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Diagonal-Besós (CDB), Eduard Maristany, 16, 08019 Barcelona, Spain
2 Institute of Mathematics (IMTech), Universitat Politècnica de Catalunya (UPC), Pau
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Abstract. Field failures of wind turbine main bearings cause unwanted downtime and
significant maintenance costs. Currently, this industry seeks to increase its reliability, for which
condition monitoring and predictive maintenance systems have been adopted. In most industrial
wind farms, the integrated Supervisory Control and Data Acquisition (SCADA) system provides
data that is stored averaged every 10 minutes that can be used to quantify the health of a wind
turbine (WT). This research presents a framework for the analysis of data collected from the
SCADA system of an operating wind farm, aiming to early detect the main bearing failure using
a Long-Short-Term Memory (LSTM) neural network. For prediction, SCADA variables of the
temperature of turbine components near the main bearing, rotor speed, ambient temperature,
and generated power are taken into account. The results show that the proposed methodology
can detect the target failure up to 4 months in advance of the fatal breakdown. The results
obtained confirm the applicability of the proposed model in real scenarios that can help the
operator with enough time to make more informed maintenance decisions.

1. Introduction
Wind energy is one of the most widely used renewable energy resources with low environmental
impact in the world for the generation of electricity. High growth is estimated worldwide, with
1000 GW installed by 2050 with a WT installation rate of 200 GW/year [1]. The main challenge
of wind energy is to achieve low operating and maintenance costs (O&M). It is estimated
that O&M in wind farms can represent 30% of the total cost of energy due to its remote
location, difficult transportation, components and logistics costs, and downtime [2]. One of
the fundamental elements of the wind turbine rotation mechanisms are bearings. These can
be divided into pitch bearings, yaw bearings, transmission bearings (main bearing and gearbox
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bearings), and generator bearings [3]. Bearings are commonly subjected to harsh environments,
including vibration and shock under varying wind speeds. This has led to bearings operating
beyond their limits, which explains the high failure rate of these components [4]. Recently, data
show that main bearing failure rates (over a 20-year life) can be as high as 30% [5]. The industry
identified main bearing failure as the second largest reliability challenge after WT gearboxes [6].

In general, bearing failures can be classified into fatigue, wear, corrosion, plastic deformation,
electrical erosion, cracking, and fracture failure modes. There are different causes and behaviors
for these modes, such as deformation, tension, craters, and fractures [7]. Mechanical failures are
often accompanied by increased heat loss. In bearings, failures occur with increasing temperature
and indicate reduced performance or imminent failure [8]. Most industrial wind farms operate
through supervisory control and data acquisition (SCADA) systems, which record monitoring
information from different components of the WT, such as wind speed, generated power, and
bearing temperature. Therefore, the temperature signals from the SCADA data can provide
information on the performance of the main bearing. The recorded data create an opportunity
to process the collected time series data for various applications, such as the diagnosis, detection,
or prognosis of WT failures [9].

In the literature, several works address failure detection through the use of SCADA data in
WTs in operation. For example, in [10], the prediction of the main bearing failure has been
carried out on two wind farms, with a total of 84 WTs, where four WTs have the failure. Based
on the principles of Ensemble Learning, the anticipation of failure is obtained in no less than
one month. In [11], a study is carried out based on several machine learning techniques to
predict bearing failure in the gearbox; a wind farm with 13 WTs is used, where three WTs have
bearing failures. The best model obtained is an LSTM network with a false alarm rate of 50%
and one month of anticipation of failure. In [12], a hybrid model is made to predict fatigue in
the main bearings, where the part of the bearing that suffers fatigue consists of known physical
formulations, and the unknown degradation of the grease is represented by deep neural networks.
The tests are carried out on 10 WTs, proposing regreasing intervals to extend the useful life of
the bearings. The studies mentioned above used and validated their methodology in real wind
farms; however, the results do not show failure, if not less than a month after failures occur.

