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Resum 

El creixement ràpid de la indústria dels drons té com a objectiu desenvolupar 
aplicacions i implementar-les en una àmplia gamma de sectors. Això inclou 
àrees urbanes concorregudes per a serveis com la vigilància, les entregues i 
monitoratge. En aquest context, és essencial tenir un excel·lent disseny de 
l'espai aeri. Aquest projecte es centra en l'anàlisi d'un conjunt de dades del 
projecte Very Large Demonstration de CORUS-XUAM, que contribueix a la 
missió de l'U-Space de desenvolupar un espai aeri segur, sostenible, eficient i 
totalment digitalitzat per a la Mobilitat Urbana Aèria integrada, que no 
interfereixi en les operacions actuals de l'ATM. El conjunt de dades inclou plans 
de vol, telemetria i prediccions de l'U-Space per a 72 vols de drons. 
 
L'anàlisi implica comparar les trajectòries previstes amb les rutes reals per 
identificar els factors que contribueixen a les desviacions respecte el pla de vol 
i calcular els paràmetres de rendiment rellevants per evaluar l’adherència dels 
drons amb el pla de vol. Això es fa mitjançant l'ús d'algoritmes de deformació 
dinámica del temps per establir una connexió entre els punts de telemetria i el 
pla de vol, el que estableix la base per a la següent secció del projecte. 
 
Després de processar les dades, en aquest projecte desenvolupem models 
d'aprenentatge automàtic per predir els paràmetres de telemetria basant-nos 
en el pla de vol proporcionat. S’avaluen diversos models per trobar el més 
adequat pel nostre objectiu. El projecte també implica la visualització i 
interpretació de les dades per obtenir una visió més intutiva del rendiment del 
dron i el compliment del pla de vol. 
 
La predicció de la posició obre un nou camp de recerca i, en aquest projecte, 
l'enfocament és utilitzar un mètode alternatiu per definir l'espaiat i les mides de 
les aerovies que composen els plans de vol, de manera que es puguin establir 
àrees de seguretat per prevenir qualsevol possible conflicte que pugui 
aparèixer en futurs vols en una àrea concorreguda si l'espaiat fos inferior als 
llindars establerts. 
 
Els resultats d'aquest estudi demostren una progressió exitosa des de les 
dades en brut fins a una anàlisi exhaustiva, que ofereix una visió valuosa per 
avaluar el rendiment dels drons i predir els temps de vol. El desenvolupament 
de diverses funcions de visualització de dades ha permès interpretar de 
manera eficient i efectiva les dades. Tot i que els resultats obtinguts amb el 
conjunt de dades disponible són notables, el potencial de millora rau 
principalment en l'obtenció d'un conjunt de dades més gran amb més 
característiques i mostres, el que milloraria el rendiment dels models 
d'aprenentatge automàtic i proporcionaria prediccions encara més precises. 
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Overview 
 

 
The rapid growth of the drone industry aims to develop applications and 
implement them in a wide range of areas. This includes busy urban areas for 
services such as surveillance, deliveries and monitoring. In this context, it is 
essential to have an excellent design of the airspace. This thesis focuses on 
the analysis of a dataset from the Very Large Demonstration project of CORUS-
XUAM, which contributes to the U-Space mission of developing a safe, 
sustainable, efficient and fully digitalized airspace for integrated Urban Air 
Mobility which does not interfere with current ATM operations. The dataset 
includes flight plans, telemetry, and U-space predictions for 72 drone flights. 
 

The analysis involves comparing intended trajectories with actual flight paths 
to identify factors contributing to deviations from the flight plan and computing 
relevant performance parameters to assess the adherence of the drones to the 
flight plan. This is done with the use of dynamic time warping algorithms in 
order to establish a link between the telemetry points and the flight plan, which 
sets the basis for the next section of the project. 
 

Having processed the data, during this project we develop machine learning 
models to predict telemetry parameters based on the input flight plan. Several 
models are tested and evaluated to find the most suitable one for our objective. 
The project also involves visualizing and interpreting the data to gain insights 
of the drone performance and adherence to the flight plan. 
 

