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Abstract

In this work we study the splitting distance of a rapidly perturbed pendulum H(x, y, t) = 1
2
y2 + (cos(x) −

1) + µ(cos(x) − 1)g
(
t
ε

)
with g(τ) =

∑
|k|>1 g

[k]eikτ a 2π-periodic function and µ, ε � 1. Systems of this kind
undergo exponentially small splitting and, when µ � 1, it is known that the Melnikov function actually gives
an asymptotic expression for the splitting function provided g[±1] 6= 0. Our study focuses on the case g[±1] = 0
and it is motivated by two main reasons. On the one hand the general understanding of the splitting, as current
results fail for a perturbation as simple as g(τ) = cos(5τ) + cos(4τ) + cos(3τ). On the other hand, a study of the
splitting of invariant manifolds of tori of rational frequency p/q in Arnold’s original model for diffusion leads to
the consideration of pendulum-like Hamiltonians with g(τ) = sin

(
p · t

ε

)
+ cos

(
q · t

ε

)
, where, for most p, q ∈ Z

the perturbation satisfies g[±1] 6= 0.
As expected, the Melnikov function is not a correct approximation for the splitting in this case. To tackle the
problem we use a splitting formula based on the solutions of the so-called inner equation and make use of the
Hamilton-Jacobi formalism. The leading exponentially small term appears at order µn, where n is an integer
determined exclusively by the harmonics of the perturbation. We also provide an algorithm to compute it.

Keywords Splitting of separatrices, exponentially small phenomena, Hamiltonian systems.

MSCcodes 37D10.

1 Introduction

In this paper we revisit the problem of the exponentially small splitting of separatrices for one and a half degrees
of freedom Hamiltonian systems with a non-autonomous fast periodic perturbation. This problem has been subject
of research due to the role of transversal intersections between invariant manifolds in the appearance of chaos and,
when the dimension is high enough, in instability phenomena such as Arnold diffusion. Historically, the approach
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to determining whether transversal intersections occur has been to provide an asymptotic expansion of the splitting
distance in terms of the perturbation parameter.

The general setting is a Hamiltonian system with an analytic Hamiltonian of the form:

H0(x, y) + µH1(x, y, t/ε), x, y ∈ T× R or x, y ∈ R2,

where the unperturbed Hamiltonian, H0(x, y), has a saddle fixed point whose stable and unstable manifolds coincide
along an homoclinic orbit, H1(x, y, τ) is 2π-periodic in the time τ and 0 < ε < 1, 0 ≤ µ < 1 are parameters. In
these models, the parameter µ controls the size of the perturbation, whereas ε controls its frequency. The question
is to establish if the perturbed stable and unstable manifolds intersect transversely for ε, µ > 0.

For non-fast perturbations, that is, when ε = 1, classical perturbation theory provides an explicit function,
named Melnikov function, which gives the first order in µ of the splitting distance. However, when the perturbation
is fast in time, that is for 0 < ε� 1, the Melnikov function becomes exponentially small in ε and therefore a direct
application of Melnikov theory does not lead to any conclusion unless we take the parameter µ exponentially small
in ε.

Since the 80’s, using the seminal ideas developed by Lazutkin (see [16] for an English translation) many works
(see [9], [13], [4] and references therein) have aimed at giving conditions for either ensuring the validity of the
Melnikov prediction, or providing alternative methods to obtain the asymptotic formula when Melnikov prediction
fails to be true. In both cases, the asymptotic formula only describes the first order of the splitting distance if some
non-degeneracy condition is met. In the so-called regular case, when the Melnikov method is valid, the condition
can be explicitly given in terms of the perturbation whereas in the singular case, where Melnikov prediction fails,
the non-degeneracy condition can be established by the non-vanishing of the so-called Stokes constant Θ 6= 0, which
is obtained studying a different equation, independent of the singular parameter ε, known as the inner equation.

In this work we focus on the “degenerate regular” case, that is, when the Melnikov function seems to give the
asymptotic value of the splitting distance but the non-degeneracy conditions fails. This degenerated context is
related with the study of the splitting of separatrices of rational tori in Arnold’s original model of diffusion ([2])
where this setting naturally appears (see Section 2.3.2).

The idea is to use the more powerful tools from the singular case, i.e., the approximation of the manifolds by the
solutions of the inner equation, to overcome the difficulties added by the degeneracy. The novelty of our argument
is the following: on the one hand, by looking at µ and ε as two independent parameters, we use the analyticity of
the system with respect to µ to Taylor expand the splitting distance, each of the terms carrying an exponentially
small factor in ε; on the other hand, we find the smallest power in µ where the leading exponentially small term
appears and, since it is absent in the Melnikov approximation when this power is greater than 1, we use the inner
equation to prove that it is dominant. Our result is valid for all µ and ε small enough. Furthermore, the asymptotic
formula is valid for the case µ independent of ε or µ = O(εn) for any n > 0.

A similar example with n = 2 was exposed in [18]. In that paper the authors study the splitting for the
pendulum equation given by H(x, y, t) = 1

2y
2 + cos(x) − ε 12 (x + sin(x))(cos(2ωt) + cos(3ωt)), with ω a negative

power of the perturbative parameter ε. They establish the non-dominance of the classical Melnikov function (which
is exponentially small in ω) and compute the ε2 term of the Taylor expansion of the splitting function (note that
this is analogous to our result, where the dominant term in the splitting is given by order µ2). However, as the
authors point out, the question of the dominance of the second order in ε of the splitting remains unsolved. In
another paper in the same line, [6], the authors consider a Duffing equation given by H(x, y, t) = 1

2y
2 + 1

2x
2− 1

4x
4 +

ε 13x
3(cos(2ωt) + cos(3ωt)), with ω also a negative power of ε. In this particular case they compute the second order

in ε of the splitting and show that it gives the correct asymptotic behaviour. Their proof of this dominance relies
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on specific computations for this model.

1.1 Measuring the splitting distance

Even if the method we present is quite general, we deal with a classical problem, the rapidly forced pendulum, to
illustrate it. The associated Hamiltonian will be:

H

(
x, y,

t

ε
;µ

)
= H0(x, y) + µH1

(
x, y,

t

ε

)
=

1

2
y2 + (cos(x)− 1) + µ(cos(x)− 1)g

(
t

ε

)
, (1)

where (x, y) ∈ T × R, g(τ) is a real analytic 2π-periodic function with zero mean, |µ| � 1 and 0 < ε � 1. When
µ = 0 the unperturbed system has a saddle point at (0, 0) with coinciding unstable and stable manifolds along a
homoclinic orbit that can be parameterized as:

x = x0(t) = 4 arctan(et), y = y0(t) =
2

cosh(t)
, t ∈ R. (2)

When µ 6= 0, {(0, 0, τ)}τ∈[0,2π] is an hyperbolic periodic orbit that has stable and unstable manifolds which, in
general, will not coincide. The phenomenon of the splitting of separatrices deals precisely with the study of the
difference between those invariant manifolds, as shown in 1:

x

y y

xx0

0 2π 0 2π

d

Figure 1: Left: unperturbed homoclinic. Right: distance between invariant manifolds, d(Wu,Ws), at the point x0.

This model falls in the setting where we can apply the results of the aforementioned work, [4]. Let us summarize
here the main ideas and specify our measure of the splitting distance as well as some standard notation. Even
when it is not essential, we profit from the fact that the perturbed manifolds are globally expressible as a graph via
a 2π-periodic in τ generating function, S(x, τ ;µ, ε) (see [20]). Indeed, if we denote by W u,s(x, τ ;µ, ε), where u, s
stand for unstable and stable, the graph parameterization of the perturbed manifolds, we have that

W u,s(x, τ ;µ, ε) =
(
x, ∂xS

u,s(x, τ ;µ, ε)
)

with the generating functions Su,s satisfying the Hamilton-Jacobi equation

H (x, ∂xS, τ ;µ) +
1

ε
∂τS = 0, (3)

joint with the boundary conditions

lim
x→0

∂xS
u(x, τ ;µ, ε) = 0, lim

x→2π
∂xS

s(x, τ ;µ, ε) = 0. (4)
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Therefore, taking x ∈ (0, 2π), a measure of the splitting distance is given by

d(x, τ ;µ, ε) = ∂xS
u(x, τ ;µ, ε)− ∂xSs(x, τ ;µ, ε). (5)

Following [4], instead of Su,s we use a different parameterization with u —the time on the unperturbed homoclinic—
as the parameter. That is, we define the new parameter u by x = x0(u), where x0 is given in (2), and we write

T̂ u,s(u, τ ;µ, ε) = Su,s(x0(u), τ ;µ, ε). (6)

Then, applying the chain rule:

y = ∂xS
u,s(x, τ ;µ, ε) =

∂u

∂x
· ∂uSu,s(x0(u), τ ;µ, ε) =

∂u

∂x
· ∂uT̂ (u, τ ;µ, ε) =

1

y0(u)
· ∂uT̂ (u, τ ;µ, ε). (7)

Note that, with this parameterization, the boundary conditions (4) read

lim
u→±∞

cosh2(u) · ∂uT̂ u,s(u, τ ;µ, ε) = 0. (8)

Finally, as we expect the manifold to be close to the unperturbed homoclinic, we write

T̂ u,s(u, τ ;µ, ε) = T0(u) + T u,s(u, τ ;µ, ε), (9)

where T0(u) is the generating function when µ = 0, namely ∂uT0(u) = 4
cosh2(u)

. Summarizing, we rewrite the

splitting distance in (5), using the same notation d for it as

d(u, τ ;µ, ε) =
1

y0(u)

(
∂uT̂

u(u, τ ;µ, ε)− ∂uT̂ s(u, τ ;µ, ε)
)

=
cosh(u)

2
(∂uT

u(u, τ ;µ, ε)− ∂uT s(u, τ ;µ, ε)) (10)

and therefore, analyzing the splitting distance is equivalent to understanding the function

∆(u, τ ;µ, ε) := T u(u, τ ;µ, ε)− T s(u, τ ;µ, ε) (11)

and its derivatives.

In the perturbative regime µ� 1 it is known (see [21], [1], [10], [7], [12] and [4]) that the dominant term of the
splitting distance for system (1) is given by the Melnikov function, M. More concretely, if we take, for instance,
the section x = π, which corresponds to u = 0, the splitting distance d is a periodic function of τ given by

d(u = 0, τ ;µ, ε) =M(τ ; ε) · µ+O
(
|µ|2

ε2
· e− π

2ε

)
+O

(
|µ|

log(1/ε) · ε2
· e− π

2ε

)
, (12)

where the Melnikov function M(τ ; ε) is given by:

M(τ ; ε) = ∂u

∫ ∞
−∞

1

cosh2(u+ r)
g(τ + r/ε)dr

∣∣∣∣
u=0

= −
∫ ∞
−∞

2 sinh(r)

cosh3(r)
g(τ + r/ε)dr =

= −i π
ε2

∞∑
k=−∞

g[k] · eikτ · k2

sinh
(
kπ
2·ε
) ,
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and we have written the function g as its Fourier series:

g(τ) =
∑
n∈N

g[k] · eikτ . (13)

The harmonics of the perturbation are multiplied by increasing exponentially small factors in ε

M(τ ; ε) =
4π

ε2
· e− π

2ε · =
(
g[1] · eiτ

)
+

16π

ε2
· e− π

2ε ·2 · =
(
g[2] · e2iτ

)
+O

(
e−

π
2ε ·3

ε2

)
.

Consequently, when g[1] 6= 0, the asymptotic formula for the splitting (12) is:

d(u = 0, τ ;µ, ε) =
e−

π
2ε

ε2
·
[
4π=

(
g[1] · eiτ

)
· µ+O

(
|µ| · e− π

2ε

)
+O(|µ|2) +O

(
|µ|

log(1/ε)

)]
. (14)

In this non degenerate regular case, the first term is greater than the error for µ, ε → 0 and, therefore, formula
(14) gives an asymptotic formula for the splitting distance d(u = 0, τ ;µ, ε). In fact, what is proved in [4] is a more
general formula, valid for any µ, including the cases where µ = O(1):

d(u = 0, τ ;µ, ε) =
e−

π
2ε

ε2
·
[
=
(
χ[−1](µ) · eiτ

)
+O

(
|µ|

log(1/ε)

)]
, (15)

where the Stokes constant χ[−1](µ) is obtained through the study of some special solutions of the inner equation,
an equation independent of the parameter ε which, for the pendulum system associated to Hamiltonian (1), reads:

∂τψ(z, τ, µ) + ∂zψ(z, τ, µ) =
1

8
z2(∂zψ(z, τ, µ))2 − 2µ

g(τ)

z2
. (16)

Moreover, it is proven in [4] that, when |µ| � 1, the Stokes constant satisfies:

χ[−1](µ) = 4πg[1]µ+O(µ2)

and therefore one recovers the Melnikov dominance for µ small enough and g[±1] 6= 0.

