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Abstract

We present exact analytic results for the energy of a SU(N) repulsive Fermi gas as a
function of the spin-channel occupation at second order in the gas parameter. This is an
extension of previous results that now incorporates the degree of polarization of the sys-
tem. Therefore, the magnetic properties of the gas can be obtained, free from numerical
uncertainties. For spin 1/2 we find that second-order corrections change the itinerant
ferromagnetic transition from continuous to first-order. Instead, for spin larger than 1/2
the phase transition is always of first-order type. The transition critical density reduces
when the spin increases, making the phase transition more accessible to experiments
with ultracold dilute Fermi gases. Estimations for Fermi gases of Yb and Sr with spin 5/2
and 9/2, respectively, are reported.
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1 Introduction

At low density an electron gas is paramagnetic rather than ferromagnetic because its energy is
essentially kinetic. At a same density, the Fermi energy of a polarized (ferromagnetic) phase
is larger than the one of the unpolarized (paramagnetic) one [1]. However, increasing the
density produces an increase of the potential energy due to the interaction of electrons with
different spin. At some point, this increment of potential energy can exceed the kinetic energy
gap and the gas will become ferromagnetic. This is the well-known Stoner scenario of itinerant
ferromagnetism [2] where a quantum magnetic transition is predicted in the absence of any
crystal pattern and any magnetic field.

However, the observation of itinerant ferromagnetism in different materials has been ex-
tremely elusive because an increase in the density can produce non-Fermi liquids [3] or crystal-
lization [4] before the expected ferromagnetic transition. The high tunability of trapped cold
Fermi gases has offered a new platform to study itinerant ferromagnetism. However, even in
this case, the observation of this transition has turned elusive because the repulsive branch
is metastable with respect to the formation of spin up-spin down dimers. A first pioneering
observation of the ferromagnetic transition [5] was later revised and concluded that pair for-
mation precludes the achievement of the relatively large gas parameters required for observing
this transition [6]. More recently, it has been claimed that the ferromagnetic state is effectively
obtained after the observation of spin-domain inmiscibility in Fermi 6Li around a gas parame-
ter x = kF a0 ≃ 1, with kF the Fermi momentum and a0 the s-wave scattering length [7]. The
theoretical study of repulsive Fermi gases, to determine the gas parameter at which the ferro-
magnetic transition appears, has been intense [8–15]. Itinerant ferromagnetism is predicted
to happen around x ≃ 1, with the most reliable results derived from quantum Monte Carlo
(QMC) simulations [9]. At this value of the gas parameter, the Stoner model is not quantita-
tively accurate and the use of microscopic approaches as QMC is the best tool in spite of the
sign problem.

The Stoner model is derived using first-order perturbation theory on the gas parameter,
that is it is the Hartree-Fock model for the repulsive Fermi gas [2]. For particles with spin
1/2, this model predicts a continuous transition from a paramagnetic phase to a ferromag-
netic one at x = π/2. The transition point obtained with QMC is significantly smaller [9],
pointing to the relevance of interactions which Stoner model incorporates only at first order.
The first correction to the Hartree-Fock energy was obtained by Huang, Lee, and Yang using
pseudopotentials for the hard-sphere Fermi gas [16, 17]. The same result was also derived
by Galitskii [18], using Green functions, and Abrikosov and Khalatnikov by means of Landau
theory of Fermi liquids [19]. This analytical result for the second-order perturbation theory
gives the total energy of the Fermi gas as a single function of the gas parameter. However, one
cannot use this equation when the number of particles in each spin is different or, in other
words, the polarization does not enter in it as a variable.

In recent years, the experimental production of SU(N) fermions has renewed the theoret-
ical interest in their study. Cazalilla et al. [20] discussed that Fermi gases made of alkaline
atoms with two electrons in the external shell, such as 173Yb, present an SU(N) emergent
symmetry. They also claimed that for s > 1/2 the ferromagnetic transition had to be of first
order because the mathematical structure of SU(N>2) is significantly different than the one of
SU(2). In 2014, Cazalilla and Rey [21] reviewed the progress made with ultra-cold alkaline-
earth Fermi gases. Ref. [22] was one of the first observations of SU(N) symmetric interactions
in alkaline-earth-metal atoms. Interaction effects in SU(N) Fermi gases as a function of N
were studied in Ref. [23]: for weak interactions it was predicted that inter-particle collisions
are enhanced by N. Collective excitations in SU(N) Fermi gases with tunable spin proved to be
instrumental to investigate collective properties of large spin systems [24]. On the other hand,
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Ref. [25] studied the prethermalization of these systems starting from different initial condi-
tions finding that, under some conditions, the imbalanced initial state could be stabilized for a
certain time. Recently, Ref. [26] performed a thorough study of the thermodynamics of deeply
degenerate SU(N) Fermi gases using 87Sr for which N can be tuned up to 10. For temperatures
above the super-exchange energy, the behavior of the thermodynamic quantities was found to
be universal with respect to N [27].

In the present work, we solve analytically the second-order perturbation energy including
the polarization or, more precisely, the dependence on the relative concentration of particles
with different z-spin component. Our results are derived for a generic spin and thus, we
can apply it to SU(N) fermions. This generalization allows, for instance, the study of dilute
Fermi gases of Ytterbium [28], with spin 5/2, and Strontium [29], with spin 9/2, that have
been already produced in experiments. With the analytic result for the energy, as a function
of the gas parameter and occupation of spin channels, we perform a Landau analysis of the
ferromagnetic transition for any spin. We find that, for spin 1/2, the phase transition turns to
be first-order with respect to the polarization instead of the continuous character of it derived
in the Stoner model. Interestingly, the critical density for itinerant ferromagnetism is observed
to decrease monotonously when the spin increases, opening new possibilities for experimental
realizations in cold Fermi gases.