Position prediction opens up a new area of research and in this project the 
approach is to use an alternative method to define the spacing and size of the 
airways that compose the flight plans so as to dictate safety areas to prevent 
any possible conflict that could appear in future flights in a busy area if the 
spacing were to be below the thresholds. 
 

The results of this study demonstrate a successful progression from raw data 
to a comprehensive analysis, offering valuable insights for evaluating drone 
performance and predicting flight times. The development of various data 
visualization functions enabled efficient and effective interpretation of the data. 
While the obtained results with the available dataset are remarkable, the 
potential for further improvement lies mainly in acquiring a larger dataset with 
more features and samples, which would enhance the performance of the 
machine learning models and yield even more accurate predictions. 
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INTRODUCTION 
 
Technology continues to advance rapidly in all aspects of our lives and this is no 
exception for the aeronautics industry. However, implementing new measures in 
this sector can be complex due to the need to consider regulations, 
standardization, and safety measures. A particular challenge lies in aeronautical 
communications, where the frequency band is saturated in busy areas, rendering 
it obsolete. Unfortunately, progress in resolving this issue has been slow due to 
the difficulties involved in making changes. Such issues should not exist in a 
critical and sensitive sector like aviation, which requires precision, safety, and no 
room for errors or mistakes. 
 

The ability to adapt is crucial in today's industries, this implies the facts of 
responding to different situations, coping with changes, and mitigating threats. 
Aviation, which closely monitors safety procedures, adaptability is a must. As 
demand continues to rise and safety standards become stricter, there is a need 
to develop new systems that can support the future of the industry. Nearly twenty 
years ago, the International Civil Aviation Organization (ICAO) highlighted the 
expectation that air traffic would increase by 50% by 2035 compared to 2012 [1]. 
Upgrading current technology, including infrastructure and telecommunications, 
was emphasized as necessary to handle the expected high volume of air traffic. 
 

Furthermore, the drone industry is rapidly expanding, as drones prove to be 
valuable tools for automating tasks efficiently, [2]. Drones are used for various 
purposes, such as surveillance, delivery services, inspections, and maintenance. 
Applications for drones keep on increasing and will play a fundamental role in the 
near future performing a large number of tasks. An example can be seen in 
assessing climate change by facilitating ecosystem tracking, mapping, monitoring 
and data collection.  
 

The seemingly expected growth comes at a cost, which is the concept once again 
of making these applications reliable, robust and safe. Ensuring that the airspace 
is free of conflicts is the key to the proper development of drone operations. In 
comparison to aircraft, drones are much smaller and their nominal speeds are 
low. This is beneficial as it solves the necessity of the large distances of 
separation that exist between planes for things such as wake vortices or conflict 
detection in all stages of flight but it does not strictly imply that safety is reduced. 
Similar measures can be taken for drones yet this still can result in the drone 
airspace being very densely populated with drones for relatively small volumes. 
This should pose no problem as long as everything works as intended and the 
design of the procedures are accordingly made to respect the safety guidelines. 
However, this does require the proper planning that ensures that there will be no 
conflicts over time and that safety will be preserved. 
 

To address the challenge of ensuring safety, we rely on powerful tools capable 
of processing and predicting outcomes. Among the most notable and anticipated 
technologies, artificial intelligence stands out as an ideal solution for automation 
and prediction tasks.  
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With the power of artificial intelligence, we can effectively adapt to the dynamic 
changes that may arise during a flight, continuously reassess the situation, and 
maintain seamless operations without encountering any issues. Currently, drones 
are undergoing rigorous testing to observe their behavior, gather valuable data, 
and verify their ability to fulfill their intended purposes. This ongoing process of 
development and learning aligns perfectly with the scope of artificial intelligence, 
particularly in the field of Machine Learning. Machine Learning is dedicated to 
comprehending and constructing methodologies that enable machines to "learn" 
from data, ultimately enhancing their performance across a range of tasks. 
 

In this study, our aim is to extract valuable features from an extensive dataset 
that encompasses flights conducted during the Very Large Demonstration (VLD) 
of CORUS-XUAM in Castelldefels in March 2022. CORUS-XUAM, a two-year 
VLD project, serves as a platform to showcase how U-space services and 
solutions can effectively support integrated Urban Air Mobility (UAM) flight 
operations. The project's main goal is to enable airspace users to operate in a 
controlled and fully integrated airspace, ensuring safety, security, sustainability, 
and efficiency throughout their operations. 
 