Our strategy consists in exploiting the analytic dependence of equations (1) and (16) on µ to prove that the

error term in (15) is O
(
|µ|n
| log(ε)| , e

− π
2πε

)
. We also provide a formula for χ[−1](µ) in terms of suitable limits of some

solutions of the inner equation. From the computational point of view, dealing with the inner equation allows us
to provide an effective algorithm to compute the splitting distance (see Section 2.4).

To finish, we remark that the methodology presented in this paper is independent of the particular form of the
equation (1) and could be applied to any one-and-a-half-degree-of-freedom Hamiltonian system with a homoclinic
orbit and a non-generic fast perturbation, performing the necessary technical changes. The paper is organized as
follows: in Section 2 we present some preliminary results and state the two main Theorems, 2.4 and 2.5; we also
give two examples of application and present an algorithm to compute the leading term of χ[−1](µ) numerically. In
Section 3 we prove Theorem 2.4. Finally, in Section 4 we prove Theorem 2.5. We leave some technical proofs for
the appendices.
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2 Main result

2.1 Setting and notation

All the functions in this work depend on u, τ and µ analytically, as well as on ε (not analytically). We shall write the
dependence in u, τ, µ explicitly and leave out the dependence on ε unless the context requires otherwise. Notice that,
as g(τ) is real analytic, there exists σ0 > 0 such that g(τ) is analytic in the complex strip Tσ0

:= {τ ∈ C, <(τ) ∈
T, |=(τ)| < σ0} and continuous on its boundary. Since proofs typically require a finite number of reductions in the
analyticity strip, when stating a result we denote by 0 < σ < σ0 a width of analyticity for which the conclusion
holds.

As for the notation, for a given 2π-periodic function g, we denote by G` the sets defined as:{
G1 = {m ∈ Z, g[m] 6= 0},
G` = {m ∈ Z, m = m1 +m2 + · · ·+m`, mj ∈ G1} .

(17)

These sets will play a crucial role in our approach. The main feature we use is the following result.

Lemma 2.1. Let g be a 2π-periodic function. There exists n ∈ N such that 1 ∈ Gn and 1 /∈ G` for ` < n, namely

n = n(g) := min{` ∈ N : 1 ∈ G`}. (18)

Proof. We only need to prove that the set {` ∈ N : 1 ∈ G`} is not empty. If g only has one harmonic, it has
to be g[±1] (otherwise, the period would be smaller), so n = 1. If g has more than one harmonic, there exist
k1, . . . , km ∈ G1 such that their greatest common divisor is 1 (otherwise, the period would be smaller). Then, by
the generalized Bézout identity there exist `1, . . . , `m such that

k1 · `1 + · · ·+ km · `m = 1.

Notice that since g is real analytic, if k1, · · · , km ∈ G1, also −k1, · · · ,−km ∈ G1. Then one can assume that `j > 0,
changing if necessary kj by −kj . Hence, `∗ = `1 + · · ·+ `m satisfies that 1 ∈ G`∗ .

Remark 2.2. We observe that in the space of smooth periodic functions, S, the set E0 = {f ∈ S : n(f) = 1} is
generic, the set E1 = {f ∈ S : n(f) = 2} has codimension one and, for s ∈ N, Es = {f ∈ S : n(f) = s + 1} has
codimension s. As usual Es ⊂ S\(E0 ∪ · · · ∪ Es−1).

Using this notation we can reformulate our aim in this paper as finding the splitting distance when the pertur-
bation g ∈ Es, for some s ≥ 1.

2.2 Main theorems

In order to state the main results, we first summarize the relevant information about the inner equation (16)
associated to the Hamiltonian (1), which we recall is independent of the singular parameter ε. The results can be
found in [3].

We introduce some notation. For given ρ, θ > 0, let Din,±
%,θ be the complex domains defined as follows

Din,−
%,θ = {z ∈ C; |=(z)| > θ · <(z) + %}, Din,+

%,θ = {−z ∈ Din,−
%,θ } (19)
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(see 2). For µ0 > 0, we introduce Bµ0 = {µ ∈ C : |µ| < µ0} and for σ > 0 we write Tσ = {τ ∈ C,<(τ) ∈ T, |=(τ)| <
σ} ⊂ C.

i%

Din,−
%,θ

arctan(θ)

i%

Din,+
%,θ

arctan(θ)

Figure 2: Domains Din,+
%,θ and Din,−

%,θ .

Now we consider the domain
Din
%,θ = Din,+

%,θ ∩ D
in,−
%,θ ∩ {=(z) < 0}. (20)

In this domain we can state the following result by paraphrasing [3].

Theorem 2.3 ([3]). Fix µ0 > 0 and 0 < arctan(θ) < π
2 . For any periodic real analytic function g, there exist %0,

σ > 0 and M = M(%0, µ0, θ) such that ∀µ ∈ Bµ0
, % ≥ %0, the inner equation (16) has analytic solutions ψ±(z, τ, µ)

defined in Din,±
%,θ × Tσ ×Bµ0

, whose derivatives are uniquely determined by the condition that:

|∂zψ±(z, τ, µ)| < M · |µ|
|z|3

, (z, τ, µ) ∈ Din,±
%,θ × Tσ ×Bµ0

.

In addition, there exists an analytic function g(z, τ, µ) defined in Din
%,θ×Tσ×Bµ0

satisfying |g(z, τ, µ)| ≤M ·|z|−1

and such that the difference ∆in(z, τ, µ) := ψ−(z, τ, µ)− ψ+(z, τ, µ) is given in Din
%,θ × Tσ ×Bµ0

by:

∆in(z, τ, µ) =
∑
k<0

χ[k](µ) · eik(z−τ+µg(z,τ,µ)), (21)

where χ[k](µ) are analytic functions of µ.

Our first result, Theorem 2.4 below, relates the behaviour of χ[−1] for |µ| small with the degree of degeneracy
(n = n(g)) of the periodic perturbation g (see Remark 2.2).

Theorem 2.4. Let g be a real analytic periodic function and n = n(g) be defined as in (18). We consider χ[k](µ)

defined by (21) and ∆
[k]
in (z, µ), the k-th coefficient in the Fourier series of ∆in, namely

∆in(z, τ, µ) =
∑
k∈Z

∆
[k]
in (z, µ) · eikτ . (22)

Then one has:

7



1. ∂jµχ
[−1](0) = 0 for j = 1, . . . , n− 1 and therefore

χ[−1](µ) = χ[−1]
n µn +O(µn+1). (23)

2. The coefficient χ
[−1]
n , which only depends on the Fourier coefficients {g[k]}k∈Z with the dependence being

analytic, can be computed as

χ[−1]
n =

1

n!
lim

z→−i∞
eiz · ∂nµ∆

[1]
in (z). (24)

Furthermore, for the special cases n = 1, 2 we have that

χ
[−1]
1 = 4πg[1], χ

[−1]
2 = −4π

3

∑
k>1

g[k] · g[1−k]

k(1− k)
,

where we observe that χ
[−1]
2 = 2π

3 (G2)[1], with G(τ) a primitive of g(τ).

We present now the result concerning the splitting distance ∆(u, τ, µ) defined in (11).

Theorem 2.5. Let g be a real analytic periodic function, n = n(g) be defined as in (18) and take ρ > 0. Then
there exist µ0, ε0 such that ∀µ ∈ (−µ0, µ0), ε ∈ (0, ε0), u ∈ (−ρ, ρ) and τ ∈ [0, 2π], the function ∆ defined in (11)
satisfies

∂u∆(u, τ, µ) =
2e−

π
2ε

ε2
·
[
=
(
χ[−1](µ) · ei(τ−u/ε)

)
+O

(
|µ| · e− π

2ε

)
+O

(
|µ|n

log(1/ε)

)]
(25)

where χ[−1](µ) = χ
[−1]
n µn +O(µn+1) is the analytic function given in Theorem 2.4.

In particular,

1. If n(g) = 1 then g[1] 6= 0 and we have the following asymptotic formula:

∂u∆(u, τ, µ) =
2e−

π
2ε

ε2
·
[
4π=

(
g[1] · ei(τ−u/ε)

)
· µ+O(|µ|2) +O

(
|µ| · e− π

2ε

)
+O

(
|µ|

log(1/ε)

)]
. (26)

2. If n(g) = 2 (and consequently g[1] = 0) we have:

∂u∆(u, τ, µ) =
2e−

π
2ε

ε2
·
[

2π

3
=
(

(G2)[1] · ei(τ−u/ε)
)
· µ2 +O(|µ|3) +O

(
|µ| · e− π

2ε

)
+O

(
|µ|2

log(1/ε)

)]
, (27)

which is also an asymptotic formula when (G2)[1] 6= 0.
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Remark 2.6. In the set of functions g belonging to En−1 (see Remark 2.2) we find a generic subset, namely {g ∈
En−1 : χ

[−1]
n 6= 0}, such that Theorem 2.5 provides a first order asymptotic formula for the splitting distance

∂u∆(u, τ, µ) =
2e−

π
2ε

ε2
·
[
=
(
χ[−1]
n · ei(τ−u/ε)

)
· µn +O(|µ|n+1) +O

(
|µ| · e− π

2ε

)
+O

(
|µ|n

log(1/ε)

)]
(28)

when |µ|n � |µ| · e− π
2ε , which occurs, for instance, in the natural setting ε > 0 small and µ = O(εm) with m > 0.

Remark 2.7. Our result improves the formula for ∂u∆(u, τ, µ) in [4] for equation (1), which reads

∂u∆(u, τ, µ) =
2e−

π
2ε

ε2
·
[
4π=

(
g[1] · ei(τ−u/ε)

)
· µ+O(|µ|2) +O

(
|µ|

log(1/ε)

)]
. (29)

Indeed, when g ∈ E0 (see Remark 2.2), we recover (29) from Theorem 2.5 (see (26)). When g ∈ {g ∈ En−1 : χ
[−1]
n 6=

0}, Theorem 2.5 provides the asymptotic formula (28), whereas formula (29) only gives a non-sharp upper bound.

In addition, if g ∈ En−1 but χ
[−1]
n = 0 (which is a non-generic codimension one phenomenon in En−1), formula

(28) gives a sharper upper bound of the distance,

|∂u∆(u, τ, µ)| ≤M
∣∣∣∣ |µ|n+1

ε2
· e− π

2ε +
|µ|
ε2
· e− π

2ε ·2 +
|µ|n

log(1/ε) · ε2
· e− π

2ε

∣∣∣∣ , (30)

than the one provided by formula (29).

Note that, unlike in the case n = 1, it is possible to have a perturbation g with 1 /∈ G1 and 1 ∈ G2 (that is,

n(g) = 2), but χ
[−1]
2 = 0. Take, for example, g(τ) = cos(2τ) + cos(3τ) − 2 cos(4τ). This function has harmonics

±2,±3 and ±4, which means that n(g) = 2 (see (18)). However, replacing g[±2] = g[±3] = 1/2, g[±4] = −1 in the

formula in Theorem 2.4 we see that χ
[−1]
2 = 0. The study of the splitting in this extra degenerate case requires an

additional analysis which is out of the scope of this paper.

We end this section with a corollary:

Corollary 2.8. Under the hypotheses of Theorem 2.5, if χ
[−1]
n 6= 0, the stable and the unstable manifolds Wu,s of

the Hamiltonian system (1) intersect transversely. As a consequence, the time 2πε map is conjugated to the Smale’s
horseshoe map of infinite symbols around any transversal homoclinic point.

We prove Theorem 2.4 in Section 3 and we use this result in the proof of Theorem 2.5, in Section 4.

2.3 Examples

In this section we provide two examples where the condition g[±1] 6= 0 fails: the first one describes a very simple

perturbation g where we can check that χ
[−1]
1 = 0 and χ

[−1]
2 6= 0 and therefore Theorem 2.5 gives an asymptotic

expression for the splitting. The second one is motivated by the study of the splitting of separatrices of rational
tori in Arnold’s original model of diffusion [2].
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2.3.1 An asymptotic formula of order O(µ2 · e− π
2ε )

Let us take the model (1) with g(τ) = 20 cos(3τ) + 16 cos(2τ). In this case g[±1] = 0, g[±3] = 10 and g[±2] = 8. By
definition (17) of Gn we have that

{
G1 = {−3,−2, 2, 3}
G2 = {−6,−5,−4,−1, 0, 1, 4, 5, 6}.

