

BACHELOR’S THESIS PROJECT

TITLE: Computer vision for bird strike prevention

DEGREE: Bachelor’s degree in Aerospace Systems Engineering and
Telecommunications Systems

AUTHOR: Adrià Ibáñez i Boix

ADVISORS: Alberto Burgos Plaza & Francisco Javier Mora Serrano

DATA: 12th July 2023

Computer vision for bird strike prevention 1

Overview

Collisions with birds cause damage to aircraft and in some cases can even
cause air travel accidents. According to data from international organizations
such as the Federal Aviation Administration (FAA), the radar-based tools
currently used to address this problem do not solve it, as there is no indication
of a decrease in the number of bird strikes. Early detection and notification to
pilots of the presence of birds is key to trying to minimize the possibility that
bird impacts can occur.

The objective of this project is to improve bird detection capacity in the airport
environment. To achieve this goal, this work proposes that the solution could
be the use of artificial intelligence based devices and computer vision. To test
this hypothesis, a model based on convolutional neural networks (CNN) is
selected, trained and deployed on a device for testing.

To do this, research is carried out on the different strategies used to solve
problems with artificial intelligence and the performance of pre-trained classifier
and detector models available. To select the computer board where the model
will be deployed, a discussion of Raspberry Pi’s market performance is made.
A collection of bird images is made for training the model. The prototype will
finally consist of deploying the model on a Raspberry Pi that through a script in
Python programming language is able to automatically notice birds in the real
world using a camera connected to the Raspberry Pi. If any detection occurs,
the model is capable of making a notification that could serve to anticipate
impacts and thus allow appropriate preventive measures to be taken
beforehand.

In conclusion, this technology shows great potential to support existing
solutions today. Theoretical results with validation images show accuracy and
recall parameters above 90% but experimental tests with the prototype do not
allow for a conclusive judgment due to limitations regarding the training data
set.

Títol: Prevenció d’impacte amb ocells mitjançant visió per computador

Autor: Adrià Ibáñez i Boix

Directors: Alberto Burgos Plaza i Francisco Javier Mora Serrano

Data: 12 de juliol del 2023

Resum

La col·lisió amb aus provoquen danys a les aeronaus i en alguns casos fins i
tot poden provocar accidents aeris. Segons les dades ofertes per
organitzacions internacionals com la Federal Aviation Administration (FAA), les
eines basades en radar que s’utilitzen actualment per abordar aquest problema
no el resolen, ja que no hi ha cap indici de descens en el nombre de
d’imapactes amb aus. La detecció i notificació precoç als pilots de la presència
d’ocells és clau per mirar de minimitzar la possibilitat que els impactes amb
ocells es puguin arribar a produir.

L'objectiu d'aquest projecte és millorar la capacitat de detecció d’aus en
l’entorn aeroportuari. Per assolir aquest objectiu, es planteja en aquest treball
que la solució podria passar per l´ús de dispositius basats en la intel·ligència
artificial i visió per computador. Per posar a prova aquesta hipòtesis, es
selecciona i s’entrena un model basat en xarxes neuronals convolucionals (en
anglès, CNN) i es desplega en un dispositiu per posar-lo a prova.

Per fer-ho, es realitza una recerca sobre les diferents estratègies utilitzades
per resoldre problemes amb intel·ligència artificial i les prestacions dels models
classificadors i detectors pre-entrenats disponibles. Per seleccionar la placa
computadora on es desplegarà el model es fa una discussió de les prestacions
de Raspberry Pi al mercat. Es fa una recopilació d’imatges d'aus per fer
l’entrenament del model. El prototip consistirà finalment en el desplegament
del model en una Raspberry Pi que a través d’un script en llenguatge de
programació Python sigui capaç de localitzar automàticament ocells al món
real mitjançant una càmera connectada a la Raspberry Pi. Si es produeix
alguna detecció el model és capaç de fer una notificació que podria servir per
anticipar impactes i així permetre prendre mesures preventives adequades
abans.

En conclusió, aquesta tecnologia mostra un gran potencial per a fer de suport
a les solucions existents a avui dia. Els resultats teòrics amb imatges de
validació mostren paràmetres d’accuracy i de recall per sobre del 90% però els
tests experimentals amb el prototip no en permeten fer un judici concloent a
causa de les limitacions pel que fa al conjunt de dades d’entrenament.

Computer vision for bird strike prevention 1

INDEX

CHAPTER 1. INTRODUCTION .. 1

CHAPTER 2. COMPUTER VISION, CONCEPTS AND DEFINITIONS 6

2.1 Computer vision precedents: Image processing ... 6

2.2 Computer vision in machine learning ... 7
2.2.1 Deep learning fundamentals... 8
2.2.2. Classical machine learning or deep learning? .. 11

2.3 Computer vision strategies .. 11

CHAPTER 3. DESIGNING A COMPUTER VISION SYSTEM 13

3.1 Deep Learning planification ... 13

3.2 PyTorch or TensorFlow? .. 15

3.3 Setting up a virtual environment .. 16

3.4 Managing datasets .. 17

3.5 Handling pre-trained models .. 19

CHAPTER 4. PROTOTYPE ... 23

4.1 The Raspberry Pi ... 23

4.2 Camera ... 25

4.3 LCD screen... 26

4.4 Actuator .. 26

4.5 Power Source .. 27

4.6 Code .. 27

4.7 Final concept ... 30

CHAPTER 5: DATASET FOR COMPUTER VISION APPLICATIONS 32

5.1 Creating a dataset ... 32

5.2 Resulting dataset .. 33

5.3 Additional considerations .. 36

2 Computer vision for bird strike prevention

CHAPTER 6: ANALYZING MODEL PERFORMANCE AND REAL-WORLD
APPLICATION ... 37

6.1 Training metrics .. 37

6.2 Model metrics .. 41

6.3 GRAD-CAM... 46

6.4 Real world results ... 50

CHAPTER 7. CONCLUSION, IMPROVEMENTS AND APPLICATION 64

REFERENCES ... 67

APPENDIX ... 69

Computer vision for bird strike prevention 1

 CHAPTER 1. INTRODUCTION

Motivation

Computer vision is the subcategory of the emerging field of artificial intelligence
(AI) that enables computers to obtain information from images and then taking
action in accordance. Nowadays there are multiple applications for it, from
inspecting crops in agriculture to recognizing tumors in medicine. The goal of this
project is to enhance air transportation safety by utilizing computer vision
technology in the field of aeronautics. A state-of-the-art device able to
acknowledge the presence of birds in the vicinity will be developed and set up
with the objective of preventing bird strike collisions.
An important consideration before beginning the project is to determine to what
extent bird strikes are a threat for air transportation and therefore if such a project
can be justified. The Federal Aviation Administration keeps an updated database
of bird strikes reported by the pilots and provides some information about them.
The chart below shows the reported bird strikes in the U.S from the year 1990
when they started collecting data to this day. The data from years 2020 to 2022
are omitted as the COVID-19 pandemic had an impact on air transportation and
therefore would not provide trustworthy information about the
phenomenon.

Fig. 1.1: Evolution of reported bird strike in the U.S from 1990 to 2019. [1]

Available data show that 57% of the pilots were not informed of the presence of
birds prior to the bird strike, see Fig. 1.2.

The available information shows that most of the bird strikes occur during the day,
when most of the flights are operated and there is light. This information is
particularly relevant as the computer vision system has to be adapted to every
condition so as to obtain the best possible accuracy. This means that during the
night a camera would not work and during the evening would not be as reliable.
This could be solved using a hybrid approach with a camera and an infra-red
camera using two different computer vision models.

2 Computer vision for bird strike prevention

Fig. 1.2: Bird strike previous warnings in the U.S from 1990 to 2019. [1]

Another variable that is considered in the FAA database is the phase of the flight
in which the strike took place. As the graph shows, most of the incidents (43%)
take place during the approach phase, the landing roll follows up with an 18%,

the same percentage of the
take-off run and the next
most important is the climb
phase with the 16% of the
reported strikes. It appears
clear that most of the
reported bird strikes take
place in the vicinity of an
airport during the most
critical maneuvers.

Fig. 1.3: Bird strike per phase in the U.S from 1990 to 2019. [1]

The profile of aircraft affected by bird strike is also heterogeneous. Most of the
reported strikes correspond to large aircrafts. The distribution in the graph has
been made according to the number of seats. Aircraft with capacity less than 50
seats are considered small, medium are those below 150, large are the ones who
do not reach 220 seats and over that are the jumbo.

Fig. 1.4: Bird strike distribution by
plane size in the U.S from 1990 to
2019. [1]

Computer vision for bird strike prevention 3

The International Civil Aviation Organization (ICAO) requires member States to
collect data from aircraft and airport operators regarding bird strikes [2]. The
effectiveness of avian radars currently used in airports was evaluated by the FAA
in the early 2010’s, results show that the majority of large single birds seen by
field observers within 4 km of the radar were tracked by the radar about 30
percent of the time. Flocks of large birds, including those that were located
several nautical miles away, were tracked by the radar 40 to 80 percent of the
time. According to the researchers, radar can be a useful tool for monitoring bird
flock activity at airports, but less so for monitoring large single birds [3].

Environmental impact

This project involves making a prototype device that could potentially prevent bird
strikes by using electronic components, a battery and a cover box. These
materials and components have environmental impacts at different stages of their
life cycle, such as mining, manufacturing, transportation, energy use and waste
disposal. Therefore, we need to justify our choices of materials and components
to minimize the environmental damage and pollution caused by them. However,
this project could also have a positive impact on the environment by protecting
the birds and the aircraft passengers from collisions and reducing the need for
repairs to damaged parts resulting from bird strikes.

Objective

The objective of this project is to enhance the detection rate of avian presence
through the implementation of an artificial intelligence-based solution. This could
potentially improve the quality and reliability of notifications of bird activity in the
vicinity of aircraft transmitted to pilots, thereby addressing the current limitations
of the radar-based technology. The following sub-objectives are defined:

1. Study of the background and the state of the art: This document presents
a detailed analysis of the development, functionality and performance of
computer vision systems and analyses the different deep learning
strategies that can be used. So as to better understand what deep learning
means in artificial intelligence applications, the basic concepts on image
processing and coding will be explained.

2. Implementation of the model in a prototype: In order to assess the potential
of this technology for practical applications in notifying bird presence, a
prototype device for real-world evaluation will be designed and set-up.

Methodology

The project can be structured into five distinct stages: Identification of the
observed problem, Definition of the objectives, Design and development,
Demonstration, and Evaluation. Each stage encompasses a defined scenario
and is accompanied by a specific set of tools and activities to facilitate the
completion of the project. Fig. 1.5 summarizes all the information.

4 Computer vision for bird strike prevention

Fig. 1.5: Methodology chart

Document layout

Correspondingly to the stages defined in the methodology this document can be
subdivided into four parts in the following way:

• Introduction and definition of the objectives:

Chapter 1: Introduction
In the introductory chapter, the context and motives of the project are
presented, the structure is established and the objective is outlined.

Computer vision for bird strike prevention 5

Chapter 2: Computer Vision, concepts and definitions
This chapter provides an overview of fundamental concepts related to
computer vision and deep learning models to facilitate the reader’s
understanding of the document.

• Design and development

Chapter 3: Designing a computer vision system
In this part, the deep learning model is designed according to the best
strategy for the issue to solve.

Chapter 4: Prototype
This chapter discusses the hardware to be used in order to deploy the
model and being able to run it in a real-world environment.

Chapter 5: Dataset for computer vision applications
This section outlines the various considerations and decisions involved in
constructing a dataset for the project. An explanation of the conditions and
tools utilized in the dataset creation process is also provided.

• Demonstration

Chapter 6: Analyzing model performance and Real world application
In this chapter, different metrics are employed to evaluate the quality of
the designed model, its performance is also assessed through real-world
testing.

• Evaluation

Chapter 7: Conclusion, improvements and application
In the final chapter, conclusions are derived based on the results of the
metrics and it can be established whether the objectives have been
achieved or not. Additionally, recommendations for improvements and
potential future applications are proposed.

6 Computer vision for bird strike prevention

CHAPTER 2. COMPUTER VISION, CONCEPTS AND
DEFINITIONS

Artificial intelligence is a very broad area of information technology (IT). In this
chapter some terminology will be explained in order to understand what
Computer Vision is and how it works. Different concepts around this field will be
outlined so as to ensure a better understanding of the project as a whole. Once
the basics are covered it will be possible to make reasoned decisions to design
and build the prototype.