This dataset comprises Flight Plans, Telemetry, and U-Space Predictions for 
each drone flight. To begin our analysis, we initially focus on comparing the 
intended trajectories with the actual flight paths, aiming to identify significant 
factors that contribute to deviations from the Flight Plan. This raw data 
necessitates processing to extract meaningful information, which can then be 
utilized in a Machine Learning model. The primary purpose of this model is to 
predict various parameters, including the telemetry time, based on a given Flight 
Plan. 
 
U-Space emerges as a response to the increasing number of drones in the 
airspace, particularly in congested urban areas. With the goal of ensuring the 
safety and efficiency of drone operations, U-Space provides a range of key 
services and functionalities. These include drone traffic management, airspace 
access control, real-time monitoring, flight notification, and obstacle detection and 
avoidance, among others. The main objective of the U-Space concept is to 
establish a digitized infrastructure and airspace management that allows for the 
safe integration of drone operations into the existing airspace, without interfering 
with manned aviation operations, [2]. 
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CHAPTER 1. DATA INSPECTION 

1.1. Initial Data and structure 

 
Data holds immense value in today's world, but its true potential can only be seen 
through appropriate utilization. Raw data, in its unprocessed state, lacks the 
capability to yield impressive outcomes. Therefore, it becomes essential to 
engage in a series of tasks such as data cleaning, processing, analysis, and 
modeling to extract the maximum advantage from it. This project centers around 
the comprehensive analysis and processing of drone data. 
 

In conjunction with the project's main focus, we have available a collection of files 
that will serve as the foundational source for our data models, following the 
necessary processing steps. Specifically, these files originate from the Very 
Large Demonstration conducted in Castelldefels, which aimed to gather data 
from drones involved in delivery operations. Each trajectory took off from a 
designated delivery vertiport, reached another delivery port for the purpose of 
completing a delivery, and subsequently returned to the original port. Essentially, 
the drones' mission revolved around delivery operations to their assigned 
destinations. 
 

However, it is crucial to recall that the trajectories followed by these drones have 
no resemblance to straight lines. Due to various factors, including the presence 
of airways operating at different altitudes than the delivery points, the drones must 
navigate through a network of flight paths. This aspect closely mirrors real-world 
scenarios of drone deliveries, particularly in urban environments where strategic 
airway designs are employed to avoid obstacles such as buildings, powerlines, 
or restricted areas. By adhering to these designated airways, drones can safely 
reach their intended destinations. In essence, these airways serve as the aerial 
equivalent of roads for ground traffic, but with the added vertical dimension to 
accommodate drone operations. 
 

The dataset we possess captures a specific segment of the drone's overall path 
during its flights, rather than encompassing the entire duration from the moment 
it was turned on. This limitation arises due to the fact that the takeoff and landing 
procedures were manually executed by drone pilots, as opposed to being 
autonomously controlled by the drones themselves. Therefore, the recorded data 
begins at the precise instance when the drones reached the initial point of their 
intended flight plan trajectory. 
 

The first and last points of these trajectories align directly above the delivery 
points, shifted at a certain vertical distance from them. It is worth noting that the 
delivery vertiports are situated at an elevated altitude above the ground level. To 
simulate the delivery operation, the drones hover at a specific altitude above the 
delivery points. During the hovering phase, the drone remains stationary in the 
exact position for an average duration of ten seconds. Although no actual delivery 
takes place in this context, the focus here lies in assessing the drone's ability to 
adhere to the predetermined flight plan.  
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1.1.1. Files 

 
Among the provided files we can classify them in the following. 
 

1.1.1.1. FlightPlan 

 
The Flight Plan documents serve as the guidelines for the drone's designated 
route. Our dataset is made of processed .kml (Keyhole Markup Language) files, 
turned into .csv (Comma Separated Values) files, which provide a structured 
format for storing data. In this format, the Flight Plan information is organized into 
rows, with each row containing the properties of a specific point along the route. 
 
