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a b s t r a c t 

Introducing capacities in the reliable fixed charge location problem is a complex task since successive 

failures might yield in high facility overloads. Ideally, the goal consists in minimizing the total cost while 

keeping the expected facility overloads under a given threshold. Several heuristic approaches have been 

proposed in the literature for dealing with this goal. In this paper, we present the first exact approach 

for this problem, which is based on a cutting planes algorithm. Computational results illustrate its good 

performance. 
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. Introduction 

Logistic systems are typically based on costly infrastructures 

hat remain essentially unchanged during long time horizons. 

owever, technical issues or environmental conditions can occa- 

ionally disrupt the operation of some of these infrastructures and 

his can compromise the performance of the entire system (see, 

or instance Fan, Ma, & Li, 2018; Pariazar & Sir, 2018 ). This fact has

otivated researchers to include reliability issues in their models 

f the logistic systems as can be seen, for instance, in the review 

nyder et al. (2016) . This includes the design of reliable distribu- 

ion networks ( Herivin & Mahjoub, 2005 ) and supply chain net- 

orks ( Peng, Snyder, Lim, & Liu, 2011; Qi, Max Shen & Snyder, 

010 ), and the location of facilities able to provide a good service 

evel even upon network failures ( Yu & Liu, 2020 ). 

In particular, (un)reliability of the facilities has become an 

ncreasingly relevant topic in discrete location since the seminal 

ork Drezner (1987) . The studied models include classical ones 

uch as the p-median and the p-center ( Albareda-Sambola, Hi- 

ojosa, Marín, & Puerto, 2015; Berman, Krass, & Menezes, 2007 ) 

r fixed-charge facility location problems ( Aboolian, Cui, & Shen, 

013; Alcaraz, Landete, Monge, & Sainz-Pardo, 2016 ) or path 

ocation problems ( Puerto, Ricca, & Scozzari, 2014 ). As far as the 

ature of the disruptions is concerned, several research lines are 
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ctive. On the one hand, there is a bunch of literature devoted to 

reventing or mitigating the effect of intentional disruptions. On 

his stream we find, for instance Church & Scaparra (2007) and 

he extensions by the same authors Scaparra & Church (2008) , 

r Afify et al. (2019) ; Hamidi, Gholamian & Shahanaghi (2017) . 

nother fruitful line of research is concerned about situations 

here system congestion may provoke disruptions ( Mohammadi, 

ula, & Tavakkoli-Moghaddamcd, 2019; Zamani, Arkat, Taghi, & 

iaki, 2022; Zhang, Batta, & Nagi, 2022 , among others). A third 

ine of research involves accidental disruptions. This work belongs 

o this third class. 

The question about how to fix the capacities for facilities in un- 

eliable networks is a hot topic. There is a trend that proposes to 

pdate or “harden” the standard capacities, i.e. to increase them 

y more investment. For instance, in Rohaninejad, Sahraeian, & 

avakkoli-Moghaddam (2018) an exact algorithm is developed for 

 multi-echelon capacitated problem where external resources may 

e used for satisfying demands yielding a certain penalty. It is also 

ital the assumption about the failures correlation. The work Xie, 

n, & Ouyang (2019) presents a compact mixed-integer mathemat- 

cal model to optimize the facility location under generally corre- 

ated facility disruptions. Related to the facility unreliability is the 

ustomers risk attitude. In Berman, Sanajian, & Wang (2017) it is 

tudied how the decision maker’s risk attitude can affect the opti- 

al facility locations. In Yu, Haskell, & Liu (2017) it is developed a 

isk-averse optimization formulation to compute resilient location 

nd customer assignment solutions that control the risks at each 

ndividual customer. 
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In the problem at hand, it is assumed that we start from a set of

ustomers and a potential set of locations where service plants can 

e opened. Each plant has a different capacity and installation cost, 

nd each customer has a different demand. In addition, there is a 

ositive probability that installed plants fail and customers have 

o go to another plant to receive service or are left without ser- 

ice in exchange for compensation. Facility failures are assumed to 

ake place independently of each other. The Reliable Fixed-charge 

ocation Problem with Capacities (RFLCP) is a problem in which 

everal types of decisions are made: it is decided in which poten- 

ial locations to open the plants, it is decided which plant each of 

he clients of the network is assigned to when no plant fails and 

lso which plant each client is assigned to in any of the failure sce- 

arios. The solution must meet that the expected overload of the 

et of installed plants does not exceed a threshold and that the to- 

al cost is minimal. In this paper, we present a new exact method 

o solve the RFLCP, based upon a dynamic algorithm that combines 

he solutions of two problems, the RFLCP when some capacity con- 

traints are relaxed, and an auxiliary problem used for keeping the 

xpected overload in the demand below the threshold. Previously, 

here was no model or algorithm in the literature that would allow 

olving this problem. Obtaining heuristic solutions had been ad- 

ressed ( Albareda-Sambola, Landete, Monge, & Sainz-Pardo, 2016; 

ade & Pohl, 2009 ). Some of the heuristic procedures in the lit- 

rature are more strict about keeping the overload below the de- 

ired threshold, others less so. Thus, obtaining an exact procedure 

or this problem was a research gap waiting to be addressed. To 

he best of our knowledge, the only exact method available in the 

iterature for a capacitated location problem with unreliable facili- 

ies is Espejo, Marín, & Rodríguez-Chía (2015) , where a completely 

ifferent model is addressed, and only scenarios with one single 

acility failure are considered. 

The RFLCP was introduced in Albareda-Sambola et al. (2016) , 

here the authors devoted special efforts to the design of pow- 

rful matheuristic methodologies to solve this reliability facility lo- 

ation problem. However, no work about exact solution procedures 

as been presented so far for this particular problem. In this work 

e try to cover this research gap. To do so, we present a dynamic

pproach that we computationally check. 

We can itemize as follows the main contributions of this work: 

i. An exact dynamic approach for obtaining exact solutions for 

the Reliable Fixed-charge Location Problem with Capacities 

is introduced. It is based in two mixed-integer optimiza- 

tion models: a master problem and an auxiliary assignment 

problem. 

ii. Feasible solutions to the Reliable Fixed-charge Location 

Problem with Capacities are classified into equivalence 

classes and properties of these classes are discussed. 

iii. Extensive computational experiments are conducted. In- 

stances with up to 50 customers and 75 candidate facili- 

ties are solved, and the results are thoroughly reported. They 

give strong evidence of the efficiency and efficacy of the ex- 

act method. 

The paper is organized as follows. Section 2 introduces the no- 

ation and the essential background on the RFLCP. In Section 3 , we 

ntroduce the optimization models used in the exact dynamic ap- 

roach proposed in this work. Next, in Section 4 , the algorithm is 

resented. Section 5 illustrates the new approach by comparing the 

btained results to those taken from the literature. Section 6 con- 

ludes the work. 

. Notation and preliminaries 

Let I be the set of customers, and J the set of potential facility 

ocations. The set J is assumed to include a dummy facility u where 
25
on-served customers are allocated. Assignments to this facility, as 

t is usually done in the literature, are used to represent situations 

here a particular customer cannot be served by the system. Let 

 i j be the unitary transportation cost from facility j ∈ J to customer 

 ∈ I, h i the demand of customer i , Q j the capacity of facility j, and

f j the opening cost of the facility j. In the case of u, the unitary

ransportation cost d iu is the penalty cost of non-service, Q u = ∞ 

nd f u = 0 . The penalty non-service cost, which can represent ei- 

her an outsourcing cost, or the loss for not servicing a customer, 

s assumed to be greater than any unitary transportation cost. Let 

 be the subset of J whose facilities may suffer from service dis- 

uption with homogeneous and independent probability q , and NF 

he subset of J whose facilities never fail, F ∪ N F = J and u ∈ NF .

