (B) is also significant for LRN. Overall,
slowdowns for LRN, Mconv, and NN are around 2.93x, 2.49x
and 2.46x, being highly stable across matrix sizes.

The remaining benchmarks (RELU and MxMtrans) show,
instead, lower slowdowns that we analyze case by case.

RELU. In the case of RELU, included due to its relevance
in the context of neural networks, the amount of computation
performed is tiny. Hence, by generating as many software
threads as computed elements for Original, most of the ex-
ecution time corresponds to overheads to create, schedule and
terminate software threads. Since RedunConst creates only one
software thread per HT, such overhead decreases drastically
and performance gains offset by far the cost of doubling the
computation. In this particular case, fewer and coarser software
threads for Original should be used to increase efficiency.
Nevertheless, we included this particular work split of RELU
to illustrate a larger variety of scenarios.

MxMtrans. MxMtrans triggers specific data access patterns
that lead to improved performance for RedunConst w.r.t.
Original, which mitigates partially the 2x slowdown caused
due to (A). In particular, each cell of the result matrix of
MxMtrans is obtained by traversing one row of each one of
the input matrices, whose footprint is much smaller than that
of MxM. Hence, MxMtrans exploits spatial locality for both
input matrices, and such data requires limited cache space. In
the case of Original, since software threads are scheduled to
HTs without cache locality in mind, no relevant reuse occurs
across software threads sharing SS. However, while not on
purpose, RedunConst often schedules software threads reusing
each others’ data in the same SS. Hence, this increases cache
reuse w.r.t. Original, and leads to a slowdown clearly below
2x. Note also that, as the matrix sizes increase, the slowdown
approaches 2x since the volume of data per SS is higher and

cache capacity limits data reuse across software threads.
In fact, the fine-grain control that our solution provides on

what fraction of the work is performed by each HT could
be exploited to favor cache locality. Hence, those applications
performing some data reuse could be the target of performance
optimizations by tuning what part of the work is performed by
each HT. Exploiting such opportunities in a general manner is
left for future work.

V. RELATED WORK

The effectiveness of GPUs, FPGAs and ASIC designs in the
context of autonomous driving applications has been analyzed
in [18]. Other works focus exclusively on GPUs and evaluate
their real-time performance capabilities for safety-relevant
applications [24], [7].

Automotive platforms such as the NVIDIA Xavier [19] and
RENESAS R-Car H3 [1] build upon COTS GPUs governed
by automotive microcontrollers. ASIL-D compliance for fail-
operational applications on those platforms requires the use of
diverse software implementations of the algorithms deployed
on the GPU, which leads to duplicated design and V&V costs,
or fully redundant SoCs, which imposes high procurement
costs and reliability concerns due to having additional inter-
connected physical components.

A number of works, mostly focusing on NVIDIA GPUs,
aim at characterizing or improving performance characteristics
relevant for our work, yet they neither provide redundancy per
se nor diversity since their target is not safety-critical systems.
However, some of those solutions could be used to achieve
redundancy on NVIDIA GPUs, yet without full diversity. In
particular, some works explore scheduling approaches and
program transformations to partition some GPU resources
on NVIDIA GPUs [2], [16], [23], [15] or manage resource
concurrency [20].

Some authors provide redundancy schemes on GPUs [8],
[22], yet without providing diversity, as needed for safety-
critical systems. So far only Alcaide et al. have developed
solutions to achieve diverse redundancy on (NVIDIA) GPUs,
either with hardware support [3] or with software-only so-
lutions [4], [5]. As discussed before, software-only solutions
are the only choice that can be used on COTS GPUs, but do
not provide strong diversity guarantees during those periods
when only one of the replicas is running since such replica
could use the same resources used by the other replica, hence
losing diversity. Moreover, they are NVIDIA specific. Overall,
this paper is the first work providing diverse redundancy on
Intel GPUs, as required for ASIL-D automotive applications,
with strong guarantees even in those periods where only one
of the kernels is still running by explicitly controlling what
computing resources are used by each kernel.

VI. CONCLUSIONS AND FUTURE WORK

COTS GPUs are becoming increasingly popular in auto-
motive systems to implement AD functionalities. However,
they do not provide explicit support for diverse redundancy, as
needed for ASIL-D applications. So far, solutions for NVIDIA
COTS GPUs have been proposed, yet with some caveats
related to the limited diversity guarantees achieved when only
one of the redundant kernels is running.

This paper proposes a new software-only solution to achieve
diverse redundancy on Intel GPUs, hence enabling their use for
ASIL-D automotive applications, by explicitly controlling the
computing resources used by each computation overriding the
hardware scheduler, yet with a software-only solution, hence
also eliminating the caveats existing for previous work for
NVIDIA GPUs. Our results show that performance costs are
low (e.g., around 9% for the ubiquitous matrix multiplication)
Moreover, our solution is easy to integrate on legacy software
by virtue of its modular design, which only requires inserting
specific calls while keeping original code unaltered.