As 1 /∈ G1 but 1 ∈ G2, n = 2. Furthermore, using Theorem 2.4:

χ
[−1]
2 = −4π

3

10 · 8
3 · (−2)

=
160

9
π.

We can use (27) to obtain an explicit formula for the splitting distance:

∂u∆(u, τ, µ) =
e−

π
2ε

ε2
·
[

160

9
π sin(u/ε− τ) · µ2 +O(|µ|3) +O

(
|µ| · e− π

2ε

)
+O

(
|µ|2

log(1/ε)

)]
.

Note that the result in [4] — formula (29)— would fail to provide an asymptotic expression for the splitting of
this system, so this example corresponds to Remark 2.6.

2.3.2 The Arnold example

In [2], Arnold presented the following two-and-a-half-degree-of-freedom Hamiltonian system:

H(ϕ1, ϕ2, I1, I2, s;µ, ε) =
1

2
I21 +

1

2
I22 + ε(cos(ϕ1)− 1) + εµ(cos(ϕ1)− 1) · (sin(ϕ2) + cos(s)),

where (ϕ1, ϕ2, I1, I2, s) ∈ T2 × R2 × T and s is the time. This model had an enormous impact on the study of
instabilities of quasi-integrable Hamiltonian systems, as it is expected to display arbitrarily large drifts in the action
space for arbitrarily small ε. Arnold proved the existence of such instabilities under the restrictive hypothesis of
exponentially smallness of µ with respect to ε, concretely, assuming 0 < µ < e−

π
2ε . His approach started by showing

that the invariant tori given by

TI02 = {(ϕ1, ϕ2, I1, I2, s), ϕ1 = I1 = 0; I2 = I02 , (ϕ2, s) ∈ T2}

with irrational action I02 (also known as quasi-periodic tori) are connected through heteroclinic orbits. Observe
that, for µ = 0, the tori only have homoclinic orbits given by Γω = {(ϕ1, ϕ2, I1, I2, s); I21/2 + ε(cos(ϕ1) − 1) =
0, I2 = ω, (ϕ, s) ∈ T2}. His idea was that if one proved that for µ > 0 the stable and unstable manifolds of these
tori intersect transversely along homoclinc orbits, one would also have heteroclinic orbits between nearby tori which
would form a heteroclinic chain of connected tori with increasing actions I2.

To establish the existence of transversal homoclinic orbits one needs an asymptotic formula for the distance
between the stable and unstable manifolds. Classical perturbation theory in the parameter µ gives an exponentially
small in ε first order and hence, in order to make his argument rigorous, Arnold needed the aforementioned condition
of exponential smallness on µ with respect to ε.

Without this hypothesis on µ, proving the existence of unstable orbits is still an open question, the main
difficulty being to establish the existence of transversal homoclinic/heteroclinic connections between quasi-periodic

10



tori due to the exponentially small character of the splitting of separatrices (see [8] or [20]). An alternative way to
analyze the instabilities is to study the splitting of invariant manifolds in tori with rational frequency. Let us see
the problem we would face in that case.

We focus on the invariant torus associated to a rational frequency I2 = p/q, and we take (p, q) = 1:

Tp/q = {(ϕ1, ϕ2, I1, I2, s) : I1 = ϕ1 = 0, I2 = p/q, (ϕ2, s) ∈ T2}.

To analyze its invariant manifolds, it is convenient to perform the following change of variables and time:

I1 =
√
ε · y

I2 = p
q +
√
ε · J

ϕ1 = x

ϕ2 = ϕ

s = t√
ε

,

which shifts the invariant torus to J = 0. In these variables the Hamiltonian becomes:

H(x, ϕ, y, J, t) =
1

2
y2 +

p

q
√
ε
J +

1

2
J2 + (cos(x)− 1) + µ(cos(x)− 1) ·

(
sin(ϕ) + cos

(
t√
ε

))
,

with equations of motion (the dot represents derivative with respect to t):

ẋ = y

ẏ = − sin(x)− µ · sin(x) ·
(

sin(ϕ) + cos

(
t√
ε

))
ϕ̇ =

p

q
√
ε

+ J

J̇ = µ · (cos(x)− 1) ·
(

cos(ϕ) + cos

(
t√
ε

))
.

The first two variables correspond to a pendulum with a perturbation that is fast and periodic in time but
depends on the angle ϕ as well. Even though these equations are more complex than the ones treated in this paper,
it motivates our study of such degenerate systems. Indeed, since J̇ = O(µ), assuming J = 0, which corresponds to
the invariant torus of frequency p/q, in ϕ̇, we obtain a simplified model which is a ”naive first order” in µ where

ϕ(t) =
p

q
√
ε
· t

and, if we restrict ourselves to the first two equations, we have:
ẋ = y,

ẏ = − sin(x)− µ · sin(x) ·
(

sin

(
p

q

t√
ε

)
+ cos

(
t√
ε

))
.

We will deal with the study of splitting of resonant tori in the Arnold’s model in a forthcoming paper. Here we
only use this simplified model to explain our methodology. By renaming the parameters ε = q

√
ε, we obtain:

ẋ = y,

ẏ = − sin(x)− µ · sin(x) ·
(

sin

(
p · t

ε

)
+ cos

(
q · t

ε

))
.

11



which are the equations of motion of the Hamiltonian:

K(x, y, t) =
1

2
y2 + (cos(x)− 1) + µ(cos(x)− 1)

(
sin

(
p · t

ε

)
+ cos

(
q · t

ε

))
.

We can generalize the model by adding coefficients A and B in the following manner:

K(x, y, t) =
1

2
y2 + (cos(x)− 1) + µ(cos(x)− 1)

(
A · sin

(
p · t

ε

)
+B · cos

(
q · t

ε

))
. (31)

This model corresponds to (1) with the function g in (13) given by:

g (τ) = A · sin (p · τ) +B · cos (q · τ) .

Note that, since p and q are coprime and g is 2π-periodic, we have that g[±p] = −iA2 and g[±q] = B
2 and g[k] = 0

otherwise. Therefore, if p 6= 1 and q 6= 1 we have that g[±1] = 0. Using Theorem 2.5 we can state a result about
the splitting of the separatrices of the hamiltonian system of Hamiltonian (31).

Proposition 2.9. Consider the family of systems (31). Fix ρ > 0, p, q ∈ Z, and let k∗1 , k
∗
2 ∈ Z be such that

k∗1p+ k∗2q = 1 and |k∗1 |+ |k∗2 | is minimal among all the integers that fulfill this condition. Let n = |k∗1 |+ |k∗2 |. Then,
there exist a constant Θ = Θ(A,B, p, q), µ0 = µ0(A,B, p, q) > 0 and ε0 = ε0(µ0) > 0 such that for all µ ∈ (−µ0, µ0)
and ε ∈ (0, ε0) the splitting distance between the unstable and stable manifolds (see (10) and (11)) for system (31)
is given by the following formula:

∂u∆(u, τ, µ) =
e−

π
2ε

ε2
·
[
=
(

Θ · ei(τ−u/ε)
)
· µn +O(µn+1) +O

(
|µ| · e− π

2ε

)
+O

(
|µ|n

log(1/ε)

)]
(32)

for u ∈ (−ρ, ρ) and τ ∈ [0, 2π].

Furthermore, there exists an open and dense set Up,q ⊂ R2 such that if (A,B) ∈ Up,q, Θ(A,B, p, q) 6= 0.

As a consequence, considering the residual set V :=
⋂

(p,q)∈Z2 Up,q ⊂ R2, we have that if (A,B) ∈ V , then

Θ(A,B, p, q) 6= 0 for all p, q.

Proof. The proof of this proposition is straightforward by applying Theorem 2.5 to (31). Indeed, fixing p, q it is a

consequence of the analytic dependence of the coefficient χ
[−1]
n with respect to A,B that implies that, generically,

χ
[−1]
n will be different from zero.

2.4 An algorithm for computing χ
[−1]
n

As mentioned before, in order to have an asymptotic formula for the splitting we need χ
[−1]
n 6= 0. Even though we

cannot compute this constant analytically —except for n = 1 and n = 2, see 2.4—, in this section we provide a

numerical algorithm to check that χ
[−1]
j 6= 0 for a given j > 0. We remark that this is an outline of a systematic

algorithm rather than a rigorous numerical method, which is out of the scope of this work. In Section 2.4.1 we
describe a computational algorithm to calculate solutions of a model PDE. After that, in Section 2.4.2 we will explain
the method by treating the cases n = 2 and n = 3, but we could extend it to any n by deriving the corresponding

equation. We also present a concrete computation of χ
[−1]
2 and χ

[−1]
3 . In the case of χ

[−1]
2 we compare the numerical

result with the theoretical result of the example presented in Section 2.3.1.
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2.4.1 A model PDE

Let h(z, τ) be an analytic function 2π-periodic in τ having a finite number of Fourier coefficients and an asymptotic
formal expansion as z → +∞.

h(z, τ) =
∑
`≥1

1

z`
· h`(τ) =

M∑
k=−M

h[k](z) · eikτ .

We are interested in solutions of
∂τf(z, τ) + ∂zf(z, τ) = h(z, τ)

that are 2π-periodic in τ with boundary conditions lim<(z)→±∞ f(z, τ) = 0. We use the following method.

Step 1 Write the ODE for the Fourier coefficients:

ikf [k](z) +
d

dz
f [k](z) = h[k](z). (33)

Step 2 Truncate the formal expansion of h[k](z) up to some order N ,

h[k](z) =

N∑
`=1

1

z`
· h[k]` ,

and solve (33) by equating terms of the same order. This provides an approximated solution of the Fourier coefficients
of f :

f [k](z) ≈
N∑
`=1

1

z`
· f [k]` := f̃ [k](z)

when <(z)� 1 if the boundary condition lim<(z)→+∞ f(z, τ) = 0 is considered or when <(z)� −1 otherwise.

Step 3 For any zf , select z0 with |<(z0)| � 1 and =(z0) = =(zf ). Set

ϕ(t) = f [k](z0 + t),

which is a solution of
ϕ′(t) = −ikϕ(t) + h[k](z0 + t),

and numerically integrate from t0 = 0 to tf = <(zf ) − <(z0) with initial condition ϕ(0) = f̃ [k](z0). Then,
f [k](zf ) ≈ ϕ(tf ).

2.4.2 The algorithm to compute χ
[−1]
n

We first expand the solutions of the inner equation (16)

∂τψ(z, τ, µ) + ∂zψ(z, τ, µ) =
1

8
z2(∂zψ(z, τ, µ))2 − 2µ

g(τ)

z2

13



in power series in µ and in Fourier series (see 3.1 for more details):

ψ±(z, τ, µ) =
∑
j≥1

ψ±j (z, τ) · µj , ψ±j (z, τ) =
∑
k∈Z

ψ
±,[k]
j (z) · eizτ .

Using formula (24), since 1
n!∂

n
µ∆

[1]
in (z) = ψ

−,[1]
n (z)− ψ+,[1]

n (z), we only need to numerically compute ψ
±,[1]
n (−iρ) for

ρ > 0 large enough and approximate the limit:

χ[−1]
n = lim

z→−i∞
eiz ·∆[1]

in,n(z) ≈ eρ · (ψ−,[1]n (−iρ)− ψ+,[1]
n (−iρ)). (34)

The steps are the following:

Step 1 Let σ0 > 0 be such that g is analytic in the complex strip Tσ0
. Fix an accuracy δ > 0 and take M big

enough such that

||g||σ0
:= max

τ∈Tσ0
|g(τ)| ≤ δ

2
· eMσ0/2 · (1− eσ0/2).

Define g̃(τ) =
∑
|k|<M g[k]eikτ . Since |g[k]| ≤ ||g||σ0

e−|k|σ0 , we have that maxτ∈Tσ0/2 |g(τ)− g̃(τ)| ≤ δ. Consider the
approximated inner equation

∂τψ(z, τ, µ) + ∂zψ(z, τ, µ) =
1

8
z2(∂zψ(z, τ, µ))2 − 2µ

g̃(τ)

z2
.

Step 2 The functions ∂zψ
±
1 satisfy lim|<(z)|→∞ ∂zψ

±
1 = 0 and the equation

∂τ (∂zψ
±
1 ) + ∂z(∂zψ

±
1 ) = 4µ

g̃(τ)

z3
.

Use the method in 2.4.1 to compute ∂zψ
±,[k]
1 (z) for =(z) ≤ −ρ with |k| ≤M and k ∈ G1.