et X j be a binary variable which takes the value 1 if a facility is

pened at location j ∈ J. In order to describe the allocation of each 

ustomer for any possible scenario we use assignment levels. Each 

ustomer is assigned to different facilities at different levels, and, 

iven a scenario, it will be served form the lowest-level assigned 

acility that remains available. Let Y i jr be another binary variable 

hich takes the value 1 if customer i ∈ I is assigned to facility 

j ∈ J at level r ∈ R with R = { 0 , . . . , | F | − 1 } . For instance, Y 1 j 3 2 = 1

eans that customer 1 would be served by facility j 3 if two spe- 

ific failures have occurred: if no failure occurs, customer 1 is allo- 

ated to the facility j 1 such that Y 1 j 1 0 = 1 ; if j 1 fails, then customer

 would be allocated to the facility j 2 such that Y 1 j 2 1 = 1 ; if both j 1 
nd j 2 fail, facility j 3 would serve customer 1. The Reliable Fixed- 

harge Location Problem with Capacity Constraints (CRFLP) defined 

y Albareda-Sambola et al. in Albareda-Sambola et al. (2016) was 

ormulated as: 

(CRFLP) min α

( ∑ 

j∈ J 
f j X j + 

∑ 

i ∈ I 
h i d i j Y i j0 

) 

+ (1 − α) 
∑ 

i ∈ I 
h i 

( ∑ 

j∈ NF 

∑ 

r∈ R 
d i j q 

r Y i jr + 

∑ 

j∈ F 

∑ 

r∈ R 
d i j q 

r (1 − q ) Y i jr 

) 

s . t . X u = 1 (1) 

∑ 

j∈ F 
Y i jr + 

∑ 

j∈ NF 

r ∑ 

s =0 

Y i js = 1 i ∈ I, r ∈ R (2) 

∑ 

r∈ R 
Y i jr ≤ X j i ∈ I, j ∈ J (3) 

∑ 

i ∈ I 
h i Y i j0 ≤ Q j X j j ∈ J (4) 

Capacity constraints mostly hold (5) 

X j ∈ { 0 , 1 } j ∈ J (6) 

Y i jr ∈ { 0 , 1 } i ∈ I, j ∈ J, r ∈ R (7)

here α is a value in (0,1). 

The objective function represents the trade-off between the 

ransportation cost from the primary facilities and the transporta- 

ion costs from the backup facilities. The first component in the 

bjective function computes the cost of serving clients from their 

rimary facilities plus the opening cost. In fact, it is the objective 

unction of the Simple Plant Location problem. The second compo- 

ent in the objective function computes the expected failure cost: 

ach client i is served by their rth backup facility j if the facili- 

ies assigned at lower levels have failed (probability q r ) and j itself 

as not failed (probability (1 − q ) for j ∈ F and 1 for j ∈ NF ) . In

ther words, it is the transportation cost that will be incurred if 



M. Albareda-Sambola, M. Landete, J.F. Monge et al. European Journal of Operational Research 311 (2023) 24–35 

s

α  

o

C

t

c

(

s

t

t

d

t

E ξ j ′ )

w  

c

O

a

f  

T

f

t

m

∑

E

b

S

o

a

 

C

t

t

t

i

m

e

i

s

b

c

3

o

m

p

s

s

t

l

ome plants in F fail. Both components are weighted by a scalar 

∈ (0 , 1) . In the following v (X, Y ) indicates the evaluation of the

bjective function for the solution (X, Y ) . 

Constraint (1) states that the dummy facility is always open. 

onstraints (2) force that given a pair of customer i and level r, 

he customer is allocated to a facility at level r or it was allo- 

ated to a non-failing facility at a level smaller than r. Constraints 

3) indicate that facility j only can give service if it is open. Con- 

traints (4) guarantee not to exceed the capacity of each facility in 

he first assignment, the scenario in which there are not failures in 

he system. The group of non-defined constraints (5) are different 

epending on the emphasis of the model. Ideally, it should keep 

he expected overload of a solution below a threshold value β. 

The expected overload of a solution (X, Y ) can be expressed as: 

(X, Y ) = 

∑ 

j∈ O (X ) 

E 

⎡ 

⎢ ⎢ ⎢ ⎣ 

⎛ 

⎜ ⎜ ⎜ ⎝ 

ξ j ·
∑ 

i ∈ I h i 

(∑ 

r∈ R Y i jr ·
∏ 

s<r 

(∑ 

j ′ ∈ O (X ) 
Y i j ′ s (1 −︸ ︷︷ 

demand at j according to ξ

here (•) + = max { 0 , •} , O (X ) ⊂ J is the set of locations where fa-

ilities have been placed, 

 (X ) = { j ∈ J : X j = 1 } 
nd ξ j is the Bernoulli random variable that takes value 1 if facility 

j is operative, and 0 if it has failed. That is, ξ j ∼ Bernoulli (1 − q ) 

or j ∈ O F (X ) = O (X ) ∩ F , and ξ j = 1 for j ∈ O NF (X ) = O (X ) ∩ NF .

he expected overload of the solution is the sum, over all open 

acilities, of the expected values of the positive difference between 

he demand allocated to the facility and its capacity. Here, the de- 

and allocated to a facility j ∈ O (X ) is computed as 

 

i ∈ I 
h i 

( ∑ 

r∈ R 
Y i jr ·

∏ 

s<r 

( ∑ 

j ′ ∈ O (X ) 

Y i j ′ s (1 − ξ j ′ ) 

) ) 

. 

Thus, ideally, line (5) in CRFLP should be 

(X, Y ) ≤ β, (9) 

ut it does not give an affordable formulation. Instead, in Albareda- 

ambola et al. (2016) different attempts of controlling the expected 

verload have been analyzed, namely QRFLP, CRFLP-S, CRFLP-B1 

nd CRFLP-LR. 

• QRFLP is the problem CRFLP when no capacity constraints 

are considered: line (5) is removed from CRFLP. It is a naive 

approach which does not pay attention to the overload in 

levels different from the first. 
• CRFLP-S is based on staggered capacities. CRFLP-S is CRFLP 

when line (5) is replaced by 

r ∑ 

s =0 

∑ 

i ∈ I 
h i Y i js ≤ θ r Q j ∀ j ∈ J, r > 1 (10) 

where θ is a scale factor. Constraints (10) keep the load of 

each facility up to each possible assignment level below a 

value which is proportional to its original capacity. 
• CRFLP-B1 imposes a limit on an upper bound for E(X, Y ) . In

Albareda-Sambola et al. (2016) it is proved that if λ jr is the 

overload at facility j caused by assignments at level r after 

all assignments at lower levels have been considered, then ∑ 

j∈ F 

∑ 

r> 0 

q r (1 − q ) λ jr + 

∑ 

j∈ NF 

∑ 

r> 0 

q r λ jr 

is an upper bound for E(X, Y ) . Then, CRFLP-B1 keeps this 

bound for expected overload of a solution below the thresh- 

old value β. In particular, CRFLP-B1 is CRFLP when line (5) is 
26 
 

))
︸ −Q j 

⎞ 

⎟ ⎟ ⎟ ⎠ 

+ ⎤ 

⎥ ⎥ ⎥ ⎦ 

, (8) 

replaced by 

r ∑ 

s =1 

∑ 

i ∈ I 
h i Y i js ≤ Q j + ν jr ∀ j ∈ J, r ∈ R (11) 

λ j1 = ν j1 ∀ j ∈ J (12) 

λ jr = ν jr − ν j,r−1 ∀ j ∈ J, r > 1 (13) 

∑ 

j∈ F 

∑ 

r> 0 

q r (1 − q ) λ jr + 

∑ 

j∈ NF 

∑ 

r> 0 

q r λ jr ≤ β

λ jr , ν jr > 0 ∀ j ∈ J, r ∈ R (14) 

• CRFLP-LR imposes a limit on an estimation of E(X, Y ) . In 

Albareda-Sambola et al. (2016) it is empirically proved that 

a good linear approximation of E(X, Y ) ( R 2 = 0 . 9748 ) is 

ˆ E (X, Y ) = 2 . 67827 q ̄λ•1 + 1 . 66348 q 2 λ̄•2 + 1 . 92325 q 3 λ̄•3 

+ 4 , 43350 q 4 λ̄•4 

where λ̄•r is the average overload caused by assignments at 

level r. Thus, CRFLP-LR is CRFLP when line (5) is replaced by 

(11) − (14) 

λ•r = 

r ∑ 

j∈ J 
λ jr r ∈ { 1 , . . . , 4 } 

2 . 67827 qλ•1 + 1 . 66348 q 2 λ•2 + 1 . 92325 q 3 λ•3 

+ 4 , 43350 q 4 λ•4 ≤ β
∑ 

j∈ J\{ u } 
X j 

λ•r > 0 ∀ r ∈ R 

Comparing QRFLP, CRFLP-S, CRFLP-B1 and CRFLP-LR, only 

RFLP-B1 ensures solutions to have the expected overload below 

he requested threshold β. Meanwhile, CRFLP-B1 limits in excess 

he expected overload providing expensive solutions, in terms of 

he optimal solution values. Both CRFLP-S and QRFLP do not work 

n terms of expected overload, while CRFLP-LR just bounds an esti- 

ate of the expected overload. CRFLP-LR returns solutions with an 

xpected overload around the requested bound, sometimes below 

t and sometimes above. In this paper, an exact algorithm which 

olves CRFLP when line (5) is replaced by (9) is introduced, it has 

een named CRFLP-EX. Somehow, CRFLP-B1 and CRFLP-LR can be 

onsidered as math-heuristic methods for CRFLP-EX. 