2 Methodology

We study a repulsive Fermi gas at zero temperature with spin S and spin degeneracy ν= 2S+1.
In the dilute gas regime, only particles with different z-spin component interact via a cen-
tral potential V (r) (s-wave scattering). The number of particles in each spin channel is
Nλ = CλN/ν, with N the total number of particles and Cλ being the fraction of λ particles
(normalized to be one if the system is unpolarized, Nλ = N/ν, ∀λ). The Fermi momentum of
each species is kF,λ = kF C1/3

λ
, with kF = (6π2n/ν)1/3. The kinetic energy is readily obtained,

T
N
=

3
5
εF

1
ν

∑

λ

C5/3
λ

, (1)

with εF = ħh2k2
F/(2m) the Fermi energy. The lowest-order contributions to the potential energy

are given by [30]

V =
ħh2Ω

2m

∑

λ1,λ2

∫

dl
(2π)3

nl

∫

dk
(2π)3

nk{K(k, l; k, l) −δλ1,λ2
K(k, l; l, k)} , (2)

with Ω the volume, nl and nk the momentum distributions of the free Fermi gas. Up to second
order in the s-wave scattering length a0, the scattering K matrix is given by [30,31]

K(r, R) = 4πa0 + (4πa0)
2 I(r, R) +O(a3

0) , (3)

with r= (k− l)/2 and R= k+ l, the relative and total momentum in the center of mass frame,
respectively. The function I(r, R) is defined as

I(r, R) =
1

(2π)3

∫

2 dqdq′
1− (1− nq)(1− nq′)

q2 + q′2 − k2 − l2
δ(q+ q′ − k− l) . (4)

Considering only the first term in the expansion of the K-matrix (3), one gets for the potential
energy (2) the well-know Hartree-Fock energy [2],

�

V
N

�

1
=

2εF

3π





1
ν

∑

λ1,λ2

Cλ1
Cλ2
(1−δλ1,λ2

)



 x , (5)
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with x ≡ kF a0 the gas parameter of the Fermi gas.
The second order term in the gas parameter x is due to the second term of the K-matrix.

This second order term reads

�

V
N

�

2
=
εF

k7
F





1
ν

∑

λ1,λ2

I2(kF,λ1
, kF,λ2

)(1−δλ1,λ2
)



 x2 , (6)

with

I2(Cλ1
, Cλ2

) =
3

16π5

∫

dl nl

∫

dk nk

∫

2 dqdq′
1− (1− nq)(1− nq′)

q2 + q′2 − k2 − l2
δ(q+ q′ − k− l) . (7)

The calculation of I2(Cλ1
, Cλ2

) (7) is rather involved. For the unpolarized phase, i.e., when
all the spin states are equally populated, the integral in Eq. (7) was made in the fifties of the
past century [16–19]. On the other hand, when the gas has a finite polarization that integral
becomes more cumbersome. In previous work, it was solved partially but with a final numerical
integration [32]. We have been able to integrate Eq. (7) and found an analytical expression
for it (See App. C). Our result is the following,

I2(Cλ1
, Cλ2

) =
4k7

F

35π2
Cλ1

Cλ2

C1/3
λ1
+ C1/3

λ2

2
F(y) , (8)

with

F(y) =
1
4
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8
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2y4
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�
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1+
1
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�

�
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−
2y−4

1+ y−1
ln

�

�

�

�

1+ y

�

�

�

�

, (9)

and y ≡ (Cλ1
/Cλ2

)1/3. Our result reproduces the formula derived by Kanno [33] for the
specific case of s = 1/2 and hard spheres.

Assembling it all together, we can write the energy per particle up to second order in x ,
and for any occupation of the ν available spin states, as

E
N
=

3εF

5ν







∑

λ

C5/3
λ
+

10
9π





∑

λ1,λ2

Cλ1
Cλ2
(1−δλ1,λ2

)



x +
5

3k7
F





∑

λ1,λ2

I2(Cλ1
, Cλ2

)(1−δλ1,λ2
)



x2







, (10)

with I2(Cλ1
, Cλ2

) given by Eqs. (8,9). Eq. (10) is a perturbative expansion in x and works fine
for low values of x , x < 1. If the gas is unpolarized, i.e., Cλ = 1, ∀λ, the energy per particle
reduces to the known expression [30],

E
N
=

3εF

5

§

1+ (ν− 1)
�

10
9π

x +
20

105π2
(11− 2 ln 2) x2
�ª

. (11)

The energy of the interacting Fermi gas (10) is written in terms of the occupation of the
different spin channels Cλ. This set of values results in a polarization P of the system, in such
a way that when all the spin states are equally populated the gas is unpolarized P = 0 and, if
only one of them is populated, |P| = 1. Keeping the total number of particles N as constant,
and for s = 1/2, there is only one ratio of spin occupations for a given value of P. In contrast,
for s > 1/2 there are more combinations. It can be shown that the solution which optimizes
the energy is the one in which the increase of particles in one spin state comes for an equal
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decrease of the rest with constant N (See App. A). Under these conditions, the concentrations
Cλ for a given polarization P are

C+ = 1+ |P| (ν− 1) , (12)

Cλ ̸=+ = 1− |P| , (13)

with subindex + standing for the state with the larger population. As we have discussed, for
s > 1/2 there are more possible configurations. For example, Ref. [25] works with a system of
s = 3/2 with population imbalance: the number of atoms with s = 3/2, N±3/2, is different than
the one with s = 1/2, N±1/2. As we need to make a choice, we choose the one that minimizes
the energy.