2.1 Computer vision precedents: Image processing

Computer Vision is the field of Artificial Intelligence that uses algorithms to derive
information from images. This concept was devised in the 1960’s when scientists
started processing images with computers in order to recognize edges and
shapes and in the 1970’s they developed the first Optical Character Recognition
(OCR) technology [4].

Edge detection consists of applying an algorithm to an image in order to extract
its features. It is a matter of correctly defining a threshold to be able to distinguish
the shapes. The left and middle images on Fig. 2.1 represent image processing
filters (also called kernels) which apply an operation on the grayscale pixel values
of an image, 0 represents black and 255 means white. In the most basic example,
to compute the gradient, the kernel slides over the pixel values and computes for
the horizontal filter: v’x,y= vx-1,y+0·vx,y- vx+1,y and v’x,y= vx,y-1+0·vx,y - vx,y+1 for the vertical one.
v’ correspond to the new pixel value and x and y are the positions on the grid.
This way the vertical filter will find horizontal patterns and the horizontal will find
the vertical.

Fig. 2.1: A Vertical filter and a horizontal filter respectively.

By grouping those filters, it is possible to create bigger kernels and apply them to
images, this is the case of the Canny filters, see Fig. 2.2. Fig. 2.3 shows an
example of edge detection applied on some coins.

Fig. 2.2: A Canny vertical filter and a Canny horizontal filter respectively.

Computer vision for bird strike prevention 7

Fig. 2.3: A grayscale image of coins and the result after applying an edge detection mask (Canny) [5].

Since the 60’s, in parallel to the development of OCR, scientists looked for ways
in which computers would be able to perform certain tasks by providing them with
an input of structured data, machine learning algorithms. Once all the instructions
are provided, the algorithm should be able to take new data and classify, organize
and sort it without any other intervention.

2.2 Computer vision in machine learning

As the technology evolved and the programming and image processing
improved, machine learning solutions could be applied to computer vision
problems. Computers are fed with an organized and structured input of images
that contain the images to be evaluated. The algorithm runs the images through
image processing filters especially selected to extract the useful features, finally
a classifier algorithm produces an output.

Fig. 2.4: Flowchart of the traditional feature extraction & machine learning algorithm.

Machine learning algorithms used in computer vision can be classified into three
categories based on the availability of data, the nature of the task and the level
of human intervention [5]:

• Supervised learning:
Supervised learning is a machine learning strategy that uses labeled
datasets to train algorithms that can classify data. A label is an associated
value or category for each image. This type of machine learning algorithm
is the most commonly used and studied.

8 Computer vision for bird strike prevention

• Unsupervised learning:
Unsupervised learning is a type of machine learning that uses unlabeled
data to discover patterns or structures in the information. The algorithm is
self-thought to organize the input images in groups with little intervention
(i.e number of groups). This type of machine learning algorithm is useful
when image labels are missing and some kind of sorting and grouping is
needed. It is not possible for unsupervised learning algorithms to assess
the quality of the results through accuracy as a metric. However, similarity
within the groups or dissimilarity between the groups can be evaluated.

• Reinforced learning:
Reinforcement learning is a type of machine learning that uses a trial and
error approach to learn from its own actions and feedback. The algorithm
receives rewards or penalties based on the accuracy of its predictions. It
learns to maximize its rewards by finding the optimal policy for the task.
Reinforced learning is suitable for complex or dynamic problems where
the data is large, flexible, and unpredictable. It usually requires a
simulation environment to simulate a task in real life so that multiple
situations can be simulated in a short period of time.

2.2.1 Deep learning fundamentals

A particular case of machine learning is deep learning (DL), in contrast to the
human custom-made feature extraction techniques present in classical machine
learning solutions, DL algorithms are automatic end-to-end iterative processes
that autonomously learn to distinguish which part of the input data is important
and which are the features that maximize the possibility to obtain the expected
output.

Fig. 2.5: Visual representation of artificial intelligence and its fields [6].

The most common algorithm in Deep Learning for Machine Learning purposes is
the Artificial Neural Network (ANN). ANN algorithms are based on an analogy to
the human brain and its complex system of neuron interconnections. The most
basic structure in a machine learning model is an artificial neuron called a
perceptron. Perceptrons are organized in layers to create ANNs. Each perceptron
receives information from the previous layer, applies an activation function, and
sends the output to the next layer. This information is associated with a weight
relative to its relative importance and consists of the sum of all weights from inputs

Computer vision for bird strike prevention 9

plus a bias and are updated with each iteration according to previous
performance [7].

Fig. 2.6: Diagram showing of a perceptron

ANN can be divided into three groups of layers: the Input Layer, the Hidden
Layers and the Output Layer. The features extracted by the filters are given to
the Input Layer. The Input Layer neurons, after computing the weight pass on the
information if a threshold is exceeded if they return a large positive value;
otherwise, they return zero or a smaller value and therefore they may choose not
to pass on information to the next layer [8]. The same principle applies to the
Hidden Layer, the more layers in the Hidden Layer there are, the “deeper” the DL
model is, finally the results are given to the neuron(s) in the Output Layer, there
will be as many neurons as defined classes the model has.

Fig. 2.7: Diagram showing the structure and the different layers in a Deep Learning algorithm [8].

The purpose of a ML algorithm is to minimize a cost function and binary cross
entropy is the most commonly used cost function in binary classifications. Due to
being very complex functions depending on multiple parameters, optimization
algorithms are used. The two most commonly used optimization algorithms are
Stochastic gradient descent (SGD) and Adaptive Moment Estimation (Adam).
SGD is an iterative method used for optimizing the gradient descent during each
search once the weights have been initialized, those are the weights that are

10 Computer vision for bird strike prevention

adjusted (or learned) during the iterations performed during the training. Adaptive
moment estimation or “Adam” is the most popular optimization algorithm as it has
been proven more efficient than SGD as it tunes the moment hyperparameter
that allows exiting a local minimum defined by the cost function. Fig. 2.8 shows a
diagram of the full architecture of a Convolutional Neural Network (CNN).

Fig. 2.8: Structure of a CNN in a Horse, Zebra, Dog computer vision classification program [9].

Generally, in DL applied to computer vision, convolutional filters are used for
feature extraction which will be fed into the ANN. These convolutional filters are
composed of various kernels (filters) that are used to perform convolutional
operations by sliding through the whole image and generating various feature
maps in the process. Through the usage of different convolutional filters it is
possible to recognize patterns in the input images such as lines, gradients,
circles, and more complex shapes. Convolutional filters are often paired with
pooling layers. Pooling is a technique used to speed up and remove redundancy
present in the input features extracted by convolutional filters as it helps the
network to recognize features independent of their location in the image by taking
the average or maximum value of all feature maps in an image [10]. This
represents a difference with respect to the traditional hand-crafted architectures
of filters in traditional machine learning algorithms. The extracted features are
then “flattened” into an array to be fed to the ANN.

In the cases where results are poor or there is little data to train the data, in order
to improve transfer learning may be used. Transfer learning is a design
methodology used in deep learning where a pre-trained model is reused on a
new task. It involves exploiting the knowledge gained from a previous task to
improve generalization about another. For example, a classifier trained to predict
whether an image contains cars could use the knowledge it gained during training
to recognize people. Instead of starting the learning process from scratch,
transfer learning starts with patterns learned from solving a similar task.

Fine-tuning is the technique generally combined with transfer learning where the
pre-trained model is repurposed for a new task. With transfer learning, the initial
layers of the model, which learn general features such as edges, shapes, and

Computer vision for bird strike prevention 11

textures, are frozen while the final layers are retrained with fewer iterations of the
training data and a lower learning rate. This allows the model to adapt to the new
task by only changing the weights of the last few layers that came from the original
model [11]. When fine-tuning, new images with variations are added to the
original dataset and the model is trained for a few iterations.

To sum up, what defines deep learning is the quantity of layers the network has
and the way the nodes that configure it interact with each other and the end-to-
end automatization of the processes.

Fig. 2.8: Flowchart of the deep learning algorithm with CNN.

2.2.2. Classical machine learning or deep learning?

Depending on the type of application that requires a computer vision solution a
simple machine learning architecture will suffice in other cases, it will require a
deep learning approach. Machine learning is good when problems are simple,
there are few useful features that describe the class but it struggles when the
problem is more complex and the background is very “noisy”. While deep learning
uses convolutional filters to automate feature obtention, which requires lots of
input images to obtain reliable results, on the other hand in machine learning, a
relatively low quantity of data is enough to obtain good performance provided the
tasks are simple [12]. As a result, deep learning models are often considered less
interpretable (black box) while machine learning models are theoretically easier
to understand and interpret.

Another factor to consider is that machine learning requires more ongoing human
intervention to get results while deep learning is more complex to set up but
requires minimal intervention thereafter. As per hardware requirements, machine
learning programs tend to be less complex than deep learning algorithms and
can often run on conventional computers, but deep learning systems require
more powerful hardware and resources. In deep learning applications that require
computer vision, because of the quantity of inputs, lots of images need to be
processed at the same time, this is resolved by the usage of graphical processing
units (GPUs) which represent an extra expense in resources with respect to the
classical machine learning approach [13].

2.3 Computer vision strategies

Deep learning algorithm applied to computer vision mainly follow these
strategies:

• Image classification: Image classification is a task in computer vision
where a model is trained to classify images into predefined categories. The
model determines whether an image contains an object belonging to any
of the considered classes and, if so, assigns the image to the appropriate

12 Computer vision for bird strike prevention

class. For example, a model may be trained to classify images of dogs and
cats or to distinguish between different breeds of dogs [4].

• Object detection: Object detection also classifies the given images but
additionally, after recognizing a certain object in an image belongs to a
certain defined class, it is able to accurately locate it within the image by a
rectangular box (bounding box). An example could be tracking the
movements of people in a reserved area or counting objects [4].

Fig. 2.9: Difference between image classification and object detection.

Image classification represents an advantage for applications where the position
of the object is not relevant and what really matters is if the system is correctly
inferring the classes. Classification eases the requirements in hardware and
maximizes detections per frame as it requires less computations. According to
the research [14] for tests conducted on a RaspberryPi 4 using a quantized INT8
tflite model, the most popular pre-trained models based on these two strategies
have the following properties:

Strategy Model Parameters Size Execution Time
(ms)

Classification MobileNetV1 3.23M 13.2MB 83

Classification MobileNetV2 2.26M 9.5MB 83

Classification InceptionV3 21.81M 88.1MB 150

Detection SSD-
MobileNetV1

5.51M 22.7MB 230

Detection SSD-
MobileNetV2

3.87M 16.4MB 225

Detection SSD-
InceptionV2

13.3M 54.0MB 700

Table 2.1 With details of the three main classification and three detection pre-trained models

Computer vision for bird strike prevention 13

CHAPTER 3. DESIGNING A COMPUTER VISION
SYSTEM

Having discussed the characteristics of the different available machine learning
algorithms it is time to evaluate which characteristics a computer vision for bird
strike prevention system has and which machine learning algorithm is the most
convenient. It has to be noted that such a system has to be extraordinarily
adaptative because of the variability of the conditions. Once set up, the processor
will receive real time images from a camera pointed at the sky and will infer if
there are any birds in sight.

Due to the wide range of bird species flying at various distances from the camera
objective and the changing background (e.g time of the day, meteorological
conditions…) there is a high casuistry. In order to solve this, the model will require
a large dataset of images depicting as many situations as possible. All things
considered, the deep learning approach would provide the best results and
therefore it would be the appropriate type of machine learning algorithm for this
problem.

3.1 Deep Learning planification

Deep learning models based on convolutional neural networks depend on
multiple parameters. It is important to understand the impact of every metric
involved in the network training and configuration in order for the model to perform
well.

As explained in Chapter 2. Computer Vision, concepts and definitions, the CNN
are based on layers of nodes (filters) that pass on the information to the next layer
and each connection has a weight that is updated with each iteration. The images
are fed into the network in batches of various images, generally 32 or 64. When
the batch propagates forward in the network it computes the weights. Then the
ANN receives an array of features obtained from the convolutional filters and
adapts the weights on the network. When it reaches the output it tests its
performance by checking the provided labels and calculating the loss, afterwards
it performs a backward propagation adjusting the weights. The process will be
repeated the number of epochs [15]. Both the CNN and ANN are modified with
gradient descend. For a given number of images “N”, the number of iterations
would be:

#𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 =
𝑁

𝐵𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒
= 1 𝑒𝑝𝑜𝑐ℎ

The network will process all the N images for each epoch. If the batches are
smaller, the network may make more errors in updating its weights and it will take
longer to learn. If the batches are larger, the network will learn faster but it will not
be able to handle different kinds of images well, it could overfit.