Step 3 The functions ∂zψ
±
j satisfy lim|<(z)|→∞ ∂zψ

±
j = 0 and

∂τ (∂zψ
±
j ) + ∂z(∂zψ

±
j ) = h±j ,

with h±j depending on ∂zψ
±
1 , . . . , ∂zψ

±
j−1 (already computed). Solve it using the method in the previous section

only taking into account the Fourier coefficients indexed by k ∈ Gj , |k| ≤M .

Step 4 For ψ±n we only need to take into account its first Fourier coefficients, ψ
±,[1]
n , which satisfy

iψ±,[1]n (z) + ∂zψ
±,[1]
n (z) =

1

8
z2

n−1∑
l=1

M∑
k=−M

∂zψ
±,[1−k]
l (z) · ∂zψ±,[k]n−l (z)

and, again, apply the method in Section 2.4.1, for zf = −iρ.
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Step 5 Finally compute χ
[−1]
n using the approximation in (34).

2.4.3 Explicit computation for n = 2 and n = 3

We write here explicitly the equations for ψ
±,[k]
2 (z) and ψ

±,[k]
3 (z):

ikψ
±,[k]
2 (z) + ∂zψ

±,[k]
2 (z) =

1

8
z2
∑
m∈Z

∂zψ
±,[m]
1 (z) · ∂zψ±,[k−m]

1 (z) (35)

for j = 2 and

ikψ
±,[k]
3 (z) + ∂zψ

±,[k]
3 (z) =

1

4
z2
∑
m∈Z

∂zψ
±,[m]
1 (z) · ∂zψ±,[k−m]

2 (z) (36)

for j = 3. Since on the right-hand sides of (35) and (36) the functions ∂zψ
[±]
1 and ∂zψ

[±]
2 appear, we also need their

respective equations:

ik∂zψ
±,[k]
1 (z) + ∂z(∂zψ

±,[k]
1 )(z) =

4

z3
g[k] (37)

for ∂zψ
±,[k]
1 (z) and

ik∂zψ
±,[k]
2 (z) + ∂z(∂zψ

±,[k]
2 )(z) =

1

4
z
∑
m∈Z

∂zψ
±,[m]
1 (z)∂zψ

±,[k−m]
1 (z) +

1

4
z2
∑
m∈Z

∂zψ
±,[m]
1 (z)∂2zψ

±,[k−m]
1 (z) (38)

for ∂zψ
±,[k]
2 . Finally, as ∂2zψ

±,[k]
1 appears on the right-hand side of (38), we need the corresponding equation, namely

ik∂2zψ
±,[k]
1 (z) + ∂z(∂

2
zψ
±,[k]
1 (z)) = −12

z4
g[k]. (39)

As an example of computation of χ
[−1]
2 we take the perturbation g(τ) = 20 cos(3τ)+16 cos(2τ), already discussed

in Section 2.3.1. On Table 1 and the left panel of Figure 3 we see the values we obtained using different values for
ρ with <(z0) = 40 and N = 20. We see that from ρ = 4 to ρ = 10 the numerical value coincides precisely with the
theoretical value given in the example in Section 2.3.1 (represented as a dashed yellow line).

As a concrete example for n = 3 we consider the perturbation g(τ) = 20 cos(5τ) + 16 cos(3τ). In this case
g[±1] = 0, g[±5] = 10 and g[±10] = 8. By definition (17) of Gn we have that


G1 = {−5,−3, 3, 5}
G2 = {−10,−8,−6,−2, 0, 2, 6, 8, 10}
G3 = {−15,−13,−11,−9,−7,−5,−3,−1, 1, 3, 5, 7, 9, 11, 13, 15}.

Since 1 /∈ G1, 1 /∈ G2 and 1 ∈ G3, n(g) = 3. We see on Table 1 and on the right of Figure 3 the numerical

approximation of χ
[−1]
3 for several values of ρ. As in the case n = 2, the value is stable between ρ = 4 and ρ = 10.
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Notice that for higher values of ρ the values of χ
[−1]
2 and χ

[−1]
3 start deviating quickly from the stable value. This

occurs as a result of large cancellations involved in the computations. As the range ρ ∈ (4, 10) yields an accurate

result for χ
[−1]
2 , we take the stable numerical value in this interval as a valid approximation and we can conclude

that

∂u∆(u, τ, µ) =
2e−

π
2ε

ε2
·
[
=
(
χ
[−1]
3 · ei(τ−u/ε)

)
· µ3 +O(µ4) +O

(
|µ| · e− π

2ε

)
+O

(
|µ|3

log(1/ε)

)]
is a valid asymptotic formula for the splitting with χ

[1]
3 ≈ 7.

ρ 4 5 6 7 8 9 10 11 12 14

χ
[−1]
2 55.7217 55.8103 55.8006 55.8053 55.7987 56.0248 56.7904 59.1055 64.3010 112.6084

χ
[−1]
3 6.7623 7.0372 7.0692 7.0901 7.1007 7.1193 7.2627 7.2962 8.0834 9.5561

Table 1: Numerical approximation for χ
[−1]
2 and χ

[−1]
3 for different values of ρ with <(z0) = 40 and N = 20.
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-5
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Figure 3: Numerical approximation for χ
[−1]
2 and χ

[−1]
3 for different values of ρ with <(z0) = 40 and N = 20.

3 Proof of 2.4

Take g periodic and let n = n(g) defined in (18), namely 1 ∈ Gn and 1 /∈ Gj for j = 1, · · · , n − 1. Another way
to express this condition is that g ∈ En−1, see Remark 2.2. We also fix the constants µ0, θ, % ≥ %0 and σ such that
Theorem 2.3 holds true. We will omit them throughout this section.

We begin by setting the usual convention that we denote by M a constant independent of µ and ε which could
change its value during the section.

Now we introduce some notation. Consider ∆in(z, τ, µ), χ[k](µ) and g(z, τ, µ) (defined in Theorem 2.3) as
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analytic functions of µ in a neighborhood of µ = 0. Their expansion around µ = 0 are

∆in(z, τ, µ) =
∑
j≥1

∆in,j(z, τ) · µj , g(z, τ, µ) =
∑
j≥1

gj(z, τ) · µj , χ[k](µ) =
∑
j≥1

χ
[k]
j · µ

j .

Since ∆in,j(z, τ) and gj(z, τ) are 2π-periodic functions in τ they admit a Fourier expansion that we write as

∆in,j(z, τ) =
∑
k∈Z

∆
[k]
in,j(z) · e

ikτ , gj(z, τ) =
∑
k∈Z

g
[k]
j (z) · eikτ .

3.1 Conditions for ∆
[1]
in,j = 0

Our first goal is to prove that ∆
[1]
in,j = 0 if j < n = n(g). To this end we expand in power series of µ the solutions

of the inner equation provided by Theorem 2.3: ψ±(z, τ, µ) =
∑
j≥1 ψ

±
j (z, τ) · µj . We plug this expansion into the

inner equation (16) and we obtain the equations for each coefficient ψ±j by equating terms of O(µj). These are, for
j = 1,

∂τψ
±
1 (z, τ) + ∂zψ

±
1 (z, τ) = − 2

z2
g(τ) (40)

and, for j > 1,

∂τψ
±
j (z, τ) + ∂zψ

±
j (z, τ) =

1

8
z2

j−1∑
l=1

∂zψ
±
l (z, τ) · ∂zψ±j−l(z, τ). (41)

As was pointed out in Theorem 2.3, the boundary conditions for ψ± (and for ψ±j ) are:

lim
<(z)→±∞

∂zψ
±
j (z, τ) = 0. (42)

The next lemma links the harmonics of the perturbation, g[k], to the harmonics of the solutions, ψ
±,[k]
j .

Lemma 3.1. If k /∈ Gj (see (17)), then ψ
±,[k]
j (z) = 0 and therefore ∆

[k]
in,j(z) ≡ 0.

As a consequence, since 1 /∈ Gj for j = 1, · · · , n− 1, we have that ∆
[1]
in (z, µ) = O(µn).

Proof. We prove this result by induction. Consider j = 1. Expanding equation (40) in Fourier series we have that

ikψ
±,[k]
1 (z) + ∂zψ

±,[k]
1 (z) = − 2

z2
g[k]. (43)

If k /∈ G1 (see (17)), then g[k] = 0. In this case the only solution of the above-mentioned equation is ψ
±,[k]
1 =

C± · e−ikz. However, in order to satisfy the boundary conditions (42), C± = 0.

Now we take j > 2 and assume that for ν < j the result holds true. Expanding (41) in Fourier we obtain:

ikψ
±,[k]
j (z) + ∂zψ

±,[k]
j (z) =

1

8
z2

j−1∑
l=1

∑
m∈Z

∂zψ
±,[m]
l (z) · ∂zψ±,[k−m]

j−l (z). (44)
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By induction hypothesis, the non-zero terms on the right-hand side are those where m ∈ Gl and k −m ∈ Gj−l.
Therefore, k = m+ (k −m) = m1 + · · ·+ml +m′1 + · · ·+m′j−l with mi,m

′
i ∈ G1. This means k ∈ Gj . Hence, if

k /∈ Gj the right-hand side of the equation has to be 0 and, given the boundary condition, so is ∂zψ
±,[k]
j .

3.2 A formula for χ[−1](µ)

We can now state the following result, which relates the Taylor coefficients χ
[−1]
j of χ[−1](µ) with the corresponding

Taylor coefficients of ∆
[1]
in,j(z, µ).

Lemma 3.2. The coefficient χ[−1] is given by:

χ[−1](µ) = lim
z→−i∞

eiz ·∆[1]
in (z, µ).

As a consequence, by the analyticity with respect to µ we obtain

χ
[−1]
j = lim

z→−i∞
eiz ·∆[1]

in,j(z). (45)

Proof. Let us recall formula (21) for ∆in(z, τ, µ) in Theorem 2.3:

∆in(z, τ, µ) =
∑
k<0

χ[k](µ) · eik(z−τ+µg(z,τ,µ)).

We can write

∆in(z, τ, µ) =
∑
k<0

χ[k](µ) · eik(z−τ) +
∑
k<0

χ[k](µ) · eik(z−τ) ·
(
eikµg(z,τ,µ) − 1

)
=: ∆in,a(z, τ, µ) + ∆in,b(z, τ, µ)

and we have that
∆

[1]
in (z, µ) = ∆

[1]
in,a(z, µ) + ∆

[1]
in,b(z, µ) = χ−1(µ) · e−iz + ∆

[1]
in,b(z, µ). (46)

For each k < 0 the elements in the term ∆in,b satisfy:

∣∣∣χ[k](µ) · eik(z−τ) ·
(
eikµg(z,τ,µ) − 1

)∣∣∣ ≤ · ∣∣∣χ[k](µ)
∣∣∣ · ∣∣∣eik(z−τ)∣∣∣ · |kµg(z, τ, µ)| · e|kµg(z,τ,µ)| ≤∣∣∣χ[k](µ)

∣∣∣ · e|k|(=(z)+|µg(z,τ,µ)|) · |kµg(z, τ, µ)|.

By Theorem 2.3 we know that |g(z, τ, µ)| ≤M |z|−1. In particular, for z with −=(z) big enough we have |g(z, τ, µ)| <
1 and =(z) + |g(z, τ, µ| < 0. Therefore,

|∆in,b| ≤
∑
k<0

∣∣∣χ[k](µ)
∣∣∣ · e|k|(=(z)+|µg(z,τ,µ)|) · |kµg(z, τ, µ)| ≤M · e−=(z) · |µg(z, τ, µ)| .
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Hence, limz→−i∞
∣∣eiz ·∆in,b

∣∣ = 0 and, in particular, limz→−i∞ eiz · ∆[1]
in,b = 0. Taking the limit in (46) the result

follows.

Item 1 and 2 of Theorem 2.4 are a straightforward consequence of 3.2 and 3.1.

3.3 Computing χ
[−1]
1 and χ

[−1]
2

To finish the proof of Theorem 2.4, we present the explicit calculations for χ
[−1]
1 and χ

[−1]
2 . For this, we integrate

explicitly (40) and (41) to obtain ψ
±,[1]
1 and ψ

±,[1]
2 , respectively. We subtract the stable and unstable solutions to

get the first two terms of the Taylor expansion in µ of ∆
[1]
in (µ) and we apply Lemma 3.2.

3.3.1 Computation of χ
[−1]
1

We solve equation (40) to obtain:

ψ±1 (z, τ) = −2
∑
k∈Z

g[k]
∫ 0

±∞

1

(z + t)2
eik(τ+t)dt. (47)

Therefore

∆in,1(z, τ) = −2
∑
k∈Z

eik(τ−z)g[k]
∫ +∞+z

−∞+z

eikt

t2
.

