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Overview 

 
Collisions with birds cause damage to aircraft and in some cases can even 
cause air travel accidents. According to data from international organizations 
such as the Federal Aviation Administration (FAA), the radar-based tools 
currently used to address this problem do not solve it, as there is no indication 
of a decrease in the number of bird strikes. Early detection and notification to 
pilots of the presence of birds is key to trying to minimize the possibility that 
bird impacts can occur. 
 
The objective of this project is to improve bird detection capacity in the airport 
environment. To achieve this goal, this work proposes that the solution could 
be the use of artificial intelligence based devices and computer vision. To test 
this hypothesis, a model based on convolutional neural networks (CNN) is 
selected, trained and deployed on a device for testing. 
 
To do this, research is carried out on the different strategies used to solve 
problems with artificial intelligence and the performance of pre-trained classifier 
and detector models available. To select the computer board where the model 
will be deployed, a discussion of Raspberry Pi’s market performance is made. 
A collection of bird images is made for training the model. The prototype will 
finally consist of deploying the model on a Raspberry Pi that through a script in 
Python programming language is able to automatically notice birds in the real 
world using a camera connected to the Raspberry Pi. If any detection occurs, 
the model is capable of making a notification that could serve to anticipate 
impacts and thus allow appropriate preventive measures to be taken 
beforehand. 
 
In conclusion, this technology shows great potential to support existing 
solutions today. Theoretical results with validation images show accuracy and 
recall parameters above 90% but experimental tests with the prototype do not 
allow for a conclusive judgment due to limitations regarding the training data 
set. 
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Resum 
 

 
La col·lisió amb aus provoquen danys a les aeronaus i en alguns casos fins i 
tot poden provocar accidents aeris. Segons les dades ofertes per 
organitzacions internacionals com la Federal Aviation Administration (FAA), les 
eines basades en radar que s’utilitzen actualment per abordar aquest problema 
no el resolen, ja que no hi ha cap indici de descens en el nombre de 
d’imapactes amb aus. La detecció i notificació precoç als pilots de la presència 
d’ocells és clau per mirar de minimitzar la possibilitat que els impactes amb 
ocells es puguin arribar a produir. 
 

L'objectiu d'aquest projecte és millorar la capacitat de detecció d’aus en 
l’entorn aeroportuari. Per assolir aquest objectiu, es planteja en aquest treball 
que la solució podria passar per l´ús de dispositius basats en la intel·ligència 
artificial i visió per computador. Per posar a prova aquesta hipòtesis,  es 
selecciona i s’entrena un model basat en xarxes neuronals convolucionals (en 
anglès, CNN) i es desplega en un dispositiu per posar-lo a prova. 
 

Per fer-ho, es realitza una recerca sobre les diferents estratègies utilitzades 
per resoldre problemes amb intel·ligència artificial i les prestacions dels models 
classificadors i detectors pre-entrenats disponibles. Per seleccionar la placa 
computadora on es desplegarà el model es fa una discussió de les prestacions 
de Raspberry Pi al mercat. Es fa una recopilació d’imatges d'aus per fer 
l’entrenament del model. El prototip consistirà finalment en el desplegament 
del model en una Raspberry Pi que a través d’un script en llenguatge de 
programació Python sigui capaç de localitzar automàticament ocells al món 
real mitjançant una càmera connectada a la Raspberry Pi. Si es produeix 
alguna detecció el model és capaç de fer una notificació que podria servir per 
anticipar impactes i així permetre prendre mesures preventives adequades 
abans. 
 

En conclusió, aquesta tecnologia mostra un gran potencial per a fer de suport 
a les solucions existents a avui dia. Els resultats teòrics amb imatges de 
validació mostren paràmetres d’accuracy i de recall per sobre del 90% però els 
tests experimentals amb el prototip no en permeten fer un judici concloent a 
causa de les limitacions pel que fa al conjunt de dades d’entrenament. 
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 CHAPTER 1. INTRODUCTION 
 

Motivation 
 
Computer vision is the subcategory of the emerging field of artificial intelligence 
(AI) that enables computers to obtain information from images and then taking 
action in accordance. Nowadays there are multiple applications for it, from 
inspecting crops in agriculture to recognizing tumors in medicine. The goal of this 
project is to enhance air transportation safety by utilizing computer vision 
technology in the field of aeronautics. A state-of-the-art device able to 
acknowledge the presence of birds in the vicinity will be developed and set up 
with the objective of preventing bird strike collisions. 
An important consideration before beginning the project is to determine to what 
extent bird strikes are a threat for air transportation and therefore if such a project 
can be justified. The Federal Aviation Administration keeps an updated database 
of bird strikes reported by the pilots and provides some information about them. 
The chart below shows the reported bird strikes in the U.S from the year 1990 
when they started collecting data to this day. The data from years 2020 to 2022 
are omitted as the COVID-19 pandemic had an impact on air transportation and 
therefore would not provide trustworthy information about the 
phenomenon. 

 
Fig. 1.1: Evolution of reported bird strike in the U.S from 1990 to 2019. [1]  

 
 
Available data show that 57% of the pilots were not informed of the presence of 
birds prior to the bird strike, see Fig. 1.2. 
 
The available information shows that most of the bird strikes occur during the day, 
when most of the flights are operated and there is light. This information is 
particularly relevant as the computer vision system has to be adapted to every 
condition so as to obtain the best possible accuracy. This means that during the 
night a camera would not work and during the evening would not be as reliable. 
This could be solved using a hybrid approach with a camera and an infra-red 
camera using two different computer vision models. 
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Fig. 1.2: Bird strike previous warnings in the U.S from 1990 to 2019. [1] 

 
 
Another variable that is considered in the FAA database is the phase of the flight 
in which the strike took place. As the graph shows, most of the incidents (43%) 
take place during the approach phase, the landing roll follows up with an 18%, 

the same percentage of the 
take-off run and the next 
most important is the climb 
phase with the 16% of the 
reported strikes. It appears 
clear that most of the 
reported bird strikes take 
place in the vicinity of an 
airport during the most 
critical maneuvers. 
 
 
 
 

Fig. 1.3: Bird strike per phase in the U.S from 1990 to 2019. [1] 

 
The profile of aircraft affected by bird strike is also heterogeneous. Most of the 
reported strikes correspond to large aircrafts. The distribution in the graph has 
been made according to the number of seats. Aircraft with capacity less than 50 
seats are considered small, medium are those below 150, large are the ones who 
do not reach 220 seats and over that are the jumbo. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.4: Bird strike distribution by 
plane size in the U.S from 1990 to 
2019. [1] 
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The International Civil Aviation Organization (ICAO) requires member States to 
collect data from aircraft and airport operators regarding bird strikes [2]. The 
effectiveness of avian radars currently used in airports was evaluated by the FAA 
in the early 2010’s, results show that the majority of large single birds seen by 
field observers within 4 km of the radar were tracked by the radar about 30 
percent of the time. Flocks of large birds, including those that were located 
several nautical miles away, were tracked by the radar 40 to 80 percent of the 
time. According to the researchers, radar can be a useful tool for monitoring bird 
flock activity at airports, but less so for monitoring large single birds [3]. 
 

Environmental impact 
 
This project involves making a prototype device that could potentially prevent bird 
strikes by using electronic components, a battery and a cover box. These 
materials and components have environmental impacts at different stages of their 
life cycle, such as mining, manufacturing, transportation, energy use and waste 
disposal. Therefore, we need to justify our choices of materials and components 
to minimize the environmental damage and pollution caused by them. However, 
this project could also have a positive impact on the environment by protecting 
the birds and the aircraft passengers from collisions and reducing the need for 
repairs to damaged parts resulting from bird strikes. 
 

Objective 
 
The objective of this project is to enhance the detection rate of avian presence 
through the implementation of an artificial intelligence-based solution. This could 
potentially improve the quality and reliability of notifications of bird activity in the 
vicinity of aircraft transmitted to pilots, thereby addressing the current limitations 
of the radar-based technology. The following sub-objectives are defined: 
 

1. Study of the background and the state of the art: This document presents 
a detailed analysis of the development, functionality and performance of 
computer vision systems and analyses the different deep learning 
strategies that can be used. So as to better understand what deep learning 
means in artificial intelligence applications, the basic concepts on image 
processing and coding will be explained. 
 

2. Implementation of the model in a prototype: In order to assess the potential 
of this technology for practical applications in notifying bird presence, a 
prototype device for real-world evaluation will be designed and set-up. 

 

Methodology 
 
The project can be structured into five distinct stages: Identification of the 
observed problem, Definition of the objectives, Design and development, 
Demonstration, and Evaluation. Each stage encompasses a defined scenario 
and is accompanied by a specific set of tools and activities to facilitate the 
completion of the project. Fig. 1.5 summarizes all the information. 
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Fig. 1.5: Methodology chart 

 

Document layout 
 
Correspondingly to the stages defined in the methodology this document can be 
subdivided into four parts in the following way: 
 

• Introduction and definition of the objectives: 
 
Chapter 1: Introduction 
In the introductory chapter, the context and motives of the project are 
presented, the structure is established and the objective is outlined. 
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Chapter 2: Computer Vision, concepts and definitions 
This chapter provides an overview of fundamental concepts related to 
computer vision and deep learning models to facilitate the reader’s 
understanding of the document. 
 

• Design and development 
 
Chapter 3: Designing a computer vision system 
In this part, the deep learning model is designed according to the best 
strategy for the issue to solve. 
    
Chapter 4: Prototype 
This chapter discusses the hardware to be used in order to deploy the 
model and being able to run it in a real-world environment. 
   
Chapter 5: Dataset for computer vision applications 
This section outlines the various considerations and decisions involved in 
constructing a dataset for the project. An explanation of the conditions and 
tools utilized in the dataset creation process is also provided. 
 

• Demonstration 
 
Chapter 6: Analyzing model performance and Real world application 
In this chapter, different metrics are employed to evaluate the quality of 
the designed model, its performance is also assessed through real-world 
testing. 
 

• Evaluation 
 
Chapter 7: Conclusion, improvements and application 
In the final chapter, conclusions are derived based on the results of the 
metrics and it can be established whether the objectives have been 
achieved or not. Additionally, recommendations for improvements and 
potential future applications are proposed. 
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CHAPTER 2. COMPUTER VISION, CONCEPTS AND 
DEFINITIONS 

Artificial intelligence is a very broad area of information technology (IT). In this 
chapter some terminology will be explained in order to understand what 
Computer Vision is and how it works. Different concepts around this field will be 
outlined so as to ensure a better understanding of the project as a whole. Once 
the basics are covered it will be possible to make reasoned decisions to design 
and build the prototype. 

2.1 Computer vision precedents: Image processing 

 
Computer Vision is the field of Artificial Intelligence that uses algorithms to derive 
information from images. This concept was devised in the 1960’s when scientists 
started processing images with computers in order to recognize edges and 
shapes and in the 1970’s they developed the first Optical Character Recognition 
(OCR) technology [4]. 
 