14 Computer vision for bird strike prevention

Fig. 3.1: Representation of the scenarios in deep learning models [16].

When the model is underfit, it cannot learn the patterns that explain the images
and it makes wrong predictions. When the model is overfit, it only works well on
images that are very similar to the ones it learned from. The best scenario is the
optimal one, as shown in Fig. 3.1, where the model has learned the patterns and
would be able to make good predictions even on images that are different from
the ones it learned from. Dropout is a regularization technique that randomly sets
a fraction of neurons to zero during training to reduce overfitting and enhance
generalization.

What any deep learning model intends to do is to find the values that minimize its
loss function. In deep learning, this function is nonlinear and depends on various
features. The learning rate is the parameter that controls the magnitude of the
gradient descent. In mathematical terms, it computes the partial derivative of the
loss function with respect to the model parameters and updates them in the
opposite direction of the gradient, until it reaches a global minimum. The
challenge is that if the learning rate is too large, it might overshoot the global
minimum, but if it is too small, it might converge to a local minimum [17].

Fig. 3.2: Three-Dimensional equation representing gradient descent and its situations. Adapted image from
Wikipedia [18]

Computer vision for bird strike prevention 15

Stochastic Gradient Descent (SGD) is a method to update the weights of a model
after each training sample. It uses a small sample to estimate the gradient, which
is the direction of steepest descent. This means that SGD may not always follow
the smoothest path to the global minimum, but it will eventually reach it. Adam
optimizer is another method that adapts the learning rate for each weight based
on its past gradients and moments. Adam optimizer has some advantages over
SGD, such as being faster, more memory-efficient, more suitable for large
datasets and sparse problems, and easier to tune.

Pre-trained networks in deep learning are models that have been trained on a
large dataset of images or other data before being used for a different task. They
can help improve the performance and speed of the model on the new task by
using some or all of the learned features from the pre-trained model. These types
of networks are useful for transfer learning, feature extraction, and classification,
as for the case of the present project.

3.2 PyTorch or TensorFlow?

Being a high-level programming language that supports modules and packages,
Python has become the quintessential programming language for deep learning.
As a high-level language the process of developing code is simple and more
understandable and the use of packages encourages program modularity and
code reuse. Among the various packages and libraries maintained by the
community that are widely used to design deep learning algorithms and
convolutional neural networks there are two that stand out: PyThorch and
TensorFlow.

TensorFlow, as a deep learning framework was released in November 2015 by
Google, by then it had already been tested by the company in Google’s products
such as Google Photos, Google Search, spam detection, speech recognition or
Google Assistant among others [19]. Similarly, PyTorch developed by
Facebook’s artificial intelligence division was released in September 2017 to
enable the processing of large-scale image analysis, including object detection,
segmentation and classification.

Both the TensorFlow and PyTorch libraries are based on graph (node) based
architectures and use tensors for computation. A tensor being a mathematical
object and a generalization of scalars, vectors, and matrices, in sum it can be
described as an n-dimensional array. Even though both libraries can be used
interchangeably, in terms of data visualization and model deployment
TensorFlow seems to be better. The early release of TensorFlow has made it
possible for it to reach a stable state before its competitor PyTorch. As
TensorFlow has been in the market for a longer period its adoption by the
community has resulted in greater usage and support [19]. There are many more
examples of TensorFlow based codes than in PyTorch, for this reason the
computer vision for bird strike prevention system will be based in TensorFlow.

16 Computer vision for bird strike prevention

3.3 Setting up a virtual environment

The first step to develop a deep learning model in Python language is to create a
virtual environment in which all the dependencies and libraries will be contained
so that there are no interferences and cross-references with other libraries. As
for this project, the operative system (O.S) used is Windows 11 and the Python
version used is Python 3.7.8.

Using the command line from the path where python.exe is installed, a virtual
environment can be created. In Fig. 3.3 a virtual environment called “venv” is
created in a folder named Project.

Fig. 3.3: Command instruction to create a virtual environment.

The way to access the environment is accessing the Activate script created in the
“venv” environment in the folder Project, see in Fig. 3.4 that when the
environment is activated “(venv)” appears at the beginning of the command line:

Fig. 3.4: Accessing the virtual environment through the command line.

To finish setting up the environment, four things need to be done: upgrading the
pip library that installs packages, installing ipykernel (Fig. 3.5), adding the name
of the environment, and installing the Jupyter library (Fig. 3.6).

Figures 3.5 & 3.6: Accessing the virtual environment through the command line.

Computer vision for bird strike prevention 17

Jupyter is an open-source software that allows programming in multiple
languages and it is structured in cells which can be run independently. Using the
command instruction “Jupyter notebook” the Jupyter manager is opened in the
default web browser.

Fig. 3.7: Opening Jupyter notebook from the command line.

The Jupyter manager should look like the one in Fig. 3.8. A new ipynb file can be
created selecting a new notebook in “venv”.

Fig. 3.8: Opening Jupyter notebook from the command line.

In order to create the deep learning model some libraries have to be imported,
which can be done either by using the command line inside the environment or
by using the notebook cell as shown in Fig. 3.9.

Fig. 3.9: Instructions to install tensorflow, numpy, pandas, matplotlib, pathlib and tensorflow_datasets.

3.4 Managing datasets

Apart from tensorflow, numpy is a library that is useful when handling n-
dimensional arrays, pandas is a data analysis and manipulation tool, matplotlib

18 Computer vision for bird strike prevention

is a package that graphs information, tensorflow_datasets has functionalities
suited for dataset handling and pathlib is convenient when managing paths.

Paths where the datasets are stored and where the outputs from the code are
saved are specified in a dictionary for the present project, see Fig. 3.10.

Fig. 3.10: Dictionary showing the structure of the folders used in the projects.

The project contains four folders: data, models, GradCamImages and Debug. In
the data folder, there are two folders, one containing images obtained through a
RaspberryPi and the other with images downloaded from the internet. The
models folder will store files containing the models, GradCamImages will contain
the images resulting from a GRADCAM analysis and the Debug folder will contain
logs from the code. Once defined the paths, it is possible to extract the input
images from the folders, datasets are created as shown in Fig. 3.11.

Fig. 3.11: Declaration of the train and validation datasets.

Fig. 3.11 shows the creation of training and validation datasets from the
RaspberryPi images. The validation_split parameter specifies a 20:80 split ratio
for the validation and training datasets respectively. The batch size is 32 and no
cropping is applied to the images. The image size is fixed at 224x224 pixels.
Class names are derived from the input folders and each image is labeled with
its corresponding category: bird or non-bird. The total number of samples is 3282,
distributed across two classes, with 2626 for training and 656 for validation.

A small sample of the images in the dataset is shown through the instruction in
Fig. 3.12.

Computer vision for bird strike prevention 19

Fig. 3.12: Sample images in a partial visualization of the dataset.

The accuracy of a deep learning model depends on the amount and diversity of
training data. As the available information is limited, we may use data
augmentation to improve the results. Data augmentation can be used to
transform (zoom, rotate etc) and artificially enhance and diversify existing training
data. Nevertheless, data augmentation does not create new data, it generates
variations of it. Fig. 3.13 shows the code used for the present project.

Fig. 3.13: Cell showing the instruction for data augmentation.

In this case, the images will be randomly flipped, rotated up to a 20% and its
contrast will be randomly adjusted by a random factor.

3.5 Handling pre-trained models

The convolutional neural network (CNN) for this project is based on MobileNetV2
which is an architecture designed by Google for efficient object classification. This
CNN is chosen for its fast execution time and its low memory consumption as
seen in “Chapter 2. computer vision, concepts and definitions”, the weights in the
pre-trained model will be modified by transfer learning and fine-tuning techniques
to adapt it to the specific datasets for this project. Transfer learning involves using
the pre-trained weights of MobileNetV2 as the initial values for the neurons in the
CNN, while fine-tuning involves adjusting these weights during training to
optimize its performance.

20 Computer vision for bird strike prevention

Fig. 3.14: Setting up the pre-trained model based on MobileNetv2.

In Fig. 3.11, the input images are preprocessed to have a height and width of 124
pixels and three channels corresponding to the RGB channels. These input
characteristics are fed into the MobileNet V2 model, which is pre-loaded with
weights trained on ImageNet. The top layers of the model will be defined later.
This constitutes the base model, which is then frozen by setting the trainable
attribute to false, preventing the weights in the layers from being updated during
training.

Fig. 3.15: Compiling the model.

Once the pre-trained model is fixed, two new layers are added on top of it: a
global average layer and a prediction layer. The global average layer reduces the
exit of the pre-trained backbone from a 7x7x1280 block of features to a one
dimensional array of 1x1x1280 to be fed to the ANN. Then, a dropout layer
randomly removes 20% of the neurons to prevent overfitting. The prediction layer
maps the remaining neurons to a single output value for each image. The learning
rate is set to 0.0001 and Adam optimizer is used. The output value indicates a
probability between 0 and 1 and after applying a threshold (which in a binary
classification model trained with balanced datasets is generally 0.5) whether the
image contains a bird (class 1) or not (class 0). No activation function is used for
the output value because the model uses binary cross-entropy loss. The variable
of control is the Area Under the Curve (AUC).

Computer vision for bird strike prevention 21

Fig. 3.16: Declaring callback and fitting the model.

This part of the training only acts on the top layers of the MobileNetV2 base
model. The weights of the pre-trained model are frozen and not updated during
the training. Fig. 3.16 shows the training process for 30 epochs and the model is
given validation_RPi_dataset for validation purposes. The figure displays the time
it takes to complete the epoch, the step time, the loss and AUC metrics for both
the training and validation datasets for the first three epochs.
In order to increase the performance the next step is to "fine-tune" the weights of
the top layers of the pre-trained model alongside the training of the pre-trained
classifier model added. The training process will adjust the weights from generic
feature maps to the features specific to the dataset without erasing the generic
learning [20].

This is achieved by un-freezing the top layers of the base_model and setting the
bottom layers to be un-trainable. A larger part of the model is being trained now
so as to readapt the pretrained weights. As a result, it is important to use a lower
learning rate at this stage. Otherwise, the model could overfit very quickly. By
doing so the accuracy should improve by a few percentage points.

Fig. 3.17: Cell showing fine-tuning process.

22 Computer vision for bird strike prevention

Fig. 3.17 shows that the layers corresponding to the base_model are un-frozen
and the fine tuning will be performed starting at the hundredth’s layer out of 156
total layers. BinaryCrossentropy will be used and the learning rate will be divided
by ten, the control metric will be AUC. The first two lines of the execution show
the same information, it starts at the 30th epoch where the training stopped. In
this case, since more layers are involved and the learning rate is lower, the epoch
and step time have increased.

The model can be saved in a folder by writing the command in Fig. 3.18.

Fig. 3.18: Saving the model.

After saving the model, it can be converted to a format that can be used in
applications independently. This can be done by typing the commands in Fig.
3.18.

To reduce the memory usage of the model, a quantization and optimization
process can be applied. This process maps continuous values to discrete values
and uses lower precision numbers for computation instead of floating point
values.

Fig. 3.19: Saving the model in tflite extension.

Fig. 3.19 shows that the tflite model without optimizations and quantization takes
up 8863576 bytes, while with them it only takes up 2501792 bytes.

Computer vision for bird strike prevention 23

CHAPTER 4. PROTOTYPE

After training and saving a Computer Vision model as a tflite file, the next step is
to choose a processor to run it. A processor is an electronic device that executes
instructions and manipulates data for a computer. A microprocessor is a specific
type of processor that integrates the functions of a computer's CPU on a single
chip. In the context of the prototype developed in this project, a Raspberry Pi will
be used as a processor to support the deep learning model and other devices.