. Optimization models 

The algorithm proposed for solving CRFLP-EX makes use of two 

ptimization problems: a master problem and an auxiliary assign- 

ent problem. The master problem is the CRFLP replacing the ex- 

ected overload capacity constraints for appropriate sets of con- 

traints. The auxiliary assignment problem indicates which is the 

et of constraints to be added to the master problem at each itera- 

ion. Given a solution to the master problem, the assignment prob- 

em gives a feasible solution to the master problem with the same 
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Fig. 1. Example of different assignments. 
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et of open facilities but with a different allocation which keeps 

he expected overload at the opened facilities below the threshold 

. 

The following example illustrates how different allocation pat- 

erns for the same set of open facilities can lead to different ex- 

ected overloads. It shows how the expected overload is reduced 

y moving the dummy assignments to lower levels. 

xample 1. Let I = { 0 , 1 } be the set of customers, both with de-

and h = 50 . Let O F (X ) = { A, B } be the set of open facilities.

et A and B be both facilities in F with capacity 60. In this

xample, the only facility which does not fail is O NF (X ) = { u } ,
or the others, q = 0 . 1 . Let d 0 A = 10 , d 0 B = 20 , d 1 A = 40 , d 1 B = 30

nd let the non-service cost be 100. Fig. 1 illustrates three dif- 

erent assignments. The assignment in Case A is the one pro- 

ided by MASTER when W = Z = 0 and it has an assignment 

ost of (0 . 9 ∗ t10 ∗ 50 + 0 . 1 ∗ 0 . 9 ∗ 20 ∗ 50 + 0 . 1 2 ∗ 100 ∗ 50) + (0 . 9 ∗
0 ∗ 50 + 0 . 1 ∗ 0 . 9 ∗ 40 ∗ 50 + 0 . 1 2 ∗ 100 ∗ 50) = 1994 . 7 and an ex-

ected overload of 7.2 ( 0 ∗ 0 . 9 ∗ 0 . 9 + (100 − 60) + ∗ 0 . 9 ∗ 0 . 1 +
100 − 60) + ∗ 0 . 1 ∗ 0 . 9 + 0 ∗ 0 . 1 ∗ 0 . 1 ) corresponding to assign each

ustomer to its cheapest available facility for each level. In 

ase B, the assignment of customer 1 to the dummy facil- 

ty is advanced one level. Then, this assignment has a cost 

f (0 . 9 ∗ 10 ∗ 50 + 0 . 1 ∗ 0 . 9 ∗ 20 ∗ 50 + 0 . 1 2 ∗ 100 ∗ 50) + (0 . 9 ∗ 30 ∗
0 + 0 . 1 ∗ 100 ∗ 50) = 2440 . 0 and an expected overload of 3.6 (40 ∗
 . 1 ∗ 0 . 9 + 0) . In Case C, which is such that there is no backup fa-

ility, the assignment cost is (0 . 9 ∗ 10 ∗ 50 + 0 . 1 ∗ 100 ∗ 50) + (0 . 9 ∗
0 ∗ 50 + 0 . 1 ∗ 100 ∗ 50) = 2800 . 0 and the expected overload is

. Note that overcosts are 2440 . 0 − 1994 . 7 = 445 . 3 (case B) and

800 − 1994 . 7 = 805 . 3 (case C). Besides the overcost, the total non-

ervice costs are also remarkable, being: 100, 550 and 10 0 0 units, 

espectively. 

In fact, it can be proved that given a set of open facilities there

s always an allocation pattern with expected overload equal to 

ero or as small as it is want. 

roposition 3.1. For any set O (X ) of open facilities, it is possible to 

btain an assignment Y to facilities in O (X ) such that the expected 

verload is bounded by β . 

roof. Given that in any feasible solution the dummy facility is 

pen, the demand that produces excess of expected overload can 

e reassigned to it, i.e., the overload may be left unserved. �

Among all the feasible solutions with the same set of open fa- 

ilities and with expected overload not larger than β, the assign- 

ent problem gives the solution with minimum non-service ex- 

ected cost. Both problems, the master and the auxiliary assign- 

ent problem, are iteratively solved. At each iteration, the solu- 

ion to the assignment problem define new constraints which are 

ynamically added to the master problem. 
27 
.1. Master problem 

The master problem is the QRFLP in which variable W is added 

ogether with a set of constraints assigning the proper value to 

t. Variable W accounts for the additional cost required to mod- 

fy the MASTER solution assignments in order to render them fea- 

ible with respect to the expected overload constraints. In what 

ollows, we will refer to this cost as overcost , and we will see that

olutions can be classified into equivalence classes where this over- 

ost is constant. The value of W will be established by new con- 

traints dynamically added to the master problem. The formulation 

or MASTER is as follows: 

( MASTER ) min α

( ∑ 

j∈ J 
f j X j + 

∑ 

i ∈ I 
h i d i j Y i j0 

) 

+ (1 − α) 
∑ 

i ∈ I 
h i 

( ∑ 

j∈ NF 

∑ 

r∈ R 
d i j q 

r Y i jr + 

∑ 

j∈ F 

∑ 

r∈ R 
d i j q 

r (1 − q ) Y i jr 

) 

+ W 

(1) − (4) , (6) , (7) 

W constraints (15) 

W ∈ R 

+ (16) 

If no W constraints are added, the MASTER problem coincides 

ith QRFLP. 

.2. Auxiliary assignment problem 

The facilities can be classified into different equivalence classes 

epending on their opening costs, failure probabilities and capaci- 

ies. Two facilities j, k ∈ J are assumed to belong to the same equiv-

lence class j ∼ k if they both have the same opening cost f j = f k ,

he same capacity Q j = Q k and either they are both in F or both in

F . Let J/ ∼ be the partition given by the set of equivalence classes

nd let [ j] be the equivalence class of j ∈ J. For each P ∈ J/ ∼ and

ach solution (X, Y ) of MASTER, let O P (X ) = O (X ) ∩ P. Two solu-

ions (X 1 , Y 1 ) and (X 2 , Y 2 ) of MASTER are assumed to belong to the

ame equivalence class if and only if they have the same number 

f open facilities at each equivalence class, i.e., | O P (X 1 ) | = | O P (X 2 ) |
or all P ∈ J/ ∼ and for each j 1 ∈ O (X 1 ) there exists j 2 ∈ O (X 2 ) such

hat j 1 ∼ j 2 and the assignments to j 1 according to Y 1 are the same

s the assignments to j 2 according to Y 2 . 

The auxiliary assignment problem, from now on AUX-CRFLP 

onsists in, given an optimal solution to MASTER, obtaining a solu- 

ion within its equivalence class that satisfies (9) and has the min- 

mum possible cost. The expected overload of the optimal solution 

o MASTER might exceed the value β because (9) is not a con- 

traint of MASTER. However, the expected overload of the optimal 

olution (X, Y ) of AUX-CRFLP does not exceed β . 
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more facilities at levels t > r. 
Let (X M , Y M ) be a solution to MASTER. For all i ∈ I, j ∈ O (X M )

nd r ∈ R , let Y ′ 
i jr 

be binary assignment variables such that (X M , Y ′ )
s a feasible solution to MASTER and satisfies (9) . AUX-CRFLP looks 

or the solution (X, Y ) with minimum cost among all the solutions 

hat are equivalent to (X M , Y ′ ) . Notice that the j index for Y ′ vari-

bles moves in O (X M ) while it moves in J for the Y variables. 