It is interesting to check if Eq. (10) converges when the degeneracy increases. If we set
the limit ν→∞ in Eq. (10), we get

E
N
=

2πħh2

ma2
0

�

3
20π

(6π2n)2/3a2
0 P5/3 + na3

0(1− P2) +
1

2π3
(6π2n)4/3a4

0(1− P)P4/3
�

. (14)

As one can see, Eq. (14) is convergent, as it is finite for any value of P. Particularizing to the
unpolarized case P = 0, one obtains the Hartree-Fock energy for bosons. And, if we set P = 1,
we obtain the energy of a non-interacting Fermi gas.

3 Landau Theory

Upon an increase of the gas parameter, the interacting Fermi gas will eventually become fer-
romagnetic. To localize the transition point and the order of the phase transition we rely on
Landau theory. We first explore what we obtain for the Stoner model, that is, first order ap-
proximation in x . Then, we consider the second-order expansion, Eq. (10). In this way, we
can compare the differences that arise due to increasing the order of the perturbative expan-
sion. At the Hartree-Fock level, first order in x , the Landau expansion of the energy is given
by

f − f0(x) = −
1
2

A(x − x0)P
2 −

1
3

B|P|3 +
1
4

C P4 , (15)

with f = 5E/(3NεF ), x0 = π/2, and the rest of constants are given in App. B. In order to deter-
mine the transition point, one imposes two conditions: i) the energy has to be a minimum, that
is, its first derivative must be zero, and ii) the energy must be smaller than the zero-polarization
energy to have a global minimum. With these two criteria, one finds x∗ = x0−2B2/(9AC) and
|P∗|= 2B/(3C). The constant B is proportional to (ν−2), therefore the Stoner model predicts
a first-order phase transition for spin higher than 1/2, while a continuous one for s = 1/2.

Equipped with the second-order expression of the energy as a function of the spin-state
occupations (10), we can make a Landau expansion of the energy. We get

f − f0(x) = −
1
2

A(x(x)− x0)P
2 −

B(x)
3
|P|3 +

C(x)
4

P4 +
L(x)

4
P4 ln |P| . (16)

The coefficients in Eq. (16) depend now on the gas parameter x and have a more complex
expression (See App. B). For the sake of simplicity, from now on, we will not specify that
the coefficients of Eq. (16) depend on the gas parameter x . Applying the same criteria for
finding the transition point as before, we derive the equations for the jump of polarization and
transition density values,

ln |P∗|= −
�

1
2
+

C
L

�

+
2B

3L|P∗|
, (17)

x∗ = x0 −
B
3A
|P∗| −

L
4A
|P∗|2 . (18)
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We rearrange Eq. (17) to explore the range where a solution exists,

2B
3L|P∗|

− ln |P∗|=
1
2
+

C
L

. (19)

The function 2B/(3L|P∗|)− ln |P∗| is continuously decreasing between |P∗| = 0 and |P∗| = 1
as long as 2B/(3L) is positive. As this is the case, in this range, the minimum value will be at
|P∗|= 1. Hence, there will exist a solution when the coefficients satisfy the condition

1
2
+

C
L
−

2B
3L
≥ 0 . (20)

This condition is fulfilled for any spin value and for densities lower than the transition one. For
spin 1/2, the above equations suffer an important simplification as the coefficient B is zero,

|P∗|= exp
�

−
1
2
−

C
L

�

,

x∗ = x0 −
L

4A
exp
�

− 1−
2C
L

�

.
(21)

It is worth noticing the relevance of the coefficient L in Eq. (21), coming from the term
P4 ln |P|, for distinguishing the order of the phase transition: L needs to be different from
zero to get a first-order phase transition [34]. Introducing the values of the constants in Eq.
(21), one gets the transition density at x = π/3(1 + 0.007) ≈ 1.0545, and a jump in the
polarization equal to 0.545. Remarkably, the second-order energy changes the character of
the ferromagnetic phase transition becoming now a first-order one, as it happens for spin
s > 1/2.

4 Results

We have applied the above formalism to study fundamental properties of the Fermi gas, such
as the energy or the magnetic susceptibility.

In Fig.1, we show the dependence of the polarization P with the gas parameter x for
a s = 1/2 Fermi gas. One can observe as the introduction of second-order corrections to the
potential energy modify the character of the phase transition with respect to the Stoner model.
Moreover, the gas parameter at which the transition occurs is significantly reduced, from π/2
to ∼ π/3, approaching the value x ≃ 1 where the transition has been indirectly observed [7].

In Fig. 2, we plot the energy of the Fermi gas using the the Stoner one and the second-
order approximation. At very low densities, both models predict the same energy, which follow
the non-polarized behavior. After a certain value of the gas parameter, the lines become flat,
which is the behavior of the fully-polarized gas. We can see that, when we use the second-order
approximation, the transition happens at a smaller gas parameter.

The first-order phase transition for s = 1/2 is also observed in Fig. 3. There, we plot the
energy as a function of P and for gas parameter values close to the phase transition. One can
see that the minimum of the energy jumps from P = 0 to an intermediate value P = 0.545
that then progressively moves to the fully polarized phase (Fig. 1).

Since we are interested in the magnetism of these gases, we proceed to analyze the mag-
netic susceptibility, which is inversely proportional to the second derivative of the energy with
respect to the polarization,

1
χ
=

1
n

�

∂ 2(E/N)
∂ P2

�

x
. (22)
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Figure 1: Itinerant ferromagnetic transition for s = 1/2. The dashed orange and
solid blue lines stand for the Stoner and second-order approximations, respectively.