4.1 The Raspberry Pi

A Raspberry Pi is a small single-board computer (SBC) that can be used for
various purposes such as learning programming and robotics, among others. It
was released into the market the year 2012 by the Raspberry Pi Foundation
based in the UK that gives its name. Its original purpose was to become a low
cost, modular and open designed computer to teach basic computer science in
developing countries. It quickly began popularizing among hobbyists around the
world interested in fields such as robotics and computing. It contains a system-
on-a-chip (SoC) from Broadcom that includes an ARM microprocessor.
Raspberry Pi is a suitable choice for the prototype as it can run the model and
write python code, while being compact and adaptable. Since its launching,
different series and generations have been released. It is a matter of choosing
the adequate candidate [21].

The following chart summarizes the characteristics taken into account for the
project among the different Raspberry Pi series and generations:

Family Model GPIO
pins

Raspberry Pi
Camera

USB RAM Wireless
access

Price (€)

Raspberry
Pi

B+

40 Yes

4 USB 2.0 512MB No 35

A+ 1 USB 2.0 512MB No 27

Raspberry
Pi 2 B 40 Yes 4 USB 2.0 1GB No 32

Raspberry
Pi 3

B+

40 Yes

4 USB 2.0 1GB

Yes

43

A+ 1 USB 2.0 512MB 32

Raspberry
Pi 4 B 40 Yes 2 USB 2.0

2 USB 3.0
1/2/4/8

GB Yes 46/50/67/81

Raspberry
Pi Zero

Zero 40*

Yes

1 Micro
USB

512MB

No 12

W/WH 40* 1 Micro
USB

Yes

19

2W 40 1 Micro
USB 17

24 Computer vision for bird strike prevention

Raspberry
Pi Pico

Pico 26

No

1 USB 1.1

264kB

No 5

W 26 1 USB 1.1 Yes 8

Table 4.1: Summary of characteristics of Raspberry Pi models [22] [23] [24] *The GPIO have to be soldered

This project’s prototype requires at least the Raspberry to access a camera, a
USB for power supply and General Purpose Input/Output pins (GPIO). Raspberry
Pi Model A, B and 3B are not considered for the analysis as they were
superseded by superior models, Raspberry Pi 4 400 is also excluded because it
is assembled inside a keyboard and that makes its usage impracticable for
computer vision purposes.

The number of USB ports and whether the device is compatible with the
Raspberry Pi Camera is considered in the analysis because USB can be used to
plug a third party camera. The election should take into account the budget and
preferences as well as performance, quality and compatibility implications. The
Raspberry Pi camera uses MIPI CSI-2 interface which connects directly to the
GPU of the Raspberry Pi while USB cameras use standard USB ports that
connect to its CPU. This means that Raspberry Pi cameras can achieve higher
resolution, frame rate and video encoding than most USB cameras especially for
high-definition video streaming or recording. They also have lower overhead and
resource consumption than USB cameras since they don’t rely on CPU or USB
bus that may be shared with other devices. Additionally, they may have more
mounting options and flexibility since they are smaller and lighter. The number of
USB ports and whether the device is compatible with the Raspberry Pi Camera
should also be considered since USB can be used to plug in third-party cameras.

RAM is a parameter which is relevant when it comes to executing the tflite deep
learning model. While tflite models are optimized for low memory and power
consumption, they still need some RAM to store the model parameters and
intermediate activations during inference.

While the project did not consider it, wireless access could be used to make
further improvements and additions such as giving remote instructions, sending
images to databases, triggering notifications or real-time monitoring.

In order to develop this project, we will use a Raspberry Pi 4B, see Fig. 4.1. Since
the aim of this project is to build a prototype, it is crucial not to fall short.

Computer vision for bird strike prevention 25

Fig. 4.1: Parts of a Raspberry Pi 4B

The full characteristics of the Raspberry Pi 4B can be found in the annex.

4.2 Camera

While the project does not have fixed requirements as per resolution of the
camera and the number of pixels used in the images inside the model are
124x124, the greater the resolution is the easier it will be to prevent aliasing from
distorting the images.

All things considered, given the importance of selecting a camera that is fully

compatible with the Raspberry Pi, the
Raspberry Pi camera module will be used for
the prototype. This camera module connects
to the Raspberry Pi’s Camera Serial Interface
(CSI) bus connector via a flexible ribbon cable,
ensuring optimal performance and seamless
integration. Using a generic camera plugged
through the USB would not provide the same
level of compatibility and could result in
suboptimal performance.

Fig. 4.2: Raspberry Pi Camera

The Sony IMX219 8 megapixels camera requires 5V and 1.8mA from the
Raspberry Pi. From experimental testing, the camera has an aperture angle of
approximately 65º. According to the provider, to avoid malfunction or damage to
the camera, it should not be exposed to water, moisture, or be placed on a
conductive surface. Additionally, it should not be exposed to heat sources as it is
designed to work at normal ambient room temperatures [25]. See the datasheet
in the annex for extra information.

26 Computer vision for bird strike prevention

4.3 LCD screen

For the prototype, an LCD screen was purchased to supervise the results of the
execution of the code. Raspberry Pi 4B has a 15-pin DSI connector that can be
used to connect to DSI displays, see Fig. 4.3.

The selected screen has a 5-inch touch screen with a resolution of 800x480 pixels
and a refresh rate of 60Hz. The screen adds an additional weight of 191g to the
prototype [26]. In the annex there is the datasheet with the instructions required
to configure the display.

Fig. 4.3: Back (left) and frontal (right) view of the screen. Mounting not used.

4.4 Actuator

A button actuator is used in the prototype to control the execution of the code.
Fig. 4.4 shows the electrical connection with the Raspberry Pi. The black wire is
connected to the sixth pin, corresponding to the ground and the red wire is
connected to the fifth pin which corresponds to GPIO 3.

Fig. 4.4: Connections of the button with the Raspberry Pi.

Computer vision for bird strike prevention 27

4.5 Power Source

The P200 Posugear power bank is a Li-ion battery with a capacity of 20000mAh
that can power the Raspberry Pi when there is no nearby power plug. It has 2
USB A outputs and 1 USB-C for fast charging, delivering 5V DC. With a total
maximum output of 22.5W, it can provide up to 15 hours of autonomy at 400%
CPU capacity. The power bank measures 10.8 x 6.9 x 2.75 cm and adds an
additional weight of approximately 290g to the prototype [27].

Additionally a USB-C to USB-A male
charging cable with a switch is acquired so
that the Raspberry Pi can be turned on and
turned off without unplugging it from the
power battery.

Fig. 4.5: Posugear power battery.

Fig. 4.6:
USB-C to USB-A
cable with switch

4.6 Code

A Python file is created in the Raspberry Pi to execute the model while the camera
is running.

The following libraries are imported for the execution of the program: gpiozero
pins Button, time, datetime, cv2, numpy and tflite_runtime.interpreter. The
gpiozero pins Button library is used to control the button input. The time library is
used to stop recording when a time limit is reached. The datetime library is used
to keep track of the moment when the bird was detected. The cv2 library is used
to run the camera. The numpy library is used to handle arrays. Finally,
tflite_runtime.interpreter is used to execute the model.

Fig. 4.7: Libraries and imports

28 Computer vision for bird strike prevention

Two global variables are declared in the program. The first variable, button, is
assigned to the GPIO 3 pin according to the schematics in Fig. 4.4. The second
variable, active, is used to determine whether the camera is currently recording
or not.
The saved model is located in the path saved in TFLITE_MODEL_PATH. After
loading the interpreter using tflite.Interpreter, memory must be allocated for the
input and output tensors of the model using the allocate_tensors() method.

Fig. 4.8: Extract of the code where the main variables are declared

The get_input_details() method is used to get details about the input tensor of the
model analogously the get_output_details() method gets details about the input
tensor. In order to be used, the input tensor and output tensors are resized to
(1,224,224,3) and (15,224,224,3) respectively and then are allocated in the
interpreter.

Fig. 4.9: USB-C to USB-A cable with switch

In the main program, which is the one that will run indefinitely, the directory where
the videos from the detected birds will be stored is declared, the video extension
will be mp4. Afterwards, the same is done with the parameters of the tag text
displaying the word “bird” when it is detected (org, font, fontScale, color and
thickness). In order to prompt a window displaying the images from the camera
the VideoCapture(-1) method is called. The number -1 corresponds to the
Raspberry Pi camera, if it does not work, the number must be changed. Said
window will occupy the entirety of the display. To allow the camera to warm up,
a wait time of two milliseconds is used.

Computer vision for bird strike prevention 29

Fig. 4.10: Part of the code for the main

Inside the loop, images from the camera are saved in a variable named image.
They are resized to (224, 224), which is compatible with the ImageNet model.
The image is then converted to a batch tensor and set to the interpreter. To obtain
a prediction, the invoke() method is called. If the output data is positive (above
0), the prediction corresponds to a bird. If the prediction is positive, the tag is
prepared. It sets the starting time, stores the date-time to use as the name for the
file and starts recording the video. The active global variable is set to 1 as the
recording is in progress.

Fig. 4.11: Second part of the code for the main

If the active global is set to 1 the time is checked to make sure it is below 10
seconds. If the current time minus the starting time is above the 10 seconds limit
then the active global value is set to 0 and it stops recording.

30 Computer vision for bird strike prevention

If the button is pressed the execution of the program is stopped and the loop is
broken.

Fig. 4.12: Final part of the code

4.7 Final concept

The prototype concept includes an electrical connection box that contains
components. A slit was opened in the cover to introduce the camera, which is
secured with four screws. The button can also be accessed from outside.

Fig. 4.13: Prototype concept from the outside (front) and from the inside

In the inside of the box the power source is plugged to the Raspberry Pi through
the USB-C to USB-A male to male cable to control the switching on and off of the
CPU.
So as to have more control over the prototype a display was attached to the back
and screws to serve the purpose as legs were added so that the display would
not be damaged when placed over a surface.

Computer vision for bird strike prevention 31

Fig. 4.14: Prototype concept from the back switched off and running

On Fig. 4.14 on the right, the program is running and a bird is detected which is
visible in the top right of the image.

32 Computer vision for bird strike prevention

CHAPTER 5: Dataset for computer vision applications

A dataset in computer vision is a collection of images that are used to train and/or
test a model. It consists of examples belonging to a particular class i.e objects,
people, drawings or places. According to the type of computer vision model, a
dataset may be labeled or unlabeled.

To create a dataset in computer vision, the object of study has to be analyzed in
order to determine the kind of data needed to solve the problem. The size of the
dataset, determined by the number of images required to properly describe the
situation as well as the quality of the images should also be assessed. It is
important to ensure that the dataset is diverse and representative of the real-
world scenarios that the model will encounter. Another aspect to take into account
is that the dataset should be as balanced as possible, meaning that each class
has roughly the same number of samples.

5.1 Creating a dataset

The purpose of the present project is to create a computer vision for bird strike
prevention. The model resulting from the project will be a supervised classification
one, either the object in front of the camera is a bird or it is not. As such, the
classification will be binary and images of birds and non-birds will be used to train
and validate the models. As the camera will be pointed to the sky, the non-bird
category will be composed of images of the sky with different cloud patterns,
images of airplanes and images of drones.

The dataset will be created with as many images of birds and non-birds as
possible while trying to maintain balance. The images will be obtained through
the camera of the Raspberry Pi that will be used when executing the model in the
real-time application. This will ensure that the pictures have the same quality
expected when running the application.

A python script is designed to record videos from the sky. Once these videos are
obtained, different frames depicting birds, the sky, planes or drones will be
manually extracted and saved in the corresponding folder. Fig. 5.1 shows the
libraries needed for the script.

Fig. 5.1: Libraries used in the code

Computer vision for bird strike prevention 33

A button will be used to control the recording, Fig. 5.2 shows its declaration.

Fig. 5.2: Global variable for the button in GPIO3

The changeState function receives the button parameter as an input. Inside this
function, the camera is activated or deactivated and full-screen videos are saved
inside the specified directory with the format given in line 22 in accordance with
line 16.

Fig. 5.3:First part of changeState function

The camera records frames while the button is not pressed.

Fig. 5.4: Second part of changeState function

The thread controls whether the button has been pressed or not at all times.