For all j ∈ J and k ∈ O (X M ) , we define variable Z jk that takes the

alue of 1 if facility k in solution (X M , Y ′ ) is replaced by the equiv-

lent facility j in solution (X, Y ) , and zero otherwise. For exam- 

le, if J = { 1 , 2 , u } , J splits into two equivalence classes { 1 , 2 } and

 u } , O (X M ) = { 1 , u } and O (X ) = { 2 , u } , then the non-zero Z vari-

bles are Z 21 = 1 and Z uu = 1 . 

Given a solution (X M , Y M ) to MASTER, there are 2 | O F (X M ) | differ- 

nt scenarios that must be taken into account for computing the 

xpected overload. Each of the open facilities might fail or not fail. 

et S M be the set of all possible scenarios, p s be the probability of

cenario s , and ξ s 
j 

be the constant that indicates the state of fa- 

ility j ∈ O F (X M ) at scenario s . If facility j fails at scenario s, then
s 
j 
= 0 , otherwise ξ s 

j 
= 1 . If O F (X M ) were the whole F , the set S M 

ould be extremely large and nonviable to enumerate. However, 

ince usually | O F (X M ) | << | F | , the computational cost of explicitly

onsidering the whole set S M in AUX-CRFLP is affordable. 

To formulate the AUX-CRFLP we will use the additional vari- 

bles: For each i ∈ I, j ∈ O (X M ) and each scenario s ∈ S M , δs 
i j 

is h i if,

ccording to assignments Y ′ , i is served from facility j under sce- 

ario s , and 0 otherwise. Also, for each facility j ∈ O (X M ) and each

cenario s ∈ S M , θ s 
j 

accounts for the overload at facility j, accord- 

ng to assignments in Y ′ . Note that these demands and overloads 

ould take the same values if computed with respect to assign- 

ents Y , although they might be associated with different (equiv- 

lent) facilities. 

With all the above notation, the AUX-CRFLP can be formulated 

s follows: 

( AUX-CRFLP (X 

M )) min α

( ∑ 

i ∈ I 

∑ 

j∈ J 
h i d i j Y i j0 

) 

+(1 − α) 
∑ 

i ∈ I 
h i 

( ∑ 

j∈ J 

∑ 

r∈ R 
d i j q 

r Y i jr + 

∑ 

J 

∑ 

r∈ R 
d i j q 

r (1 − q ) Y i jr 

) 

s . t . 

(1) − (4) , (6) , (7) 

 

j∈ P 
X j = | O P (X 

M ) | P ∈ J/ ∼ (17) 

∑ 

 ∈ O [ j] (X M ) 

Z jk = X j j ∈ J (18) 

∑ 

j∈ [ k ] 
Z jk = 1 k ∈ O (X 

M ) (19) 

 

j∈ J 
j Z j,k −1 ≤

∑ 

j∈ J 
j Z jk − 1 k ∈ O (X 

M ) (20) 

∑ 

j∈ O P (X M ) 

Y ′ i jr = 

∑ 

j∈ P 
Y i jr i ∈ I, r ∈ R, P ∈ J/ ∼ (21) 

 

′ 
ikr ≥ Y i jr − (1 − Z jk ) i ∈ I, j ∈ J, r ∈ R, k ∈ O [ j] (X 

M ) 

(22) ∑ 

j∈ O F (X M ) 

Y ′ i jr + 

∑ 

j∈ O NF (X M ) 

r ∑ 

s =0 

Y ′ i js = 1 i ∈ I, r ∈ R (23) 

 

r∈ R 
Y ′ i jr ≤ 1 i ∈ I, j ∈ O (X 

M ) (24) 
28 
 

i ∈ I 
h i Y 

′ 
i j0 ≤ Q j X j j ∈ O (X 

M ) (25) 

h i 

( 

ξ s 
j Y 

′ 
i jr −

∑ 

k ∈ O (X M ): k 
 = j 

r−1 ∑ 

t=0 

ξ s 
k Y 

′ 
ikt 

) 

≤ δs 
i j 

i ∈ I, j ∈ O (X M ) , r ∈ R, s ∈ S M 

(26) 

 

i ∈ I 
δs 

i j − Q j ≤ θ s 
j j ∈ O (X 

M ) , s ∈ S M (27) 

∑ 

j∈ O (X M ) 

∑ 

s ∈ S 
p s θ s 

j ≤ β (28) 

 

′ 
i jr ∈ { 0 , 1 } i ∈ I, j ∈ O (X 

M ) , r ∈ R (29)

s 
i j , θ

s 
j ∈ R i ∈ I, j ∈ O (X 

M ) , s ∈ S M (30)

The objective function of AUX-CRFLP is the total cost of replac- 

ng a solution (X M , Y M ) by another equivalent solution that has 

ounded expected overload. Since the opening cost of equivalent 

olutions is the same, AUX-CRFLP only takes into account the as- 

ignment cost. Constraints (1) - (4),(6) and (7) are the correspond- 

ng constraints for the assignment variables. Constraints (17) state 

hat the solution (X, Y ) to AUX-CRFLP is equivalent to (X M , Y M ) .

onstraints (18) and (19) state the bijective relationship between 

ach open facility in O (X ) and the associated equivalent solution 

n O (X M ) . Constraints (20) avoid alternative ways of defining this 

ijective relationship: it is assumed that facility indices are correl- 

tive within the same equivalence class. The constraint forces the 

ssignment of elements in J to elements in O (X ) to be sorted, i.e. if 

acility j 1 maps to class k ( Z j 1 k = 1 ), then the facility j 2 that maps

o k + 1 is greater than j 1 ( Z j 2 ,k +1 = 0 for all j 2 ≤ j 1 ). Constraints

21) and (22) express the relations between Y variables and Y ′ 
ariables. Besides, the same requirements that affect Y variables 

ust also affect Y ′ variables. Then, constraints (23) - (25) are nec- 

ssary. Given a scenario s ∈ S M , constraints (26) give the values for 
s 
i j 

, the maximum demand supported by facility j from customer 

 . Constraints (27) provide θ s 
j 
, the overload for the facility j on the 

cenario s : the overload is the positive difference between the de- 

and requested and the capacity of a facility. Finally, (28) bounds 

he expected overload. The left hand side of (28) is the expected 

verload of the solution (X, Y ) . 

Proposition 3.1 guarantees that the feasible set of AUX-CRFLP is 

ot empty. 

emark 3.1. Let O (X 1 ) and O (X 2 ) be two subsets of open facili-

ies. The fact that O (X 1 ) ⊂ O (X 2 ) , does not imply that the expected

verload or overcost associated with O (X 1 ) is equal or higher than 

he overcost associated with O (X 2 ) . The fact is that closing an open

acility can reduce the expected overload and even the overcost. 

or instance, if only the dummy facility is open, the expected over- 

oad is zero and thus also the overcost of adjusting it, while if an- 

ther facility is open, the expected overload will be in general pos- 

tive, and the overcost might be positive. 

emark 3.2. A good initial feasible solution to AUX-CRFLP can be 

euristically obtained. At level zero, customers can be sorted by 

heir demand in non increasing order and each of them can be as- 

igned to its nearest open facility with enough available capacity. 

t the rest of levels, customers are assigned with the same proce- 

ure but without exceeding the overload β and with two precau- 

ions: (i) if customer i is assigned to facility j at level r, then it is

ot assigned to the same j at levels t > r; (ii) if customer i is as-

igned to a non-failing facility at level r, then it is not assigned to 
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. Exact dynamic approach 

Let R be the equivalence relation on the set M = { (X, Y ) : (1) −
4) , (6) , (7) } of MASTER feasible solutions (two solutions (X 1 , Y 1 ) 

nd (X 2 , Y 2 ) of MASTER are assumed to belong to the same equiv-

lence class iff | O P (X 1 ) | = | O P (X 2 ) | for all P ∈ J/ ∼). Let M/R be the

artition given by the set of equivalence classes and let [(X, Y )] be

he equivalence class of (X, Y ) ∈ M. 