In this work, in contrast to the aforementioned works, it has been possible to detect a main
bearing failure four months in advance to the fatal breakdown of the component. The proposed
methodology works with a normality model based on the use of SCADA data from wind farms
composed of 12 WTs. It should be noted that no additional information provided by the
SCADA data is used. Additionally, this methodology has not worked with labeled data due to
the difficulty in obtaining data from the failure under study and other aspects associated with
possible errors in the process. Therefore, the model can be used in any WT that uses SCADA
data, even if this type of fault never occurred in the past. The signals of external sensors
provided by WT SCADA are used to capture hidden trends in the main bearing temperature.
The LSTM neural network has been chosen for modeling due to its characteristic of capturing
long-range dependencies and nonlinear dynamics.

The contribution of this research is as follows: i) propose a methodology for the prediction
of main bearing failure based on the results obtained in a wind farm in operation, ii) design
and develop an efficient deep learning model to predict long-term time series (the incipient fault
has been detected 4 months in advance of the fatal breakdown of the component), iii) carry out
a comparative analysis in a wind farm where one WT is affected by the failure under study,
another turbine has another type of failure, and the rest are healthy.

The presented document has the following structure: Section 2 carries out an analysis of the
SCADA data to be selected, as well as a complete statement of the proposed methodology, while
Section 3 presents the results and discussion. The document ends in Section 4 with possible
future directions.



WindEurope Annual Event 2023
Journal of Physics: Conference Series 2507 (2023) 012024

IOP Publishing
doi:10.1088/1742-6596/2507/1/012024

3

2. The proposed methodology
The proposed approach for the early prediction of main bearing failure is based on the creation
of a normality model by using an LSTM neural network. The SCADA data of the selected
variables under healthy conditions are used to train the model. Then, when the model predicts
the target variable from data that is faulty, this will end with greater errors in the predictions.
Figure 1 shows the normality model approach.

Figure 1. Normality model. When already trained (only with healthy data) the inputs are
data that may or may not be healthy; the output shows the real measured SCADA temperature
and the estimated (modelled) temperature by the LSTM network. In the middle is the residual
(error that can be higher if the data is not healthy).

The methodology used to derive the proposed approach is the following: 1) SCADA data
are described and analyzed to select the variables to be used for the creation of the normal
behavior model; 2) treatment of outliers and empty data is considered; 3) data partition into
train, validation and test datasets is performed; 3) data normalization and reshape is made; 4)
the LSTM architecture design for the specific problem is created; 5) the fault indicator for the
early prediction of the main bearing failure is developed and described; 6) test on a real SCADA
dataset from an operational wind farm is performed.

2.1. SCADA data set
The SCADA data used in this study correspond to a wind farm commissioned in Spain in
2006. The wind farm has 12 operational WTs, where each wind turbine has a nominal power of
1500kW, a diameter of 77 m, IEC IIa class, a swept area of 4657 m2, and wind speed range for
energy production between 3.5 m/s and 25 m/s. WT SCADA data variables can be grouped
into environmental, electrical, component temperature, hydraulic, and electrical variables. The
maximum, minimum, and standard deviation values are available in 10-minute time periods for
the SCADA data. For the study, continuous operational data from the wind farm were collected
from February 2017 to November 2018.

2.1.1. Data analysis In the Introduction, it was described the various failure modes of the
main bearings, which in many cases lead to a temperature increase. For this reason, the SCADA
temperature variables are selected near the main bearing. In particular, the selected SCADA
variables are the low-speed shaft temperature, the bearing noncoupling side temperature, the
gearbox temperature, and the generator temperature. Finally, also the generated real power
and rotor speed are selected, which provide information about the operating regions of the WT,
and the ambient temperature due to its influence on all the subsystems of the WT. The selected
variables are detailed in Table 1 (note that each variable has a range of operating values). Figure
2 shows the readings of the SCADA variables selected.
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Table 1. Selected SCADA variables with their respective description and value ranges.

Variable Description Range Units

Pot Generated real power [0, 2000] kW
TempAmb Ambient temperature [−5, 40] ◦C
TempCojLOA Bearing non-coupling side temperature [0, 120] ◦C
TempEjeLento Low-speed shaft temperature [0, 120] ◦C
TempGen Generator temperature [0, 175] ◦C
TempRodamMultip Gearbox temperature [0, 120] ◦C
VelRotor Rotor speed [0, 50] rpm

Figure 2. Example of the seven SCADA variables selected to develop the normality model.