We compute the integral by residues. As =(z) < 0:∫ +∞+z

−∞+z

eimt

t2
dt =

{
−2mπ if m > 0

0 if m ≤ 0

so we obtain:
∆in,1(z, τ) =

∑
k>0

eik(τ−z)g[k]4kπ. (48)

From here the first Fourier coefficient is ∆
[1]
in,1 = 4πe−izg[1]. Now we can apply Lemma 3.2:

χ
[−1]
1 = lim

z→−i∞
eiz ·∆[1]

in,1 = 4πg[1]. (49)

3.3.2 Computation of χ
[−1]
2

Following the same scheme we integrate (41) for j = 2. We write the derivative of the solution (47) as follows:

∂zψ
±
1 (z, τ) = 4 ·

∑
k∈Z

g[k] · eik(τ−z)
∫ z

±∞+z

eikt

t3
dt.
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Plugging this expression in (41), the equation becomes:

∂τψ
±
2 (z, τ) + ∂zψ

±
2 (z, τ) = 2z2

∑
k∈Z

eik(τ−z)
∑
l∈Z

g[l] · g[k−l]
(∫ z

±∞

eilt

t3
dt

)(∫ z

±∞

ei(k−l)t

t3
dt

)
.

We solve the equation by integrating and reorganize the terms:

ψ+
2 (z, τ) =

∫ 0

±∞
2(z + s)2

∑
k∈Z

eik(τ−z)
∑
l∈Z

g[l] · g[k−l]
(∫ z+s

±∞

eilt

t3
dt

)(∫ z+s

±∞

ei(k−l)t

t3
dt

)
ds =

= 2
∑
k∈Z

eik(τ−z)
∑
l∈Z

g[l] · g[k−l]
∫ z

±∞
s2
(∫ s

±∞

eilt

t3
dt

)(∫ s

±∞

ei(k−l)t

t3
dt

)
ds.

From this formula we extract the first harmonic by taking the term k = 1. Note that we can multiply by 2 and
take the sum over l only for l > 1.

eiz · ψ±,[1]2 = 4
∑
l>1

g[l] · g[1−l]
∫ z

±∞
s2
(∫ s

±∞

eilt

t3
dt

)
·
(∫ s

±∞

ei(1−l)t

t3
dt

)
ds.

Integration by parts yields:∫ z

±∞
s2
(∫ s

±∞

ei(1−l)t

t3
dt

)(∫ s

±∞

eilt

t3
dt

)
ds =

1

3
s3
(∫ s

±∞

ei(1−l)t

t3
dt

)(∫ s

±∞

eilt

t3
dt

)]z
±∞

− 1

3

∫ z

±∞
ei(1−l)s

(∫ s

±∞

eilt

t3
dt

)
ds− 1

3

∫ z

±∞
eils

(∫ s

±∞

ei(1−l)t

t3
dt

)
ds =

=
1

3
z3
(∫ z

±∞

e(1−l)t

t3
dt

)(∫ z

±∞

eilt

t3
dt

)
− 1

3

∫ z

±∞
ei(1−l)s

(∫ s

±∞

eilt

t3
dt

)
ds

− 1

3

∫ z

±∞
eils

(∫ s

±∞

ei(1−l)t

t3
dt

)
ds =:

1

3
(A−B − C).

Since l > 1, further integration by parts leads to:

B =

∫ z

±∞
ei(1−l)s

(∫ s

±∞

eilt

t3
dt

)
ds =

1

i(1− l)
ei(1−l)s

∫ s

±∞

eilt

t3

]z
±∞
− 1

i(1− l)

∫ z

±∞

eis

s3
ds =

=
1

i(1− l)
ei(1−l)z

∫ z

±∞

eilt

t3
dt− 1

i(1− l)

∫ z

±∞

eis

s3
ds

and

C =

∫ z

±∞
eils

(∫ s

±∞

ei(1−l)t

t3
dt

)
ds =

1

il
eils

∫ s

±∞

ei(1−l)t

t3

]z
±∞
− 1

il

∫ z

±∞

eis

s3
ds =

=
1

il
eilz

∫ z

±∞

ei(1−l)t

t3
dt− 1

il

∫ z

±∞

eis

s3
ds.
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Gathering the formulas:

eiz · ψ±,[1]2 (z) =
4

3

∑
l>1

g[1−l]g[l]
{
z3
∫ z

±∞

ei(1−l)t

t3
dt

∫ z

±∞

eilt

t3
dt− 1

i(1− l)
ei(1−l)z

∫ z

±∞

eilt

t3
dt

+
1

i(1− l)

∫ z

±∞

eis

s3
− 1

il
eilz

∫ z

±∞

ei(1−l)t

t3
dt+

1

il

∫ z

±∞

eis

s3
ds

}
.

Now we subtract ψ
−,[1]
2 and ψ

+,[1]
2 . We first point out that∫ z

±∞

ei(1−l)t

t3
dt =

∫ z

−i∞

ei(1−l)t

t3
.

Indeed, the integrand converges exponentially as z → −i∞ (since (1 − l) < 0) and there are no singularities in
{=(z) < 0} (note that the paths that join −∞ and∞ in the previous integral are in the region {=(z) < 0}). Hence,
we can change paths of integration. On the other hand, integrating by residues:∫ ∞

−∞

eimt

t3
dt =

{
−iπm2 m > 0

0 m ≤ 0
.

With these claims:

eiz ·∆[1]
in,2(z, τ) = eiz · (ψ−,[1]2 − ψ+,[1]

2 ) = +
4

3

∑
l>1

g[l]g[1−l]
{
z3
∫ z

−i∞

ei(1−l)t

t3
dt ·

(∫ +∞

−∞

eilt

t3
dt

)

− 1

i(1− l)
ei(1−l)

∫ +∞

−∞

eilt

t3
dt+

1

i(1− l)

∫ +∞

−∞

eis

s3
− 1

il
eilz

∫ +∞

−∞

ei(1−l)t

t3
+

1

il

∫ +∞

−∞

eis

s3
ds

}
= +

4

3

∑
l>1

g[l] · g[1−l]
{
−iπl2z3

∫ z

−i∞

ei(1−l)t

t3
dt+

πl2

(1− l)
ei(1−l)z − π

(1− l)
− π

l

}
.

We apply now Lemma 3.2. For that we take z → −∞ and use the following inequality (valid for k > 1):∣∣∣∣z3 ∫ z

−i∞

ei(1−k)t

t3
dt

∣∣∣∣ ≤M · |ei(1−k)z||z|3|z|3
= M · |ei(1−k)z|,

whence

lim
z→−i∞

z3
∫ z

−i∞

ei(1−k)t

t3
dt = 0.

Therefore, we obtain:

χ
[−1]
2 = lim

z→−i∞
eiz ·∆[1]

in,2 = −4

3

∑
k>0

g[k] · g[1−k]
(

1

(1− k)
+

1

k

)
π = −4π

3

∑
k>1

g[k] · g[1−k]

k(1− k)
. (50)
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4 Splitting formula: Proof of 2.5

As in the previous section we fix g a periodic function with n = n(g), see (18). We still use M to refer to constants
independent of µ and ε.

The following straightforward consequence of Cauchy’s theorem will be used along this section without explicit
mention.

Lemma 4.1. Let η > 0, ν ∈ N and h : Bη ⊂ C −→ C be an analytic function such that |h(µ)| ≤Mh. Let us write
h(µ) =

∑
j≥0 hj ·µj for the power expansion around µ = 0. There exists one constant M1 depending on ν such that

for all j = 0, · · · , ν, we have that |hj | ≤M1 ·Mh.

4.1 Preliminaries and heuristics of the proof

To proceed with the proof of Theorem 2.5 we need first to state some previous results about the splitting of
separatrices of system (1) which can be found in [4]. To this end, let us first introduce some notation and setting.

Recall that the functions T̂ u,s(u, τ, µ) are defined in (6) in terms of the generating functions Ss,u(x, τ) which

satisfy the Hamilton-Jacobi equation (3). Moreover, using this equation, the relation (7) and that T̂ u,s(u, τ, µ) =
T0(u) + T u,s(u, τ, µ) (see (9)), one easily obtains the equation for T u,s

1

ε
∂τT

u,s(u, τ, µ) + ∂uT
u,s(u, τ, µ) = −1

8
cosh2(u)(∂uT

u,s)2(u, τ, µ) + 2µ
g(τ)

cosh2(u)
. (51)

The solutions that describe the stable and unstable manifolds are characterized by being 2π-periodic in τ and
satisfying the boundary conditions (see (8))

lim
<(u)→∓∞

cosh2(u) · ∂uT u,s(u, τ, µ) = 0. (52)

These solutions are well understood ([4]): they are known to exist in suitable complex domains, to be analytic
in all variables, 2π-periodic in τ and to present exponential decay as <(u)→ ±∞. Furthermore, they can be ana-
lytically continued to complex regions reaching ε-neighborhoods of the singularities of the unperturbed homoclinic
trajectory (see (2)) closest to the real axis, that is, u = ±iπ2 .

Since we want to study the difference between these solutions, we only need to know how they behave in a
common domain. Fix φ ∈ (0, π/2) and take the following domain (see 4):

Dout
%,φ =

{
u ∈ C; |=(u)| < − tan(φ) · <(u) +

π

2
− %ε, |=(u)| < tan(φ) · <(u) +

π

2
− %ε,

}
, (53)

with % > 0. Moreover, as we want to keep track of the analyticity respect to µ, from now on we will take µ ∈ Bµ0 ,
the complex ball centered at 0 and of radius µ0.
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iπ2

−iπ2

i
(
π
2 − %ε

)

φ
Dout
%,φ

Figure 4: Domain Dout
%,φ .

In this domain we can formulate the following theorem by paraphrasing Theorem 4.4 in [4]:

Theorem 4.2. ([4]) Fix φ ∈
(
0, π2

)
and µ0 > 0. There exist %0 > 0 and ε0 > 0 such that ∀µ ∈ Bµ0

, ∀ε ∈ (0, ε0)
and ∀% ≥ %0 satisfying that ε% < 1, the Hamilton-Jacobi equation (51) has solutions T u,s(u, τ, µ) analytic in u, τ, µ
and periodic in τ satisfying the boundary conditions (52) such that they are defined in the domain Dout

%,φ ×Tσ ×Bµ0

and in this domain the following bound holds:

|∂uT u,s(u, τ, µ)| ≤M · |µ| · ε
|u2 + (π/2)2|3

.

Next theorem, which is an an adaptation of the results from [4] (Proposition 4.22, Theorem 4.23, Corollary
4.24), gives a characterization of the difference ∆(u, τ, µ).

Theorem 4.3. Under the same assumptions of Theorem 4.2, there exists a real analytic function C(u, τ, µ) defined
in Dout

%,φ × Tσ ×Bµ0 satisfying the following bounds:

|C(u, τ, µ)| ≤M · |µ| · ε
|u2 + (π/2)2|

, |∂uC(u, τ, µ)| ≤M · |µ|
% · |u2 + (π/2)2|

, (54)

and such that the difference between the parameterizations T u,s of the stable and unstable manifolds is given in
Dout
%,φ × Tσ ×Bµ0

by the expression:

∆(u, τ, µ) =
∑
k

Υ[k](µ) · eik(u/ε−τ+C(u,τ,µ)), (55)
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where Υ[k](µ) are analytic functions of µ ∈ Bµ0 .

In addition, for u ∈ R ∩ Dout
%,φ , τ ∈ R, µ ∈ Bµ0

and ε ∈ (0, ε0) we have that

∂u∆(u, τ, µ) =
2e−

π
2ε

ε2
·
[
=
(
χ[−1](µ) · ei(τ−u/ε)

)
+O

(
|µ|

log(1/ε)

)]
, (56)

where χ[−1](µ) is defined in Theorem 2.3.

Note that, even though the existence and properties of the function C are proved in [4], in our case we can derive
the sharper bound (54), whose prove we leave to A.

From now on we fix µ0, ε0, φ, % ≥ %0 and σ such that Theorems 4.2 and 4.3 hold true. As usual we will omit the
dependence on these constants. We emphasize that, since Dout

%1,φ
⊂ Dout

%2,φ
when %1 ≥ %2, we can (and we will) take

%0 as big as we need in our proofs.