Figure 2: Energy per particle as a function of the gas parameter for s = 1/2. The
dashed orange and solid blue lines stand for the Stoner and second-order approxi-
mations, respectively.

If we split the total energy between the kinetic and the potential energy, we can rewrite χ as

χ =
3
2

n
εF

�

1
ν

∑

λ

C−1/3
λ
(C ′λ)

2 +
3
2

1
εF
(V/N)′′
�−1

, (23)

where the derivatives are with respect to the polarization. In Fig. 4, we show the magnetic
susceptibility around the ferromagnetic transition point for s = 1/2. We see again that the
transition occurs at a lower value of x [9] with respect to the Stoner model. One can also
notice that χ changes behavior, from diverging at the transition point (Stoner) to a large
but finite peak at second order, reflecting the change in the type of phase transition from a
continuous to a first-order one.

From Eq. (23), one can prove that at first order χ diverges. At this order, χ behaves around
the transition as

χ =
3
2

n
εF

�

−
9

10
A(x − x0)
�−1

=
3
2

n
εF

5C
B2

. (24)

The coefficient B in Eq. (24) is proportional to (ν− 2) and C is finite for ν = 2 (See App. B),
hence, the magnetic susceptibility diverges around the transition for the Stoner model.

We can extend our analysis to larger spin Fermi gases. In this case, the ferromagnetic
transition is first-order as in the Stoner model but the transition point is, in all cases, observed
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Figure 3: Energy per particle as a function of the polarization P for s = 1/2. The
lines correspond to different x values close to the phase transition x⋆ = 1.054. The
crosses in each line indicates the polarization where the energy is minimum.

Figure 4: Magnetic susceptibility χ around the transition point for s = 1/2. The peak
of χ appears at a lower x value than in the Stoner model.

at smaller x values. This fact can be seen in Fig. 5 where the energy of the spin 9/2 Fermi gas
changes its behavior at a lower gas parameter than the energy of the spin 5/2 Fermi gas.

In Fig. 6, we show the energies of SU(N) Fermi gases up to second order as a function of
the polarization for x values close to the phase transition. The top panel is for s = 5/2 and the
bottom one for s = 9/2 corresponding to Yb and Sr, respectively. In both cases, the location of
the minimum of the energy as a function of the polarization jumps from P = 0 to 1 without
intermediate values, in contrast to the case of s = 1/2. For the sake of completeness, in Fig.
7 we show the magnetic susceptibility for the two high degenerate Fermi gases considered:
s = 5/2 and s = 9/2.

Thanks to having an analytical expression for the energy, we have access to other impor-
tant properties as the Tan’s contact. According to Tan relations, the microscopic behavior of
the wave function of the N -body system at short distances (r ≪ n−1/3) is connected with the
behavior of several macroscopic magnitudes. In particular, the tail of the momentum distri-
bution for large k values as k−4 and the dependence of the energy on the scattering length.
Using the adiabatic sweep theorem [35], the Tan’s contact can be obtained from the energy of
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Figure 5: Energy per particle as a function of the gas parameter. The solid blue and
dashed orange lines stand for a Fermi gas of s = 5/2 and s = 9/2, respectively. Both
lines have been calculated within the second-order approximation.

the system by

C =
8πma2

0

νħh2

N
V
∂ (E/N)
∂ a0

. (25)

In terms of the gas parameter,

C =
4πnkF

ν

x2

εF

∂ (E/N)
∂ x

. (26)

We have calculated the Tan’s contact using the energy of the Fermi gas at second order. In
Fig. 8, we show νC as a function of x for spin s = 1/2, 5/2, and 9/2. In the paramagnetic
phase, νC increases monotonically until it reaches its maximum value at the transition point.
After crossing the ferromagnetic transition, the Tan’s contact becomes zero because the energy
of the fully polarized phase does not depend on the scattering length a0. As one can see in the
figure, the νC increases with the value of the spin for a given x value, in agreement with the
increase of interaction energy with spin degeneracy. It is interesting to notice that, for spin
1/2, C does not drop abruptly to zero because there are stable polarizations between 0 and
1. In contrast, for s > 1/2 the drop is directly to zero because of the sudden change of the
polarization from 0 to 1 at the phase transition.

In Fig. 9, we show the evolution of the Tan’s contact as a function of the spin for the Stoner
and second-order models. By increasing the spin, one can see a tendency to reach a plateau.
This plateau, which has been interpreted as the Bose limit, can be understood by looking at
the Tan’s contact behavior before the transition. For the Stoner model, it is given by

C = 4πnkF x2 2
3π

�

1−
1
ν

�

, (27)

and in second-order,

C = 4πnkF x2
�

2
3π
+

8
35π2

(11− 2 ln 2)x
��

1−
1
ν

�

. (28)

The dependence with ν for both models is 1 − 1/ν, hence, if we set the limit ν → ∞, we
obtain a plateau. In Fig. 9, we also plot experimental results from Ref. [36] that show a similar
behavior to our theoretical expressions (Eqs. (27) and (28)). Moreover, they lie between both
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Figure 6: Energy of the s = 5/2 (top) and s = 9/2 (bottom) Fermi gases as a function
of P for x values close to the transition. The crosses indicate the values of P where
the energy is minimum.

models, but we cannot state which one fits better due to the experimental uncertainty. As the
experimental points have a different normalization than our definition, we have to scale them
by a factor of (2π)2.