Edge detection consists of applying an algorithm to an image in order to extract 
its features. It is a matter of correctly defining a threshold to be able to distinguish 
the shapes. The left and middle images on Fig. 2.1 represent image processing 
filters (also called kernels) which apply an operation on the grayscale pixel values 
of an image, 0 represents black and 255 means white. In the most basic example, 
to compute the gradient, the kernel slides over the pixel values and computes for 
the horizontal filter:  v’x,y= vx-1,y+0·vx,y- vx+1,y and v’x,y= vx,y-1+0·vx,y - vx,y+1 for the vertical one. 
v’ correspond to the new pixel value and x and y are the positions on the grid. 
This way the vertical filter will find horizontal patterns and the horizontal will find 
the vertical. 
 
  

 

 

 

 

Fig. 2.1: A Vertical filter and a horizontal filter respectively.  

 
By grouping those filters, it is possible to create bigger kernels and apply them to 
images, this is the case of the Canny filters, see Fig. 2.2. Fig. 2.3 shows an 
example of edge detection applied on some coins. 
 
 
 
 
 
 

Fig. 2.2: A Canny vertical filter and a Canny horizontal filter respectively. 
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Fig. 2.3: A grayscale image of coins and the result after applying an edge detection mask (Canny) [5]. 

 
 
Since the 60’s, in parallel to the development of OCR, scientists looked for ways 
in which computers would be able to perform certain tasks by providing them with 
an input of structured data, machine learning algorithms. Once all the instructions 
are provided, the algorithm should be able to take new data and classify, organize 
and sort it without any other intervention. 
 

2.2 Computer vision in machine learning 
 
As the technology evolved and the programming and image processing 
improved, machine learning solutions could be applied to computer vision 
problems. Computers are fed with an organized and structured input of images 
that contain the images to be evaluated. The algorithm runs the images through 
image processing filters especially selected to extract the useful features, finally 
a classifier algorithm produces an output. 

 
Fig. 2.4: Flowchart of the traditional feature extraction & machine learning algorithm. 

 
 
Machine learning algorithms used in computer vision can be classified into three 
categories based on the availability of data, the nature of the task and the level 
of human intervention [5]: 
 

• Supervised learning: 
Supervised learning is a machine learning strategy that uses labeled 
datasets to train algorithms that can classify data. A label is an associated 
value or category for each image. This type of machine learning algorithm 
is the most commonly used and studied. 
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• Unsupervised learning: 
Unsupervised learning is a type of machine learning that uses unlabeled 
data to discover patterns or structures in the information. The algorithm is 
self-thought to organize the input images in groups with little intervention 
(i.e number of groups). This type of machine learning algorithm is useful 
when image labels are missing and some kind of sorting and grouping is 
needed. It is not possible for unsupervised learning algorithms to assess 
the quality of the results through accuracy as a metric. However, similarity 
within the groups or dissimilarity between the groups can be evaluated. 

 

• Reinforced learning: 
Reinforcement learning is a type of machine learning that uses a trial and 
error approach to learn from its own actions and feedback. The algorithm 
receives rewards or penalties based on the accuracy of its predictions. It 
learns to maximize its rewards by finding the optimal policy for the task. 
Reinforced learning is suitable for complex or dynamic problems where 
the data is large, flexible, and unpredictable. It usually requires a 
simulation environment to simulate a task in real life so that multiple 
situations can be simulated in a short period of time. 

 

2.2.1 Deep learning fundamentals 

A particular case of machine learning is deep learning (DL), in contrast to the 
human custom-made feature extraction techniques present in classical machine 
learning solutions, DL algorithms are automatic end-to-end iterative processes 
that autonomously learn to distinguish which part of the input data is important 
and which are the features that maximize the possibility to obtain the expected 
output. 

 
Fig. 2.5: Visual representation of artificial intelligence and its fields [6]. 

 
 
The most common algorithm in Deep Learning for Machine Learning purposes is 
the Artificial Neural Network (ANN). ANN algorithms are based on an analogy to 
the human brain and its complex system of neuron interconnections. The most 
basic structure in a machine learning model is an artificial neuron called a 
perceptron. Perceptrons are organized in layers to create ANNs. Each perceptron 
receives information from the previous layer, applies an activation function, and 
sends the output to the next layer. This information is associated with a weight 
relative to its relative importance and consists of the sum of all weights from inputs 
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plus a bias and are updated with each iteration according to previous 
performance [7]. 
 
 

 
Fig. 2.6: Diagram showing of a perceptron 

 
 
ANN can be divided into three groups of layers: the Input Layer, the Hidden 
Layers and the Output Layer. The features extracted by the filters are given to 
the Input Layer. The Input Layer neurons, after computing the weight pass on the 
information if a threshold is exceeded if they return a large positive value; 
otherwise, they return zero or a smaller value and therefore they may choose not 
to pass on information to the next layer [8]. The same principle applies to the 
Hidden Layer, the more layers in the Hidden Layer there are, the “deeper” the DL 
model is, finally the results are given to the neuron(s) in the Output Layer, there 
will be as many neurons as defined classes the model has. 
 

 
Fig. 2.7: Diagram showing the structure and the different layers in a Deep Learning algorithm [8]. 
 
 
The purpose of a ML algorithm is to minimize a cost function and binary cross 
entropy is the most commonly used cost function in binary classifications. Due to 
being very complex functions depending on multiple parameters, optimization 
algorithms are used. The two most commonly used optimization algorithms are 
Stochastic gradient descent (SGD) and Adaptive Moment Estimation (Adam). 
SGD is an iterative method used for optimizing the gradient descent during each 
search once the weights have been initialized, those are the weights that are 
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adjusted (or learned) during the iterations performed during the training. Adaptive 
moment estimation or “Adam” is the most popular optimization algorithm as it has 
been proven more efficient than SGD as it tunes the moment hyperparameter 
that allows exiting a local minimum defined by the cost function. Fig. 2.8 shows a 
diagram of the full architecture of a Convolutional Neural Network (CNN). 

 
Fig. 2.8: Structure of a CNN in a Horse, Zebra, Dog computer vision classification program [9]. 

 
 
Generally, in DL applied to computer vision, convolutional filters are used for 
feature extraction which will be fed into the ANN. These convolutional filters are 
composed of various kernels (filters) that are used to perform convolutional 
operations by sliding through the whole image and generating various feature 
maps in the process. Through the usage of different convolutional filters it is 
possible to recognize patterns in the input images such as lines, gradients, 
circles, and more complex shapes. Convolutional filters are often paired with 
pooling layers. Pooling is a technique used to speed up and remove redundancy 
present in the input features extracted by convolutional filters as it helps the 
network to recognize features independent of their location in the image by taking 
the average or maximum value of all feature maps in an image [10]. This 
represents a difference with respect to the traditional hand-crafted architectures 
of filters in traditional machine learning algorithms. The extracted features are 
then “flattened” into an array to be fed to the ANN. 
 
In the cases where results are poor or there is little data to train the data, in order 
to improve transfer learning may be used. Transfer learning is a design 
methodology used in deep learning where a pre-trained model is reused on a 
new task. It involves exploiting the knowledge gained from a previous task to 
improve generalization about another. For example, a classifier trained to predict 
whether an image contains cars could use the knowledge it gained during training 
to recognize people. Instead of starting the learning process from scratch, 
transfer learning starts with patterns learned from solving a similar task. 
 
Fine-tuning is the technique generally combined with transfer learning where the 
pre-trained model is repurposed for a new task. With transfer learning, the initial 
layers of the model, which learn general features such as edges, shapes, and 



Computer vision for bird strike prevention   11 

 

textures, are frozen while the final layers are retrained with fewer iterations of the 
training data and a lower learning rate. This allows the model to adapt to the new 
task by only changing the weights of the last few layers that came from the original 
model [11]. When fine-tuning, new images with variations are added to the 
original dataset and the model is trained for a few iterations. 
 
To sum up, what defines deep learning is the quantity of layers the network has 
and the way the nodes that configure it interact with each other and the end-to-
end automatization of the processes. 

 
Fig. 2.8: Flowchart of the deep learning algorithm with CNN. 

 

 

2.2.2. Classical machine learning or deep learning? 
 
Depending on the type of application that requires a computer vision solution a 
simple machine learning architecture will suffice in other cases, it will require a 
deep learning approach. Machine learning is good when problems are simple, 
there are few useful features that describe the class but it struggles when the 
problem is more complex and the background is very “noisy”. While deep learning 
uses convolutional filters to automate feature obtention, which requires lots of 
input images to obtain reliable results, on the other hand in machine learning, a 
relatively low quantity of data is enough to obtain good performance provided the 
tasks are simple [12]. As a result, deep learning models are often considered less 
interpretable (black box) while machine learning models are theoretically easier 
to understand and interpret. 
 
Another factor to consider is that machine learning requires more ongoing human 
intervention to get results while deep learning is more complex to set up but 
requires minimal intervention thereafter. As per hardware requirements, machine 
learning programs tend to be less complex than deep learning algorithms and 
can often run on conventional computers, but deep learning systems require 
more powerful hardware and resources. In deep learning applications that require 
computer vision, because of the quantity of inputs, lots of images need to be 
processed at the same time, this is resolved by the usage of graphical processing 
units (GPUs) which represent an extra expense in resources with respect to the 
classical machine learning approach [13]. 
 

2.3  Computer vision strategies 
 
Deep learning algorithm applied to computer vision mainly follow these 
strategies: 
 

• Image classification: Image classification is a task in computer vision 
where a model is trained to classify images into predefined categories. The 
model determines whether an image contains an object belonging to any 
of the considered classes and, if so, assigns the image to the appropriate 
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class. For example, a model may be trained to classify images of dogs and 
cats or to distinguish between different breeds of dogs [4]. 

• Object detection: Object detection also classifies the given images but 
additionally, after recognizing a certain object in an image belongs to a 
certain defined class, it is able to accurately locate it within the image by a 
rectangular box (bounding box). An example could be tracking the 
movements of people in a reserved area or counting objects [4]. 
 

Fig. 2.9: Difference between image classification and object detection. 
 
 
Image classification represents an advantage for applications where the position 
of the object is not relevant and what really matters is if the system is correctly 
inferring the classes. Classification eases the requirements in hardware and 
maximizes detections per frame as it requires less computations. According to 
the research [14] for tests conducted on a RaspberryPi 4 using a quantized INT8 
tflite model, the most popular pre-trained models based on these two strategies 
have the following properties: 
 

Strategy Model Parameters Size Execution Time 
(ms) 

Classification MobileNetV1 3.23M 13.2MB 83 

Classification MobileNetV2 2.26M 9.5MB 83 

Classification InceptionV3 21.81M 88.1MB 150 

Detection SSD-
MobileNetV1 

5.51M 22.7MB 230 

Detection SSD-
MobileNetV2 

3.87M 16.4MB 225 

Detection SSD-
InceptionV2 

13.3M 54.0MB 700 

Table 2.1 With details of the three main classification and three detection pre-trained models 
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CHAPTER 3. DESIGNING A COMPUTER VISION 
SYSTEM 

Having discussed the characteristics of the different available machine learning 
algorithms it is time to evaluate which characteristics a computer vision for bird 
strike prevention system has and which machine learning algorithm is the most 
convenient. It has to be noted that such a system has to be extraordinarily 
adaptative because of the variability of the conditions. Once set up, the processor 
will receive real time images from a camera pointed at the sky and will infer if 
there are any birds in sight. 