Fig. 5.5: Activate function and thread declaration

5.2 Resulting dataset

From the videos obtained with the script a total of 3282 images were saved
distributed as follows:

• Birds: 1462 images
• No-birds: 1820 images, among which

o 814 drone images
o 537 plane images
o 469 sky images

34 Computer vision for bird strike prevention

Fig. 5.6: Twelve randomly picked images from the bird dataset

Computer vision for bird strike prevention 35

Fig. 5.7: Twelve randomly picked images from the nobird dataset

The distribution of images of different categories of no-birds is a result of trial and
error in real-time application to improve model performance. From experimental
results, the model appeared to have more difficulty distinguishing between birds
and drones than between birds and planes. False positives with plain sky were
limited and varied according to cloud patterns in the sky, so different sky images
were considered. Regarding bird classification, most images corresponded to
pigeons and seagulls at different altitudes, see Fig. 5.6.

While the dataset is not perfectly balanced, it has demonstrated high accuracy
levels. The images of birds were saved in a folder named “birds” and the images
of no-birds were saved in a folder named “nobirds” without regard to their
subcategory. This serves the purpose of labeling the images in the code

36 Computer vision for bird strike prevention

5.3 Additional considerations

It is possible to create datasets from images obtained from the Internet. However,
Tensorflow may encounter problems when fitting the model as images may be in
a non-recognized format or be corrupt. Additionally, images found on the internet
depict the object of study in full detail, centered in the frame which is not the case
most of the time in real-life applications. The quality of the source image may also
be different from the images taken by the prototype and thus resulting in poor
accuracy.

It is desirable to have as many images as possible and have variations of them,
for this reason data augmentation techniques may help in increasing the size and
diversity of the dataset. Data augmentation combined with the usage of transfer
learning improves the efficiency of the model when a limited number of images
are available.

Computer vision for bird strike prevention 37

CHAPTER 6: ANALYZING MODEL PERFORMANCE AND
REAL-WORLD APPLICATION

A supervised deep learning model based on a Convolutional Neural Network
(CNN) is trained by updating the “weights” for different filters applied to images
according to the results obtained by checking with training and validation datasets
as explained in Chapter 3 of “Designing a computer vision system”. This chapter
explains different metrics used to evaluate and validate computer vision models
during and after its creation, with a focus on the model designed for this project.

6.1 Training metrics

During model training, the code aims to find the optimal value of a control
parameter. In deep learning models, this variable is the loss function which
measures how well the model is performing by evaluating the difference between
predicted and expected outcomes. In this project, Binary Cross Entropy is used
as a loss function.

Finding the minimum value of this function is challenging because it is determined
by multiple factors that are related to each other in an unknown way. The model
depends on several hyperparameters such as the number of images, the
distribution between validation and test, the percentage of dropout of neurons,
the number of epochs, the size of the batches, and the learning rate among
others.

The training and validation curves can be used to describe the training process
of a model. These curves show how well the model is performing by plotting the
training and validation loss against the number of epochs. By trying different
combinations of hyperparameters, their effects impact on the validation curves.

A phenomenon to be avoided when developing deep learning models is
underfitting. Underfitting happens when the model is unable to converge. It can
be produced for two main reasons, either the model is unable to learn the training
data (see Fig. 6.1) or the training has stopped too early and the model could
converge with additional epochs, see Fig. 6.2.

38 Computer vision for bird strike prevention

Fig. 6.1: Model unable to learn the data [28] Fig. 6.2: Model about to converge [28]

If, on the other hand, the validation loss is much higher than the training loss, it
indicates that the model is overfitting. Overfitting occurs when the model obtains
good results for the training data but not for validation data, see Fig. 6.3. One way
to solve overfitting is by modifying the probability of dropping out a neuron. As
the dropout parameter is increased, the capacity of the network is reduced and
the model becomes less likely to overfit. However, if the dropout parameter is set
too high, then the model may underfit and have poor performance on both the
training and test data. Other hyperparameters such as learning rate and batch
size may be required to be edited to balance it.

Fig. 6.3: Example of overfitting in a validation curve [28]

The resulting validation curves for the model trained for this project are the
following:

Computer vision for bird strike prevention 39

Fig. 6.4: Validation curve for the project’s resulting model (own creation)

The validation curve shows that the layers of the base_model corresponding to
the pre-trained model Imagenet_v2 are frozen during the first thirty epochs to
perform transfer learning and fine-tuning. In the last fifteen epochs, the weights
from the hundredth layer onwards are updated. From that point on, the model
converges faster in terms of loss and the validation and training loss converge to
values close to zero.

The metric used to evaluate the progression of the model with each epoch was
the AUC (Area Under the Curve) is a metric used to evaluate the performance of
a binary classifier model with each epoch. It is defined as the area under the
Receiver Operating Characteristic (ROC) curve, which plots the true positive rate
against the false positive rate. An AUC of 1 indicates that the model perfectly
separates the two classes, see Fig. 6.5.

Fig. 6.5: Number of TP and TN according to the probability (left) and ROC curve (right) [29]

40 Computer vision for bird strike prevention

An AUC value less than 1 indicates that the model is not perfectly separating the
two classes. This can occur when there are false positives and false negatives,
meaning that the classification threshold is not able to completely separate the
true positives from the true negatives. In the worst case scenario, AUC of 0.5
indicates that the model is no better than random chance, this could be due to an
error in labeling.

Fig. 6.6: Number of TP and TN according to the probability (left) and ROC curve (right) [29]

Fig. 6.7 displays the evolution of the training and validation AUC over the course
of 45 epochs. The AUC values are higher than 0.95, indicating that the model is
performing well, although not perfectly.

Fig. 6.7: Training and validation AUC curves

Computer vision for bird strike prevention 41

6.2 Model metrics

Once the model is finished there are some additional metrics that can be used to
measure how it performs.

• ACCURACY

Accuracy is a commonly used performance metric for classification models. It is
defined as the ratio of the number of correct predictions to the total number of
predictions made by the model. Mathematically, accuracy is calculated as (TP +
TN) / (TP + TN + FP + FN), where TP represents the number of true positives,
TN represents the number of true negatives, FP represents the number of false
positives, and FN represents the number of false negatives. The range of
accuracy is from 0 to 1, with 0 in the worst case scenario indicating that TP and
TN are both 0 and 1 in the best case scenario indicating that FN and FP are both
0. Accuracy provides a measure of how well the model can correctly classify
instances into their respective classes [30].

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (6.1)

The accuracy for the validation dataset can be computed using the tensorflow
tools shown in Fig. 6.8.

Fig. 6.8: Computing the accuracy for the validation dataset using Tensorflow

The accuracy for the model is 0.9622093 which is close to the optimal.

• PRECISION

Another commonly used performance metric for classification models is
precision. It is calculated as the ratio of TP predictions to the total number of
positive predictions made by the model (TP + FP). The range of accuracy is from
0 to 1, with 0 in the worst case scenario indicating that TP is 0 and 1 in the best
case scenario indicating that FN is 0. Precision measures how well the model
correctly identifies positive samples [31].

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (6.2)

42 Computer vision for bird strike prevention

The precision for the validation dataset can be computed using the tensorflow
tools shown in Fig. 6.9.

Fig. 6.9: Computing the precision for the validation dataset using Tensorflow

The precision for the model is 0.95666665 which is close to the optimal.

• RECALL

Recall measures the proportion of actual positive cases that were correctly
identified by the model as positive cases. Recall is calculated as the ratio of TP
predictions to the total number of actual positive instances (TP + FN). The range
of recall is from 0 to 1, with 0 indicating that TP is 0 and 1 indicating that FN is 0.
Recall measures how well the model correctly identifies all positive instances [31].

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (6.3)

The recall for the validation dataset can be computed using the tensorflow tools
shown in Fig. 6.10.

Fig. 6.10: Computing the recall for the validation dataset using Tensorflow

The recall for the model is 0.95666665 which is close to the optimal.

• F1-SCORE

The F1-score is a widely used performance metric for classification models. It is
calculated as the harmonic mean of precision and recall, which are two other

Computer vision for bird strike prevention 43

important evaluation metrics. The formula for F1-score is: F1 = 2 * (precision *
recall) / (precision + recall), where precision is the ratio of true positive predictions
to the total number of positive predictions made by the model (true positives +
false positives) and recall is the ratio of true positive predictions to the total
number of actual positive instances (true positives + false negatives). The range
of F1-score is from 0 to 1, with 0 indicating the worst possible performance and
1 indicating the best possible performance. The F1-score provides a balance
between precision and recall and is especially useful when dealing with
imbalanced datasets. A high F1-score indicates that the model has both high
precision and high recall [32].

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 = 0.95666665 (6.4)

• LOG-LOSS

Log-Loss, also known as logistic loss or cross-entropy loss, is a loss function
used in binary classification problems. It measures the performance of a
classification model where the prediction output is a probability value between 0
and 1. Log-Loss takes into account the uncertainty of the prediction based on
how much it varies from the actual label. A perfect model would have a Log-Loss
of 0. The goal of training a model is to find the best set of weights that minimize
the Log-Loss. For a binary classification where the label “y” equals 0 or 1, defining
“p” as the probability of the label being 1, the log-loss is computed according to
the following formula [33]:

log(𝑦, 𝑝) = −(𝑦 ∗ log(𝑝) + (1 − 𝑦) log(1 − 𝑝)) (6.5)

Using the tensorflow tools, the log-loss for the validation dataset can be computed
as shown in Fig. 6.10. In this case, a sigmoid function was required to convert
the prediction from positive and negative values to 0 to 1 values according to the
probability, additionally it required to eliminate the last batch different than 32 as
it gave errors in the compilation of the code.

Fig. 6.11: Computing the log-loss for the validation dataset using Tensorflow

44 Computer vision for bird strike prevention

The log-loss for the model is 0.1020382 which is close to the optimal.

• CONFUSION MATRIX

A confusion matrix is a table that is often used to describe the performance of a
classification model on a set of test data for which the true values are known. It
summarizes the number of correct and incorrect predictions made by the model,
broken down by each class. This allows for a more detailed analysis of the
model's performance and can help identify where the model may be making
errors.

The confusion matrix can be obtained using the pandas library as shown in Fig.
6.12, as with the case of log-loss, the last batch which had less than 32 images
is excluded to avoid compilation errors.

Fig. 6.12: Extracting the parameters from the validation dataset to create a confusion matrix using

Tensorflow

In this particular project, the confusion matrix can be used to visually summarize
the performance of a classification model in predicting whether an observation is
a bird or not. The matrix displays the values for true positives (observations
correctly predicted as birds), true negatives (observations correctly predicted as
not birds), false positives (observations incorrectly predicted as birds), and false
negatives (observations incorrectly predicted as not birds).

Fig. 6.13: Confusion matrix (own creation)

• RECEIVER OPERATING CHARACTERISTIC

In the Receiver Operating Characteristic (ROC) curves the relation of true
positives and false negatives is plotted for the validation images given to the
model. Ideally, the false positive rate should be 0 and the true positive rate should

Computer vision for bird strike prevention 45

be 1, therefore the perfect classifier should have a ROC classifier showing a
vertical line in the 0 false positive rate until the value 1 for true positive rate and
a horizontal line until the value 1 for false positive rate.

The ROC curve can be generated for the validation dataset using tools from the
scikit-learn library. The generation of the ROC curve requires that the batches
are complete with 32 images. Additionally, a sigmoid function must be applied to
translate the positive/negative values output from the prediction into normalized
values ranging from 0 to 1, representing the probability.

Fig. 6.14: Extracting the parameters from the validation dataset to create a ROC curve using sklearn

Fig. 6.15 shows the ROC curve for the validation dataset; the dots represent the
individual values of AUC for every batch in the dataset. The blue line describes a
shape close to the optimal. A random classifier, with AUC of 0.5, would follow the
diagonal yellow dotted line.

46 Computer vision for bird strike prevention

Fig. 6.15: ROC curve obtained from the validation dataset (own creation)

6.3 GRAD-CAM

Grad CAM stands for Gradient-weighted Class Activation Mapping. It is a
technique for producing “visual explanations” for decisions from a large class of
CNN-based models, making them more transparent. Grad-CAM uses the
gradients of any target concept flowing into the final convolutional layer to
produce a coarse localization map highlighting important regions in the image for
predicting the concept [34]. Next, the code required to create is an adaptation of
the one available in the keras reference webpage [35].

Apart from tensorflow, some functions from matplotlib library are necessary to
plot and colorize the heatmap.

Fig. 6.16: Libraries necessary for executing the code

The “make_gradcam_heatmap” function accepts as input the image arrays, the
model utilized for generating predictions, and the name of the last convolutional
layer. These inputs are used to generate a heatmap visualization of the model's
predictions and then return it.