To establish the trajectory, a series of waypoints are defined in three-dimensional 
space, represented by latitude, longitude, and altitude, this latter one above the 
vertiport. These waypoints act as reference points that define the desired path for 
the drone to follow. By connecting two consecutive waypoints, a Flight Plan 
Segment is formed, representing a distinct section of the overall route. Each 
segment is meant to be flown at a specific velocity, as indicated in the 
corresponding row for the origin point of that segment.  
 
Additionally, the Flight Plan data includes a column specifying the Turn Radius 
(as the smoothing radius of the arc, in meters, taken by the drone in order to avoid 
an abrupt change in direction), which is the radius, measured in meters, that the 
drone should maintain when transitioning between segments. This parameter 
ensures that the drone maintains a smooth and controlled trajectory as it 
navigates from one segment to the next. Waypoints named as Hover are 
stationary stages of the flight which simulate the delivery. The drone must remain 
still for the duration specified in the waypoint name.  
 
We are not going to make use of the columns Unnamed: 0, WPname (except for 
the information about the hover) and FPLwpt, as they do not provide information 
that we can benefit from.  
 

 
 

Figure 1. Generic raw Flightplan 
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1.1.1.2. Telemetry 

 
In addition to the Flight Plan documents, we also have Telemetry files that capture 
the actual flown trajectory of the drones. These files provide valuable data on the 
drone's movement and position throughout its autonomous operation. 
 

Telemetry data is collected starting from the moment the drone transitions into 
autonomous mode at the first point, or close, that is specified in the Flight Plan. 
It is a detailed record of the drone's flight, made up of latitude, longitude, and 
altitude coordinates. Notably, the Telemetry files are generated with a high 
frequency, recording the drone's position at a time step of 0.1 seconds. 
Consequently, these files tend to be significantly longer in comparison to the 
Flight Plan files. 
 

 
 

Figure 2.  Generic raw Telemetry 

 
 
Given the increased length of the Telemetry files, it becomes crucial to optimize 
how we handle and process this data. Efficient data processing techniques 
should be employed to avoid excessive computation times and ensure the timely 
extraction of valuable insights. 
 
 

1.1.1.3.  U-Space Predictions 

 
In addition to the Flight Plan and Telemetry files, we have an additional set of files 
called U-Space Prediction files. These files closely resemble the Flight Plan files, 
containing the same information, however, they have an additional column that 
introduces a crucial element: the time prediction. 
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Figure 3.  Generic U-Space Prediction raw file 

 
 
The time prediction column in the U-Space files indicates the estimated moment 
at which the drone will be located over each point specified in the Flight Plan. 
This temporal dimension will be compared with the machine learning time 
predictions and evaluate the reliability of both approaches, among other 
observations. Insights about the comparison of the U-Space time against the 
Telemetry will be done too. 
 

While the original Flight Plan files do not include temporal data, they offer 
valuable information such as the waypoints and velocities. With these details, we 
can obtain an approximate estimation of the time it would take for the drone to 
reach each point along the trajectory. 
 

1.1.1.4. Drone Models  

 
We also have a file that links each flight to the corresponding drone model used. 
This information is crucial for our machine learning models as it allows us to 
leverage the unique features and associations specific to each drone model. By 
observing patterns within a particular model type, we can analyze their impact on 
flights flown with the same model while keeping other models unaffected. This 
insight enables us to build more accurate and less generalized models, optimizing 
our understanding of drone behavior and improving predictions. 
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1.1.2. Google Colab 

 
Right from the very beginning this project requires the utilization of a 
programming language as a means to comprehend the information of the drone 
data files. Merely looking at the files would not give us a comprehensive 
understanding of the underlying information, as achieving any sort of results relies 
on the implementation of code. The process of data processing offers various 
approaches which depend on the nature of the data. For instance, if we were 
working with signal data, options like Matlab could be considered. Alternatively, 
popular data analysis languages like R and Java could also serve the purpose. 
However, Python is the chosen one for both for its prominence in the data sector 
and personal preference. 
 

Python's user-friendly syntax and the vast and supportive community surrounding 
it make it an accessible language for programmers. Especially in the case of 
myself not being too familiar with it at the start of the project. Also, the collection 
of libraries available for Python significantly eases and facilitates numerous tasks. 
In this project, we rely on libraries such as Pandas, Numpy, Matplotlib, and Scikit-
learn, which form the foundation of our data analysis and modeling. 
 