Due to the wide range of bird species flying at various distances from the camera 
objective and the changing background (e.g time of the day, meteorological 
conditions…) there is a high casuistry. In order to solve this, the model will require 
a large dataset of images depicting as many situations as possible. All things 
considered, the deep learning approach would provide the best results and 
therefore it would be the appropriate type of machine learning algorithm for this 
problem. 

3.1 Deep Learning planification 

 
Deep learning models based on convolutional neural networks depend on 
multiple parameters. It is important to understand the impact of every metric 
involved in the network training and configuration in order for the model to perform 
well. 
 
As explained in Chapter 2. Computer Vision, concepts and definitions, the CNN 
are based on layers of nodes (filters) that pass on the information to the next layer 
and each connection has a weight that is updated with each iteration. The images 
are fed into the network in batches of various images, generally 32 or 64. When 
the batch propagates forward in the network it computes the weights. Then the 
ANN receives an array of features obtained from the convolutional filters and 
adapts the weights on the network. When it reaches the output it tests its 
performance by checking the provided labels and calculating the loss, afterwards 
it performs a backward propagation adjusting the weights. The process will be 
repeated the number of epochs [15]. Both the CNN and ANN are modified with 
gradient descend. For a given number of images “N”, the number of iterations 
would be: 

#𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 =
𝑁

𝐵𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒
= 1 𝑒𝑝𝑜𝑐ℎ 

 
The network will process all the N images for each epoch. If the batches are 
smaller, the network may make more errors in updating its weights and it will take 
longer to learn. If the batches are larger, the network will learn faster but it will not 
be able to handle different kinds of images well, it could overfit. 
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Fig. 3.1: Representation of the scenarios in deep learning models [16]. 

 
 
When the model is underfit, it cannot learn the patterns that explain the images 
and it makes wrong predictions. When the model is overfit, it only works well on 
images that are very similar to the ones it learned from. The best scenario is the 
optimal one, as shown in Fig. 3.1, where the model has learned the patterns and 
would be able to make good predictions even on images that are different from 
the ones it learned from. Dropout is a regularization technique that randomly sets 
a fraction of neurons to zero during training to reduce overfitting and enhance 
generalization. 
 
What any deep learning model intends to do is to find the values that minimize its 
loss function. In deep learning, this function is nonlinear and depends on various 
features. The learning rate is the parameter that controls the magnitude of the 
gradient descent. In mathematical terms, it computes the partial derivative of the 
loss function with respect to the model parameters and updates them in the 
opposite direction of the gradient, until it reaches a global minimum. The 
challenge is that if the learning rate is too large, it might overshoot the global 
minimum, but if it is too small, it might converge to a local minimum [17]. 

 
Fig. 3.2: Three-Dimensional equation representing gradient descent and its situations. Adapted image from 
Wikipedia [18] 
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Stochastic Gradient Descent (SGD) is a method to update the weights of a model 
after each training sample. It uses a small sample to estimate the gradient, which 
is the direction of steepest descent. This means that SGD may not always follow 
the smoothest path to the global minimum, but it will eventually reach it. Adam 
optimizer is another method that adapts the learning rate for each weight based 
on its past gradients and moments. Adam optimizer has some advantages over 
SGD, such as being faster, more memory-efficient, more suitable for large 
datasets and sparse problems, and easier to tune. 
 
Pre-trained networks in deep learning are models that have been trained on a 
large dataset of images or other data before being used for a different task. They 
can help improve the performance and speed of the model on the new task by 
using some or all of the learned features from the pre-trained model. These types 
of networks are useful for transfer learning, feature extraction, and classification, 
as for the case of the present project. 

3.2 PyTorch or TensorFlow? 

 
Being a high-level programming language that supports modules and packages, 
Python has become the quintessential programming language for deep learning. 
As a high-level language the process of developing code is simple and more 
understandable and the use of packages encourages program modularity and 
code reuse. Among the various packages and libraries maintained by the 
community that are widely used to design deep learning algorithms and 
convolutional neural networks there are two that stand out: PyThorch and 
TensorFlow. 
 

TensorFlow, as a deep learning framework was released in November 2015 by 
Google, by then it had already been tested by the company in Google’s products 
such as Google Photos, Google Search, spam detection, speech recognition or 
Google Assistant among others [19]. Similarly, PyTorch developed by 
Facebook’s artificial intelligence division was released in September 2017 to 
enable the processing of large-scale image analysis, including object detection, 
segmentation and classification. 
 

Both the TensorFlow and PyTorch libraries are based on graph (node) based 
architectures and use tensors for computation. A tensor being a mathematical 
object and a generalization of scalars, vectors, and matrices, in sum it can be 
described as an n-dimensional array. Even though both libraries can be used 
interchangeably, in terms of data visualization and model deployment 
TensorFlow seems to be better. The early release of TensorFlow has made it 
possible for it to reach a stable state before its competitor PyTorch. As 
TensorFlow has been in the market for a longer period its adoption by the 
community has resulted in greater usage and support [19]. There are many more 
examples of TensorFlow based codes than in PyTorch, for this reason the 
computer vision for bird strike prevention system will be based in TensorFlow. 
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3.3 Setting up a virtual environment 

 
The first step to develop a deep learning model in Python language is to create a 
virtual environment in which all the dependencies and libraries will be contained 
so that there are no interferences and cross-references with other libraries. As 
for this project, the operative system (O.S) used is Windows 11 and the Python 
version used is Python 3.7.8.  
 
Using the command line from the path where python.exe is installed, a virtual 
environment can be created. In Fig. 3.3 a virtual environment called “venv” is 
created in a folder named Project. 

 
Fig. 3.3: Command instruction to create a virtual environment.  

 
 
The way to access the environment is accessing the Activate script created in the 
“venv” environment in the folder Project, see in Fig. 3.4 that when the 
environment is activated “(venv)” appears at the beginning of the command line: 

 
Fig. 3.4: Accessing the virtual environment through the command line.  

 
 
To finish setting up the environment, four things need to be done: upgrading the 
pip library that installs packages, installing ipykernel (Fig. 3.5), adding the name 
of the environment, and installing the Jupyter library (Fig. 3.6).

 

 
Figures 3.5 & 3.6: Accessing the virtual environment through the command line. 
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Jupyter is an open-source software that allows programming in multiple 
languages and it is structured in cells which can be run independently. Using the 
command instruction “Jupyter notebook” the Jupyter manager is opened in the 
default web browser. 

 
Fig. 3.7: Opening Jupyter notebook from the command line. 

 
 
The Jupyter manager should look like the one in Fig. 3.8. A new ipynb file can be 
created selecting a new notebook in “venv”. 

 

Fig. 3.8: Opening Jupyter notebook from the command line. 

 
 
In order to create the deep learning model some libraries have to be imported, 
which can be done either by using the command line inside the environment or 
by using the notebook cell as shown in Fig. 3.9. 

 

Fig. 3.9: Instructions to install tensorflow, numpy, pandas, matplotlib, pathlib and tensorflow_datasets. 

 
 

3.4 Managing datasets 
 
Apart from tensorflow, numpy is a library that is useful when handling n-
dimensional arrays, pandas is a data analysis and manipulation tool, matplotlib 



18   Computer vision for bird strike prevention 
 

is a package that graphs information, tensorflow_datasets has functionalities 
suited for dataset handling and pathlib is convenient when managing paths. 
 

Paths where the datasets are stored and where the outputs from the code are 
saved are specified in a dictionary for the present project, see Fig. 3.10. 

 
Fig. 3.10: Dictionary showing the structure of the folders used in the projects.  

 
 
The project contains four folders: data, models, GradCamImages and Debug. In 
the data folder, there are two folders, one containing images obtained through a 
RaspberryPi and the other with images downloaded from the internet. The 
models folder will store files containing the models, GradCamImages will contain 
the images resulting from a GRADCAM analysis and the Debug folder will contain 
logs from the code. Once defined the paths, it is possible to extract the input 
images from the folders, datasets are created as shown in Fig. 3.11. 
  

 
Fig. 3.11: Declaration of the train and validation datasets.  

 

 

Fig. 3.11 shows the creation of training and validation datasets from the 
RaspberryPi images. The validation_split parameter specifies a 20:80 split ratio 
for the validation and training datasets respectively. The batch size is 32 and no 
cropping is applied to the images. The image size is fixed at 224x224 pixels. 
Class names are derived from the input folders and each image is labeled with 
its corresponding category: bird or non-bird. The total number of samples is 3282, 
distributed across two classes, with 2626 for training and 656 for validation. 
 
A small sample of the images in the dataset is shown through the instruction in 
Fig. 3.12.  
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Fig. 3.12: Sample images in a partial visualization of the dataset.  

 
 
The accuracy of a deep learning model depends on the amount and diversity of 
training data. As the available information is limited, we may use data 
augmentation to improve the results. Data augmentation can be used to 
transform (zoom, rotate etc) and artificially enhance and diversify existing training 
data. Nevertheless, data augmentation does not create new data, it generates 
variations of it. Fig. 3.13 shows the code used for the present project. 
 

 
Fig. 3.13: Cell showing the instruction for data augmentation. 

 
 
In this case, the images will be randomly flipped, rotated up to a 20% and its 
contrast will be randomly adjusted by a random factor. 
 

3.5 Handling pre-trained models 

 
The convolutional neural network (CNN) for this project is based on MobileNetV2 
which is an architecture designed by Google for efficient object classification. This 
CNN is chosen for its fast execution time and its low memory consumption as 
seen in “Chapter 2. computer vision, concepts and definitions”, the weights in the 
pre-trained model will be modified by transfer learning and fine-tuning techniques 
to adapt it to the specific datasets for this project. Transfer learning involves using 
the pre-trained weights of MobileNetV2 as the initial values for the neurons in the 
CNN, while fine-tuning involves adjusting these weights during training to 
optimize its performance. 
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Fig. 3.14: Setting up the pre-trained model based on MobileNetv2. 

 
 
In Fig. 3.11, the input images are preprocessed to have a height and width of 124 
pixels and three channels corresponding to the RGB channels. These input 
characteristics are fed into the MobileNet V2 model, which is pre-loaded with 
weights trained on ImageNet. The top layers of the model will be defined later. 
This constitutes the base model, which is then frozen by setting the trainable 
attribute to false, preventing the weights in the layers from being updated during 
training. 
 

 
 

Fig. 3.15: Compiling the model. 
 