Computer vision for bird strike prevention 47

Fig. 6.17: Function that creates the heatmap

The save_gradcam function takes as input an image, the heatmap, the name
that the resulting image should have and a transparency parameter alpha set to
0.4 to overlay the heatmap with the corresponding image. It then saves the
resulting image in the GradCamImages folder in the root path of the project.

Fig. 6.18: Function that overlaps and saves the heatmap and the image

48 Computer vision for bird strike prevention

All the necessary variables to create the Grad-Cam images are provided in this
last block of code which gets the model, last convolution layer’s name, image
array and creates the name of the resulting overlaid image according to the class
(bird or no-bird) and creates a unique identifier of the image according to its batch
and number (0-31).

Fig. 6.19: Code to execute

These images will allow us to see what characteristics of an image the model
takes into account when making a decision about the class it belongs to. This
information may be used to improve the dataset if needed by identifying and
addressing any biases or shortcomings in the data.

Fig. 6.20 displays a random sample of 12 images from the validation dataset, all
of which are labeled as 'Bird'. The corresponding heatmaps, overlaid on the
original images, highlight regions in red where birds are detected by the final
convolutional layer 'Conv_1'.

Computer vision for bird strike prevention 49

Fig. 6.20: Bird detections in validation dataset

Fig. 6.21 displays a random sample of 12 images from the validation dataset, all
of which are labeled as 'No Bird' and may depict drones, aircraft, or plain sky. The
corresponding heat maps generated by the Grad-CAM algorithm do not highlight
any objects resembling birds.

50 Computer vision for bird strike prevention

Fig. 6.21: No-Bird detections in validation dataset

6.4 Real world results

To evaluate the model's performance under real-world conditions, a Python script
was developed and integrated into the prototype. This script captures and stores
an image whenever a bird is detected. The resulting analysis of these images
enables the calculation of true positive and false positive detection rates,
providing a quantitative measure of the model's performance in a test run.

Computer vision for bird strike prevention 51

Fig. 6.22: Extract of the code to detect birds

52 Computer vision for bird strike prevention

Fig. 6.23: Final part of the code to detect birds

The code architecture is analogous to that described in 'Chapter 5. Dataset for
Computer Vision Applications', which details the process of saving recordings of
birds, drones, and planes for dataset creation. Figures 6.22 and 6.23 illustrate a
script that captures images from a camera feed and stores those containing
detected birds. To prevent redundant detection of the same bird, the script
incorporates a one-second delay between successive image captures. The
program terminates upon user input via a button press.

This script facilitates the execution of real-world tests which were performed
during optimal visibility conditions to delimit the casuistic for potential flaws.
Images that were captured as a result of a trigger event were stored locally on
the Raspberry Pi device. The analysis of these images enables the identification
of the flaws and enable a first evaluation of the overall performance.

While the model demonstrated a high degree of accuracy in classifying birds,
there were several instances of false positives among the images collected by
the device. A selection of representative images is included below in this
document to illustrate these cases, accompanied by a possible explanation (as
deep learning models deal with probabilities) of the underlying factors
contributing to the occurrence of false positives.

In a test performed during a windy day, several instances of plastic bags,
shopping gloves and other light plastic items were found among the images that
triggered the script. The most probable explanation for this is that the model does
not understand what this type of objects are because the dataset does not contain
images like these. See Fig. 6.24, Fig. 6.25, Fig. 6.26 and Fig. 6.27,

Computer vision for bird strike prevention 53

Fig. 6.24: Red paper bag classified as bird

Fig. 6.25: Plastic glove classified as bird

54 Computer vision for bird strike prevention

Fig. 6.26: Plastic bag classified as bird

Fig. 6.27: Plastic bag classified as bird

Computer vision for bird strike prevention 55

The model erroneously identified several instances of contrails as birds, resulting
in false positives. These false positives are particularly concerning because
contrails remain visible in the camera’s field of view for longer periods than birds,
leading to consecutive triggers and an increased number of saved images
containing contrails. Images containing contrails were added into the dataset but
nevertheless some of them were still miss classified by the model. See Fig. 6.28
and Fig. 6.29.

Fig. 6.28: Contrail of plane classified as bird

Fig. 6.29: Contrail of plane classified as bird

56 Computer vision for bird strike prevention

The model, in less frequency than plane contrails also miss-classified some small
and scattered clouds as birds. The model has to be flexible enough to classify
birds in species, sizes and positions different than those fed during the training
phase as otherwise it will overfit and false negatives would increase. See Fig.
6.30 and Fig. 6.31.

Fig. 6.30: Small cloud classified as bird

Fig. 6.31: Small cloud classified as bird

Computer vision for bird strike prevention 57

Most of the birds classified correctly by the model correspond to far away, small
birds, some of them were barely visible to the naked eye. A few examples of
these situations are presented below in Fig. 6.32, Fig. 6.33 and Fig. 6.34.

Fig. 6.32: Bird in the bottom right corner of the image

Fig. 6.33: Bird in the middle right of the image

58 Computer vision for bird strike prevention

Fig. 6.34: Cluster of small birds in the middle of the image

Some instances of birds closer to the camera were also detected. It has to be
noted that different sun positions and contrast did not have substantial effect on
detection. See Fig. 6.35, Fig. 6.36 and Fig. 6.37.

Fig. 6.35: Pigeon in mid-flight in the middle left part of the image

Computer vision for bird strike prevention 59

Fig. 6.36: Bird in mid-flight in the middle right part of the image

Fig. 6.37: Small bird in mid-flight in the middle of the image

60 Computer vision for bird strike prevention

A final test, in this case using a script capturing video showed that on some
occasions, a bird was correctly classified in a frame but some frames later, the
same bird could not be detected by the model permanently or for a few frames.
As previously explained, deep learning models classified based on probability
and it could happen that in certain frames the prediction fails to reach the
threshold defined. Fortunately, in most instances this is not the case. See Fig.
6.38 and Fig. 6.39.

Fig. 6.38: Seagull detected in the top right part of the image

Fig. 6.39: Seagull not detected in the middle of the image

Computer vision for bird strike prevention 61

On April 27th, a test was conducted on the prototype from 7:00 AM to 5:00 PM.
The camera was positioned to face the sky in an unobstructed location and was
mounted on a table using plastic cable ties for stabilization, as depicted in Fig.
6.40.

Fig. 6.40: Depiction of the setup of the prototype during the test

In that time the prototype stored 771 images that were later human reviewed, the
resulting distribution is as follows:

• 3 False positives due to accidental triggering during the set up.
• 109 False positives.
• 659 True positives.

The images were then processed using the Grad-CAM algorithm to determine
the features and characteristics that the model took into account to classify an
image as containing a bird. This information is valuable for assessing the
completeness of the dataset and identifying any additional image classes with
distinct features that the dataset might be lacking in order to reduce the incidence
of false positives. Figure 6.41 displays 12 randomly selected true positive
classifications. The model demonstrates the ability to detect birds at significant
distances, even when they are barely visible.

62 Computer vision for bird strike prevention

Fig. 6.41: True positives detected by the model

Fig. 6.42 illustrates 12 randomly selected images that demonstrate instances
where the model incorrectly identifies aircraft contrails as birds, resulting in false
positives. One potential solution to mitigate this issue could be to augment the
training dataset with additional samples of skies depicting a wide range of contrail
patterns.

Computer vision for bird strike prevention 63

Fig. 6.42: False positives detected by the model

Per definition, excluding the detections during the setup, this means the program
has a precision of:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

659

659+109
= 0.85807 (6.5)

Unfortunately, this test does not take into account the number of false negatives
and true negatives. False negatives refer to instances where birds enter the
camera’s field of vision but fail to trigger the program. True negatives are frames
that do not contain any birds. A significant number of false positives in the test
were attributed to aircraft contrails. Although the one-second interval between
saved images effectively reduces the likelihood of detecting the same bird twice,
as birds typically exit the frame before this time elapses, contrails persist for
longer periods and continue to trigger the program.

64 Computer vision for bird strike prevention

Chapter 7. Conclusion, improvements and application

Project conclusions

The aim of this project was to develop a computer vision system capable of
acknowledging the presence of birds in order to prevent bird strikes in aviation.
To achieve this goal, a deep learning model was developed using transfer
learning with fine tuning. This model was designed to be flexible enough to detect
birds in images that differed from those in the training dataset while also being
restrictive enough to avoid triggering too easily.

In addition to the development of the deep learning model, a dataset was created
and a microprocessor, specifically a RaspberryPi, was selected to execute the
model and capture images using its legacy camera. The resulting prototype has
shown promising results in both validation metrics and real-world testing, albeit
with limitations. The effectiveness of the system depends on the optics used. A
more complete dataset is required for the system to function optimally. The
management of false positives is a challenge that must be taken into account
when setting up a system based on this technology. An A/B test should be
conducted to evaluate the performance of the system.

The potential impact of this prototype on the air transportation industry is
significant. By providing pilots with more frequent and accurate notifications of
the presence of birds in the vicinity of airports, particularly during landing and
take-off maneuvers where the majority of bird strikes occur, the likelihood of such
incidents can be reduced. Further study is needed to fully understand the effects
of these notifications on pilot behavior and decision-making.

In contrast to radar-based solutions, the implementation of an artificial
intelligence approach offers greater scalability and can be utilized to fortify critical
points with increased precision due to its localized focus on specific regions. The
cost-effectiveness of this solution is also noteworthy. Plugging the device to a
power-source and using an inferior model of the Raspberry Pi could drop its cost
under 100 euros (as per July 2023), these devices could be strategically placed
around airports to provide real-time information on bird presence to a central
server. The sensitivity of the alert trigger could be adjusted as needed through
the use of appropriate training data. Additionally, this device could be used in
recreational flights by pointing it out of the cockpit window and sounding an alarm
if the presence of birds is detected.

Overall, this project has demonstrated the potential for computer vision
technology to play a valuable role in improving aviation safety that could
potentially reduce the probability of suffering bird strikes.

Improvements

• As per the prototype, enhancements could be made to both the design
and safety of the casing. Prolonged exposure to weather conditions may
result in damage to the electronic components due to humidity ingress, as
the current design has unnecessary openings. A solution could be to

Computer vision for bird strike prevention 65

design and fabricate a new casing using 3D printing technology. In order
to progress from the prototyping stage, the device should be tested for
pressure, temperature, fire resisting, electrical safety and humidity
requirements. A good way to ensure that is to certify the product according
to regulators like UL (in the United States) or CE (in the European Union).

• The Raspberry Pi can be configured to connect to the Internet. If enabled,
with a few changes in the script, the model could store images in an
external database. Not only could the model be monitored for performance
purposes but those images could be repurposed to add the birds and no-
birds datasets with site-specific images.

• If installed on-board, an acoustic actuator could be used to trigger an alarm
to the pilot.

Individual development

Despite having acquired basic concepts of Python programming and image
processing in some subjects both for the Aerospace systems and
Telecommunications’ degree, along the development of this project I have
learned a more in-depth knowledge of both the tooling and coding required to
complete a project of these characteristics.

This project is the result of hundreds of extensive research about technologies
that are rapidly evolving in the present and numerous hours of testing to ensure
the device is able to identify birds with a reasonable precision. While the
information available to the public on subjects such as deep learning and
computer vision are plentiful and accessible to the public, it was involved a
significant amount of trial and error when implementing different strategies. I had
to deal with deprecated libraries and lots of debugging to adapt the source
information and understand concepts like tensors, convolutional blocks, statistics
and data representation. The development of a unique and original binary
classification approach required the creation of numerous scripts for data
representation, organization, editing, and classification of images for the dataset.

66 Computer vision for bird strike prevention

Flow chart representing the time distribution of hours per task and subtask

Overall, I am satisfied with the final result of this project. With its completion, the
reader of this document will find a comprehensive guide that progresses from
basic concepts to more technical material, culminating in the application of this
knowledge to a specific use case: the development of a binary classifier capable
of distinguishing birds. With this knowledge, the reader may approach other
problems in other fields. Deep learning based computer vision solutions, with
enough creativity for example can be used also to classify sounds as long as their
characteristics can be represented with colors.

In the present and the near future, artificial intelligence will be playing a key role
in the development of new tools and technology in both subjects studied at
university. In my opinion my education would not be complete if I did not acquire
the knowledge learned during the completion of the project as this technology will
revolutionize both the telecommunications and aerospace fields among many
others.