Another aspect of our approach is the utilization of the interactive environment 
provided by Google Colab, built on top of the Jupyter Notebook infrastructure. 
Within Colab, we can effortlessly create, edit, and execute code cells, alongside 
the explanatory text and visualizations and allowing us to save the results of 
previous executions. Colab executes code in Google servers, providing cloud 
storage capabilities and pre-installed libraries and packages. The interactive 
nature of this environment grants us the luxury of visualizing, updating, and 
modifying code while it runs, greatly facilitating the data processing workflow. 
These advantages make Colab the most ideal environment for the construction 
of our project. 
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CHAPTER 2. DATA PROCESSING 

 

2.1. General data overview 

 
Once we import the drone data into Google Colab, our initial task is to get an 
understanding of the data and visualize its characteristics. In order to do this, 
visualizing the Flight Plans becomes an essential step. While we could also go 
for 2D plots that represent the evolution of the three coordinates along the route, 
the absence of a temporal dimension makes it harder to create Latitude, 
Longitude, and Altitude vs. Time plots. Therefore, our approach will involve 
plotting the Flight Plans in 3D, which offers a clear visualization of the drone 
trajectories and, importantly, provides insights into the structure and appearance 
of individual segments. Understanding the shape and distribution of these 
segments is crucial in comprehending how the drone navigates through the 
delivery areas and to see how the airways are common in all Flight Plans. In the 
following Figure 1, it is depicted a generic Flight Plan with the waypoints named 
in the order and the 2 long straight segments are the airways while the delivery 
(hover) happens midway in the flight. 
 
The name of the flights that will appear in the figure are in the format of 
𝑑𝑎𝑦_𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟_𝑣𝑒𝑟𝑡𝑖𝑝𝑜𝑟𝑡. For instance, we can take an example flight: 
 

𝐴_𝐽𝑈𝑁𝑂_142_𝐷𝐸𝐿𝑉_06 

 

This represents a flight performed on day A, from the JUNO operator and its 
destination is the delivery vertiport 06. The number in between helps differentiate 
flights that might share day, operator and destination vertiport.  
 
When we represent the flights three-dimensionally, it is important to note that the 
axis are scaled so it is easier to visualize the different segments. This is only for 
the sake of visualizing the data. In Figure 13, a non-scaled flight is represented 
after coordinate conversion. 
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Figure 4. Representation of a FlightPlan file 

 
 
Similarly, we can apply the same visualization approach to the Telemetry data of 
a flight. It is important to recall that the Telemetry data only provides information 
about the drone's location at a specific point in time. As depicted in Figure 5, we 
observe that there are no clearly defined segments in the Telemetry plot, and the 
overall trajectory appears to be smooth with seamless transitions between 
segments. This Telemetry representation corresponds to the Flight Plan 
showcased in Figure 4 and thus the remarkable similarity to it. Nevertheless, it is 
crucial to emphasize that the Telemetry data lacks a temporal component, 
therefore, with simply the 3D representation it is challenging to determine whether 
the drone adhered to the Flight Plan accurately in terms of time. 

 

 

Figure 5. Representation of a telemetry file 
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While the spatial representation provides valuable insights into the drone's 
trajectory and spatial coherence with the Flight Plan, evaluating temporal 
alignment becomes a more complex task. Without explicit temporal information 
in the plots, it becomes difficult to determine if the drone followed the Flight Plan 
according to the temporal dimension. Even though the Flight Plan does not 
explicitly provide the time, it indicates constant velocity for the segments, which 
essentially dictates the time. Because of that, further analysis and techniques are 
necessary to assess the temporal synchronization between the Telemetry data 
and the corresponding Flight Plan. Regardless of that, we can still benefit from 
the 3D representations for exploring the data and finding flights that did not follow 
the Flight Plan.  
 
An important aspect of our analysis involves plotting both the Flight Plan and 
Telemetry data in the same visualization, allowing us to assess how closely the 
drone adhered to its intended trajectory. This comparison between the Flight Plan 
and corresponding Telemetry will be a typical study throughout the project, as we 
continuously aim to identify similarities and differences between the two datasets. 
By juxtaposing these plots, we can easily locate instances where drones may 
have encountered issues or deviated from the prescribed trajectory. This 
straightforward approach provides us with valuable insights, enabling us to 
efficiently identify any anomalies that might be left out from the models to be used 
lately in this project. 
 