The critical value of the gas parameter depends on the spin of the particles. In Fig. 10, we
report the results obtained for both models (Stoner and second order). As one can see, the
itinerant ferromagnetic transition happens at x values that decrease monotonically with the
spin degeneracy. Moreover, the second order values of x are lower than the ones predicted
by the Stoner model. As for s > 1/2 the polarization goes from 0 to 1 without intermediate
values (P∗ = 1), we can find more easily the laws that the critical values x∗ follow. For the
Stoner model, the law is given by

x∗ =
9π

10(ν− 1)

�

ν2/3 − 1
�

, (29)

and in second-order,

x∗ = π

−35+ 35

√

√

√

1+
108(11− 2 ln 2)

175(ν− 1)

�

ν2/3 − 1
�

12(11− 2 ln 2)
. (30)

Notice that for s = 1/2 Eqs. (29) and (30) do not hold. In this case, the value of x∗ is slightly
smaller than the value predicted by the laws (29,30) because the transition is from P = 0 to
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Figure 7: Magnetic susceptibility per particle as a function of the gas parameter. The
slid blue and dashed orange lines stand for a Fermi gas of s = 5/2 and s = 9/2,
respectively. Both lines have been computed with the second-order approximation.

Figure 8: Tan’s contact in SU(N) Fermi gases. νC as a function of the gas parameter
for three different spins: s = 1/2, 5/2, and 9/2. We use the second-order model for
the three cases.

P < 1 (see Fig. 10). The behavior of the critical gas parameter values with the spin, in Fig.
10, can be understood by the balance between Fermi kinetic energy and interaction energy.
Increasing the spin degeneracy originates in turn an increase in the number of interacting
pairs of particles because the interatomic potential acts only between pairs of different z-spin
component. In other words, the Fermi gas becomes more interacting and reaches the fully
polarized (ferromagnetic) phase at lower x values.

5 Conclusions

Summarizing, we present the analytic expression of the energy of a repulsive SU(N) Fermi gas,
in terms of the spin-channel occupations, at second order of the gas parameter. This analytic
derivation allows for an accurate estimation of the magnetic properties of the Fermi gas for any
value of the spin. Moreover, by using the analytical solution one directly avoids any uncertainty
coming from the numerical integration. This is in fact quite important since the function to
integrate in the second-order term has many singular points and, if one does not apply a
previous analytical treatment to the function, the numerical method may simply diverge. In
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Figure 9: Tan’s contact in SU(N) Fermi gases. Evolution of C with the spin of particles
at fixed density x = 0.3 for the Stoner model and the second order model; the points
with error bars are experimental data from Ref. [36] re-scaled by a factor of (2π)2.
The green and yellow lines follow the behavior of the Tan’s contact of Eq. (27) and
Eq. (28) respectively.

Figure 10: Critical gas parameter values of the ferromagnetic transition as a function
of the spin for the Stoner model and the second order model. The green and yellow
lines follow the behavior predicted by Eqs. (29) and (30).

order to study the system, we have chosen the occupational configuration and the polarization
protocol that minimizes the energy: at P = 0, all the species are equally occupied; and, when
we increase P, one species increases and all the rest diminish in the same manner. However,
we point out that our formalism can be applied to any occupational configuration and any
polarization protocol. One just needs to find the new expressions for the fractions of λ particles
Cλ. In fact, in many experiments, the species’ occupation can be tuned or controlled almost
at will [24,26] and there are studies that have dealt with imbalanced systems [25]. However,
we point out that all these other configurations are excited states, they have more energy than
the configuration we have chosen. Due to that, if a Fermi system can thermalise, it will fall to
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the behavior we have predicted in this work. Using another occupational configuration and a
different polarization protocol leads to different critical values of the gas parameter x∗.

Our results show that the ferromagnetic transition turns out to be first-order for s = 1/2,
in contrast with the continuous transition obtained at the Hartree-Fock (Stoner) approxima-
tion [2]. At second order, and for s > 1/2, the phase transition is always of first-order type. Our
derivation applies to any spin of the Fermi particles and this allows for the study of itinerant
ferromagnetism in SU(N) fermions. The critical gas parameter for spin 1/2 decreases signifi-
cantly with respect to the Stoner model, approaching the experimental estimation x ≃ 1 [7].
Remarkably, the critical x decreases monotonically with the spin of the particles suggesting
that the observation of itinerant ferromagnetism could be favored by working with highly-
degenerate gases as Yb [28] and Sr [29]. In order to verify experimentally our predictions,
one could use a similar method to the one used in Ref. [7] where the Fermi system can ther-
malise, but generalized to larger spin degeneracies.

Beyond the second-order terms analyzed in this work, the energy ceases to be universal in
terms of the gas parameters because other scattering parameters of the interactions, mainly
the s-wave effective range and p-wave scattering length get involved [30]. However, these
corrections are expected to be small due to the diluteness of the Fermi gases in experiments
that make scattering be dominated by s-wave scattering.
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A Polarization in SU(N) Fermi gases

We have considered that when the occupation of one of the spin channels grows, the rest
decreases in equal form, keeping the total number of particles as constant. This results from
the fact that the Hamiltonian does not depend on the angular momentum of each species,
hence, all the species are equivalent. Moreover, this fact can be proved by minimizing the
energy,

E =
3
5

NεF
1
ν

∑

λ

C5/3
λ
+ V (Cs, . . . , C−s) , (A.1)

with
∑

λ Cλ = ν. We define the channel that grows,

C+ = ν−
∑

λ ̸=+

Cλ , (A.2)

and substitute it in the energy,

E =
3
5

NεF
1
ν

�

�

ν−
∑

λ ̸=+

Cλ
�5/3
+
∑

λ ̸=+

C5/3
λ

�

+ V (ν−
∑

λ ̸=+

Cλ, Cs−1 . . . , C−s) . (A.3)