Computer vision for bird strike prevention 67

REFERENCES

[1] Federal Aviation Administration. Wildlife Hazard Mitigation. [Online] Available:
https://wildlife.faa.gov/home [Accessed: 8 Jan. 2023].

[2] Skybrary. Bird Strike Reporting. [Online] Available: https://skybrary.aero/articles/bird-strike-reporting
[Accessed: 21 May. 2023].

[3] Skybrary. Detection of Bird Activity Using Radar. [Online] Available:
https://skybrary.aero/articles/detection-bird-activity-using-radar [Accessed: 21 May. 2023].

[4] IBM. Computer Vision. IBM Topics. [Online] Available: https://www.ibm.com/topics/computer-vision
[Accessed 29 Mar. 2023]”.

[5] Technological Institute of Education of Crete (TeiCrete). Edges. [PDF] Retrieved March 29, 2023, from
https://eclass.teicrete.gr/modules/document/file.php/TP283/Lab/04.%20Lab/Edges.pdf”.

[6] Sindhu V, Nivedha S, Prakash M (2020). "An Empirical Science Research on Bioinformatics in Machine
Learning". Journal of Mechanics of Continua and Mathematical Sciences(7)

[7] DeepAI. Convolutional Neural Network. DeepAI Glossary. [Online] Available:
https://deepai.org/machine-learning-glossary-and-terms/convolutional-neural-network [Accessed 29 Mar.
2023].

[8] Gad, A. F. (2018). Practical computer vision applications using deep learning with CNNs: With detailed
examples in Python using TensorFlow and Kivy. Apress, Berkeley, CA

[9] DevelopersBreach. CNN Banner. [Online] Available: https://i0.wp.com/developersbreach.com/wp-
content/uploads/2020/08/cnn_banner.png [Accessed 17 Apr. 2023].

[10] Niall O’ Mahony et al. Deep Learning vs. Traditional Computer Vision. arXiv. [Online] Available:
https://arxiv.org/abs/1910.137962 [Accessed 03 Jun. 2023]

[11] DeepLizard. Neural Network Programming - Deep Learning with PyTorch. [Online]. Available:
https://deeplizard.com/learn/video/5T-iXNNiwIs [Accessed: 7 May 2023]

[12] Apeer_micro. “What is deep learning and convolutional neural networks (CNN), Tutorial 89.” [Online]
Available: https://www.youtube.com/watch?v=2eQVKZFOHpI [Accessed: May 21, 2023].”

[13] Flatiron School. Deep Learning vs. Machine Learning. Flatiron School Blog. [Online] Available:
https://flatironschool.com/blog/deep-learning-vs-machine-learning/ [Accessed 29 Mar. 2023]

[14] Kolosov, D., & Kelefouras, V. (2022). Anatomy of Deep Learning Image Classification and Object
Detection on Commercial Edge Devices: A Case Study on Face Mask Detection. University of Patras.

[15] Kingma, Diederik P., and Jimmy Ba. Adam: A Method for Stochastic Optimization. [Online]. Available:
https://arxiv.org/abs/1412.6980. [Accessed 29 Mar. 2023]

[16] FastAI. Overfitting. FastAI Reference. [Online] Available:https://www.fastaireference.com/overfitting
[Accessed 29 Mar. 2023]

[17] Apeer_micro. “Introductory python tutorials for image processing, Tutorial 97.” [Online]. Available:
https://www.youtube.com/watch?v=OSY7hWADMZk. [Accessed 29 Mar. 2023]

[18] Wikipedia. File:Grafico con MATLAB di una superficie.png. Wikimedia Commons. [Online]
Available:https://upload.wikimedia.org/wikipedia/commons/8/87/Grafico_con_MATLAB_di_una_superficie.
png [Accessed 29 Mar. 2023]”.

[19] Manaswi, N.K. (2018). Deep Learning with Applications Using Python. 1st ed. Apress.

[20] TensorFlow. Transfer learning. TensorFlow Tutorials. [Online]
Available:https://www.tensorflow.org/tutorials/images/transfer_learning [Accessed 29 Mar. 2023]”.

[21] Raspberry Pi. Processors. Raspberry Pi Documentation. [Online] Available:
https://www.raspberrypi.com/documentation/computers/processors.html [Accessed 18 Mar. 2023]

https://doi.org/10.26782%2Fjmcms.spl.7%2F2020.02.00006
https://doi.org/10.26782%2Fjmcms.spl.7%2F2020.02.00006
https://deepai.org/machine-learning-glossary-and-terms/convolutional-neural-network

68 Computer vision for bird strike prevention

[22] Farnell. SBC Raspberry Pi 2 Model B V1.2 [Online]. Available: https://es.farnell.com/raspberry-pi/rpi2-
modb-v1-2/sbc-raspberry-pi-2-model-b-v1/dp/3772475?st=raspberry%20pi%202. [Accessed 29 Mar.
2023].

[23] Raspipc. Tienda Raspipc [Online]. Available:
https://www.raspipc.es/index.php?ver=tienda&accion=verArticulosFamilia&idFamilia=3. [Accessed 29 Mar.
2023].

[24] Kubii. Raspberry Pi Zero v1.3 [Online]. Available: https://www.kubii.es/raspberry-pi-3-2-b/1401-
raspberry-pi-cero-v13-kubii-3272496006973.html?src=raspberrypi. [Accessed 29 Mar. 2023].

[25] Raspberry Pi Camera Module V2-8 Megapixel,1080p [Online]. Available:
https://www.amazon.es/Raspberry-Pi-Camera-Module-8MP/dp/B01ER2SKFS/. [Accessed 27 Mar. 2023].

[26] Freenove 5 inch Touchscreen with Case, 800x480 TFT LCD Display HDMI Monitor for Raspberry Pi
4B/3B+/3B/2B/B+/A+/Zero W, Capacitive Touch Screen with Touch Pen, Driver-Free [Online]. Available:
https://www.amazon.es/Freenove-Touchscreen-Raspberry-Capacitive-Driver-Free/dp/B0B455LDKH.
[Accessed 27 Mar. 2023].

[27] Amazon.es. POSUGEAR Batería Externa 20000mAh Mini Power Bank Carga Rapida 22.5W PD &
QC 4.0 USB C Cargador Portatil con 3 Salidas, Compatible con iPhone13/12 Pro MAX, XS, Samsung,
Xiaomi, Huawei, iPad, Airpods. [Online] Available: https://www.amazon.es/POSUGEAR-20000mah-
Bateria-Portable-Compatible/dp/B09LM3RS2N [Accessed 28 Mar. 2023]

[28] Apeer_micro. “Deep Learning terminology explained – Learning curves, Tutorial 101.” [Online].
Available: https://www.youtube.com/watch?v=SNQEpOdPt5g. [Accessed 29 Mar. 2023]

[29] Apeer_micro. “Deep Learning terminology explained – ROC curves and AUC, Tutorial 106.” [Online].
Available: https://www.youtube.com/watch?v=jbeATQXKtzw. [Accessed 29 Mar. 2023]

[30] Google Developers, "Classification: Accuracy," [Online]. Available:
https://developers.google.com/machine-learning/crash-course/classification/accuracy. [Accessed 29 Apr.
2023].

[31] Google Developers, "Classification: Precision and Recall," [Online]. Available:
https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall.
[Accessed 29 Apr. 2023].

[32] TensorFlow, "F1Score," [Online]. Available:
https://www.tensorflow.org/addons/api_docs/python/tfa/metrics/F1Score. [Accessed 29 Apr. 2023].

[33] Google Developers, "Logistic Regression: Model Training," [Online]. Available:
https://developers.google.com/machine-learning/crash-course/logistic-regression/model-training.
[Accessed 29 Apr. 2023].

[34] Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-CAM:
Visual Explanations from Deep Networks via Gradient-Based Localization. In 2017 IEEE International
Conference on Computer Vision (ICCV) (pp. 618-626). IEEE.

[35] Keras, "Grad-CAM class activation visualization," [Online]. Available:
https://keras.io/examples/vision/grad_cam/. [Accessed 29 Apr. 2023].

Computer vision for bird strike prevention 69

APPENDIX

TITLE: Computer vision for bird strike prevention

DEGREE: Bachelor’s degree in Aerospace Systems Engineering and
Telecommunications Systems

AUTHOR: Adrià Ibáñez i Boix

ADVISORS: Alberto Burgos Plaza & Francisco Javier Mora Serrano

DATA: 12th July 2023

DATASHEET

Raspberry Pi 4 Model B

Release 1

June 2019

Copyright 2019 Raspberry Pi (Trading) Ltd. All rights reserved.

Raspberry Pi 4 Model B Datasheet
Copyright Raspberry Pi (Trading) Ltd. 2019

Table 1: Release History

Release Date Description

1 21/06/2019 First release

The latest release of this document can be found at https://www.raspberrypi.org

1 Release 1

https://www.raspberrypi.org

Raspberry Pi 4 Model B Datasheet
Copyright Raspberry Pi (Trading) Ltd. 2019

Contents

1 Introduction 5

2 Features 6
2.1 Hardware . 6
2.2 Interfaces . 6
2.3 Software . 7

3 Mechanical Specification 7

4 Electrical Specification 7
4.1 Power Requirements . 9

5 Peripherals 9
5.1 GPIO Interface . 9

5.1.1 GPIO Pin Assignments . 9
5.1.2 GPIO Alternate Functions . 10
5.1.3 Display Parallel Interface (DPI) . 11
5.1.4 SD/SDIO Interface . 11

5.2 Camera and Display Interfaces . 11
5.3 USB . 11
5.4 HDMI . 11
5.5 Audio and Composite (TV Out) . 11
5.6 Temperature Range and Thermals . 11

6 Availability 12

7 Support 12

2 Release 1

Raspberry Pi 4 Model B Datasheet
Copyright Raspberry Pi (Trading) Ltd. 2019

List of Figures

1 Mechanical Dimensions . 7
2 Digital IO Characteristics . 8
3 GPIO Connector Pinout . 9

3 Release 1

Raspberry Pi 4 Model B Datasheet
Copyright Raspberry Pi (Trading) Ltd. 2019

List of Tables

1 Release History . 1
2 Absolute Maximum Ratings . 8
3 DC Characteristics . 8
4 Digital I/O Pin AC Characteristics . 8
5 Raspberry Pi 4 GPIO Alternate Functions . 10

4 Release 1

Raspberry Pi 4 Model B Datasheet
Copyright Raspberry Pi (Trading) Ltd. 2019

1 Introduction

The Raspberry Pi 4 Model B (Pi4B) is the first of a new generation of Raspberry Pi computers supporting
more RAM and with siginficantly enhanced CPU, GPU and I/O performance; all within a similar form
factor, power envelope and cost as the previous generation Raspberry Pi 3B+.

The Pi4B is avaiable with either 1, 2 and 4 Gigabytes of LPDDR4 SDRAM.

5 Release 1

Raspberry Pi 4 Model B Datasheet
Copyright Raspberry Pi (Trading) Ltd. 2019

2 Features

2.1 Hardware

• Quad core 64-bit ARM-Cortex A72 running at 1.5GHz

• 1, 2 and 4 Gigabyte LPDDR4 RAM options

• H.265 (HEVC) hardware decode (up to 4Kp60)

• H.264 hardware decode (up to 1080p60)

• VideoCore VI 3D Graphics

• Supports dual HDMI display output up to 4Kp60

2.2 Interfaces

• 802.11 b/g/n/ac Wireless LAN

• Bluetooth 5.0 with BLE

• 1x SD Card

• 2x micro-HDMI ports supporting dual displays up to 4Kp60 resolution

• 2x USB2 ports

• 2x USB3 ports

• 1x Gigabit Ethernet port (supports PoE with add-on PoE HAT)

• 1x Raspberry Pi camera port (2-lane MIPI CSI)

• 1x Raspberry Pi display port (2-lane MIPI DSI)

• 28x user GPIO supporting various interface options:

– Up to 6x UART

– Up to 6x I2C

– Up to 5x SPI

– 1x SDIO interface

– 1x DPI (Parallel RGB Display)

– 1x PCM

– Up to 2x PWM channels

– Up to 3x GPCLK outputs

6 Release 1

Raspberry Pi 4 Model B Datasheet
Copyright Raspberry Pi (Trading) Ltd. 2019

2.3 Software

• ARMv8 Instruction Set

• Mature Linux software stack

• Actively developed and maintained

– Recent Linux kernel support

– Many drivers upstreamed

– Stable and well supported userland

– Availability of GPU functions using standard APIs

3 Mechanical Specification

Figure 1: Mechanical Dimensions

4 Electrical Specification

Caution! Stresses above those listed in Table 2 may cause permanent damage to the device. This is
a stress rating only; functional operation of the device under these or any other conditions above those
listed in the operational sections of this specification is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device reliability.