 

 

Figure 6. Representation of a FlightPlan and a telemetry file in the same plot.  

 
 
In Figure 6, we can clearly observe a strong correlation between the telemetry 
trajectory and the intended trajectory, indicating that the drone performed with an 
excellent spatial performance during the flight. The smooth transitions between 
segments are guided by the specified Turn Radius according to the Flight Plan. 
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However, it is important to note that not all flights showcased such a close 
alignment between the Telemetry and Flight Plan. In multiple cases, we observe 
significant deviations and incomplete trajectories, suggesting that some drones 
may have experienced distortions or failed to follow the intended path accurately. 
These deviations in the telemetry data highlight the need for further investigation 
and analysis to identify these affected flights and later in the project we will assess 
a way to detect these cases without having to decide based on the plots by human 
eye. In Figure 7 we can visualize 4 flights whose telemetry did not perform 
accordingly to the planned one. 
 
 

  

  

Figure 7. Example of contingency flights. See Annex for the plots of all 
contingency flights. 

 
The deviations and anomalies observed in the flight trajectories cannot be 
definitively attributed to a specific cause, as the Telemetry data only provides 
spatial and time information.  



19 
 

However, several factors could potentially contribute to these behaviors. For 
instance, the properties of the drone itself may cause the deviation from the 
intended route. Factors such as low battery levels, overheating, loss of signal, or 
irregular performance of mechanical components could make the drone abort the 
planned trajectory. It is also possible that the pilot intervened and took remote 
control of the drone for various reasons. Additionally, external factors such as 
wind conditions or the presence of other air traffic may have played a role in some 
of these situations. Given the variety of data at our disposal, further 
comprehensive analysis can be performed to learn more about the nature of the 
flights and evaluate them. 
 

It is important for us to gain an understanding of the data by examining the 
general context and factors that can influence the flights. Each drone operator 
has the flexibility to operate their fleet according to their own preferences, while 
always respecting the guidelines and regulations. This approach among 
operators increases the variability in deviations or distinct behavioral patterns in 
certain flights. But it is not just the operator as in the context of the Very Large 
Demonstration, not all flights from the same operator were conducted using the 
same drone model. Therefore, when analyzing the data and identifying 
deviations, it is essential to consider both the drone operator and the specific 
drone model employed, as these factors can contribute to the observations.  
 

As we can observe in Figure 8, the number of flights performed by each operator 
is not too homogenous and OMAHA is leading with 31 performed flights in the 
VLM, followed by 20 flights from UTAH, 17 from JUNO and just 4 from SWORD. 
This gives us a total number of 72 flights, each with their respective Flight Plan 
and Telemetry.  
 

  
 

Figure 8. Count of flights by drone operators and drone model used 

 
 
An important consideration in our data analysis is the quantity of data available. 
In our case, we have a database consisting of 72 sets of files, which raises the 
question of whether this amount of data is sufficient to achieve our objectives. 
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2.2. Basic data processing 

 
Now that we have a general data overview, we can start to manipulate it to further 
see the nature of it and get interesting features from the data in the files. There 
are multiple parameters to compute from the telemetry as well as from the Flight 
Plan. The first test will be to get an idea of the U-Space time column, supposedly 
predicting the time stamps of the telemetry when it should overfly each waypoint. 
We can represent these as 3 subplots, Latitude, Longitude and Altitude versus 
Time. Representing these and comparing them to the Telemetry will be very 
helpful to visualize how accurate the U-Space predictions are. 
 

 

Figure 9. Coordinates over time for the U-Space Prediction and Telemetry 

 
After examining the visualization in Figure 9, we notice a distinct temporal shift 
between the U-Space Prediction coordinates (plotted in green) and the Telemetry 
coordinates (plotted in red). This becomes apparent as the telemetry data 
appears to experience a delay of a few seconds before initiating the flight 
trajectory. It gives the impression that the drone is simply hovering still before 
initiating its movement. 
 