VII. ACKNOWLEDGMENTS

This work has been partially supported by the Spanish
Ministry of Science and Innovation under grant PID2019-
107255GB-C21/AEI/ 10.13039/501100011033, and by the
project AUTOtech.agil of the German Federal Ministry of
Education and Research (support code 01IS22088I).

REFERENCES

[1] RENESAS R-Car H3. https://www.renesas.com/us/en/products/automotive-
products/automotive-system-chips-socs/r-car-h3-m3-starter-kit, 2021.

[2] J. Adriaens et al. The case for GPGPU spatial multitasking. In HPCA,
2012.

[3] S. Alcaide et al. High-Integrity GPU Designs for Critical Real-Time
Automotive Systems. In DATE, 2019.

[4] S. Alcaide et al. Software-only Diverse Redundancy on GPUs for
Autonomous Driving Platforms. In IOLTS, 2019.

[5] S. Alcaide et al. Software-Only Triple Diverse Redundancy on GPUs for
Autonomous Driving Platforms. In DSN-Supplemental Volume, 2020.

[6] S. Alcaide et al. Achieving Diverse Redundancy for GPU Kernels. IEEE
Transactions on Emerging Topics in Computing, 10(2):618–634, 2022.

[7] T. Amert et al. GPU Scheduling on the NVIDIA TX2: Hidden Details
Revealed. In RTSS, 2017.

[8] M. Dimitrov. Understanding Software Approaches for GPGPU Relia-
bility. In GPGPU Workshop, 2009.

[9] Infineon. AURIX Multicore 32-bit Microcontroller Family to Meet
Safety and Powertrain Requirements of Upcoming Vehicle Gener-
ations. https://www.infineon.com/cms/en/about-infineon/press/market-
news/2012/INFATV201205-040.html, 2012.

[10] Intel Corporation. Intel Processor Graphics Gen11 Architecture. Version
1.0, 2019. https://www.intel.com/content/dam/develop/external/us/en/
documents/the-architecture-of-intel-processor-graphics-gen11-r1new.
pdf.

[11] Intel Corporation. Architecture Day, 2020. https:
//newsroom.intel.com/wp-content/uploads/sites/11/2020/08/
Intel-Architecture-Day-2020-Presentation-Slides.pdf.

[12] Intel Corporation. Intel Iris Xe MAX Graphics Open Source.
Programmer’s Reference Manual. For the 2020 Discrete GPU
formerly named “DG1”. Volume 4: Configurations. Version
1.0, 2021. https://01.org/sites/default/files/documentation/
intel-gfx-prm-osrc-dg1-vol04-configurations.pdf.

[13] Intel Corporation. OpenCL(TM) Built-In Intrinsics, 2021.
https://github.com/intel/pti-gpu/blob/master/chapters/binary
instrumentation/OpenCLBuiltIn.md.

[14] International Standards Organization. ISO/DIS 26262. Road Vehicles –
Functional Safety. Second edition, 2018.

[15] S. Jain et al. Fractional GPUs: Software-based compute and memory
bandwidth reservation for GPUs. In RTAS, 2019.

[16] J. Janzen et al. Partitioning GPUs for Improved Scalability. In SBAC-
PAD, 2016.

[17] Chiyoung Lee, Se-Won Kim, and Chuck Yoo. Vadi: Gpu virtualization
for an automotive platform. IEEE Transactions on Industrial Informat-
ics, 12(1):277–290, 2016.

[18] Shih-Chieh Lin et al. The Architectural Implications of Autonomous
Driving: Constraints and Acceleration. In ASPLOS, 2018.

[19] NVIDIA. NVIDIA Announces World’s First Functionally Safe
AI Self-Driving Platform. https://nvidianews.nvidia.com/news/nvidia-
announces-worlds-first-functionally-safe-ai-self-driving-platform, 2018.

[20] M. Thazhuthaveetil S. Pai and R. Govindarajan. Improving GPGPU
Concurrency with Elastic Kernels. In ASPLOS, 2013.

[21] H. Tabani et al. A Cross-Layer Review of Deep Learning Frameworks
to Ease Their Optimization and Reuse. In ISORC, 2020.

[22] J. Wadden et al. Real-world design and evaluation of compiler-managed
GPU redundant multithreading. In ISCA, 2014.

[23] B. Wu et al. Enabling and exploiting flexible task assignment on GPU
through SM-centric program transformations. In ICS, 2015.

[24] M. Yang et al. Avoiding Pitfalls when Using NVIDIA GPUs for Real-
Time Tasks in Autonomous Systems. In ECRTS, 2018.