Now, we minimize the energy for all the channels, except for the one that we have isolated
which, due to the constraint (A.2), depends on the others,

∂ E
∂ Cσ

= 0 ∀σ ̸= + . (A.4)
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Then,
∂ E
∂ Cσ

= NεF
1
ν

�

C2/3
σ −
�

ν−
∑

λ ̸=+

Cλ
�2/3
�

+
∂ V
∂ Cσ
−
∂ V
∂ C+

= 0 . (A.5)

Rearranging terms, we obtain

NεF
1
ν

C2/3
σ +

∂ V
∂ Cσ

= NεF
1
ν

�

ν−
∑

λ ̸=+

Cλ
�2/3
+
∂ V
∂ C+

. (A.6)

From Eq. (A.6), one can see that all the decreasing Cσ satisfy the same equation, therefore,
they must be equal.

B Parameters of the Landau expansion

In this section we show the expression for all the parameters of the Landau expansion in terms
of the gas degeneracy (ν = 2s + 1) and the gas parameter (x = kF a0). We first show the
Landau expansion up to fourth order in P including the logarithmic term that comes from the
second order term in perturbation theory.

f − f0 = −
A
2
(x − x0)P

2 −
B
3
|P|3 +

C
4

P4 +
L
4

P4 ln |P| . (B.1)

The parameters that are invariant in any order are

f =
5E

3NεF
, A=

20
9π
(ν− 1) , x0 = π/2 . (B.2)

We split this section into two subsections. The first one contains the expression of the param-
eters up to first order in perturbation theory (Hartree-Fock), and the second one up to second
order.

B.1 1st order parameters

f0 = 1+
10
9π
(ν− 1)x , x = x , B =

5
27
(ν− 1)(ν− 2) ,

C =
20
243
(ν− 1)(ν2 − 3ν+ 3) , L = 0 .

(B.3)

B.2 2nd order parameters

f0 = 1+
10
9π
(ν− 1)x +

4
21π2

(ν− 1)(11− 2 ln2)x2 ,

x = x +
2

15π
(22− 7ν+ 4(ν− 1) ln2)x2 ,

B =
5

27
(ν− 1)(ν− 2) +

2
81π2

(ν− 1)(ν− 2)(44+ ν+ 8(ν− 1) ln 2)x2 ,

C =
20

243
(ν− 1)(ν2 − 3ν+ 3)

+ (ν− 1)
528− 336ν− 16ν2 + 29ν3 − (96− 192ν+ 128ν2 − 32ν3) ln2

729π2
x2

+
20ν3

243π2
(ν− 1) ln

ν

6
x2 ,

L =
20ν3

243π2
(ν− 1)x2 .

(B.4)
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For spin 1/2, these expressions reduce to

f0 = 1+
10
9π

x +
4(ν− 1)(11− 2 ln 2)

21π2
x2 , x = x +

8(2+ ln2)
15π

x2 , B = 0 ,

C =
20

243
+

8(3+ 4 ln2)
729π2

x2 −
160 ln3
243π2

x2 , L =
160

243π2
x2 .

(B.5)

C Calculation of the second-order term

In the following, we detail the calculation of the second-order term for the energy,

E
N
= εF

1

νk5
F

∑

λ1,λ2

I2(kF,λ1
, kF,λ2

)a2
0(1−δλ1,λ2

) , where (C.1)

I2(kF,λ1
, kF,λ2

) =
3

16π5

∫

dl nl

∫

dk nk

∫

2dqdq′
1− (1− nq)(1− nq′)

q2 + q′2 − k2 − l2
δ(q+ q′ − k− l) .

We need to calculate the multiple integral I2. The first step is to expand the inner part, where
the occupation functions appear. One, then, obtains an expression with nq + nq′ − nqnq′ . The
terms containing nq and nq′ correspond to integrals of spheres (SI) with respect to q or q′,
which can be integrated. The rest of the integrals with respect to k and l are quite arduous
to integrate, but after some lengthy calculations, one can obtain them. And finally, the term
proportional to nqnq′ , corresponding to the volume of the intersection of two spheres (SII) is
zero due to symmetry reasons.

We rewrite the expression of I2 using the integrated functions SI and SII,

I2(kF,λ1
, kF,λ2

) =
3

16π5

∫

dl nl

∫

dk nk

∫

2dqdq′
nq + nq′ − nqnq′

q2 + q′2 − k2 − l2
δ(q+ q′ − k− l) (C.2)

=
3

16π5

∫

dlnl

∫

dknk

�

SI(P, R, kF,λ1
) + SI(P, R, kF,λ2

)− SI I(P, R, kF,λ1
, kF,λ2

)
�

.