2.1.2. Data cleaning Real SCADA data have unavoidable outliers from different WT readings.
In this work, data cleaning is carried out in such a way that information is not lost, since it
could cause loss of information for the prediction of failures. The strategy used filters the data
from different sensors using the ranges defined for the different sensors (see Table 1).

Another problem in SCADA data is missing values due to sensor malfunction; when added to
the filtered data range of the aforementioned outliers, missing values increase. The imputation
strategy used to solve this problem is the use of a piecewise cubic Hermite interpolation
polynomial (pchip). This type of interpolation works with known points and specific slopes
at the interpolation points. The curve obtained from pchip preserves the trend of the data,
respecting the monotonicity and guaranteeing at least the first derivative.



WindEurope Annual Event 2023
Journal of Physics: Conference Series 2507 (2023) 012024

IOP Publishing
doi:10.1088/1742-6596/2507/1/012024

5

2.1.3. Train, validation, and test splitting For the development of the proposed early prediction
model, the following steps will be followed: (1) divide the data for training, validation, and
testing, (2) train the neural network with the training data and validate the model with the
validation data, (3) evaluate the model with the test data. This section will focus in the first
step; the remaining steps will be explained throughout the document.

The data have been divided so that its time series have not been broken in time (the
information has not been mixed); consequently, the training and validation data correspond
to the year 2017, while the test data correspond to the year 2018. Finally, the division is
detailed in Figure 3; note that this division has been made for the entire wind farm.

Figure 3. Data distribution for WT2.

Data from 2017 have been divided into 90% for training and 10% for validation, obtaining
42,481 samples for training and 4,609 samples for validation. The data from 2018 is used for
testing, obtaining 47,953 samples.

2.1.4. Data normalization The SCADA data of the selected variables have different magnitudes
due to the different nature of the measurements. In deep learning and machine learning
applications, it is recommended to scale data to facilitate learning [13]. Therefore, the maximum-
minimum scaling has been selected, guaranteeing data in the range [0, 1]. It is a simple technique,
and its only drawback is dealing with outliers, which it has already resolved by range filtering
the data. Normalization of the data has been carried out so that the maximum and minimum
values have been taken from the training data and used to normalize the validation and testing
data.

2.1.5. Data arrangement Data have been ordered so that a sample has a length of 144 time
steps, corresponding to one day, with the intention that the network learns the temporal trend
characteristics of one day of operation. The next step is to reshape the data to be ready as input
for the LSTM neural network. For this, seven input data are defined, which are shown in Table
1. The table 2 shows the input data array of the LSTM neural network, where k represents the
sample number and the instants of time are defined from t− 144 to t− 1.

For the output of the neural network, the target is the SCADA variable corresponding to the
low speed shaft temperature at the time instant t (at the end of the day).

2.2. LSTM
In recent years, deep learning has proven its powerful hands-on learning ability in conjunction
with the superiority of big data processing, attracting attention from various fields. LSTM
networks have significant advantages over other artificial intelligence techniques due to its
memory capacity over time series [14]. The LSTM neural network is a type of recurrent neural
network (RNN) that solves the problem of gradient vanishing while preserving the quality of the
RNN for processing sequential data [15]. The LSTM neural network decides the update of the
information through the architecture of its cell. The reader is referred to the excellent reference
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Table 2. Data matrix where columns represent the seven SCADA variables, rows represent 144
timestamps, and the value of k represents the sample number.

SCADA variable 1 SCADA variable 2 . . . SCADA variable 7

X(k) =


y
(k)
t−1,1

y
(k)
t−2,1
...

y
(k)
t−144,1

y
(k)
t−1,2
(k)
t−2,2
...

y
(k)
t−144,2

· · ·

y
(k)
t−1,7

y
(k)
t−2,7
...

y
(k)
t−144,7



[16] for a comprehensive explanation of the inference formulas for the LSTM network, as well
as its fundamentals.