 
Once the pre-trained model is fixed, two new layers are added on top of it: a 
global average layer and a prediction layer. The global average layer reduces the 
exit of the pre-trained backbone from a 7x7x1280 block of features to a one 
dimensional array of 1x1x1280 to be fed to the ANN. Then, a dropout layer 
randomly removes 20% of the neurons to prevent overfitting. The prediction layer 
maps the remaining neurons to a single output value for each image. The learning 
rate is set to 0.0001 and Adam optimizer is used. The output value indicates a 
probability between 0 and 1 and after applying a threshold (which in a binary 
classification model trained with balanced datasets is generally 0.5) whether the 
image contains a bird (class 1) or not (class 0). No activation function is used for 
the output value because the model uses binary cross-entropy loss. The variable 
of control is the Area Under the Curve (AUC). 
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Fig. 3.16: Declaring callback and fitting the model. 

 
 
This part of the training only acts on the top layers of the MobileNetV2 base 
model. The weights of the pre-trained model are frozen and not updated during 
the training. Fig. 3.16 shows the training process for 30 epochs and the model is 
given validation_RPi_dataset for validation purposes. The figure displays the time 
it takes to complete the epoch, the step time, the loss and AUC metrics for both 
the training and validation datasets for the first three epochs. 
In order to increase the performance the next step is to "fine-tune" the weights of 
the top layers of the pre-trained model alongside the training of the pre-trained 
classifier model added. The training process will adjust the weights from generic 
feature maps to the features specific to the dataset without erasing the generic 
learning [20]. 
 
This is achieved by un-freezing the top layers of the base_model and setting the 
bottom layers to be un-trainable. A larger part of the model is being trained now 
so as to readapt the pretrained weights. As a result, it is important to use a lower 
learning rate at this stage. Otherwise, the model could overfit very quickly. By 
doing so the accuracy should improve by a few percentage points. 
 

 
Fig. 3.17: Cell showing fine-tuning process. 
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Fig. 3.17 shows that the layers corresponding to the base_model are un-frozen 
and the fine tuning will be performed starting at the hundredth’s layer out of 156 
total layers. BinaryCrossentropy will be used and the learning rate will be divided 
by ten, the control metric will be AUC. The first two lines of the execution show 
the same information, it starts at the 30th epoch where the training stopped. In 
this case, since more layers are involved and the learning rate is lower, the epoch 
and step time have increased.  
 

The model can be saved in a folder by writing the command in Fig. 3.18. 

 
Fig. 3.18: Saving the model. 

 
 
After saving the model, it can be converted to a format that can be used in 
applications independently. This can be done by typing the commands in Fig. 
3.18. 
 

To reduce the memory usage of the model, a quantization and optimization 
process can be applied. This process maps continuous values to discrete values 
and uses lower precision numbers for computation instead of floating point 
values. 

 
Fig. 3.19: Saving the model in tflite extension. 

 
 
Fig. 3.19 shows that the tflite model without optimizations and quantization takes 
up 8863576 bytes, while with them it only takes up 2501792 bytes. 
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CHAPTER 4. PROTOTYPE 

After training and saving a Computer Vision model as a tflite file, the next step is 
to choose a processor to run it. A processor is an electronic device that executes 
instructions and manipulates data for a computer. A microprocessor is a specific 
type of processor that integrates the functions of a computer's CPU on a single 
chip. In the context of the prototype developed in this project, a Raspberry Pi will 
be used as a processor to support the deep learning model and other devices. 

4.1 The Raspberry Pi 

 
A Raspberry Pi is a small single-board computer (SBC) that can be used for 
various purposes such as learning programming and robotics, among others. It 
was released into the market the year 2012 by the Raspberry Pi Foundation 
based in the UK that gives its name. Its original purpose was to become a low 
cost, modular and open designed computer to teach basic computer science in 
developing countries. It quickly began popularizing among hobbyists around the 
world interested in fields such as robotics and computing. It contains a system-
on-a-chip (SoC) from Broadcom that includes an ARM microprocessor. 
Raspberry Pi is a suitable choice for the prototype as it can run the model and 
write python code, while being compact and adaptable. Since its launching, 
different series and generations have been released. It is a matter of choosing 
the adequate candidate [21]. 
 
The following chart summarizes the characteristics taken into account for the 
project among the different Raspberry Pi series and generations: 

Family Model GPIO 
pins 

Raspberry Pi 
Camera 

USB RAM Wireless 
access 

Price (€) 

Raspberry 
Pi 

B+ 

40 Yes 

4 USB 2.0 512MB No 35 

A+ 1 USB 2.0 512MB No 27 

Raspberry 
Pi 2 B 40 Yes 4 USB 2.0 1GB No 32 

Raspberry 
Pi 3 

B+ 

40 Yes 

4 USB 2.0 1GB 

Yes 

43 

A+ 1 USB 2.0 512MB 32 

Raspberry 
Pi 4 B 40 Yes 2 USB 2.0 

2 USB 3.0 
1/2/4/8

GB Yes 46/50/67/81 

Raspberry 
Pi Zero 

Zero 40* 

Yes 

1 Micro 
USB 

512MB 

No 12 

W/WH 40* 1 Micro 
USB 

Yes 

19 

2W 40 1 Micro 
USB 17 
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Raspberry 
Pi Pico 

Pico 26 

No 

1 USB 1.1 

264kB 

No 5 

W 26 1 USB 1.1 Yes 8 

Table 4.1: Summary of characteristics of Raspberry Pi models [22] [23] [24] *The GPIO have to be soldered 
 
 
This project’s prototype requires at least the Raspberry to access a camera, a 
USB for power supply and General Purpose Input/Output pins (GPIO). Raspberry 
Pi Model A, B and 3B are not considered for the analysis as they were 
superseded by superior models, Raspberry Pi 4 400 is also excluded because it 
is assembled inside a keyboard and that makes its usage impracticable for 
computer vision purposes. 
 

The number of USB ports and whether the device is compatible with the 
Raspberry Pi Camera is considered in the analysis because USB can be used to 
plug a third party camera. The election should take into account the budget and 
preferences as well as performance, quality and compatibility implications. The 
Raspberry Pi camera uses MIPI CSI-2 interface which connects directly to the 
GPU of the Raspberry Pi while USB cameras use standard USB ports that 
connect to its CPU. This means that Raspberry Pi cameras can achieve higher 
resolution, frame rate and video encoding than most USB cameras especially for 
high-definition video streaming or recording. They also have lower overhead and 
resource consumption than USB cameras since they don’t rely on CPU or USB 
bus that may be shared with other devices. Additionally, they may have more 
mounting options and flexibility since they are smaller and lighter. The number of 
USB ports and whether the device is compatible with the Raspberry Pi Camera 
should also be considered since USB can be used to plug in third-party cameras. 
 

RAM is a parameter which is relevant when it comes to executing the tflite deep 
learning model. While tflite models are optimized for low memory and power 
consumption, they still need some RAM to store the model parameters and 
intermediate activations during inference. 
 

While the project did not consider it, wireless access could be used to make 
further improvements and additions such as giving remote instructions, sending 
images to databases, triggering notifications or real-time monitoring. 
 

In order to develop this project, we will use a Raspberry Pi 4B, see Fig. 4.1. Since 
the aim of this project is to build a prototype, it is crucial not to fall short. 
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Fig. 4.1: Parts of a Raspberry Pi 4B 
 
The full characteristics of the Raspberry Pi 4B can be found in the annex. 

4.2 Camera 

 

While the project does not have fixed requirements as per resolution of the 
camera and the number of pixels used in the images inside the model are 
124x124, the greater the resolution is the easier it will be to prevent aliasing from 
distorting the images. 
 
All things considered, given the importance of selecting a camera that is fully 

compatible with the Raspberry Pi, the 
Raspberry Pi camera module will be used for 
the prototype. This camera module connects 
to the Raspberry Pi’s Camera Serial Interface 
(CSI) bus connector via a flexible ribbon cable, 
ensuring optimal performance and seamless 
integration. Using a generic camera plugged 
through the USB would not provide the same 
level of compatibility and could result in 
suboptimal performance. 

 
Fig. 4.2: Raspberry Pi Camera 
 
 
The Sony IMX219 8 megapixels camera requires 5V and 1.8mA from the 
Raspberry Pi. From experimental testing, the camera has an aperture angle of 
approximately 65º. According to the provider, to avoid malfunction or damage to 
the camera, it should not be exposed to water, moisture, or be placed on a 
conductive surface. Additionally, it should not be exposed to heat sources as it is 
designed to work at normal ambient room temperatures [25]. See the datasheet 
in the annex for extra information. 
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4.3 LCD screen 

 

For the prototype, an LCD screen was purchased to supervise the results of the 
execution of the code. Raspberry Pi 4B has a 15-pin DSI connector that can be 
used to connect to DSI displays, see Fig. 4.3. 
 

The selected screen has a 5-inch touch screen with a resolution of 800x480 pixels 
and a refresh rate of 60Hz. The screen adds an additional weight of 191g to the 
prototype [26]. In the annex there is the datasheet with the instructions required 
to configure the display. 
 

 
Fig. 4.3: Back (left) and frontal (right) view of the screen. Mounting not used. 
 
 

4.4 Actuator 
 

A button actuator is used in the prototype to control the execution of the code. 
Fig. 4.4 shows the electrical connection with the Raspberry Pi. The black wire is 
connected to the sixth pin, corresponding to the ground and the red wire is 
connected to the fifth pin which corresponds to GPIO 3. 
 

 
Fig. 4.4: Connections of the button with the Raspberry Pi.  
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4.5 Power Source 

 

The P200 Posugear power bank is a Li-ion battery with a capacity of 20000mAh 
that can power the Raspberry Pi when there is no nearby power plug. It has 2 
USB A outputs and 1 USB-C for fast charging, delivering 5V DC. With a total 
maximum output of 22.5W, it can provide up to 15 hours of autonomy at 400% 
CPU capacity. The power bank measures 10.8 x 6.9 x 2.75 cm and adds an 
additional weight of approximately 290g to the prototype [27]. 

 

Additionally a USB-C to USB-A male 
charging cable with a switch is acquired so 
that the Raspberry Pi can be turned on and 
turned off without unplugging it from the 
power battery. 
 

 

 

 

 

 

 

 

 
Fig. 4.5: Posugear power battery.  

Fig. 4.6: 
USB-C to USB-A 
cable with switch  

 

4.6 Code 

 

A Python file is created in the Raspberry Pi to execute the model while the camera 
is running. 
 

The following libraries are imported for the execution of the program: gpiozero 
pins Button, time, datetime, cv2, numpy and tflite_runtime.interpreter. The 
gpiozero pins Button library is used to control the button input. The time library is 
used to stop recording when a time limit is reached. The datetime library is used 
to keep track of the moment when the bird was detected. The cv2 library is used 
to run the camera. The numpy library is used to handle arrays. Finally, 
tflite_runtime.interpreter is used to execute the model. 