To finish this section, we define the analytic expansion of ∆(u, τ, µ) and Υ[k](µ) around µ = 0:

∆(u, τ, µ) =
∑
j≥0

∆j(u, τ) · µj , Υ[k](µ) =
∑
j≥0

Υ
[k]
j · µ

j , (57)

and the Fourier expansions of ∆(u, τ, µ) and ∆j(u, τ) :

∆(u, τ, µ) =
∑
k∈Z

∆[k](u, µ) · eikτ , ∆j(u, τ) =
∑
k∈Z

∆
[k]
j (u) · eikτ . (58)

4.1.1 Heuristics and strategy of the proof

The aforementioned known splitting formula (56) has the Fourier coefficient χ[−1](µ) in its leading term. In Section
3 we have already analyzed the solutions of the inner equation in order to build insight into the expansion in powers

of µ of χ[−1](µ) and we have concluded in Theorem 2.4 that χ[−1](µ) = χ
[−1]
n µn +O(µn+1). This analysis suggests

that the leading term of the splitting is of order µn. However, taking the first non-vanishing term of χ[1] as a first
term in the asymptotic expression does not make (56) a valid asymptotic expression straightforwardly if n ≥ 2.
Indeed, in this case, expression (56) becomes:

∂u∆(u, τ, µ) =
2e−

π
2ε

ε2
·
[
=
(
χ[−1]
n · ei(τ−u/ε)

)
· µn +O(|µ|(n+1)) +O

(
|µ|

log(1/ε)

)]
. (59)

As n ≥ 2, it is not clear that the main term dominates over the last error term when ε, µ are small, which invalidates

it as a useful asymptotic expression (for instance when |µ| � | log ε|−
1

n−1 , as happens in the classical case µ = ε or,
more generally, µ = O(εm), m > 0).

Our strategy is to prove that the error term in (59) is actually smaller. The fact that the leading term of the
splitting formula is of order µn does not mean that the splitting function itself does not have terms of order µj

for j < n; however, we will see that these terms turn out to be much smaller in ε (in fact, exponentially smaller).
This idea is simple and we can present it via this example: assume we had a quasiperiodic function, f , with an
expansion:

f(τ − u/ε, µ) =
∑
j≥1

µj
∑
k∈Z

Aj,k · eik(τ−u/ε), (60)
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with Aj,k ∈ C. Assume |f | ≤ M for u ∈ {z ∈ C, |I(z)| < a} and τ ∈ T. In this heuristic example we assume that
ε and µ are small parameters but µ is bigger than e−

a
ε (the ”natural” setting is µ = O(εm), m > 0; when µ is

exponentially small in ε, the splitting can be analyzed by classical perturbation theory).

By using the fact the function f is bounded in a complex strip, we can show that Aj,k = O(e−|k|
a
ε ). Obviously,

the first exponentially small term of order e−
a
ε is given by the first ` for which A`,±1 6= 0, and hence f ∼ O

(
µ` · e− aε

)
for real values of u. The terms in µj with 1 ≤ j < ` are present, but they are of size O

(
µj · e−|k| aε

)
with |k| ≥ 2.

Thus, they are much smaller, and the term µ` dominates the splitting.

In order to apply this idea we we split the power expansion of ∆ in (57) as

∆(u, τ, µ) = ∆<n(u, τ, µ) + ∆≥n(u, τ, µ) :=
∑

0<j<n

∆j(u, τ) · µj +
∑
j≥n

∆j(u, τ) · µj . (61)

To prove Theorem 2.5 we follow the following strategy:

1. We first prove, in Section 4.2 ∆
[±1]
j (u) ≡ 0 if 1 ≤ j ≤ n−1 and therefore ∆[±1](u, µ) = O(µn). If the splitting

distance were given by a formula like (60), it would be straightforward to conclude that the terms of lower
order O(µj) with j < n are of higher exponentially small order. Although this is not the case, we have a
similar formula, given by 4.3:

∆(u, τ, µ) =
∑
k∈Z

Υ[k](µ) · eik(u/ε−τ+C(u,τ,µ)), (62)

where C(u, τ, µ) is analytic in all arguments and bounded.

2. In Section 4.3 we analyze ∆<n to establish that, loosely speaking, ∆<n(u, τ, µ) = O
(
µ · e− π

2ε ·2
)

(see Propo-
sition 4.6 for details). We work with identity (62), the strategy being to perform a power series expansion

in µ of ∆, C and Υ[k] =
∑
j≥1 Υ

[k]
j · µj and bound the constants Υ

[k]
j , j < n. In Lemma 4.7 we bound Υ

[k]
j

for all j ≥ 1 and any value of k ∈ Z, and obtain, roughly speaking, that Υ
[k]
j = O(e−|k|

π
2ε ). In Lemma 4.9

we improve the estimate in the case k = 1: for j < n, we actually have Υ
[±1]
j = O(e−2

π
2ε ). Consequently we

obtain, for j < n, that |Υ[k]
j | is at least O(e−2

π
2ε ) for k ∈ Z\{0}. In Proposition 4.6 we prove that for real

values of u and τ the bounds of the coefficients transfer to ∆<n and the desired bound is proven.

3. In Section 4.4 we analyze ∆≥n. More precisely, the error term ∂u∆≥n − ∂uδ0 where δ0 is defined as:

δ0(u, τ, µ) =
2e−

π
2ε

ε
· <
(
χ[−1](µ) · ei(τ−u/ε)

)
. (63)

We recall that, by Theorem 2.4, δ0 = O(µn). Then, by Theorem 4.3, we already know that this error term is

O
(

µ
log(1/ε)·ε2 · e

− π
2ε

)
. Using an appropriate version of Schwartz lemma for analytic functions, we obtain the

extra µn factor in the exponentially small bound of the error.
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4.2 Condition for ∆
[±1]
j = 0

We will derive a condition that ensures certain harmonics of the Taylor coefficients of the solutions to the Hamilton-
Jacobi equation ∂uT

u,s given by Theorem 4.2 are zero. We consider their Taylor expansions:

∂uT
u,s(u, τ, µ) =

∑
j≥1

∂uT
u,s
j (u, τ) · µj . (64)

Lemma 4.4. If k /∈ Gj (see (17)), then the k-th harmonic of T u,s
j (u, τ) satisfies (∂uT

u,s
j )

[k]
(u) ≡ 0. Hence,

∆
[k]
j (u) = 0. As a consequence, since 1 /∈ Gj for j = 1, · · · , n− 1, we deduce that ∆[±1](u, µ) = O(µn).

Proof. First notice that, by (52), we know that as <(u)→ ±∞ the functions ∂uT
u,s satisfy:

|∂uT u,s(u, τ, µ)| ≤M · e−2|<(u)|.

Using Lemma 4.1, we can state:
|∂uT u,s

j (u, τ)| ≤M · e−2|<(u)|, (65)

where M depends on j.

Expanding the Hamilton-Jacobi equation (51) in powers of µ we obtain for j = 1

1

ε
∂τT

u,s
1 (u, τ) + ∂uT

u,s
1 (u, τ) = 2

g(τ)

cosh2(u)
(66)

and, for j > 1,

1

ε
∂τT

u,s
j (u, τ) + ∂uT

u,s
j (u, τ) = −1

8
cosh(u)2

j−1∑
l=1

∂uT
u,s
l (u, τ) · ∂uT u,s

j−l(u, τ), (67)

with boundary condition (see (65))
|∂uT u,s

j (u, τ)| ≤Me−2|<(u)|. (68)

We proceed by induction. We only deal with the unstable case as the stable case is analogous.

Consider j = 1. Expanding equation (66) in Fourier series we obtain:

ik

ε
T

u,[k]
1 (u) + ∂uT

u,[k]
1 (u) =

2

cosh2(u)
g[k], k ∈ Z.

When g[k] = 0, the only solution is T
u,[k]
1 (u) = C · e−iku/ε but, since we impose (68), necessarily C = 0. Thus, if

k /∈ G1, ∂uT
u,[k]
1 (u) = 0.

Now consider j > 1 and assume that for ν = 1, . . . , j − 1 if ` /∈ Gν , ∂uT
u,[`]
ν = 0. Expanding (67) in Fourier

series:

ik

ε
T

u,[k]
j (u) + ∂uT

u,[k]
j (u) = −1

8
cosh2(u)

j−1∑
l=1

∑
m∈Z

∂uT
u,[m]
l (u) · ∂uT u,[k−m]

j−l (u).

The non-zero terms on the right-hand side are those where m ∈ Gl and k−m ∈ Gj−l. This means k = m+(k−m) =
m1 + · · · + ml + m′1 + · · ·+ m′j−l with mi,m

′
i ∈ G1. This means k ∈ Gj . Therefore, if k /∈ Gj the right-hand side

of the equation is 0 and, imposing (68), ∂uT
u,[k]
j (u) = 0.
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Remark 4.5. We emphasize that, using Lemma 4.4, we are also able to control the order in µ of the other harmonics
of ∆[k](u, µ). Indeed, if we define

nk(g) := min{` ∈ N : k ∈ G`},

then ∆[k](u, µ) = O(µnk). This fact could be useful for a further analysis in the degenerate case χ
[−1]
n = 0 but it is

out of the scope of this work.

4.3 Analysis of ∆<n

We consider the function ∆<n defined by (61):

∆<n(u, τ, µ) =
∑
j<n

∆j(u, τ) · µj

We prove the following proposition:

Proposition 4.6. For j = 1, . . . , n− 1 and u ∈ Dout
%,φ ∩ R, τ ∈ T we have that:

|∂u∆j(u, τ)| ≤M · e
−2( π2ε−2%)

ε2%4
.

As a consequence

|∂u∆<n(u, τ, µ)| ≤M · e
−2( π2ε−2%)

ε2%4
.

In order to prove Proposition 4.6, we first recall that, by Theorem 4.3,

∆(u, τ, µ) =
∑
k∈Z

Υ[k](µ) · eik(u/ε−τ+C(u,τ,µ)) =
∑
j≥0

∆j(u, τ) · µj (69)

with C(u, τ, µ) having the Taylor expansion C(u, τ, µ) =
∑
j≥0 Cj(u, τ) · µj . We split the proof in three parts. First,

in Lemma 4.7 we provide an exponentially small bound for Υ[k]. Then, in Lemma 4.8 we express ∆
[k]
j (the k-Fourier

coefficient of ∆j) in terms of Υ
[m]
l and C`. Finally, in Lemma 4.9, using Lemma 4.4 too, we provide an improved

bound for Υ
[±1]
j , j = 1, · · · , n− 1. This allows us to finish the proof of Proposition 4.6.

Lemma 4.7. Take ν ∈ N. There exists a constant M such that for any j = 1, · · · , ν and k ∈ Z, the Taylor

coefficients Υ
[k]
j satisfy

|Υ[k]
j | ≤M ·

e−|k|(
π
2ε−%−M/%)

ε%3
· e−|k|σ. (70)

Proof. By Theorem 4.2, if (u, τ) ∈ Dout
%,φ × Tσ

|∂u∆(u, τ, µ)| ≤ |∂uT out,s(u, τ, µ)|+ |∂uT out,u(u, τ, µ)| ≤ M

ε2%3
.
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We consider the change of variables (w, τ) = h(u, τ) = (u+ ε · C(u, τ), τ). It is clearly well defined and injective, as

∂uw(u, τ) = 1 +O
(
µ

%

)
.

We introduce
∆̃(w, τ, µ) = ∆(h−1(w, τ), µ) =

∑
k∈Z

Υ[k](µ) · eik(
w
ε −τ)

and we have that:

|∂w∆̃(w, τ, µ)| ≤ M

ε2%3
. (71)

From (71) and using that ∂w∆̃(w, τ, µ) is analytic in τ in a strip of width σ we bound each Fourier coefficient:∣∣∣∣ ikε Υ[k](µ) · eikw/ε
∣∣∣∣ ≤M · e−|k|σε2%3

.

We use this inequality to obtain bounds for Υ[k]. We first take k > 0 and we consider the point u∗ = −i(π/2−ε%) and
C∗ = C(u∗, τ). We particularize the previous inequality —valid for all w— for the value w∗ = −i(π/2− ε%) + ε · C∗:∣∣∣∣ ikε Υ[k](µ, ε) · e|k|( π2ε−%+iC

∗)

∣∣∣∣ ≤M · e−|k|σε2%3
.

As |C∗| ≤ M
% ,

|Υ[k](µ)| ≤M · e
−|k|( π2ε−%−M/%)

ε%3
· e−|k|σ

and, by Lemma 4.1, we get the result. For k < 0 we argue analogously with u∗ = i(π/2− ε%).

In the following lemma we find an explicit formula for ∆
[k]
j (u).

Lemma 4.8. Take j ≥ 0, k ∈ Z. Then, for all u ∈ Dout
%,φ the k-Fourier coefficient of ∆j can be expressed as

∆
[k]
j (u) = e−ik

u
ε Υ

[−k]
j +

∑
m 6=0

eim
u
ε

[
Υ

[m]
j−1 · C̃

[m+k]
1,m (u) + · · ·+ Υ

[m]
1 · C̃[m+k]

j−1,m(u)
]
, (72)

with

C̃j−ν,k(u, τ) =

j−ν∑
l=1

(ik)l

l!