The exact dynamic approach proposed in this paper iteratively 

olves both the MASTER problem and the auxiliary assignment 

roblem. The idea is to solve the assignment problem at most once 

or each equivalence class in M/R (the optimal value is the same 

or any master solution at the same equivalence class). For each 

olution of the auxiliary assignment problem, a new set of con- 

traints is added to the master that accounts for the impact of 

dequately reducing the expected overload of any solution within 

he given equivalence class. In particular, the constraints are the 

nes in subsection 4.1 and the dynamic approach is the one in 

ub section 4.2 . 

.1. W constraints for the master problem 

Given a solution (X M , Y M ) to MASTER problem, let v ∗(AUX- 

RFLP (X M )) and v ∗( MASTER ) be the optimal values of AUX- 

RFLP (X M ) and of the MASTER problem respectively. It holds that 

he minimum cost of moving any solution of the equivalence class 

f (X M , Y M ) into the feasible set of CRFLP-EX is 

= v ∗
(
AUX-CRFLP (X 

M ) 
)

+ α
∑ 

j∈ J 
f j X 

M 

j − v ∗( MASTER ) . 

This observation can be translated into constraints in the fol- 

owing way. Given a feasible solution to MASTER, (X, Y ) let d + p and

 

−
p be the variables that measure the deviation of | O P (X ) | from

 O P (X M ) | and D 

+ 
P 

and D 

−
P 

be the corresponding binary/boolean 

ariables (if d + 
P 

is positive, D 

+ 
P 

is one, analogously d −
P 

and D 

−
P 

). If

ll D 

+ 
P 

and D 

−
P 

are zero, then (X, Y ) ∈ [(X M , Y M )] and the cost of

earranging the expected overload is 	. 
 

j∈ P 
X j + d + P − d −P = | O P (X 

M ) | P ∈ J/ ∼ (31)

 

+ 
P ≤ K D 

+ 
P P ∈ J/ ∼ (32) 

 

+ 
P ≤ d + P P ∈ J/ ∼ (33) 

 

−
P ≤ K D 

−
P P ∈ J/ ∼ (34) 

 

−
P ≤ d −P P ∈ J/ ∼ (35) 

 

+ 
P + D 

−
P ≤ 1 P ∈ J/ ∼ (36) 

∑ 

∈ J/ ∼
(	D 

+ 
P + 	D 

−
P ) + W ≥ 	 (37) 

 

+ 
P , D 

−
P ∈ { 0 , 1 } P ∈ J/ ∼ (38) 

 

+ 
P , d 

−
P ≥ 0 P ∈ J/ ∼ (39) 

Constraints (31) measure the deviations, positive or negative, to 

he number of open facilities in the equivalence class. These values 

re saved in variables d + p and d −p , respectively. Constraints (32) to 

36) activate D 

+ 
P 

and D 

−
P 

variables according to the values of d + p 

nd d −p , and ensure that at most one of them is non-null. The large

onstant K can be set to | P | . Constraint (37) states the extra cost.
29 
iven that we are minimizing, constraint (37) does nothing if ei- 

her D 

+ 
P 

or D 

+ 
P 

are 1 or it forces W = 	 if they are both equal to

. 

.2. Main algorithm 

In this section, the main algorithm of the exact dynamic ap- 

roach we propose is described. Parameters and variables in bold 

re vectors. In particular, the main algorithm is described in 

lgorithm 1 . The function solve (·) gives the optimal value and an 

ptimal solution to the problem (·) . If this function has a sec- 

nd input, it is an initial feasible solution. The function heuris- 

ic (·) gives a feasible assignment pattern to facilities selected in 

·) by using Remark 3.2 . The function add_W_constaints(master, 

, X ) adds constraints (31) - (39) to master with parameters 	 and 

 O P (X M ) | for all P ∈ J/ ∼ . Additionally, lines 9–19 of the algorithm

an be explained as follows: 

Algorithm 1: ( v ∗, X 

∗, Y 

∗) = main_algorithm() 

1 MASTER = model(QRFLP) 

2 ( c M , X 

M , Y 

M ) = solve( MASTER ) 

3 overload = E(X 

M , Y 

M ) 

4 if overload > β then 

5 v ∗ = + inf 

6 else 

7 v ∗ = c M 

8 ( X 

∗, Y 

∗) = ( X 

M , Y 

M ) 

9 while v ∗ > c M & time < t_limit do 

10 f = α
∑ 

j∈ J f j X 
M 

j 

11 secondary = model( AUX-CRFLP ( X 

M )) 

12 ( c h , X 

h , Y 

h ) = heuristic( X 

M ) 

13 ( c, X , Y ) = solve(secondary, ( c h , X 

h , Y 

h )) 

14 if c + f < v ∗ then 

15 v ∗ = c + f 

16 Y 

∗= Y 

17 	 = c + f − c M 

18 add_W_constaints( MASTER , 	, X 

M ) 

19 ( c M , X 

M , Y 

M ) = solve( MASTER ) 

20 return ( v ∗, X 

∗, Y 

∗) 

i. Calculate f, the total opening cost of the solutions belonging 

to the equivalence class of X 

M . 

ii. Obtain a heuristic assignment (c h , X 

h , Y 

h ) for the equivalence 

class of X 

M , for example according to the procedure de- 

scribed in Remark 3.2 . 

iii. Solve AUX-CRFLP starting the search of the optimal solution 

from the feasible solution (c h , X 

h , Y 

h ) . Let (c, X , Y ) be the op-

timal solution obtained. 

iv. Calculate the total cost difference 	 between master solu- 

tion and best solution bounded in equivalence class X 

M . 

v. Add constraints (31) - (39) to MASTER by ad d _ W _ const raint s 

procedure in order to increase by 	 the cost of any solution 

of the equivalence class of X 

M , as explained in Section 4.1 . 

. Computational experiments 

According to the literature, the best performing approximate 

odels for the CRFLP in terms of expected overload are CRFLP-B1 

nd CRFLP-LR. Therefore, in this section we will use both models 

o illustrate the usefulness of CRFLP-EX. To this end, the results in 

his section evaluate the performance of the approximate methods 
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Table 1 

Generated instances. 

# OR Instances | I| | F | | NF | (∗) | J/ ∼ | q f F ( ×10 0 0 ) f NF / f F 

S20_50_a 180 1 - 10 20 50 0 2 0.05, 0.10, 0.20 1, 2, 3 1, 2 

S20_50_b 180 1 - 10 20 35 15 3 0.05, 0.10, 0.20 1, 2, 3 1, 2 

S50_50_a 10 1 - 10 50 50 0 2 0.05 2 2 

S50_50_b 10 1 - 10 50 35 15 3 0.05 2 2 

S20_75_a 10 11 - 20 20 75 0 2 0.05 2 2 

S20_75_b 10 11 - 20 20 45 30 3 0.05 2 2 

(∗) excluding dummy 
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n terms of optimal value, expected overload, overload distribu- 

ion and non-serving demand as compared to the ones associated 

ith the optimal solution provided by CRFLP-EX. The results also 

how that CRFLP-EX is competitive in terms of computational re- 

uirements, compared with the previous approximate approaches 

RFLP-B1 and CRFLP-LR. 

The same experiments described in Albareda-Sambola et al. 

2016) have been reproduced, now with CRFLP-EX. The same 400 

nstances have been used, again divided in different sets depend- 

ng on the original instances they were generated from, the num- 

er of customers, the number of failing and non-failing facilities, 

he failure probability, and their opening costs. Recall that these 

nstances were generated from the capacitated p-median instances 

vailable at the OR-LIBRARY ( Beasley, 1990 ). Their characteristics 

re summarized in Table 1 . The original locations of the instances 

ct both as potential facility locations and as customers. Regarding 

he weighting factor of the objective function α, this has been fixed 

n all our experiments to α = 0 . 5 ; the outsourcing cost to d iu = 400

or all i ∈ I, which is much larger than any of the assignment costs;

nd the capacity level for the non-dummy facilities is given by the 

R-LIBRARY. 