Fig. 4.7: Libraries and imports 
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Two global variables are declared in the program. The first variable, button, is 
assigned to the GPIO 3 pin according to the schematics in Fig. 4.4. The second 
variable, active, is used to determine whether the camera is currently recording 
or not. 
The saved model is located in the path saved in TFLITE_MODEL_PATH. After 
loading the interpreter using tflite.Interpreter, memory must be allocated for the 
input and output tensors of the model using the allocate_tensors() method. 
 

 
Fig. 4.8: Extract of the code where the main variables are declared  

 

 

The get_input_details() method is used to get details about the input tensor of the 
model analogously the get_output_details() method gets details about the input 
tensor. In order to be used, the input tensor and output tensors are resized to 
(1,224,224,3) and (15,224,224,3) respectively and then are allocated in the 
interpreter. 

 
Fig. 4.9: USB-C to USB-A cable with switch 

 

 

In the main program, which is the one that will run indefinitely, the directory where 
the videos from the detected birds will be stored is declared, the video extension 
will be mp4. Afterwards, the same is done with the parameters of the tag text 
displaying the word “bird” when it is detected (org, font, fontScale, color and 
thickness). In order to prompt a window displaying the images from the camera 
the VideoCapture(-1) method is called. The number -1 corresponds to the 
Raspberry Pi camera, if it does not work, the number must be changed. Said 
window will occupy the entirety of the display. To allow the camera to warm up, 
a wait time of two milliseconds is used. 
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Fig. 4.10: Part of the code for the main  

 

 

Inside the loop, images from the camera are saved in a variable named image. 
They are resized to (224, 224), which is compatible with the ImageNet model. 
The image is then converted to a batch tensor and set to the interpreter. To obtain 
a prediction, the invoke() method is called. If the output data is positive (above 
0), the prediction corresponds to a bird. If the prediction is positive, the tag is 
prepared. It sets the starting time, stores the date-time to use as the name for the 
file and starts recording the video. The active global variable is set to 1 as the 
recording is in progress. 

 
Fig. 4.11: Second part of the code for the main 

 

 

If the active global is set to 1 the time is checked to make sure it is below 10 
seconds. If the current time minus the starting time is above the 10 seconds limit 
then the active global value is set to 0 and it stops recording. 
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If the button is pressed the execution of the program is stopped and the loop is 
broken. 

 
Fig. 4.12: Final part of the code 

 

 

4.7 Final concept 
 

The prototype concept includes an electrical connection box that contains 
components. A slit was opened in the cover to introduce the camera, which is 
secured with four screws. The button can also be accessed from outside. 

 
 

Fig. 4.13: Prototype concept from the outside (front) and from the inside 
 

 

In the inside of the box the power source is plugged to the Raspberry Pi through 
the USB-C to USB-A male to male cable to control the switching on and off of the 
CPU. 
So as to have more control over the prototype a display was attached to the back 
and screws to serve the purpose as legs were added so that the display would 
not be damaged when placed over a surface. 
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Fig. 4.14: Prototype concept from the back switched off and running 

 

 

On Fig. 4.14 on the right, the program is running and a bird is detected which is 
visible in the top right of the image. 
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CHAPTER 5: Dataset for computer vision applications 
 

A dataset in computer vision is a collection of images that are used to train and/or 
test a model. It consists of examples belonging to a particular class i.e objects, 
people, drawings or places. According to the type of computer vision model, a 
dataset may be labeled or unlabeled. 
 

To create a dataset in computer vision, the object of study has to be analyzed in 
order to determine the kind of data needed to solve the problem. The size of the 
dataset, determined by the number of images required to properly describe the 
situation as well as the quality of the images should also be assessed. It is 
important to ensure that the dataset is diverse and representative of the real-
world scenarios that the model will encounter. Another aspect to take into account 
is that the dataset should be as balanced as possible, meaning that each class 
has roughly the same number of samples. 
 

5.1 Creating a dataset 

The purpose of the present project is to create a computer vision for bird strike 
prevention. The model resulting from the project will be a supervised classification 
one, either the object in front of the camera is a bird or it is not. As such, the 
classification will be binary and images of birds and non-birds will be used to train 
and validate the models. As the camera will be pointed to the sky, the non-bird 
category will be composed of images of the sky with different cloud patterns, 
images of airplanes and images of drones. 

The dataset will be created with as many images of birds and non-birds as 
possible while trying to maintain balance. The images will be obtained through 
the camera of the Raspberry Pi that will be used when executing the model in the 
real-time application. This will ensure that the pictures have the same quality 
expected when running the application. 
 

A python script is designed to record videos from the sky. Once these videos are 
obtained, different frames depicting birds, the sky, planes or drones will be 
manually extracted and saved in the corresponding folder. Fig. 5.1 shows the 
libraries needed for the script.  
   

 
Fig. 5.1: Libraries used in the code 
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A button will be used to control the recording, Fig. 5.2 shows its declaration. 

 
Fig. 5.2: Global variable for the button in GPIO3 
 
 
The changeState function receives the button parameter as an input. Inside this 
function, the camera is activated or deactivated and full-screen videos are saved 
inside the specified directory with the format given in line 22 in accordance with 
line 16. 

 
Fig. 5.3:First part of changeState function 
 
 
The camera records frames while the button is not pressed. 

 
Fig. 5.4: Second part of changeState function 
 
 
The thread controls whether the button has been pressed or not at all times. 

 
Fig. 5.5: Activate function and thread declaration 

 
 
5.2 Resulting dataset 

From the videos obtained with the script a total of 3282 images were saved 
distributed as follows: 

• Birds: 1462 images 
• No-birds: 1820 images, among which 

o 814 drone images 
o 537 plane images 
o 469 sky images 
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Fig. 5.6: Twelve randomly picked images from the bird dataset 
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Fig. 5.7: Twelve randomly picked images from the nobird dataset 
 
 
The distribution of images of different categories of no-birds is a result of trial and 
error in real-time application to improve model performance. From experimental 
results, the model appeared to have more difficulty distinguishing between birds 
and drones than between birds and planes. False positives with plain sky were 
limited and varied according to cloud patterns in the sky, so different sky images 
were considered. Regarding bird classification, most images corresponded to 
pigeons and seagulls at different altitudes, see Fig. 5.6. 

While the dataset is not perfectly balanced, it has demonstrated high accuracy 
levels. The images of birds were saved in a folder named “birds” and the images 
of no-birds were saved in a folder named “nobirds” without regard to their 
subcategory. This serves the purpose of labeling the images in the code 
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5.3 Additional considerations 

 

It is possible to create datasets from images obtained from the Internet. However, 
Tensorflow may encounter problems when fitting the model as images may be in 
a non-recognized format or be corrupt. Additionally, images found on the internet 
depict the object of study in full detail, centered in the frame which is not the case 
most of the time in real-life applications. The quality of the source image may also 
be different from the images taken by the prototype and thus resulting in poor 
accuracy. 
 

It is desirable to have as many images as possible and have variations of them, 
for this reason data augmentation techniques may help in increasing the size and 
diversity of the dataset. Data augmentation combined with the usage of transfer 
learning improves the efficiency of the model when a limited number of images 
are available. 
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CHAPTER 6: ANALYZING MODEL PERFORMANCE AND 
REAL-WORLD APPLICATION 

 

A supervised deep learning model based on a Convolutional Neural Network 
(CNN) is trained by updating the “weights” for different filters applied to images 
according to the results obtained by checking with training and validation datasets 
as explained in Chapter 3 of “Designing a computer vision system”. This chapter 
explains different metrics used to evaluate and validate computer vision models 
during and after its creation, with a focus on the model designed for this project. 
 

6.1 Training metrics 

 

During model training, the code aims to find the optimal value of a control 
parameter. In deep learning models, this variable is the loss function which 
measures how well the model is performing by evaluating the difference between 
predicted and expected outcomes. In this project, Binary Cross Entropy is used 
as a loss function. 

Finding the minimum value of this function is challenging because it is determined 
by multiple factors that are related to each other in an unknown way. The model 
depends on several hyperparameters such as the number of images, the 
distribution between validation and test, the percentage of dropout of neurons, 
the number of epochs, the size of the batches, and the learning rate among 
others. 

The training and validation curves can be used to describe the training process 
of a model. These curves show how well the model is performing by plotting the 
training and validation loss against the number of epochs. By trying different 
combinations of hyperparameters, their effects impact on the validation curves. 

A phenomenon to be avoided when developing deep learning models is 
underfitting. Underfitting happens when the model is unable to converge. It can 
be produced for two main reasons, either the model is unable to learn the training 
data (see Fig. 6.1) or the training has stopped too early and the model could 
converge with additional epochs, see Fig. 6.2. 
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Fig. 6.1: Model unable to learn the data [28]      Fig. 6.2: Model about to converge [28] 
 
 
If, on the other hand, the validation loss is much higher than the training loss, it 
indicates that the model is overfitting. Overfitting occurs when the model obtains 
good results for the training data but not for validation data, see Fig. 6.3. One way 
to solve overfitting is by modifying the probability of dropping out a neuron. As 
the dropout parameter is increased, the capacity of the network is reduced and 
the model becomes less likely to overfit. However, if the dropout parameter is set 
too high, then the model may underfit and have poor performance on both the 
training and test data. Other hyperparameters such as learning rate and batch 
size may be required to be edited to balance it. 
 

 
Fig. 6.3: Example of overfitting in a validation curve [28] 

 
 
The resulting validation curves for the model trained for this project are the 
following: 
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Fig. 6.4: Validation curve for the project’s resulting model (own creation) 

 
 
The validation curve shows that the layers of the base_model corresponding to 
the pre-trained model Imagenet_v2 are frozen during the first thirty epochs to 
perform transfer learning and fine-tuning. In the last fifteen epochs, the weights 
from the hundredth layer onwards are updated. From that point on, the model 
converges faster in terms of loss and the validation and training loss converge to 
values close to zero. 
 

The metric used to evaluate the progression of the model with each epoch was 
the AUC (Area Under the Curve) is a metric used to evaluate the performance of 
a binary classifier model with each epoch. It is defined as the area under the 
Receiver Operating Characteristic (ROC) curve, which plots the true positive rate 
against the false positive rate. An AUC of 1 indicates that the model perfectly 
separates the two classes, see Fig. 6.5. 

 
Fig. 6.5: Number of TP and TN according to the probability (left) and ROC curve (right) [29] 
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An AUC value less than 1 indicates that the model is not perfectly separating the 
two classes. This can occur when there are false positives and false negatives, 
meaning that the classification threshold is not able to completely separate the 
true positives from the true negatives. In the worst case scenario, AUC of 0.5 
indicates that the model is no better than random chance, this could be due to an 
error in labeling. 

 
Fig. 6.6: Number of TP and TN according to the probability (left) and ROC curve (right) [29] 

 
 
Fig. 6.7 displays the evolution of the training and validation AUC over the course 
of 45 epochs. The AUC values are higher than 0.95, indicating that the model is 
performing well, although not perfectly.  