∑
a1+···+al=j−ν

am≥1

Ca1(u, τ) . . . Cal(u, τ). (73)

Proof. We use that C(u, τ, µ) and Υ[k](µ) depend analytically on µ and that ∆(u, τ, 0) = C(u, τ, 0) = Υ[k](0) = 0,

so they admit the expansions C(u, τ, µ) =
∑
j≥1 Cj(u, τ) · µj and Υ[k](µ) =

∑
j≥1 Υ

[k]
j · µj . We fix j ≥ 1 and we

remark that M denotes a generic constant that can (and usually will) depend on j. Using these expansions and
equating the terms of order µj in the expression (69) for ∆(u, τ, µ), we obtain

∆j(u, τ) =
∑
k∈Z

eik(u/ε−τ) ·

[
Υ

[k]
j +

j−1∑
ν=1

Υ[k]
ν · C̃j−ν,k(u, τ)

]
, (74)
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with C̃j−ν,k(u, τ) defined in (73). We have used the absolute convergence of the series in µ of Υ[k](µ) and C(u, τ, µ)

to rearrange terms in the formula. To work with the series we need to find bounds for C̃1,k, · · · , C̃j−1,k. We use
that, from Theorem 4.3, for u ∈ Dout

%,φ and τ ∈ Tσ:

|Cam(u, τ)| ≤ M

%

and then

|C̃`,k(u, τ)| ≤M · |k|
`

%`
` = 1, . . . , j − 1. (75)

Note that C̃`,0 = 0.

We consider now the Fourier series of ∆j and C̃`,% (in (73)): ∆j(u, τ) =
∑
k∈Z ∆

[k]
j (u) · eikτ and C̃`,k(u, τ) =∑

l∈Z C̃
[l]
`,k(u) · eilτ . We plug this expression in (74) and we obtain

∆j(u, τ) =
∑
k∈Z

eik(u/ε−τ)

[
Υ

[k]
j +

∑
l∈Z

eilτ
(

Υ
[k]
j−1 · C̃

[l]
1,k(u) + Υ

[k]
j−2 · C̃

[l]
2,k(u) + · · ·+ Υ

[k]
1 · C̃

[l]
j−1,k(u)

)]
. (76)

Since C̃ν,k(u, τ) is analytic in τ in a strip of width σ and satisfies bound (75) we have that:

|C̃[l]ν,k(u)| ≤M · |k|
ν

%
· e−|l|σ. (77)

where M depends only on j. Besides, for u ∈ Dout
%,φ , τ ∈ Tσ/2∣∣∣eik(u/ε−τ)∣∣∣ ≤ e|k|( π2ε−%+σ/2).

With those bounds and Lemma 4.7 we can check all the terms in (76) are absolutely convergent series. Indeed, for
u ∈ Dout

%,φ , τ ∈ Tσ/2, the first term∣∣∣∣∣∑
k∈Z

eik(u/ε−τ) ·Υ[k]
j

∣∣∣∣∣ ≤∑
k∈Z

e|k|(
π
2ε−%)e|k|(σ/2) · M

ε%3
· e−|k|( π2ε−%−M/%)e−|k|σ = M ·

∑
k∈Z

e−|k|(σ/2−M/%) <∞,

where in the last inequality we have used that, for large enough %, the exponent −(σ/2−M/%) is negative. As for
the next terms, we take ν = 1, . . . j − 1 and we have:∣∣∣∣∣∑

k∈Z
eik(u/ε−τ) ·Υ[k]

j−ν

∑
l∈Z

eilτ · C̃[l]ν,k(u)

∣∣∣∣∣ ≤∑
k∈Z

e|k|(
π
2ε−%)e|k|(σ/2) · M

ε2%3
· e−|k|( π2ε−%−M/%)e−|k|σ ·M · |k|

ν

%

≤ M

ε2%4
·
∑
k∈Z

e−|k|(σ/2−M/%) · |k|ν ,

where the last sum is finite provided, again, % is large enough.

Since all terms converge absolutely, we can rearrange expression (76):

∆j(u, τ) =
∑
k∈Z

eik(u/ε−τ) ·Υ[k]
j +

∑
k 6=0

∑
l∈Z

eiku/εei(l−k)τ ·
[
Υ

[k]
j−1 · C̃

[l]
1,k(u) + Υ

[k]
j−2 · C̃

[l]
2,k(u) + · · ·+ Υ

[k]
1 · C̃

[l]
j−1,k(u)

]
,
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where we have used that (see (73)) C̃1,0 = · · · = C̃j−1,0 = 0. We perform some changes in the indices: first, we set
l − k = m. Since l runs over all integers, m does too:

∆j(u, τ) =
∑
k

eik
u
ε ·Υ[k]

j · e
−ikτ +

∑
k 6=0

∑
m∈Z

eik
u
ε eimτ ·

[
Υ

[k]
j−1 · C̃

[m+k]
1,k (u) + Υ

[k]
j−2 · C̃

[m+k]
2,k (u) + · · ·+ Υ

[k]
1 · C̃

[m+k]
j−1,k (u)

]

and the expression (72) for ∆
[k]
j (u) is proven for u ∈ Dout

%,φ .

We recall that, by definition, n ∈ N is such that 1 ∈ Gn and 1 /∈ Gj for j = 1, . . . , n − 1. Then, Lemma 4.4

implies that ∆
[±1]
j (u) = 0 for j = 1, . . . , n− 1. In the next lemma we will use this fact as a condition for a sharper

bound on the coefficients Υ
[±1]
j .

Lemma 4.9. For j = 1, . . . , n− 1 the following bound for the Taylor coefficient Υ
[±1]
j holds:

|Υ[±1]
j | ≤M · e

−2( π2ε−%−M/%)

ε%4
, (78)

for % as defined in formula (53) large enough.

Proof. Assume n > 1 (the case n = 1 is void). When j = 1, by formula (72):

∆
[±1]
1 (u) = e∓i

u
ε ·Υ[∓1]

1 .

Since 1 /∈ G1, Lemma 4.4 implies ∆
[±1]
1 (u) = 0 and hence, Υ

[∓1]
1 = 0. In particular, it satisfies the inequality in the

statement.

Take j = 2, . . . , n − 1. Assume by induction that Υ
[±1]
ν satisfies the bound in (78) if ν = 1, . . . , j − 1. Using

formula (72):

∆
[k]
j (u) = e−ik

u
ε ·Υ[−k]

j +
∑
m6=0

eim
u
ε ·
[
Υ

[m]
j−1 · C̃

[k+m]
1,m (u) + · · ·+ Υ

[m]
1 · C̃[k+m]

j−1,m(u)
]
.

Since 1 /∈ Gj , by 4.4, ∆
[±1]
j (u) = 0. We take k = 1 and equate the previous formula to 0. Redistributing and

replacing u = 0:

Υ
[−1]
j = −

∑
m 6=0

Υ
[m]
j−1 · C̃

[1+m]
1,m (0) + · · ·+ Υ

[m]
1 · C̃[1+m]

j−1,m(0) =

= −
(

Υ
[1]
j−1 · C̃

[2]
1,1(0) + · · ·+ Υ

[1]
1 · C̃

[2]
j−1,1(0) + Υ

[−1]
j−1 · C̃

[0]
1,−1(0) + · · ·+ Υ

[−1]
1 · C̃[0]j−1,−1(0)

)
−

 ∑
|m|>1

Υ
[m]
j−1 · C̃

[1+m]
1,m (0) + · · ·+ Υ

[m]
1 · C̃[1+m]

j−1,m(0)

 =: A+B.

To bound A we use the induction hypothesis along with the bounds of C̃[l]ν,m given by (77):

|A| ≤M · e
−2( π2ε−%−M/%)

ε%4
·
(
M

%
· e−2σ(j − 1) +

M

%
· (j − 1)

)
≤M · e

−2( π2ε−%−M/%)

ε%5
.
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To bound B we use 4.7 as well as (77):

|B| ≤
∑
|m|>1

M

ε%3
· e−|m|( π2ε−%−M/%) · e−|m|σ

(
M · |m|

%
e−|1+m|σ + · · ·+M · |m|

j−1

%
e−|1+m|σ

)

≤
∑
|m|>1

M

ε%3
· e−|m|( π2ε−%−M/%) · e−|m|σM · (j − 1)

%
|m|j−1e−σe−|m|σ

≤
∑
|m|>1

M

ε%4
· |m|j−1e−|m|( π2ε−%−M/%+2σ) ≤M · e

−2( π2ε−%−M/%)

ε%4
.

We complete the proof by combining the bounds for A and B.

By 4.7 and 4.9, Υ
[k]
j with j = 1, . . . , n− 1 are, at least, of squared exponentially small order. To finish the proof

of 4.6 we only need to prove that the size of the coefficients transfers to the size of the function when u and τ are
real.

End of the proof of 4.6. We consider formula (74)

∆j(u, τ) =
∑
k∈Z

eik(u/ε−τ) ·

[
Υ

[k]
j +

j−1∑
ν=1

Υ[k]
ν · C̃j−ν,k(u, τ)

]
.

and evaluate it for u ∈ Dout
%,φ ∩ {|=(u)| < %ε} and τ ∈ T. We also use (75) to bound |C̃ν,k(u, τ)|. We split the sum

into k = ±1 (we bound with Lemma 4.9) and |k| > 1 (we use Lemma 4.7):

|∆j(u, τ)−Υ
[0]
j | =

∣∣∣∣∣∣
∑
k 6=0

eik(u/ε−τ) ·

[
Υ

[k]
j +

j−1∑
ν=1

Υ[k]
ν · C̃j−ν,k(u, τ)

]∣∣∣∣∣∣ ≤
∑
k 6=0

e|k|
%ε
ε ·

[∣∣∣Υ[k]
j

∣∣∣+

j−1∑
ν=1

∣∣∣Υ[k]
ν

∣∣∣ · ∣∣∣C̃j−ν,k(u, τ)
∣∣∣] ≤

e% · |Υ[1]
j |+

j−1∑
ν=1

e% ·
∣∣∣Υ[1]

ν

∣∣∣ · ∣∣∣C̃j−ν,1(u, τ)
∣∣∣+ e% · |Υ[−1]

j |+
j−1∑
ν=1

e% ·
∣∣∣Υ[−1]

ν

∣∣∣ · ∣∣∣C̃j−ν,−1(u, τ)
∣∣∣

+
∑
|k|>1

e|k|·% · |Υ[k]
j |+

j−1∑
ν=1

e|k|·% ·
∣∣∣Υ[k]

ν

∣∣∣ · ∣∣∣C̃j−ν,k(u, τ)
∣∣∣ ≤

M · e
−2( π2ε−%−M/%)

ε%4
· e% ·

(
1 +

j − 1

%

)
+
∑
|k|>1

M · e
−|k|( π2ε−%−M/%)

ε%3
· e|k|·% ·

(
1 +

j−1∑
l=1

|k|l

%

)
≤

M · e
−2( π2ε−

3
2%−M/%)

ε%4
+M · e

−2( π2ε−2%−M/%)

ε%3
≤M · e

−2( π2ε−2%)

ε%3
.
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Since the previous bounds hold for u ∈ Dout
%,φ ∩ {|=(u)| < %ε}, we obtain

|∂u∆j(u, τ)| ≤M · e
−2( π2ε−2%)

ε2%4

via a Cauchy estimate. Note that ∂uΥ
[0]
j = 0.

4.4 Analysis of ∆≥n

Define δ0

δ0(u, τ, µ) :=
2e−

π
2ε

ε
· <
(
χ[−1](µ) · ei(τ−

u
ε )
)
. (79)

From (56) in Theorem 4.3 we know that

|∂u∆(u, τ, µ)− ∂uδ0(u, τ, µ)| ≤M · |µ|
log(1/ε) · ε2

· e− π
2ε . (80)

In this section we focus on the analysis of ∂u∆≥n − ∂uδ0, with ∆≥n(u, τ, µ) =
∑
j≥n ∆j(u, τ) · µj , the tail of

the Taylor series of ∆ around µ = 0, starting at n. To this end we use (80) together with a suitable version of
Schwartz’s lemma:

Lemma 4.10. Let η > 0, ν ∈ N and h be an analytic function of µ defined in Bη ⊂ C. Assume that sup{|h(µ)| :
µ ∈ Bη} ≤Mh for some constant Mh. Let h(µ) =

∑
j≥0 hj · µj be its power expansion around µ = 0.