2.2.1. LSTM model A many-to-one LSTM neural network has been chosen due to the approach
proposed in this work. For the input of the network, there is a sequence of 144 data and an output
corresponding to the temperature of the low-speed shaft temperature at the instant of time t. To
choose the best LSTM neural network model, tests were performed with a unidirectional LSTM
neural network and a bidirectional LSTM neural network. The results showed similarities, so
the LSTM unidirectional neural network was chosen because of its lower computational cost.
The unidirectional LSTM network architecture has a hidden layer, and the hyperparameters are
as follows.

The optimal number of units in terms of time, computational cost, and results in the hidden
layers of the LSTM cells is 100. The batch size is selected to be 64, a learning rate of 0.01 is
defined, and 200 epochs are used to train the network. Finally, the mean square error (MSE)
has been selected as the loss function of the neural network. Figure 4 shows the architecture of
the LSTM network.

2.2.2. Trained model The realization of the model has been done with the PyTorch
programming language [17] on a laptop with a NVIDIA GeForce RTXTM2060 video card, a
ninth generation Intel i7 processor, 16 GB RAM and a Windows 10 operating system. The
training lasted 31 minutes for each wind turbine.

2.3. Fault Indicator (FI)
The early failure indicator is based on the generation of a nominal residual by comparing the
measurements of the physical variable of the system yt (temperature of the low-speed shaft at
the time instant t) with their estimate ŷt (output of the LSTM network). In this work, the
residual value is |y − ŷ|. When considering the uncertainty of the model, the residual generated
is not enough to establish an alarm signal through a threshold; there is a risk of generating false
alarms.

To solve this problem, a simple moving average (SMA) filter is implemented to smooth the
residual shape, removing sudden changes from the residual. The SMA filtering process has been
implemented through a moving window of sizes 144 and 1008; that is, one day and one week
of data. Fault detection is activated when the SMA of the residual is more significant than a
threshold. In particular, the mean µ and the standard deviation σ of the SMA of the training
residual are calculated. Finally, the threshold is defined as:

threshold = µ+ κσ. (1)

Note that by adjusting the value of κ it allows for threshold tuning.



WindEurope Annual Event 2023
Journal of Physics: Conference Series 2507 (2023) 012024

IOP Publishing
doi:10.1088/1742-6596/2507/1/012024

7

Figure 4. Many-to-one LSTM architecture.

3. Results and Discussion
The presented section describes the results obtained from a proposed methodology based on
alarm activations when the FI exceeds a threshold. Table 3 summarizes the alarms activated in
a wind farm with different values of SMA and thresholds. Only one wind turbine (WT2) has
experienced a failure of interest that occurred on May 21, 2018.

To fine-tune the smoothing of the SMA and the decision threshold, the task of smoothing
the FI is performed using only training and validation data to minimize the number of false
alarms. Two SMA values are used, one with 144 data (a day) and the other with 1008 data (a
week). With SMA values of 144 and κ of 3 (µ+3σ), eleven alarm activations are obtained, but
to improve the results, the value of κ is changed to 6 (µ+ 6σ), which results in six alarms. The
results are further improved by increasing the SMA to 1008, and tests are carried out with κ
values of 3 and 6, with the latter providing the best results.

Figure 5 shows the best SMA result (weekly smoothing, 1008 data) of the residual curve in
training, validation, and testing in the wind farm in detail. For the WT2, an anomaly is detected
on February 18, receiving an alarm four months before the total breakdown of the component.
The detected anomaly is due to a possible initial failure (initial crack, friction,...), which has
been detected months in advance of the fatal breakdown of the component. There is also an
alarm activation in WT8, which is related to a different component, i.e., a gearbox replacement
carried out on the WT8 from March 22 to April 11. Therefore, it is not completely a false alarm.
In fact, it is noteworthy that there are no false alarms in a 2-year period over a whole wind
farm, which are excellent results.