In Table 1 the columns are: the total number of instances of 

ach group; the data set at the OR-Library; the number of cus- 

omers; the number of failing and non-failing facilities; the num- 

er of equivalence classes; and, the probability of failure q . More- 

ver, only two different opening costs have been considered for 

ach instance; f F for each of the facilities in F, and f NF for those

n NF (without taking into account the dummy one). Columns with 

everal values denote the use of each one of these values in com- 

ination with the values of the other columns. Besides, the limit 

or the expected overload has been fixed to two values: β = 3 and 

= 6 . In the results tables we use CRFLP-B1( β), CRFLP-LR( β) and

RFLP-EX( β) to differentiate the results obtained with each value. 

All the experiments have been conducted on a PC with a 2.33 

igahertz Intel Xeon dual core processor, 8.5 gigabytes of RAM, and 

perating system LINUX Debian 4.0. The CPLEX v11.0 optimization 

ibrary has been used and the overall algorithm has been coded in 

. 

The following tables show the averages over the corresponding 

ets of instances of several measures of the solution: v ∗ represents 

he optimal value, E(X, Y ) the value of the expected overload in 

he optimal solution, P (ov erload) the probability of having over- 

oad computed as the sum of the probabilities of all the scenarios 

ith some positive overload, Dummy stands for the expected de- 

and at the dummy facility, i.e., the sum of the demands that the 

ummy facility receives over all the possible scenarios weighted by 

he probability of the scenario. Finally, # Open is the average num- 

er of open facilities including the dummy one and T ime is the 

ime in seconds for solving the problem. The numbers (3) and (6) 

ext to the method name in the first column refer to the value for 

he expected overload, β. 

The results for smaller instances are reported in Tables 2 - 5 , 

isaggregated by the three different failure probabilities, q = 0 . 05 , 

 = 0 . 10 and q = 0 . 20 . For the medium-size instances, they have
30 
een summarized in Tables 6 and 7 . As shown in Table 1 , for

hese instances one single failure probability has been considered: 

 = 0 . 05 . In all executions we have set a time limit of 3600 sec-

nds. The first groups of instances could be fully solved before 

his limit was reached. When this is not the case, we have added 

 last column, labelled Opt , that reports the number of instances 

olved to optimality within the time limit. Note that from Table 1 , 

ables 2 - 7 present successive and respectively average values over 

20, 60, 60, 120, 20 and 20 instances. 

Results regarding the smaller instances, for values of q = 0 . 05 

nd q = 0 . 20 , ( Tables 2 and 5 ) follow a similar pattern indepen-

ently of the existence or not of non-failing facilities, but it is in- 

eresting to differentiate the S20 _ 50 instances with q = 0 . 1 by the

umber of facilities NF . Tables 3 and 4 summarize them in order 

o observe the influence of the number of non-failing facilities in 

he solutions provided for each method. It should be noted that the 

xpected overload decreases in cases with the possibility of includ- 

ng reliable facilities given that uncertainty also decreases, benefit- 

ng the reduction of total costs. A lower uncertainty also allows 

educing the number of open facilities in the solutions and the 

on-served demand; although in our computational experiments 

he reduction of open facilities directly provokes a reduction of to- 

al costs, it is noteworthy that this rule depends on the cost struc- 

ure and on the tightness of capacity constraints, since it might 

ay or not to open facilities in NF . Similarly, except for the basic

odel QRFLP, which has no computational difficulty, the computa- 

ional time is also reduced in instances with reliable facilities, pre- 

umably because in these instances the combinatorics are smaller. 

hese and other variations between the instances were thoroughly 

iscussed in Albareda-Sambola et al. (2016) so, in the following, we 

ocus on the differences between the optimal solutions provided 

y the new exact algorithm and the heuristic solutions provided 

y the previous approximated approaches. 

In Tables 2 –5 , the solution obtained by the basic model QRFLP 

s cheaper than the rest of solutions given that QRFLP only takes 

nto account the capacity in the scenario where no failures have 

appened. Given that CRFLP-B1 is based on restricting an upper 

ound of the overload not to exceed the requested overload limit, 

, this approach provides the most expensive solutions. CRFLP-LR 

s based on restricting an estimate of the expected overload. It can 

ither overestimate the overload or underestimate it, depending on 

he situation. Therefore, the true expected overload in the obtained 

olutions sometimes can be higher than β , and sometimes lower. 

here could even exist instances for which the CRFLP-LR solution 

s more expensive than the CRFLP-B1 solution. However, this did 

ot happen in any of our experiments. 

Obviously, the value of CRFLP-EX solutions is never larger than 

he value of CRFLP-B1 solutions, since in the first case we exactly 

onstrain the overload while in the second case we restrict an up- 

er bound. Notice also that, given that CRFLP-LR solutions some- 

imes exceed the overload requested, one might expect these solu- 

ions to be cheaper than those obtained from CRFLP-EX. However, 

n most of the instances this does not happen, which is an addi- 

ional advantage of the CRFLP-EX method. In most of the exper- 
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Table 2 

Average values for S20_50 instances with q = 0 . 05 . 

v ∗ E(X, Y ) P (overload) Dummy # Open Time 

QRFLP 8997.20 5.19 0.07 0.26 3.44 7.75 

CRFLP-B1(3) 9378.19 1.64 0.06 1.92 3.67 30.20 

CRFLP-B1(6) 9143.23 3.72 ∗ 0.07 1.06 ∗ 3.52 32.33 

CRFLP-LR(3) 9287.02 2.53 0.07 1.68 3.57 31.71 

CRFLP-LR(6) 9051.44 4.65 0.07 0.56 3.47 17.82 

CRFLP-EX(3) 9315.85 2.33 0.07 1.52 3.63 27.35 

CRFLP-EX(6) 9143.23 3.72 0.07 1.06 3.52 16.05 

∗ Typos detected in Albareda-Sambola et al. (2016) 

Table 3 

Average values for S20_50_a ( | NF | = 0 ) instances with q = 0 . 1 . 

v ∗ E(X, Y ) P (overload) Dummy # Open Time 

QRFLP 9355.96 10.26 0.15 1.22 3.60 5.05 

CRFLP-B1(3) 10294.36 1.49 0.07 3.02 4.23 112.30 

CRFLP-B1(6) 9879.32 3.96 0.12 1.82 4.03 84.77 

CRFLP-LR(3) 10172.13 2.20 0.09 2.56 4.21 403.62 

CRFLP-LR(6) 9849.81 4.30 0.12 1.75 3.97 72.72 

CRFLP-EX(3) 9895.20 2.45 0.07 0.76 4.03 88.31 

CRFLP-EX(6) 9836.72 3.79 0.12 1.59 3.93 67.58 

Table 4 

Average values for S20_50_b ( | NF | = 15 ) instances with q = 0 . 1 . 

v ∗ E(X, Y ) P (overload) Dummy # Open Time 

QRFLP 9187.60 7.18 0.10 0.61 3.50 8.78 

CRFLP-B1(3) 9690.77 0.90 0.05 1.54 3.50 48.52 

CRFLP-B1(6) 9473.40 2.47 0.07 0.91 3.72 43.72 

CRFLP-LR(3) 9625.14 1.27 0.05 1.28 3.80 84.72 

CRFLP-LR(6) 9455.83 3.31 0.08 0.96 3.68 38.28 

CRFLP-EX(3) 9458.71 2.98 0.06 0.38 3.72 63.12 

CRFLP-EX(6) 9427.90 3.70 0.09 0.79 3.67 35.02 

Table 5 

Average values for S20_50 instances with q = 0 . 20 . 

v ∗ E(X, Y ) P (overload) Dummy # Open Time Opt 

QRFLP 9995.34 12.73 0.21 2.44 3.91 7.25 120 

CRFLP-B1(3) 10975.59 1.27 0.05 2.63 4.58 236.17 120 

CRFLP-B1(6) 10512.67 4.60 0.12 1.62 4.34 954.25 120 

CRFLP-LR(3) 10636.21 3.48 0.09 1.16 4.36 744.68 120 

CRFLP-LR(6) 10503.05 4.49 0.11 1.55 4.23 944.17 120 

CRFLP-EX(3) 10292.75 2.70 0.08 2.28 4.12 444.38 118 

CRFLP-EX(6) 10323.78 4.68 0.11 1.87 4.04 176.83 120 

Table 6 

Average values for S50_50 instances with q = 0 . 05 . 