1. If h(j)(0) = 0 for j = 0, . . . , ν − 1. Then |h(µ)| ≤ |µ|ν · η−ν ·Mh.

2. There exists a constant M2 (depending only on ν and η) such that the function h≥ν(µ) =
∑
j≥ν hj · µj is

bounded by |h≥ν(µ)| ≤ |µ|ν ·M2 ·Mh.

Remark 4.11. We will be using Lemma 4.10 for functions depending on u, τ, ε and µ. We will consider the analytic
dependence on µ and regard the rest of the variables as parameters. Note that the constants appearing in the
bounds of the Lemma only depend on the radius of the ball of analyticity with respect to µ and the integer ν. In
particular, the dependence on the bounds on the parameter ε remains unaltered.

The following proposition is an almost straightforward consequence of bound (80) and Lemma 4.10.

Proposition 4.12. Let ∆≥n(u, τ, µ) be the tail of the Taylor series of ∆(u, τ, µ). Then

|∂u ∆≥n(u, τ, µ)− ∂uδ0(u, τ, µ)| ≤M · |µ|n

log(1/ε) · ε2
· e− π

2ε . (81)

Proof. From (80) and taking into account that |µ| ≤ µ0, we have that

|∂u∆(u, τ, µ)− ∂uδ0(u, τ, µ)| ≤M · e−
π
2ε

log(1/ε) · ε2
.
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Moreover, by Theorem 2.4, χ[−1](µ) =
∑
j≥n χ

[−1]
j ·µj . Since the only dependence on µ of δ0 is through χ[−1](µ),

δ0(u, τ, µ) = δ≥n0 (u, τ, µ). Then using Lemma 4.10 with ν = n we obtain the bound

|∂u∆≥n(u, τ, µ)− ∂uδ≥n0 (u, τ, µ)| = |∂u ∆≥n(u, τ, µ)− ∂uδ0(u, τ, µ)| ≤M · |µ|n

log(1/ε) · ε2
· e− π

2·ε .

4.5 End of the proof of Theorem 2.5

To obtain the first asymptotic expression we differentiate (79):

∂uδ0(u, τ, µ) =
2e−

π
2ε

ε2
· =
(
χ[−1](µ) · ei(τ−

u
ε )
)
.

Let us now perform the error estimates. Taking into account that ∂uδ0 = ∂uδ
≥n
0 , we split the error term:

∂u∆− ∂uδ0 =

n−1∑
j=1

∂u∆j · µj
+ ∂u∆≥n − ∂uδ0.

For the first part we use Proposition 4.6

Then

∣∣∣∣∣∣
n−1∑
j=1

∂u∆j · µj
∣∣∣∣∣∣ ≤

n−1∑
j=1

|∂u∆j | · |µj | ≤
n−1∑
j=1

M · e
−2( π2ε−2%)

ε2%4
· |µ|j ≤M · |µ|

ε2
· e− π

2ε ·2.

To bound |∂u∆≥n − ∂uδ0| we use Proposition 4.12. Then,

|∂u∆(u, τ, µ)− ∂uδ0(u, τ, µ)| ≤M · |µ|
ε2
· e− π

2ε ·2 +M · |µ|n

log(1/ε) · ε2
· e− π

2·ε ,

whence the result follows.

As for item 3, we deduce it by taking the particular cases n = 1 and n = 2 in Theorem 2.4.
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A The function C. Proof of Theorem 4.3

For the proof of this theorem we adapt the methodology in [4]: we split the equation in two parts and use a fixed
point argument to find the solution in a specific function space. We work with functions defined in Dout

%,φ × Tσ (see
(53)) and we define the Fourier norm:

||f ||α,σ =
∑
k∈Z
||f [k]||α · e|k|σ.

where
||f ||α = sup

u∈Dout
%,φ

{|u2 + (π/2)2|α · |f(u)|}.

We consider the following Banach spaces:

Pα = {f(u, τ) : Dout
%,φ × Tσ → C, f analytic and ||f ||α,σ <∞}.

The function C is such that ∆(u, τ, µ) = Υ(u− ετ + ε · C(u, τ, µ)). By subtracting the Hamilton-Jacobi equation
(51) for the stable and unstable manifolds we obtain:

1

ε
∂τC(u, τ, µ) + ∂uC(u, τ, µ) = −1

8
cosh2(u)(∂uT

u(u, τ, µ) + ∂uT
s(u, τ, µ))

(
1

ε
+ ∂uC(u, τ, µ)

)
.

Denoting A(u, τ, µ) = − 1
8 cosh2(u)(∂uT

u(u, τ, µ) + ∂uT
s(u, τ, µ)) we rewrite the equation as:

1

ε
∂τC(u, τ, µ) + ∂uC(u, τ, µ) =

1

ε
A(u, τ, µ) +A(u, τ, µ)∂uC(u, τ, µ)

or, equivalently,

1

ε
∂τC(u, τ, µ) + ∂uC(u, τ, µ) =

1

ε
A(u, τ, µ) + ∂u(A(u, τ, µ)C(u, τ, µ))− C(u, τ, µ)∂uA(u, τ, µ). (82)

This equation is of the type
1

ε
∂τC(u, τ) + ∂uC(u, τ) = h(u, τ).

In order to invert the linear operator on the left-hand side in the domain Dout
%,φ we expand it in Fourier series and

define an inverse for each harmonic:

C[k](u) = C[k](ak) · e ikε (ak−u) +

∫ u

ak

ei
k
ε (s−u)h[k](s)ds,
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where ak = i
(
π
2 − %ε

)
if k > 0, ak = −i

(
π
2 − %ε

)
if k < 0 and a0 = −ρ (see (277) in [4]). Since we are looking for

any solution, we pick C[k](ak) = 0 and we have:

C[k](u) =

∫ u

ak

ei
k
ε (s−u)h[k](s)ds.

Using the notation

G[k](h) =

∫ u

ak

ei
k
ε (s−u)h[k](s)ds (83)

we can define the inverse operator as:

G(h) =
∑
k∈Z
G[k](h)eikτ . (84)

We state in the following lemma the relevant properties of G and refer for the details of the proof to Lemma 9.2 in
[4].

Lemma A.1. The operator G defined on Pα satisfies the following properties. For h ∈ Pα with α ≥ 0.

1. ∂u(G(h)) ∈ Pα and ||∂u(G(h))||α,σ ≤M · ||h||α,σ.

2. If h[0] = 0, G(h) ∈ Pα and ||G(h)||α,σ ≤M · ε||h||α,σ.

3. G(∂uh) ∈ Pα and ||G(∂uh)||α,σ ≤M · ||h||α,σ.

4. If α > 1 G(h) ∈ Pα−1 and ||G(h)||α−1,σ ≤M · ||h||α,σ.

5. G(h) ∈ Pα and ||G(h)||α,σ ≤M · ||h||α,σ.

In the following lemma we state and prove some properties of the function A(u, τ, µ).

Lemma A.2. The function A(u, τ, µ) satisfies A ∈ P1, ∂uA ∈ P1, A[0] ∈ P2 and ||A(u, τ, µ)||1,σ ≤ M · |µ|ε,
||∂uA(u, τ, µ)||1,σ ≤M · |µ|% , ||A[0]||2,σ ≤M · |µ|2ε2. As a consequence,

∣∣∣∣ 1
εG(A)

∣∣∣∣
1,σ
≤M · |µ|ε.

Proof. By Theorem 4.2, ∂uT
s,u ∈ P3 and ||∂uT u,s||3,σ ≤ M |µ|ε. Besides, from the fact that cosh(u) has a pole of

order 1 close to the singularities ±iπ2 it follows that − 1
8 cosh2(u) ∈ P−2. Thus, A ∈ P1 and

||A(u, τ, µ)||1,σ ≤M · |µ|ε.

Due to the geometry of the domain and using Cauchy’s formula for the derivative, we can find a bound for the
derivative in the same space —reducing slightly % and ρ— dividing the norm by %ε. This yields the bound

||A(u, τ, µ)||1,σ ≤M ·
|µ|
%
.

As for the average, A[0](u, µ), we express it in terms of the average of the invariant manifolds:

A[0](u, µ) = −1

8
cosh2(u)

(
∂uT

u,[0](u, µ) + ∂uT
s,[0](u, µ)

)
,
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As T u(u, τ, µ) and T s(u, τ, µ) satisfy equation (51),

1

ε
∂τT

u,s(u, τ, µ) + ∂uT
u,s(u, τ, µ) = −1

8
cosh2(u)(∂uT

u,s)2(u, τ, µ) + 2µ
g(τ)

cosh2(u)
,

and, since g[0] = 0, we have:

∂uT
u,s,[0](u, µ) = −1

8
cosh2(u)((∂uT

u,s)2)[0](u, µ).

From Theorem 4.2 we know ||∂uT u,s||3,σ ≤M |µ|ε. Therefore, by property 5 of Lemma A.1

||T u,s,[0]||4 ≤M · |µ|2ε2.

As a consequence,
||A[0]||2 ≤M · |µ|2ε2.

Finally, we deal with 1
εG(A(u, τ, µ)). We rewrite it as

1

ε
G(A) =

1

ε
G(A[0]) +

1

ε
G(A−A[0]) =: N1 +N2.

By item 4 of Lemma A.1,

||N1||1,σ ≤
M

ε
· ||A[0]||2,σ ≤M · |µ|2ε

and, using item 2 of Lemma A.1,

||N2||1,σ ≤
1

ε
M · ε||A−A[0]||1,σ ≤M · |µ|ε.

We now define the linear operator L(h) = G(∂u(A · h))− G(∂uA · h).

Lemma A.3. The operator L : P1 −→ P1 is well defined and it satisfies ||L(h)||1,σ ≤ M
% · ||h||1,σ.

Proof. By Lemma A.2, ||A||1,σ ≤M · |µ|ε and, by item 3 of Lemma A.1,

||G(∂u(A · h))||2,σ ≤M ||A · h||2,σ ≤M · |µ|ε||h||1,σ.

Therefore,

||G(∂u(A · h))||1,σ ≤M ·
|µ|
%
||h||1,σ.

Using Lemma A.2, ||∂uA||1 ≤M · |µ|% and, by item 1 of Lemma A.1,

||G(∂uA · h)||1,σ ≤M · ||∂uA · h||2,σ ≤M ·
|µ|
%
||h||1,σ.
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Finally, we can write equation (82) as:

(I − L)(C(u, τ, µ)) =
1

ε
G(A(u, τ, µ)).

By Lemma A.3, I − L is invertible in P1, so that C(u, τ, µ) = (I − L)−1
(
1
εG(A(u, τ, µ))

)
∈ P1 and, using Lemma

A.2,

||C(u, µ, τ)||1,σ ≤M ·
∣∣∣∣∣∣∣∣1εG(A)

∣∣∣∣∣∣∣∣
1,σ

≤M · |µ|ε.

We obtain the bound for the derivative by a straightforward application of Cauchy’s formula and by reducing
slightly % and ρ:

||∂uC(u, τ, µ)||1,σ ≤M ·
|µ|
%
.

B Proof of Lemma 4.10

We begin with the first item. The function

h̃(µ) =

{
h(µ)
µν µ 6= 0
h(ν)

ν! µ = 0

is analytic in Bη(0). The maximum principle forces the maximum of the function to be at a point µ∗ such that
|µ∗| = η. Then

|h̃(µ)| =
∣∣∣∣h(µ)

µν

∣∣∣∣ ≤ max
|µ|=η

|h(µ)|
|µν |

≤ Mh

ην

and from here we have the result
|h(µ)| ≤ η−ν · |µ|ν ·Mh.

Now we proof the second item. Since

h≥ν(µ) = h(µ)−
ν−1∑
j=0

hj · µj ,

we use Lemma 4.1 to bound the second term on the right-hand side. We have a constant M1 depending only on ν
such that |hj | ≤M1 ·Mh. Hence,

∣∣h≥n(µ)
∣∣ ≤ |h(µ)|+

∣∣∣∣∣∣
ν−1∑
j=0

hj · µj
∣∣∣∣∣∣ ≤Mh +M1 ·Mh ·

ν−1∑
j=0

|η|j ≤

1 +M1 ·
ν−1∑
j=0

|η|j
 ·Mh

and the first item of Lemma 4.10 (already proven) implies

|h≥n(µ)| ≤ η−ν · |µ|ν ·

1 +M1 ·
ν−1∑
j=0

|η|j
 ·Mh = |µ|ν ·M2 ·Mh

with M2 = η−ν ·
(

1 +M1 ·
∑ν−1
j=0 |η|j

)
only depending on ν and η.
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