In summary, the proposed methodology based on alarm activations when the FI exceeds a
threshold shows promising results for detecting anomalies in wind farms. The fine-tuning of the
smoothing of the SMA and the decision threshold is critical to reduce the number of false alarms.
The results obtained from the methodology include an early detection of a failure of interest
in a wind turbine, which may help to prevent significant financial losses due to unexpected
downtimes.
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Table 3. Experimental summary of SMA and threshold value over the training and validation
datasets. The activated alarms are presented with an × mark.

WT
SMA(144) SMA(1008)

µ+ 6σ µ+ 3σ µ+ 6σ µ+ 3σ
WT1 - × - ×
WT2 × × × ×
WT3 × × - -
WT4 - × - ×
WT5 - × - -
WT6 - × - ×
WT7 × × - ×
WT8 × × × ×
WT9 - × - ×
WT10 × × - ×
WT11 - - - -
WT12 × × - -

4. Conclusions
The proposed methodology for the early prediction of main bearing failure using SCADA data
from a wind farm yielded several key findings, which are summarized below.

Firstly, the analysis showed that the low-speed shaft temperature and the non-coupling side
temperature were found to be indicative of the main bearing failure. This finding is significant
as it can help the maintenance team to identify early warning signs of main bearing failure and
take corrective actions before it becomes a more significant problem.

Secondly, the Long Short-Term Memory (LSTM) architecture design used in the proposed
methodology proved to be effective, and the proposed fault indicator demonstrated a high level
of accuracy in detecting the main bearing failure. LSTM is a type of recurrent neural network
that can learn long-term dependencies in time-series data, making it particularly well-suited
for analyzing SCADA data from wind turbines. The high accuracy of the fault indicator in
detecting main bearing failure is significant, as it can help the maintenance team to focus their
attention on the affected turbines and take corrective actions proactively.

Thirdly, the comparative analysis conducted on a wind farm with one WT affected by the
failure, another turbine with a different type of failure, and the rest being healthy showed that
the methodology was able to identify the affected WT accurately and early. This finding is
crucial as it can lead to reduced downtime and maintenance costs, as corrective actions can be
taken before the failure becomes more severe.

Fourthly, the results demonstrate that the stated approach is effective in detecting a main
bearing fault that resulted in a significant increase in temperature. Although only one failure
was available in the investigated wind park data, which is insufficient for statistical analysis, any
bearing fault leading to heat release might be detectable by the proposed strategy. However, to
more extensively investigate the performance of the model, it is necessary to apply the model
to other wind parks with main bearing failure issues. Therefore, future work will test the model
on a larger dataset to assess its performance in different scenarios and draw more generalizable
conclusions

Finally, note that having few false alarms is crucial in any alarm system, especially in the
context of wind turbines, as it can significantly affect the performance and productivity of the
maintenance team. False alarms can lead to alarm fatigue, a condition where the maintenance
team becomes desensitized to alarms due to their frequent occurrence. Alarm fatigue can lead
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to a decrease in the maintenance team’s response time to real alarms, potentially resulting in
an increase in downtimes, which can lead to significant financial losses for the wind farm. The
proposed methodology, which is based on alarm activations when the FI exceeds a threshold,
aims to minimize the number of false alarms by fine-tuning the smoothing of the SMA and the
decision threshold. As described in this section, the methodology was tested on a wind farm
with 12 wind turbines over a period of two years, and no real false alarms were detected during
this period. The absence of false alarms in the proposed methodology is a significant advantage,
as it ensures that the maintenance team is not bombarded with unnecessary alarms, which can
lead to alarm fatigue. This enables the maintenance team to focus their attention on real alarms
and respond to them promptly, minimizing downtimes and maximizing the productivity of the
wind farm.

In summary, the proposed methodology for the early prediction of main bearing failure
using SCADA data from a wind farm demonstrated several significant findings, including the
identification of key indicators of main bearing failure, the effectiveness of the LSTM architecture
design, and the ability to accurately identify affected turbines early. These findings are critical as
they can help to improve the productivity and performance of wind turbines, reduce maintenance
costs, and prevent downtime.
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Figure 5. Results obtained over training, validation, and test datasets. The thresholds with
values of κ equal to 6 and 3 are shown for each WT.