First of all, let’s show that the SII term is zero. In order to follow the derivation, we need
to have in mind that the momenta k and q run over the same momentum kF,λ1

, and that the
momenta l and q′ do so over kF,λ2

. The procedure is the following. We split the integral in
identical parts. The first part is integrated with respect to l, the second one with respect to
q′, both running over the same values. We note that it could have been done integrating with
respect to k and q, instead of l and q′. Then, we slightly manipulate the two expressions and
we obtain two identical integrals but with opposite signs, hence, they cancel each other,
∫

dl nl

∫

dk nk

∫

2dqdq′
nqnq′

q2 + q′2 − k2 − l2
δ(q+ q′ − k− l)

= 2

∫

dldkdqdq′
nl nknqnq′

q2 + q′2 − k2 − l2
δ(q+ q′ − k− l)

=

∫

dldkdqdq′
nl nknqnq′

q2 + q′2 − k2 − l2
δ(q+ q′ − k− l)

+

∫

dldkdqdq′
nl nknqnq′

q2 + q′2 − k2 − l2
δ(q+ q′ − k− l)

=

∫

dkdqdq′
nknqnq′

−2k2 + 2k(q+ q′)− 2qq′
+

∫

dldkdq
nl nknq

2q2 − 2q(k+ l) + 2kl

= −
1
2

∫

dkdqdq′
nknqnq′

k2 − k(q+ q′) + qq′
+

1
2

∫

dqdkdl
nqnknl

q2 − q(k+ l) + kl
= 0 .

(C.3)
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With this, I2 becomes

I2(kF,λ1
, kF,λ2

) =
3

16π5

∫

dlnl

∫

dknk

�

SI(P, R, kF,λ1
) + SI(P, R, kF,λ2

)
�

. (C.4)

We will integrate only one SI; the other one will be the same but interchanging the Fermi
momenta. In the end, we will add both expressions. The inner part of the integral is

SI(k, l, kF,λ) =

∫

2dqdq′
nq

q2 + q′2 − k2 − l2
δ(q+ q′ − k− l)

=

∫

dq
nq

q2 − q · (k+ l) + k · l

=

∫ kF,λ

0

q2dq

∫ π

0

sinθdθ
2π

q2 − q|k+ l|+ k · l

= 2π

∫ kF,λ

0

q2dq
1

q|k+ l|
ln

�

�

�

�

q2 + q|k+ l|+ k · l
q2 − q|k+ l|+ k · l

�

�

�

�

=
2π
|k+ l|

§�k2
F,λ

2
−

k2 + l2

4

�

ln

�

�

�

�

k2
F,λ + kF,λ|k+ l|+ k · l

k2
F,λ − kF,λ|k+ l|+ k · l

�

�

�

�

−

|k+ l||k− l|
4

ln

�

�

�

�

k2
F,λ + kF,λ|k− l| − k · l

k2
F,λ − kF,λ|k− l| − k · l

�

�

�

�

+ kF,λ|k+ l|
ª

.

(C.5)

We write everything in terms of the modules of k and l and the angle between them. In the
angular part, we change the variable to x = − cosθ ,

|k+ l|=
p

k2 + l2 + 2kl cosθ =
p

k2 + l2 − 2kl x ,

|k− l|=
p

k2 + l2 − 2kl cosθ =
p

k2 + l2 + 2kl x ,

k · l= kl cosθ = −kl x ,
∫

dlnl

∫

dknk = 2(2π)2
∫ kF,λ1

0

k2dk

∫ kF,λ2

0

l2dl

∫ π

0

sinθdθ

= 2(2π)2
∫ kF,λ1

0

k2dk

∫ kF,λ2

0

l2dl

∫ 1

−1

d x .

(C.6)

We take out the 2π from SI and integrate over x,

1
2π

∫

d xSI(k, l, q) =
2
3

qx +
1
kl

�

k2

4
+

l2

4
−

q2

2

�

p

k2 + l2 − 2kl x ln

�

�

�

�

q2 + q
p

k2 + l2 − 2kl x − kl x

q2 − q
p

k2 + l2 − 2kl x − kl x

�

�

�

�

−
1

12kl
(k2 + l2 + 2kl x)3/2 ln

�

�

�

�

q2 + q
p

k2 + l2 + 2kl x + kl x

q2 − q
p

k2 + l2 + 2kl x + kl x

�

�

�

�

+
k4 + l4 + 2k2l2 − 2k2q2 − 2l2q2 + q4

3kl
p

k2 + l2 − q2
ln

�

�

�

�

q
p

k2 + l2 − q2 + kl x

q
p

k2 + l2 − q2 − kl x

�

�

�

�

−
q3

3kl

�

ln
�

�q
Æ

k2 + l2 − q2 + kl x
�

�+ ln
�

�q
Æ

k2 + l2 − q2 − kl x
�

�

�

. (C.7)
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The first external integral is

SX (k, l, q) =
1

2π

∫ 1

−1

d xSI(k, l, q)

=
4
3

qx +
(k− l)(2k2 + 2l2 − kl − 3q2)

6kl
ln

�

�

�

�

q2 + q(k− l)− kl
q2 − q(k− l)− kl

�

�

�

�

−
(k+ l)(2k2 + 2l2 + kl − 3q2)

6kl
ln

�

�

�

�

q2 + q(k+ l) + kl
q2 − q(k+ l) + kl

�

�

�

�

+
4

6kl
(k2 + l2 − q2)3/2 ln

�

�

�

�

q
p

k2 + l2 − q2 + kl

q
p

k2 + l2 − q2 − kl

�

�

�

�

.

(C.8)

The next step is the integration over k and l. We will proceed in two ways (both producing
the same result):

1.
∫ k

0 dk
∫ q

0 dlk2l2SX (k, l, q) ,

2. limk→q

∫ k
0 dk
∫ l

0 dlk2l2SX (k, l, q) .

1)
∫

dlk2l2SX (k, l, q) =
k

120

�

4klq(−4k2 + 7q2) + 44l3klq

+ (16k5 − 40k3q2 + 30kq4 + 40k3l2 + 30kl4 − 60kl2q2) ln

�

�

�

�

l − q
l + q

�

�

�

�

+ (16l5 + 40l3(k− q)(k+ q)) ln

�

�

�

�

k− q
k+ q

�

�

�

�

+ 16(k2 + l2 − q2)5/2 ln

�

�

�

�

q
p

k2 + l2 − q2 + kl

q
p

k2 + l2 − q2 − kl

�

�

�

�

�

.