 
Fig. 6.7: Training and validation AUC curves 
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6.2 Model metrics 
 

Once the model is finished there are some additional metrics that can be used to 
measure how it performs. 
 

• ACCURACY 
 

Accuracy is a commonly used performance metric for classification models. It is 
defined as the ratio of the number of correct predictions to the total number of 
predictions made by the model. Mathematically, accuracy is calculated as (TP + 
TN) / (TP + TN + FP + FN), where TP represents the number of true positives, 
TN represents the number of true negatives, FP represents the number of false 
positives, and FN represents the number of false negatives. The range of 
accuracy is from 0 to 1, with 0 in the worst case scenario indicating that TP and 
TN are both 0 and 1 in the best case scenario indicating that FN and FP are both 
0. Accuracy provides a measure of how well the model can correctly classify 
instances into their respective classes [30]. 
 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (6.1) 

 

The accuracy for the validation dataset can be computed using the tensorflow 
tools shown in Fig. 6.8. 

 
Fig. 6.8: Computing the accuracy for the validation dataset using Tensorflow 

 
 
The accuracy for the model is 0.9622093 which is close to the optimal. 
 

• PRECISION 
 

Another commonly used performance metric for classification models is 
precision. It is calculated as the ratio of TP predictions to the total number of 
positive predictions made by the model (TP + FP). The range of accuracy is from 
0 to 1, with 0 in the worst case scenario indicating that TP is 0 and 1 in the best 
case scenario indicating that FN is 0. Precision measures how well the model 
correctly identifies positive samples [31]. 
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (6.2) 
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The precision for the validation dataset can be computed using the tensorflow 
tools shown in Fig. 6.9. 

 
Fig. 6.9: Computing the precision for the validation dataset using Tensorflow 

 
 
The precision for the model is 0.95666665 which is close to the optimal. 
 

• RECALL 
 

Recall measures the proportion of actual positive cases that were correctly 
identified by the model as positive cases. Recall is calculated as the ratio of TP 
predictions to the total number of actual positive instances (TP + FN). The range 
of recall is from 0 to 1, with 0 indicating that TP is 0 and 1 indicating that FN is 0. 
Recall measures how well the model correctly identifies all positive instances [31]. 
 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (6.3) 

 

The recall for the validation dataset can be computed using the tensorflow tools 
shown in Fig. 6.10. 

 
Fig. 6.10: Computing the recall for the validation dataset using Tensorflow 

 
 
The recall for the model is 0.95666665 which is close to the optimal. 
 

• F1-SCORE 
 

The F1-score is a widely used performance metric for classification models. It is 
calculated as the harmonic mean of precision and recall, which are two other 
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important evaluation metrics. The formula for F1-score is: F1 = 2 * (precision * 
recall) / (precision + recall), where precision is the ratio of true positive predictions 
to the total number of positive predictions made by the model (true positives + 
false positives) and recall is the ratio of true positive predictions to the total 
number of actual positive instances (true positives + false negatives). The range 
of F1-score is from 0 to 1, with 0 indicating the worst possible performance and 
1 indicating the best possible performance. The F1-score provides a balance 
between precision and recall and is especially useful when dealing with 
imbalanced datasets. A high F1-score indicates that the model has both high 
precision and high recall [32]. 
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 =  0.95666665  (6.4) 

 

 

• LOG-LOSS 
 

Log-Loss, also known as logistic loss or cross-entropy loss, is a loss function 
used in binary classification problems. It measures the performance of a 
classification model where the prediction output is a probability value between 0 
and 1. Log-Loss takes into account the uncertainty of the prediction based on 
how much it varies from the actual label. A perfect model would have a Log-Loss 
of 0. The goal of training a model is to find the best set of weights that minimize 
the Log-Loss. For a binary classification where the label “y” equals 0 or 1, defining 
“p” as the probability of the label being 1, the log-loss is computed according to 
the following formula [33]: 
 

log(𝑦, 𝑝) =  −(𝑦 ∗ log(𝑝) + (1 − 𝑦) log(1 − 𝑝)) (6.5) 

 

Using the tensorflow tools, the log-loss for the validation dataset can be computed 
as shown in Fig. 6.10. In this case, a sigmoid function was required to convert 
the prediction from positive and negative values to 0 to 1 values according to the 
probability, additionally it required to eliminate the last batch different than 32 as 
it gave errors in the compilation of the code. 

 
Fig. 6.11: Computing the log-loss for the validation dataset using Tensorflow 
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The log-loss for the model is 0.1020382 which is close to the optimal. 
 

• CONFUSION MATRIX 
 

A confusion matrix is a table that is often used to describe the performance of a 
classification model on a set of test data for which the true values are known. It 
summarizes the number of correct and incorrect predictions made by the model, 
broken down by each class. This allows for a more detailed analysis of the 
model's performance and can help identify where the model may be making 
errors. 
 

The confusion matrix can be obtained using the pandas library as shown in Fig. 
6.12, as with the case of log-loss, the last batch which had less than 32 images 
is excluded to avoid compilation errors. 
 

 
Fig. 6.12: Extracting the parameters from the validation dataset to create a confusion matrix using 

Tensorflow 
 
 
In this particular project, the confusion matrix can be used to visually summarize 
the performance of a classification model in predicting whether an observation is 
a bird or not. The matrix displays the values for true positives (observations 
correctly predicted as birds), true negatives (observations correctly predicted as 
not birds), false positives (observations incorrectly predicted as birds), and false 
negatives (observations incorrectly predicted as not birds). 
 

 
Fig. 6.13: Confusion matrix (own creation) 
 

 

• RECEIVER OPERATING CHARACTERISTIC 
 

In the Receiver Operating Characteristic (ROC) curves the relation of true 
positives and false negatives is plotted for the validation images given to the 
model. Ideally, the false positive rate should be 0 and the true positive rate should 
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be 1, therefore the perfect classifier should have a ROC classifier showing a 
vertical line in the 0 false positive rate until the value 1 for true positive rate and 
a horizontal line until the value 1 for false positive rate. 
 

The ROC curve can be generated for the validation dataset using tools from the 
scikit-learn library. The generation of the ROC curve requires that the batches 
are complete with 32 images. Additionally, a sigmoid function must be applied to 
translate the positive/negative values output from the prediction into normalized 
values ranging from 0 to 1, representing the probability. 

 
Fig. 6.14: Extracting the parameters from the validation dataset to create a ROC curve using sklearn 

 
 
Fig. 6.15 shows the ROC curve for the validation dataset; the dots represent the 
individual values of AUC for every batch in the dataset. The blue line describes a 
shape close to the optimal. A random classifier, with AUC of 0.5, would follow the 
diagonal yellow dotted line. 
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Fig. 6.15: ROC curve obtained from the validation dataset (own creation) 

 
 

 

6.3 GRAD-CAM 

 

Grad CAM stands for Gradient-weighted Class Activation Mapping. It is a 
technique for producing “visual explanations” for decisions from a large class of 
CNN-based models, making them more transparent. Grad-CAM uses the 
gradients of any target concept flowing into the final convolutional layer to 
produce a coarse localization map highlighting important regions in the image for 
predicting the concept [34]. Next, the code required to create is an adaptation of 
the one available in the keras reference webpage [35]. 
 

Apart from tensorflow, some functions from matplotlib library are necessary to 
plot and colorize the heatmap. 
 

 
Fig. 6.16: Libraries necessary for executing the code 

 
 
The “make_gradcam_heatmap” function accepts as input the image arrays, the 
model utilized for generating predictions, and the name of the last convolutional 
layer. These inputs are used to generate a heatmap visualization of the model's 
predictions and then return it. 
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Fig. 6.17: Function that creates the heatmap 

 

 

The save_gradcam function takes as input an image, the heatmap, the name 
that the resulting image should have and a transparency parameter alpha set to 
0.4 to overlay the heatmap with the corresponding image. It then saves the 
resulting image in the GradCamImages folder in the root path of the project. 

 
Fig. 6.18: Function that overlaps and saves the heatmap and the image 
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All the necessary variables to create the Grad-Cam images are provided in this 
last block of code which gets the model, last convolution layer’s name, image 
array and creates the name of the resulting overlaid image according to the class 
(bird or no-bird) and creates a unique identifier of the image according to its batch 
and number (0-31). 

 
Fig. 6.19: Code to execute  

 
 
These images will allow us to see what characteristics of an image the model 
takes into account when making a decision about the class it belongs to. This 
information may be used to improve the dataset if needed by identifying and 
addressing any biases or shortcomings in the data. 
 

Fig. 6.20 displays a random sample of 12 images from the validation dataset, all 
of which are labeled as 'Bird'. The corresponding heatmaps, overlaid on the 
original images, highlight regions in red where birds are detected by the final 
convolutional layer 'Conv_1'. 
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Fig. 6.20: Bird detections in validation dataset 

 
 
Fig. 6.21 displays a random sample of 12 images from the validation dataset, all 
of which are labeled as 'No Bird' and may depict drones, aircraft, or plain sky. The 
corresponding heat maps generated by the Grad-CAM algorithm do not highlight 
any objects resembling birds. 
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Fig. 6.21: No-Bird detections in validation dataset 

 
 
6.4 Real world results  
 

To evaluate the model's performance under real-world conditions, a Python script 
was developed and integrated into the prototype. This script captures and stores 
an image whenever a bird is detected. The resulting analysis of these images 
enables the calculation of true positive and false positive detection rates, 
providing a quantitative measure of the model's performance in a test run. 
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Fig. 6.22: Extract of the code to detect birds 
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Fig. 6.23: Final part of the code to detect birds 

 
 
The code architecture is analogous to that described in 'Chapter 5. Dataset for 
Computer Vision Applications', which details the process of saving recordings of 
birds, drones, and planes for dataset creation. Figures 6.22 and 6.23 illustrate a 
script that captures images from a camera feed and stores those containing 
detected birds. To prevent redundant detection of the same bird, the script 
incorporates a one-second delay between successive image captures. The 
program terminates upon user input via a button press. 
 

This script facilitates the execution of real-world tests which were performed 
during optimal visibility conditions to delimit the casuistic for potential flaws. 
Images that were captured as a result of a trigger event were stored locally on 
the Raspberry Pi device. The analysis of these images enables the identification 
of the flaws and enable a first evaluation of the overall performance. 
 
While the model demonstrated a high degree of accuracy in classifying birds, 
there were several instances of false positives among the images collected by 
the device. A selection of representative images is included below in this 
document to illustrate these cases, accompanied by a possible explanation (as 
deep learning models deal with probabilities) of the underlying factors 
contributing to the occurrence of false positives. 
 