7 Release 1

Raspberry Pi 4 Model B Datasheet
Copyright Raspberry Pi (Trading) Ltd. 2019

Symbol Parameter Minimum Maximum Unit

VIN 5V Input Voltage -0.5 6.0 V

Table 2: Absolute Maximum Ratings

Please note that VDD IO is the GPIO bank voltage which is tied to the on-board 3.3V supply rail.

Symbol Parameter Conditions Minimum Typical Maximum Unit

VIL Input low voltagea VDD IO = 3.3V - - TBD V

VIH Input high voltagea VDD IO = 3.3V TBD - - V

IIL Input leakage current TA = +85◦C - - TBD µA

CIN Input capacitance - - TBD - pF

VOL Output low voltageb VDD IO = 3.3V, IOL = -2mA - - TBD V

VOH Output high voltageb VDD IO = 3.3V, IOH = 2mA TBD - - V

IOL Output low currentc VDD IO = 3.3V, VO = 0.4V TBD - - mA

IOH Output high currentc VDD IO = 3.3V, VO = 2.3V TBD - - mA

RPU Pullup resistor - TBD - TBD kΩ

RPD Pulldown resistor - TBD - TBD kΩ
a Hysteresis enabled
b Default drive strength (8mA)
c Maximum drive strength (16mA)

Table 3: DC Characteristics

Pin Name Symbol Parameter Minimum Typical Maximum Unit

Digital outputs trise 10-90% rise timea - TBD - ns

Digital outputs tfall 90-10% fall timea - TBD - ns
a Default drive strength, CL = 5pF, VDD IO = 3.3V

Table 4: Digital I/O Pin AC Characteristics

tfall trise

DIGITAL
OUTPUT

Figure 2: Digital IO Characteristics

8 Release 1

Raspberry Pi 4 Model B Datasheet
Copyright Raspberry Pi (Trading) Ltd. 2019

4.1 Power Requirements

The Pi4B requires a good quality USB-C power supply capable of delivering 5V at 3A. If attached
downstream USB devices consume less than 500mA, a 5V, 2.5A supply may be used.

5 Peripherals

5.1 GPIO Interface

The Pi4B makes 28 BCM2711 GPIOs available via a standard Raspberry Pi 40-pin header. This header
is backwards compatible with all previous Raspberry Pi boards with a 40-way header.

5.1.1 GPIO Pin Assignments

Figure 3: GPIO Connector Pinout

As well as being able to be used as straightforward software controlled input and output (with pro-
grammable pulls), GPIO pins can be switched (multiplexed) into various other modes backed by dedi-
cated peripheral blocks such as I2C, UART and SPI.

In addition to the standard peripheral options found on legacy Pis, extra I2C, UART and SPI peripherals
have been added to the BCM2711 chip and are available as further mux options on the Pi4. This gives
users much more flexibility when attaching add-on hardware as compared to older models.

9 Release 1

Raspberry Pi 4 Model B Datasheet
Copyright Raspberry Pi (Trading) Ltd. 2019

5.1.2 GPIO Alternate Functions

Default
GPIO Pull ALT0 ALT1 ALT2 ALT3 ALT4 ALT5

0 High SDA0 SA5 PCLK SPI3 CE0 N TXD2 SDA6

1 High SCL0 SA4 DE SPI3 MISO RXD2 SCL6

2 High SDA1 SA3 LCD VSYNC SPI3 MOSI CTS2 SDA3

3 High SCL1 SA2 LCD HSYNC SPI3 SCLK RTS2 SCL3

4 High GPCLK0 SA1 DPI D0 SPI4 CE0 N TXD3 SDA3

5 High GPCLK1 SA0 DPI D1 SPI4 MISO RXD3 SCL3

6 High GPCLK2 SOE N DPI D2 SPI4 MOSI CTS3 SDA4

7 High SPI0 CE1 N SWE N DPI D3 SPI4 SCLK RTS3 SCL4

8 High SPI0 CE0 N SD0 DPI D4 - TXD4 SDA4

9 Low SPI0 MISO SD1 DPI D5 - RXD4 SCL4

10 Low SPI0 MOSI SD2 DPI D6 - CTS4 SDA5

11 Low SPI0 SCLK SD3 DPI D7 - RTS4 SCL5

12 Low PWM0 SD4 DPI D8 SPI5 CE0 N TXD5 SDA5

13 Low PWM1 SD5 DPI D9 SPI5 MISO RXD5 SCL5

14 Low TXD0 SD6 DPI D10 SPI5 MOSI CTS5 TXD1

15 Low RXD0 SD7 DPI D11 SPI5 SCLK RTS5 RXD1

16 Low FL0 SD8 DPI D12 CTS0 SPI1 CE2 N CTS1

17 Low FL1 SD9 DPI D13 RTS0 SPI1 CE1 N RTS1

18 Low PCM CLK SD10 DPI D14 SPI6 CE0 N SPI1 CE0 N PWM0

19 Low PCM FS SD11 DPI D15 SPI6 MISO SPI1 MISO PWM1

20 Low PCM DIN SD12 DPI D16 SPI6 MOSI SPI1 MOSI GPCLK0

21 Low PCM DOUT SD13 DPI D17 SPI6 SCLK SPI1 SCLK GPCLK1

22 Low SD0 CLK SD14 DPI D18 SD1 CLK ARM TRST SDA6

23 Low SD0 CMD SD15 DPI D19 SD1 CMD ARM RTCK SCL6

24 Low SD0 DAT0 SD16 DPI D20 SD1 DAT0 ARM TDO SPI3 CE1 N

25 Low SD0 DAT1 SD17 DPI D21 SD1 DAT1 ARM TCK SPI4 CE1 N

26 Low SD0 DAT2 TE0 DPI D22 SD1 DAT2 ARM TDI SPI5 CE1 N

27 Low SD0 DAT3 TE1 DPI D23 SD1 DAT3 ARM TMS SPI6 CE1 N

Table 5: Raspberry Pi 4 GPIO Alternate Functions

Table 5 details the default pin pull state and available alternate GPIO functions. Most of these alternate
peripheral functions are described in detail in the BCM2711 Peripherals Specification document which
can be downloaded from the hardware documentation section of the website.

10 Release 1

https://www.raspberrypi.org/documentation/hardware/raspberrypi/README.md

Raspberry Pi 4 Model B Datasheet
Copyright Raspberry Pi (Trading) Ltd. 2019

5.1.3 Display Parallel Interface (DPI)

A standard parallel RGB (DPI) interface is available the GPIOs. This up-to-24-bit parallel interface can
support a secondary display.

5.1.4 SD/SDIO Interface

The Pi4B has a dedicated SD card socket which suports 1.8V, DDR50 mode (at a peak bandwidth of 50
Megabytes / sec). In addition, a legacy SDIO interface is available on the GPIO pins.

5.2 Camera and Display Interfaces

The Pi4B has 1x Raspberry Pi 2-lane MIPI CSI Camera and 1x Raspberry Pi 2-lane MIPI DSI Display
connector. These connectors are backwards compatible with legacy Raspberry Pi boards, and support
all of the available Raspberry Pi camera and display peripherals.

5.3 USB

The Pi4B has 2x USB2 and 2x USB3 type-A sockets. Downstream USB current is limited to approxi-
mately 1.1A in aggregate over the four sockets.

5.4 HDMI

The Pi4B has 2x micro-HDMI ports, both of which support CEC and HDMI 2.0 with resolutions up to
4Kp60.

5.5 Audio and Composite (TV Out)

The Pi4B supports near-CD-quality analogue audio output and composite TV-output via a 4-ring TRS
’A/V’ jack.

The analog audio output can drive 32 Ohm headphones directly.

5.6 Temperature Range and Thermals

The recommended ambient operating temperature range is 0 to 50 degrees Celcius.

To reduce thermal output when idling or under light load, the Pi4B reduces the CPU clock speed and
voltage. During heavier load the speed and voltage (and hence thermal output) are increased. The
internal governor will throttle back both the CPU speed and voltage to make sure the CPU temperature
never exceeds 85 degrees C.

The Pi4B will operate perfectly well without any extra cooling and is designed for sprint performance -
expecting a light use case on average and ramping up the CPU speed when needed (e.g. when loading
a webpage). If a user wishes to load the system continually or operate it at a high termperature at full
performance, further cooling may be needed.

11 Release 1

Raspberry Pi 4 Model B Datasheet
Copyright Raspberry Pi (Trading) Ltd. 2019

6 Availability

Raspberry Pi guarantee availability Pi4B until at least January 2026.

7 Support

For support please see the hardware documentation section of the Raspberry Pi website and post ques-
tions to the Raspberry Pi forum.

12 Release 1

https://www.raspberrypi.org/documentation/hardware/
https://www.raspberrypi.org/forums/

Raspberry Pi Camera v2

Part number: RPI 8MP CAMERA BOARD

 8 megapixel camera capable of taking photographs of 3280 x 2464 pixels

 Capture video at 1080p30, 720p60 and 640x480p90 resolutions

 All software is supported within the latest version of Raspbian Operating System

The Camera v2 is the new official camera board released by the Raspberry Pi foundation.

The Raspberry Pi Camera Module v2 is a high quality 8 megapixel Sony IMX219 image sensor custom designed add-on board for
Raspberry Pi, featuring a fixed focus lens. It's capable of 3280 x 2464 pixel static images, and also supports 1080p30, 720p60 and
640x480p60/90 video. It attaches to Pi by way of one of the small sockets on the board upper surface and uses the dedicated CSi
interface, designed especially for interfacing to cameras.

 8 megapixel native resolution sensor-capable of 3280 x 2464 pixel static images

 Supports 1080p30, 720p60 and 640x480p90 video

 Camera is supported in the latest version of Raspbian, Raspberry Pi's preferred operating system

The board itself is tiny, at around 25mm x 23mm x 9mm. It also weighs just over 3g, making it perfect for mobile or other
applications where size and weight are important. It connects to Raspberry Pi by way of a short ribbon cable.
The high quality Sony IMX219 image sensor itself has a native resolution of 8 megapixel, and has a fixed focus lens on-board. In
terms of still images, the camera is capable of 3280 x 2464 pixel static images, and also supports 1080p30, 720p60 and
640x480p90 video.

Applications

- CCTV security camera
- motion detection
- time lapse photography

1 / 1 5 inch 800x480 IPS touchscreen

FNK0078A H1J2

█ www.freenove.com

█ Need help? Contact support@freenove.com

How to Connect?

1. After writing OS, insert the micro SD card to Raspberry Pi.

2. Install 4 brass standoffs.

3. Connect the ribbon cable.

Note: Pay attention to the blue bar on the cable when connecting.

4. Fix the Raspberry Pi with 4 screws and then connect the ribbon cable. Then install the stands with 2 screws.

5. Connect the power supply and wait a few seconds, the screen will display.

If the screen doesn’t display normally with Raspberry Pi OS

Open boot/config.txt on Raspberry Pi or use a computer to open this file in the micro SD card.

Modify dtoverlay=vc4-kms-v3d to dtoverlay=vc4-fkms-v3d or #dtoverlay=vc4-kms-v3d

Save the file and then reboot the Raspberry Pi.

Having problems? Download the latest tutorial and troubleshooting: http://freenove.com/fnk0078

Need further help? Contact our technical support by email: support@freenove.com

Blue bar

is here

mailto:support@freenove.com
http://freenove.com/fnk0078
mailto:support@freenove.com

	Introduction
	Features
	Hardware
	Interfaces
	Software

	Mechanical Specification
	Electrical Specification
	Power Requirements

	Peripherals
	GPIO Interface
	GPIO Pin Assignments
	GPIO Alternate Functions
	Display Parallel Interface (DPI)
	SD/SDIO Interface

	Camera and Display Interfaces
	USB
	HDMI
	Audio and Composite (TV Out)
	Temperature Range and Thermals

	Availability
	Support
	How to Connect?