(C.9)

It can be easily checked that the function (C.9) is zero when l = 0. Also, we will need to
make use of the following limit,

lim
l→q

ln

�

�

�

�

q
p

k2 + l2 − q2 + kl

q
p

k2 + l2 − q2 − kl

�

�

�

�

= − lim
l→q

ln

�

�

�

�

l − q
l + q

�

�

�

�

− ln

�

�

�

�

k− q
k+ q

�

�

�

�

− 2 ln

�

�

�

�

k+ q
k

�

�

�

�

. (C.10)

The definite integral becomes
∫ q

0

dl k2l2SX (k, l, q) =
k

120

�

− 16k3q2 + 72kq4 + (16q5 + 40q3(k− q)(k+ q)

− 16k5) ln

�

�

�

�

k− q
k+ q

�

�

�

�

− 32k5 ln

�

�

�

�

k+ q
k

�

�

�

�

�

.

(C.11)

Finally, the integral over k is
∫ k

0

dk

∫ q

0

dl k2l2SX (k, l, q) =
1

420

�

− 8k5q2 + 66k3q4 + 30kq6

+ (−8k7 + 35k4q3 − 42k2q5 + 15q7) ln

�

�

�

�

k− q
k+ q

�

�

�

�

− 16k7 ln

�

�

�

�

k+ q
k

�

�

�

�

�

.

(C.12)
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2)
∫ k

0

dk

∫ l

0

dlk2l2SX (k, l, q) =
1

840

�

−16k5lq− 16kl5q+ 88k3l3q+ 44k3lq3 + 44kl3q3 + 32klq5

+ (16l7 − 56l5q2 + 70l3q4 + 70k4l3 + 56k2l5 − 140k2l3q2) ln

�

�

�

�

k− q
k+ q

�

�

�

�

+ (16k7 − 56k5q2 + 70k3q4 + 70k3l4 + 56k5l2 − 140k3l2q2) ln

�

�

�

�

l − q
l + q

�

�

�

�

+ 16(k2 + l2 − q2)7/2 ln

�

�

�

�

q
p

k2 + l2 − q2 + kl

q
p

k2 + l2 − q2 − kl

�

�

�

�

. (C.13)

As the expression above is symmetrical with respect to k and l, it does not matter which
variable we choose to perform the limit to (k, l)→ q since both results are formally equivalent.
As we want to check that this second method gives the same expression as the one found in
method 1, we will set the limit l going to q,

lim
l→q

∫ k

0

dk

∫ l

0

dlk2l2SX (k, l, q) =
1

840

�

− 16k5q2 + 132k3q4 + 60kq6

+ (−16k7 + 70k4q3 − 84k2q5 + 30q7) ln

�

�

�

�

k− q
k+ q

�

�

�

�

− 32k7 ln

�

�

�

�

k+ q
k

�

�

�

�

�

.

(C.14)

We recover indeed the same expression.
Coming back to the integral we had at the beginning,

I2(kF,λ1
, kF,λ2

) =
3

16π5

∫

dl nl

∫

dk nk

�

SI(P, R, kF,λ1
) + SI(P, R, kF,λ2

)
�

. (C.15)

We substitute the results we have obtained for the integrals (Eqs. (C.12) or (C.14)) and we
recover the factor 2(2π)3 coming from the angular integrals.

I2 =
3

16π5
2(2π)3
�

lim
k→q

∫ k

0

dk

∫ l

0

dlk2l2SX (k, l, q) + lim
l→q′

∫ k

0

dk

∫ l

0

dlk2l2SX (k, l, q′)
�

=
3

16π5

2(2π)3

420

�

− 8k5l2 − 8l5k2 + 66k3l4 + 66l3k4 + 30kl6 + 30lk6

+ (7k7 + 7l7 + 35k4l3 + 35l4k3 − 42k2l5 − 42l2k5) ln

�

�

�

�

k− l
k+ l

�

�

�

�

− 16k7 ln

�

�

�

�

k+ l
k

�

�

�

�

− 16l7 ln

�

�

�

�

k+ l
l

�

�

�

�

�

=
1

140π2

�

2kl(k+ l)(15k4 − 19k3l + 52k2l2 − 19kl3 + 15l4)

+7(k+ l)(k− l)4(k2 + 3kl + l2) ln

�

�

�

�

k− l
k+ l

�

�

�

�

− 16
�

k7 ln

�

�

�

�

k+ l
k

�

�

�

�

+ l7 ln

�

�

�

�

k+ l
l

�

�

�

�

��

. (C.16)

After putting everything together and rearranging terms, I2 is written in terms of k and l as

I2 =
4

35π2

�

1
8

kl(k+ l)(15k4 − 19k3l + 52k2l2 − 19kl3 + 15l4)

+
7
16
(k+ l)(k− l)4(k2 + 3kl + l2) ln

�

�

�

�

k− l
k+ l

�

�

�

�

−
�

k7 ln

�

�

�

�

k+ l
k

�

�

�

�

+ l7 ln

�

�

�

�

k+ l
l

�

�

�

�

��

.
(C.17)
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Replacing k and l by the Fermi momenta (kF,λ1
and kF,λ2

),

I2 =
4

35π2

�

1
8
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Now, we replace the Fermi momenta by kF C1/3

λ
,
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Finally, in terms of y = (Cλ1

/Cλ2
)1/3,
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