In a test performed during a windy day, several instances of plastic bags, 
shopping gloves and other light plastic items were found among the images that 
triggered the script. The most probable explanation for this is that the model does 
not understand what this type of objects are because the dataset does not contain 
images like these. See Fig. 6.24, Fig. 6.25, Fig. 6.26 and Fig. 6.27, 
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Fig. 6.24: Red paper bag classified as bird 

 

 
Fig. 6.25: Plastic glove classified as bird 
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Fig. 6.26: Plastic bag classified as bird 

 

 
Fig. 6.27: Plastic bag classified as bird 
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The model erroneously identified several instances of contrails as birds, resulting 
in false positives. These false positives are particularly concerning because 
contrails remain visible in the camera’s field of view for longer periods than birds, 
leading to consecutive triggers and an increased number of saved images 
containing contrails. Images containing contrails were added into the dataset but 
nevertheless some of them were still miss classified by the model. See Fig. 6.28 
and Fig. 6.29. 

 
Fig. 6.28: Contrail of plane classified as bird 

 

 
Fig. 6.29: Contrail of plane classified as bird 
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The model, in less frequency than plane contrails also miss-classified some small 
and scattered clouds as birds. The model has to be flexible enough to classify 
birds in species, sizes and positions different than those fed during the training 
phase as otherwise it will overfit and false negatives would increase. See Fig. 
6.30 and Fig. 6.31. 

 
Fig. 6.30: Small cloud classified as bird 

 

 
Fig. 6.31: Small cloud classified as bird 
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Most of the birds classified correctly by the model correspond to far away, small 
birds, some of them were barely visible to the naked eye. A few examples of 
these situations are presented below in Fig. 6.32, Fig. 6.33 and Fig. 6.34. 

 
Fig. 6.32: Bird in the bottom right corner of the image 

 

 
Fig. 6.33: Bird in the middle right of the image 
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Fig. 6.34: Cluster of small birds in the middle of the image 

 
 

Some instances of birds closer to the camera were also detected. It has to be 
noted that different sun positions and contrast did not have substantial effect on 
detection. See Fig. 6.35, Fig. 6.36 and Fig. 6.37.  

 
Fig. 6.35: Pigeon in mid-flight in the middle left part of the image 
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Fig. 6.36: Bird in mid-flight in the middle right part of the image 

 

 
Fig. 6.37: Small bird in mid-flight in the middle of the image 
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A final test, in this case using a script capturing video showed that on some 
occasions, a bird was correctly classified in a frame but some frames later, the 
same bird could not be detected by the model permanently or for a few frames. 
As previously explained, deep learning models classified based on probability 
and it could happen that in certain frames the prediction fails to reach the 
threshold defined. Fortunately, in most instances this is not the case. See Fig. 
6.38 and Fig. 6.39. 

 
Fig. 6.38: Seagull detected in the top right part of the image 

 

 

 
Fig. 6.39: Seagull not detected in the middle of the image  
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On April 27th, a test was conducted on the prototype from 7:00 AM to 5:00 PM. 
The camera was positioned to face the sky in an unobstructed location and was 
mounted on a table using plastic cable ties for stabilization, as depicted in Fig. 
6.40. 

 
Fig. 6.40: Depiction of the setup of the prototype during the test 

 
 
In that time the prototype stored 771 images that were later human reviewed, the 
resulting distribution is as follows: 
 

• 3 False positives due to accidental triggering during the set up. 
• 109 False positives. 
• 659 True positives. 

 

The images were then processed using the Grad-CAM algorithm to determine 
the features and characteristics that the model took into account to classify an 
image as containing a bird. This information is valuable for assessing the 
completeness of the dataset and identifying any additional image classes with 
distinct features that the dataset might be lacking in order to reduce the incidence 
of false positives. Figure 6.41 displays 12 randomly selected true positive 
classifications. The model demonstrates the ability to detect birds at significant 
distances, even when they are barely visible. 
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Fig. 6.41: True positives detected by the model 

 

Fig. 6.42 illustrates 12 randomly selected images that demonstrate instances 
where the model incorrectly identifies aircraft contrails as birds, resulting in false 
positives. One potential solution to mitigate this issue could be to augment the 
training dataset with additional samples of skies depicting a wide range of contrail 
patterns. 
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Fig. 6.42: False positives detected by the model 

 
 
Per definition, excluding the detections during the setup, this means the program 
has a precision of: 
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

659

659+109
= 0.85807 (6.5) 

 

Unfortunately, this test does not take into account the number of false negatives 
and true negatives.  False negatives refer to instances where birds enter the 
camera’s field of vision but fail to trigger the program. True negatives are frames 
that do not contain any birds. A significant number of false positives in the test 
were attributed to aircraft contrails. Although the one-second interval between 
saved images effectively reduces the likelihood of detecting the same bird twice, 
as birds typically exit the frame before this time elapses, contrails persist for 
longer periods and continue to trigger the program.  
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Chapter 7. Conclusion, improvements and application 
 

Project conclusions 
 
The aim of this project was to develop a computer vision system capable of 
acknowledging the presence of birds in order to prevent bird strikes in aviation. 
To achieve this goal, a deep learning model was developed using transfer 
learning with fine tuning. This model was designed to be flexible enough to detect 
birds in images that differed from those in the training dataset while also being 
restrictive enough to avoid triggering too easily. 
 

In addition to the development of the deep learning model, a dataset was created 
and a microprocessor, specifically a RaspberryPi, was selected to execute the 
model and capture images using its legacy camera. The resulting prototype has 
shown promising results in both validation metrics and real-world testing, albeit 
with limitations. The effectiveness of the system depends on the optics used. A 
more complete dataset is required for the system to function optimally. The 
management of false positives is a challenge that must be taken into account 
when setting up a system based on this technology. An A/B test should be 
conducted to evaluate the performance of the system. 
 

The potential impact of this prototype on the air transportation industry is 
significant. By providing pilots with more frequent and accurate notifications of 
the presence of birds in the vicinity of airports, particularly during landing and 
take-off maneuvers where the majority of bird strikes occur, the likelihood of such 
incidents can be reduced. Further study is needed to fully understand the effects 
of these notifications on pilot behavior and decision-making. 
 

In contrast to radar-based solutions, the implementation of an artificial 
intelligence approach offers greater scalability and can be utilized to fortify critical 
points with increased precision due to its localized focus on specific regions. The 
cost-effectiveness of this solution is also noteworthy. Plugging the device to a 
power-source and using an inferior model of the Raspberry Pi could drop its cost 
under 100 euros (as per July 2023), these devices could be strategically placed 
around airports to provide real-time information on bird presence to a central 
server. The sensitivity of the alert trigger could be adjusted as needed through 
the use of appropriate training data. Additionally, this device could be used in 
recreational flights by pointing it out of the cockpit window and sounding an alarm 
if the presence of birds is detected. 
 

Overall, this project has demonstrated the potential for computer vision 
technology to play a valuable role in improving aviation safety that could 
potentially reduce the probability of suffering bird strikes. 
 

Improvements 
 

• As per the prototype, enhancements could be made to both the design 
and safety of the casing. Prolonged exposure to weather conditions may 
result in damage to the electronic components due to humidity ingress, as 
the current design has unnecessary openings. A solution could be to 
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design and fabricate a new casing using 3D printing technology. In order 
to progress from the prototyping stage, the device should be tested for 
pressure, temperature, fire resisting, electrical safety and humidity 
requirements. A good way to ensure that is to certify the product according 
to regulators like UL (in the United States) or CE (in the European Union). 
 

• The Raspberry Pi can be configured to connect to the Internet. If enabled, 
with a few changes in the script, the model could store images in an 
external database. Not only could the model be monitored for performance 
purposes but those images could be repurposed to add the birds and no-
birds datasets with site-specific images. 
 

• If installed on-board, an acoustic actuator could be used to trigger an alarm 
to the pilot. 

 

Individual development 
 

Despite having acquired basic concepts of Python programming and image 
processing in some subjects both for the Aerospace systems and 
Telecommunications’ degree, along the development of this project I have 
learned a more in-depth knowledge of both the tooling and coding required to 
complete a project of these characteristics. 
 
This project is the result of hundreds of extensive research about technologies 
that are rapidly evolving in the present and numerous hours of testing to ensure 
the device is able to identify birds with a reasonable precision. While the 
information available to the public on subjects such as deep learning and 
computer vision are plentiful and accessible to the public, it was involved a 
significant amount of trial and error when implementing different strategies. I had 
to deal with deprecated libraries and lots of debugging to adapt the source 
information and understand concepts like tensors, convolutional blocks, statistics 
and data representation. The development of a unique and original binary 
classification approach required the creation of numerous scripts for data 
representation, organization, editing, and classification of images for the dataset. 
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Flow chart representing the time distribution of hours per task and subtask 

 
Overall, I am satisfied with the final result of this project. With its completion, the 
reader of this document will find a comprehensive guide that progresses from 
basic concepts to more technical material, culminating in the application of this 
knowledge to a specific use case: the development of a binary classifier capable 
of distinguishing birds. With this knowledge, the reader may approach other 
problems in other fields. Deep learning based computer vision solutions, with 
enough creativity for example can be used also to classify sounds as long as their 
characteristics can be represented with colors. 
 
In the present and the near future, artificial intelligence will be playing a key role 
in the development of new tools and technology in both subjects studied at 
university. In my opinion my education would not be complete if I did not acquire 
the knowledge learned during the completion of the project as this technology will 
revolutionize both the telecommunications and aerospace fields among many 
others.     
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1 Introduction

The Raspberry Pi 4 Model B (Pi4B) is the first of a new generation of Raspberry Pi computers supporting
more RAM and with siginficantly enhanced CPU, GPU and I/O performance; all within a similar form
factor, power envelope and cost as the previous generation Raspberry Pi 3B+.

The Pi4B is avaiable with either 1, 2 and 4 Gigabytes of LPDDR4 SDRAM.
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2 Features

2.1 Hardware

• Quad core 64-bit ARM-Cortex A72 running at 1.5GHz

• 1, 2 and 4 Gigabyte LPDDR4 RAM options

• H.265 (HEVC) hardware decode (up to 4Kp60)

• H.264 hardware decode (up to 1080p60)

• VideoCore VI 3D Graphics

• Supports dual HDMI display output up to 4Kp60

2.2 Interfaces

• 802.11 b/g/n/ac Wireless LAN

• Bluetooth 5.0 with BLE

• 1x SD Card

• 2x micro-HDMI ports supporting dual displays up to 4Kp60 resolution

• 2x USB2 ports

• 2x USB3 ports

• 1x Gigabit Ethernet port (supports PoE with add-on PoE HAT)

• 1x Raspberry Pi camera port (2-lane MIPI CSI)

• 1x Raspberry Pi display port (2-lane MIPI DSI)

• 28x user GPIO supporting various interface options:

– Up to 6x UART

– Up to 6x I2C

– Up to 5x SPI

– 1x SDIO interface

– 1x DPI (Parallel RGB Display)

– 1x PCM

– Up to 2x PWM channels

– Up to 3x GPCLK outputs
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2.3 Software

• ARMv8 Instruction Set

• Mature Linux software stack

• Actively developed and maintained

– Recent Linux kernel support

– Many drivers upstreamed

– Stable and well supported userland

– Availability of GPU functions using standard APIs

3 Mechanical Specification

Figure 1: Mechanical Dimensions

4 Electrical Specification

Caution! Stresses above those listed in Table 2 may cause permanent damage to the device. This is
a stress rating only; functional operation of the device under these or any other conditions above those
listed in the operational sections of this specification is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device reliability.
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Symbol Parameter Minimum Maximum Unit

VIN 5V Input Voltage -0.5 6.0 V

Table 2: Absolute Maximum Ratings

Please note that VDD IO is the GPIO bank voltage which is tied to the on-board 3.3V supply rail.