v ∗ E(X, Y ) P (overload) Dummy #Open Time Opt 

QRFLP 17955.67 22.06 0.23 0.00 6.10 719.03 18 

CRFLP-B1(3) 21428.69 2.33 0.15 16.37 6.75 187.00 20 

CRFLP-B1(6) 20870.85 4.71 0.19 13.37 6.75 215.00 20 

CRFLP-LR(3) 21198.76 3.31 0.16 15.12 6.75 1152.60 18 

CRFLP-LR(6) 20449.32 6.41 0.21 11.07 6.75 1188.75 16 

CRFLP-EX(3) 19848.68 3.00 0.21 10.37 6.10 3525.65 2 

CRFLP-EX(6) 19663.85 5.84 0.22 8.69 6.05 3525.65 2 
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ments the solutions obtained by CRFLP-EX are cheaper than the 

RFLP-LR solutions, except for Table 2 , i.e, besides providing the 

est solution to the problem the exact method usually provides 

heaper solutions than the approximate method CRFLP-LR. 

Concerning the computational requirements of CRFLP-EX, we 

otice that instances with β = 3 tend to be harder to solve than 

hose with β = 6 as expected, since they are more restrictive. 

oreover, given that the exact approach proposed here consists 

f a dynamic method which iteratively solves several models un- 

il optimality is proven, a worse performance in terms of compu- 

ational time is naturally expected, as compared with the rest of 
31 
ethods that only solve a model once. Indeed, this happens in 

ost of the instances, but it is not true in all cases. In Table 2 and

able 3 , there are several CRFLP-EX solutions found in less time 

han the corresponding CRFLP-LR and even than CRFLP-B1 solu- 

ions. The worst performance of CRFLP-EX is shown in Table 5 . Af- 

er a limit time of 3600 seconds, the exact method only solves two 

nstances of each group of the 20-customer instances (for β = 3 , 

nd β = 6 ). However, it is very remarkable that despite not con- 

luding in most of the instances, the solutions returned are con- 

iderably cheaper than the solutions returned by the other two 

ethods, and the expected overload is below the limit overload 
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Table 7 

Average values for S20_75 instances with q = 0 . 05 . 

v ∗ E(X, Y ) P (overload) Dummy #Open Time Opt 

QRFLP 9806.13 5.4 0.12 0.22 3.6 349.25 20 

CRFLP-B1(3) 11090.57 1.32 0.10 2.44 4.4 1412.03 19 

CRFLP-LR(3) 10885.10 2.57 0.12 1.91 4.3 1337.10 17 

CRFLP-EX(3) 10030.98 2.80 0.16 0.93 4.0 772.45 19 
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llowed. Besides, in these instances the CRFLP-LR model does not 

ork efficiently since it returns solutions exceeding, in average, the 

equested overloads being their costs higher, too. It can be ob- 

erved that combinatorics in these instances are extremely large 

nd it is hard to find the optimal solution but, still, CRFLP-EX per- 

its to adjust the assignments so that the expected overaload con- 

traint is tightly satisfied Indeed, in most of the cases, the solu- 

ion returned by the exact approach is the best known one, even 

f the method has not run the necessary iterations to prove op- 

imality. As an evidence of the computational difficulty of these 

nstances, the CRFLP-S(1.3) method based on staggered capacities 

roposed in Albareda-Sambola et al. (2016) could not be solved to 

ptimality for any of these instances after 3600 seconds. On the 

ontrary, instances summarized in Table 6 are also computationally 

ard. However, in the instances where the exact approach ends, it 

akes less time than the model based on linear regression which, 

n turn, takes less computational time than the CRFLP-B1 model. 

otice that, in this table, the average expected overload of the so- 

utions obtained by QRFLP is already below 6. Indeed, this is the 

ase for all the instances in this group. For this reason, we did not 

onsider the value β = 6 in the experiments for these instances. 

Finally, the graphics of the left column in Fig. 2 represent the 

robability distribution of the overload for the optimal solution 

f the fourth instance in $50 _ 50 _ b respectively corresponding to 

odels QRFLP, CRFLP-B1(6), CRFLP-LR(6) and CRFLP-EX(6). On the 

ther hand, the right column of this figure represents the proba- 

ility of demand assigned to the dummy facility when the same 

nstance is solved for each method. In these graphics, we have not 

rawn the bar corresponding to the 0 value of the overload nei- 

her the demand because it has a huge probability as compared 

ith the others. As we can see, for most of the methods, the mass 

f the overload is concentrated in the lower values, i.e., near to 

he OY axis, while the most likely non-zero overload in the QRFLP 

olution has values between 80 − 90 with a probability of 0.12 ex- 

sting even overloads higher than 200. Instead, for CRFLP-B1 and 

RFLP-LR models, the highest-probability overload range is 0 − 10 

ith probability 0.12. Given that CRFLP-B1 method constraints the 

verload bound, the rest of overload quantities have low prob- 

bility. Finally, the exact approach distributes the overload a bit 

ore homogeneously, between 0 − 40 values, but their probabil- 

ty of 0.03 is moderated. CRFLP-EX also has high values of overload 

round 100 but with a low probability of about 0.005. In summary, 

he expected overload is 19.62 in QRFLP, 5.80 in CRFLP-B1(6), 7.11 

n CRFLP-LR(6) and exactly 6.00 in CRFLP-EX(6) and the values of 

hese solutions are 16764.46, 19611.41, 19202.30 and 17834.11 re- 

pectively. The small difference between the overload of CRFLP-B1 

nd CRFLP-EX solutions shows how the huge advantage of the opti- 

al value of CRFLP-EX approach is due not so much to reduce the 

verload as to manage it well. In conclusion, the results for this 

nstance evidence the good performance of the exact method not 

nly in terms of overload adjust, but also in terms of distribution 

f the overload, rebounding these in a better cost. 

According to the dummy demand distribution, i.e., the non- 

erved demand distribution, it can be observed that the non- 

erved demand existing in QRFLP solutions is insignificant, that is 

ogical given that QRFLP method only has non-served demand in 

he scenario where all facilities have failed. Maybe it should be ex- 
32 
ected to observe the maximum non-served demand in CRFLP-EX 

iven that it is based on introducing restrictions for lower bound- 

ng the dummy demand, but in these instances with high combi- 

atorics, the non-served demand is significantly lower in CRFLP-EX 

pproach being its expected values 0, 15.91, 13.71 and 5.27 respec- 

ively for QRFLP, CRFLP-B1 CRFLP-LR and CRFLP-EX solutions. 

Regarding the instances not concluded, it would be interest- 

ng to know the individual performance of the proposed approach 

or some of these instances. Thus, we have selected two non- 

oncluded instances: namely, instance 1 from group S50_50 and 

nstance 8 from grup S20_75. The detailed results are summarised 

n Table 7 . In all cases, the exact approach gets the cheapest solu- 

ion with expected overload below the established limit. Curiously, 

RFLP-EX returned the same solution for the S50_50 instance for 

oth β = 3 and β = 6 . For this instance, it can be seen that al-

hough the returned solution for QRFLP is still more economical, its 

xpected overload is out of control. Also interestingly, the same so- 

ution for instance S20_75 was returned for both QRFLP and CRFLP- 

X approaches. This is one of the few instances where fortuitously 

he overload of QRFLP is already below β . 