Symbol Parameter Conditions Minimum Typical Maximum Unit

VIL Input low voltagea VDD IO = 3.3V - - TBD V

VIH Input high voltagea VDD IO = 3.3V TBD - - V

IIL Input leakage current TA = +85◦C - - TBD µA

CIN Input capacitance - - TBD - pF

VOL Output low voltageb VDD IO = 3.3V, IOL = -2mA - - TBD V

VOH Output high voltageb VDD IO = 3.3V, IOH = 2mA TBD - - V

IOL Output low currentc VDD IO = 3.3V, VO = 0.4V TBD - - mA

IOH Output high currentc VDD IO = 3.3V, VO = 2.3V TBD - - mA

RPU Pullup resistor - TBD - TBD kΩ

RPD Pulldown resistor - TBD - TBD kΩ
a Hysteresis enabled
b Default drive strength (8mA)
c Maximum drive strength (16mA)

Table 3: DC Characteristics

Pin Name Symbol Parameter Minimum Typical Maximum Unit

Digital outputs trise 10-90% rise timea - TBD - ns

Digital outputs tfall 90-10% fall timea - TBD - ns
a Default drive strength, CL = 5pF, VDD IO = 3.3V

Table 4: Digital I/O Pin AC Characteristics

tfall trise

DIGITAL
OUTPUT

Figure 2: Digital IO Characteristics
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4.1 Power Requirements

The Pi4B requires a good quality USB-C power supply capable of delivering 5V at 3A. If attached
downstream USB devices consume less than 500mA, a 5V, 2.5A supply may be used.

5 Peripherals

5.1 GPIO Interface

The Pi4B makes 28 BCM2711 GPIOs available via a standard Raspberry Pi 40-pin header. This header
is backwards compatible with all previous Raspberry Pi boards with a 40-way header.

5.1.1 GPIO Pin Assignments

Figure 3: GPIO Connector Pinout

As well as being able to be used as straightforward software controlled input and output (with pro-
grammable pulls), GPIO pins can be switched (multiplexed) into various other modes backed by dedi-
cated peripheral blocks such as I2C, UART and SPI.

In addition to the standard peripheral options found on legacy Pis, extra I2C, UART and SPI peripherals
have been added to the BCM2711 chip and are available as further mux options on the Pi4. This gives
users much more flexibility when attaching add-on hardware as compared to older models.
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5.1.2 GPIO Alternate Functions

Default
GPIO Pull ALT0 ALT1 ALT2 ALT3 ALT4 ALT5

0 High SDA0 SA5 PCLK SPI3 CE0 N TXD2 SDA6

1 High SCL0 SA4 DE SPI3 MISO RXD2 SCL6

2 High SDA1 SA3 LCD VSYNC SPI3 MOSI CTS2 SDA3

3 High SCL1 SA2 LCD HSYNC SPI3 SCLK RTS2 SCL3

4 High GPCLK0 SA1 DPI D0 SPI4 CE0 N TXD3 SDA3

5 High GPCLK1 SA0 DPI D1 SPI4 MISO RXD3 SCL3

6 High GPCLK2 SOE N DPI D2 SPI4 MOSI CTS3 SDA4

7 High SPI0 CE1 N SWE N DPI D3 SPI4 SCLK RTS3 SCL4

8 High SPI0 CE0 N SD0 DPI D4 - TXD4 SDA4

9 Low SPI0 MISO SD1 DPI D5 - RXD4 SCL4

10 Low SPI0 MOSI SD2 DPI D6 - CTS4 SDA5

11 Low SPI0 SCLK SD3 DPI D7 - RTS4 SCL5

12 Low PWM0 SD4 DPI D8 SPI5 CE0 N TXD5 SDA5

13 Low PWM1 SD5 DPI D9 SPI5 MISO RXD5 SCL5

14 Low TXD0 SD6 DPI D10 SPI5 MOSI CTS5 TXD1

15 Low RXD0 SD7 DPI D11 SPI5 SCLK RTS5 RXD1

16 Low FL0 SD8 DPI D12 CTS0 SPI1 CE2 N CTS1

17 Low FL1 SD9 DPI D13 RTS0 SPI1 CE1 N RTS1

18 Low PCM CLK SD10 DPI D14 SPI6 CE0 N SPI1 CE0 N PWM0

19 Low PCM FS SD11 DPI D15 SPI6 MISO SPI1 MISO PWM1

20 Low PCM DIN SD12 DPI D16 SPI6 MOSI SPI1 MOSI GPCLK0

21 Low PCM DOUT SD13 DPI D17 SPI6 SCLK SPI1 SCLK GPCLK1

22 Low SD0 CLK SD14 DPI D18 SD1 CLK ARM TRST SDA6

23 Low SD0 CMD SD15 DPI D19 SD1 CMD ARM RTCK SCL6

24 Low SD0 DAT0 SD16 DPI D20 SD1 DAT0 ARM TDO SPI3 CE1 N

25 Low SD0 DAT1 SD17 DPI D21 SD1 DAT1 ARM TCK SPI4 CE1 N

26 Low SD0 DAT2 TE0 DPI D22 SD1 DAT2 ARM TDI SPI5 CE1 N

27 Low SD0 DAT3 TE1 DPI D23 SD1 DAT3 ARM TMS SPI6 CE1 N

Table 5: Raspberry Pi 4 GPIO Alternate Functions

Table 5 details the default pin pull state and available alternate GPIO functions. Most of these alternate
peripheral functions are described in detail in the BCM2711 Peripherals Specification document which
can be downloaded from the hardware documentation section of the website.
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5.1.3 Display Parallel Interface (DPI)

A standard parallel RGB (DPI) interface is available the GPIOs. This up-to-24-bit parallel interface can
support a secondary display.

5.1.4 SD/SDIO Interface

The Pi4B has a dedicated SD card socket which suports 1.8V, DDR50 mode (at a peak bandwidth of 50
Megabytes / sec). In addition, a legacy SDIO interface is available on the GPIO pins.

5.2 Camera and Display Interfaces

The Pi4B has 1x Raspberry Pi 2-lane MIPI CSI Camera and 1x Raspberry Pi 2-lane MIPI DSI Display
connector. These connectors are backwards compatible with legacy Raspberry Pi boards, and support
all of the available Raspberry Pi camera and display peripherals.

5.3 USB

The Pi4B has 2x USB2 and 2x USB3 type-A sockets. Downstream USB current is limited to approxi-
mately 1.1A in aggregate over the four sockets.

5.4 HDMI

The Pi4B has 2x micro-HDMI ports, both of which support CEC and HDMI 2.0 with resolutions up to
4Kp60.

5.5 Audio and Composite (TV Out)

The Pi4B supports near-CD-quality analogue audio output and composite TV-output via a 4-ring TRS
’A/V’ jack.

The analog audio output can drive 32 Ohm headphones directly.

5.6 Temperature Range and Thermals

The recommended ambient operating temperature range is 0 to 50 degrees Celcius.

To reduce thermal output when idling or under light load, the Pi4B reduces the CPU clock speed and
voltage. During heavier load the speed and voltage (and hence thermal output) are increased. The
internal governor will throttle back both the CPU speed and voltage to make sure the CPU temperature
never exceeds 85 degrees C.

The Pi4B will operate perfectly well without any extra cooling and is designed for sprint performance -
expecting a light use case on average and ramping up the CPU speed when needed (e.g. when loading
a webpage). If a user wishes to load the system continually or operate it at a high termperature at full
performance, further cooling may be needed.
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6 Availability

Raspberry Pi guarantee availability Pi4B until at least January 2026.

7 Support

For support please see the hardware documentation section of the Raspberry Pi website and post ques-
tions to the Raspberry Pi forum.
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 8 megapixel camera capable of taking photographs of 3280 x 2464 pixels 

 Capture video at 1080p30, 720p60 and 640x480p90 resolutions 

 All software is supported within the latest version of Raspbian Operating System 
 
 
 
 
 
 
 
 
 
 

 
The Camera v2 is the new official camera board released by the Raspberry Pi foundation. 
 
The Raspberry Pi Camera Module v2 is a high quality 8 megapixel Sony IMX219 image sensor custom designed add-on board for 
Raspberry Pi, featuring a fixed focus lens. It's capable of 3280 x 2464 pixel static images, and also supports 1080p30, 720p60 and 
640x480p60/90 video. It attaches to Pi by way of one of the small sockets on the board upper surface and uses the dedicated CSi 
interface, designed especially for interfacing to cameras. 
 

 8 megapixel native resolution sensor-capable of 3280 x 2464 pixel static images 

 Supports 1080p30, 720p60 and 640x480p90 video 

 Camera is supported in the latest version of Raspbian, Raspberry Pi's preferred operating system 
 
The board itself is tiny, at around 25mm x 23mm x 9mm. It also weighs just over 3g, making it perfect for mobile or other 
applications where size and weight are important. It connects to Raspberry Pi by way of a short ribbon cable. 
The high quality Sony IMX219 image sensor itself has a native resolution of 8 megapixel, and has a fixed focus lens on-board. In 
terms of still images, the camera is capable of 3280 x 2464 pixel static images, and also supports 1080p30, 720p60 and 
640x480p90 video. 
 

Applications 
 
- CCTV security camera 
- motion detection 
- time lapse photography 
 
 



 

 

1 / 1 5 inch 800x480 IPS touchscreen 

FNK0078A    H1J2 

█ www.freenove.com 

█ Need help? Contact support@freenove.com 

How to Connect? 

1. After writing OS, insert the micro SD card to Raspberry Pi. 

2. Install 4 brass standoffs. 

 
3. Connect the ribbon cable. 

Note: Pay attention to the blue bar on the cable when connecting. 

                 
4. Fix the Raspberry Pi with 4 screws and then connect the ribbon cable. Then install the stands with 2 screws. 

                 
 

5. Connect the power supply and wait a few seconds, the screen will display. 

 

If the screen doesn’t display normally with Raspberry Pi OS 

Open boot/config.txt on Raspberry Pi or use a computer to open this file in the micro SD card. 

Modify dtoverlay=vc4-kms-v3d to dtoverlay=vc4-fkms-v3d or #dtoverlay=vc4-kms-v3d 

Save the file and then reboot the Raspberry Pi. 

 

Having problems? Download the latest tutorial and troubleshooting: http://freenove.com/fnk0078 

Need further help? Contact our technical support by email: support@freenove.com 

Blue bar 

is here 
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