An interesting aspect to be considered is the impact of the 

umber of equivalence classes in terms of computing time and also 

n terms of the returned solutions. Given a fixed instance size, each 

dditional class implies one more (17) constraint and | I| × | R | addi-

ional (21) constraints in AUX-CRFLP, while the number of variables 

oes not change. Thus, the feasible region of the auxiliary problem 

ecomes smaller which, in general, means a computationally easier 

roblem. On the other hand, more iterations of the overall method 

re expected as the number of classes increases, since it would be 

ecessary to get more combinations of the classes of solutions and 

ach additional set of W constraints would affect less sets of open 

acilities. Then, in the extreme case for which every facility is one 

lass, the auxiliary problem would be trivial but the number of it- 

rations might explode. Let us suppose one class of size | P | is di-

ided into two classes of size | P| 
2 . For computing the expected over- 

oad and inserting one constraint referred to k < 

| P| 
2 open facilities 

elonging to the original class we need one master iteration and 

lso to solve one auxiliary problem. But for doing the same with 

wo classes from the original class we would need k master itera- 

ions and also to solve k auxiliary problems corresponding to the 

ombinations of the number of open facilities of each class ( k , 0),

 k − 1 , 1), . . . , (0, k ) which would seldom be compensated by the

ecrease in complexity of AUX-CRFLP. Finally, we can conclude that 

he more classes the harder the problem is, if the rest of features 

re similar. However, the right number of classes to work with is 

irectly determined by the data. In the extreme case where ev- 

ry facility is one class, we would not get any advantage from the 

lasses and the problem to be solved would be completely com- 

inatorial. This is precisely the main contribution of the proposed 

ethod, to save combinatorics by establishing classes from facili- 

ies of identical features. 

In our computational experiments, we have summarized the 

omputational experience of S20_50 instances solved by CRFLP-EX 

pproach and grouped by the number of classes taken into account 

n Table 8 . Although we only have instances with 2 and 3 classes, 

he computation time turned out to be significantly lower for the 
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Fig. 2. Probability distribution of overload (left) and non-served demand(right). 

Table 8 

Some individual CRFLP-EX non-concluded instances. 

v ∗ E(X, Y ) P (overload) Dummy #Open Time 

S50_50 instance 1 

QRFLP 16671.42 14.38 0.23 0.00 6 1947 

CRFLP-B1(3) 19252.43 1.98 0.18 10.57 7 379 

CRFLP-B1(6) 18708.08 3.82 0.18 7.58 7 576 

CRFLP-LR(3) 19012.15 3.20 0.18 9.24 7 3600 

CRFLP-LR(6) 18281.62 5.04 0.22 5.18 7 3600 

CRFLP-EX(3) 17244.47 3.00 0.23 2.73 6 3600 

CRFLP-EX(6) 17244.47 3.00 0.23 2.73 6 3600 

S20_75 instance 8 

QRFLP 10839.45 2.99 0.03 0.30 4 1675 

CRFLP-B1(3) 11606.37 1.92 0.19 0.02 5 736 

CRFLP-LR(3) 11552.60 4.16 0.12 0.02 5 1380 

CRFLP-EX(3) 10839.45 2.99 0.03 0.30 4 3600 

Table 9 

Average values for instances grouped by the number of classes. 

# Classes β v ∗ E(X, Y ) P (overload) Dummy #Open #NF Open Time 

2 3 9961.02 2.48 0.08 1.88 4.04 1.00 236.75 

3 3 9562.09 2.68 0.07 1.03 3.70 1.71 128.22 

2 6 9923.88 4.49 0.11 1.86 3.92 1.00 104.92 

3 6 9475.66 3.60 0.08 0.88 3.65 1.70 57.86 

33 
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Fig. 3. Percent deviation of time with respect to the instance with | NF | = 0 . 
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Fig. 4. Percent deviation of time with respect to the instance with | NF | = 0 . 
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nstances of 3 classes than for the instances of 2, contrary to what 

e would theoretically expect if we just taken into account the 

umber of classes. This is because it does not just influence the 

umber of classes, but also the characteristics of the classes. Whilst 

n instances of 2 classes all the facilities can fail except the dummy 

acility, in instances of 3 classes we have a new class made up of 

5 NF facilities. This clearly facilitates the resolution of the mas- 

er and the auxiliary problems because it also happens in general 

hat the larger the number of NF facilities, the lower the combina- 

orics of the problem since less facilities can fail. When β = 3 , we

ave spent an average of 128.22 seconds to solve instances with 

 classes versus 236.75 for instances with 2 classes. When β = 6 , 

he differences are of a similar ratio, 57.86 seconds versus 104.92. 

n terms of goodness of the solution, although we have instances 

here the cost of opening NF facilities is higher than opening F 

acilities, we do open more facilities if all them can fail and also 

ore demand is deviated to the dummy facility, so the solutions 

ith 2 classes are more expensive in average than the solutions 

ith 3 classes. 

To further analyze the impact of the number of classes and 

heir characteristics on the computational burden of CRFLP-EX, we 

ave carried out a final series of experiments. To this end, we have 

onsidered the subset of the 10 original instances in class S_20_50 

ith q = 0 . 05 , f F = 10 0 0 and f NF = 10 0 0 , and, from each of them,

e considered a sequence of 10 new instances with | NF | ranging

rom 0 to 45 (excluding NF dummy facility) in steps of 5. We re-

eated the same experiment starting from the instances in class 

_50_50. Note that, like in the case of the previous table, instances 

ith | NF | = 0 have two equivalence classes of facilities, while all

he others have three. 

All instances with 20 customers could be solved within the 

ime limit. In fig. 3 , each line corresponds to one of the origi-

al instances. For each value of | NF | it gives the percent devia-

ion of the corresponding solution time with respect to the time 

eeded to solve the instance with | NF | = 0 . One of the lines has

een truncated, since, for that particular instance, the percentage 

or | NF | = 5 was much higher than the others. The picture shows

ow, when the number of classes steps from 2 to 3, the compu- 

ational effort required increases, but the effect of increasing the 

roportion of non-failing facilities can compensate this increase. 

ndeed, from | NF | = 15 on, the computational time constantly de- 

reases. 

When 50 customers are considered, only for 5 cases we could 

olve the whole sequence of instances with different | NF | values. 

hus, in Fig. 4 we repeat the structure of Fig. 3 but only with the

orresponding 5 lines. Fig. 4 shows how the effect of the propor- 

ion of non-failing facilities can be higher than that of the number 

f equivalence classes. Actually, in this group we observe three se- 

uences where even with a low number of non-failing facilities, 

he time required for the instances with 3 classes is smaller than 

ith 2 classes. 
34 
. Conclusions 

It has been proposed an exact dynamic approach in order to 

olve the problem of strictly bounding the expected overload of 

he capacitated RFLP. Without the dynamic approach, the expected 

verload calculation is not viable, even for small instances. 

It has been proven that, given a set of open facilities, the cor- 

esponding expected overload can be kept arbitrarily small by as- 

igning to the dummy facility the demand that otherwise would 

xceed the imposed limit on the expected overload. Using this re- 

ult, we have introduced the problem of rearranging the demand 

t minimum cost, in order to satisfy this limit. It has also been 

roven that it is not necessary to perform the rearrangement for all 

he solutions but only for the representatives of some equivalence 

lasses. The definition of these equivalence classes highly reduces 

he combinatorial difficulty inherent to the problem. It has been 

roposed an exact cutting plane dynamic approach that iteratively 

earranges the MASTER solutions and produces feasible solutions. 

The comprehensive computational analysis shows the good per- 

ormance of this dynamic approach compared with the approx- 

mate methods CRFLP-B1 and CRFLP-LR developed by Albareda- 

ambola et al. in Albareda-Sambola et al. (2016) . Obviously, the 

xact method provides the best results in terms of the goal, the 

ost when the expected overload is bounded. Moreover, in many 

ases, the exact approach also requires less time than the approx- 

mate methods. In all of the instances in which the exact method 

oes not finish within the time limit, its solution is better than the 

pproximate solutions. Besides, the behaviour of the overload and 

ummy demand of the exact method improves on the behaviour 

f the approximate methods providing better distributions. It has 

lso been illustrated that, in many cases, it is possible to obtain 

elevant reductions of the costs only by redistributing the demand, 

hich is another motivation to use this approach. 

In the future, it could be considered the development of a 

euristic algorithm based on the dynamic method. Additionally, 

ince the idea of controlling the expected overload by exact dy- 

amic approach has worked efficiently in the computational ex- 

eriments, it could be also considered to extend this idea to other 

eliability problems. 
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