To address this misalignment between the U-Space Prediction and Telemetry, 
one possible solution could be to exclude the portion of the telemetry data when 
the drone is stationary. Removing this period of inactivity from the dataset would 
improve the alignment between the U-Space Prediction and the actual drone 
trajectory, reducing the temporal shift observed. This is important considering that 
when analyzing both plots, we need to know whether we consider time or not. 
Without the time component, the trajectories are much more coherent as seen in 
the 3D plots, while when plotting the three separate subplots it looks completely 
different. Recall that the represented flight in Figure 1 in 3D is the same as the 
one in the subplots from Figure 9.  
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This puts into perspective the effect that time has on the trajectories and despite 
seeming accurate in 3D, the trajectories might not be even close to matching in 
4D.  
 

While it seems obvious to just adjust the telemetry delay by subtracting or adding 
(or cropping the file) a constant value to all the telemetry and shifting it to match 
the first point of the Flight Plan to the first point when the drone initiates the 
movement, it might not be assumed to be as straightforward as that in other 
cases. 
 

  

Figure 10. Coordinates over time for two cases where the shape of the curves 
is not easily fixable by correcting a delay. 

 
 
Figure 10 presents an example where the discrepancy between the telemetry 
and the expected flight trajectory is more complex than a simple temporal delay. 
Multiple factors, as discussed previously, might have affected how the drone flew 
its route and caused these distinctive anomalies in the telemetry data. On the left 
side of the figure, the telemetry initiates at the expected time, aligning with the 
start of the intended route. However, as the flight progresses, an irregularity 
appears around the midpoint of the route as the telemetry from the drone tells 
that it might have slowed down, stretching the shape of the Flight Plan before 
resuming its normal pace. 
 

In instances like these, it becomes apparent that introducing a time delay 
adjustment may not provide a straightforward solution for achieving improved 
accuracy. The issue here falls in the irregular patterns experienced by the drone 
which are then presented in the telemetry data, which cannot be easily rectified 
by simple temporal adjustments. If some of these irregularities happen unusually, 
we might consider taking them out of the model’s training database as these kinds 
of behaviors are out of the usual performance of the drone and adding corrupted 
or excessively bad-performing flights can negatively affect the accuracy of the 
predictions later on. 
 

As we don’t know how the U-Space Prediction gets the time of the flights that it 
processes, we will do some testing that hopefully gives us some idea about the 
temporal aspect of the flight plans.   
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In order to assess the adherence of the telemetry data to the flight plan, we need 
some criteria that brings us more information than spatial correlation alone. 
Analyzing the velocity of the telemetry data based on its time steps could provide 
useful insights, however, the variability of drone velocity in real-life trajectories 
makes this approach less reliable. As seen in Figure 10, anomalies in telemetry 
data will often coincide with variations in velocity, making an analysis based on 
velocity might not be the best due to noise and not the most intuitive comparison 
method. 
 

To get around this, we can take advantage of the simplicity and structure of the 
flight plans to obtain a more robust temporal reference. With the spatial 
coordinates and the corresponding velocity between two points in the flight plan, 
we can mathematically estimate the time stamps for each point in the flight plan 
dataframe. This approach allows us to create a time reference for the flight plan 
that can serve as a basis for comparison with the telemetry data. This method is 
far more comprehensive as we assign the theoretical time to each waypoint and 
from that, we can have references for the telemetry. 
 
From now on, the data files that we have at our disposal will be referred to as 
dataframes, a term that defines a data structure resembling a matrix, organized 
in rows and columns. With dataframes, we have the ability to perform various 
operations, such as targeting specific cells, rows, or columns, as well as applying 
conditions to locate and extract desired data. The information stored within these 
cells is not limited to numeric values. It includes a wide range of data types, 
including strings, series, arrays, lists, objects, and more. To do this, we will be 
using Pandas library, specifically designed for these purposes and integrated with 
Python. Pandas contains the pandas.DataFrame class, as the primary form of 
structuring and organizing data [3]. We will be using this library for the whole 
project and it will facilitate us all the tasks. 
 
To compute the time from a Flight Plan, we need to first get the distance between 
points. We consider that the way the drone travels between two points is in a 
straight line. However, to get the distance, we make a conversion of the 
coordinate system, from geodetic coordinates (latitude, longitude and altitude) to 
the Earth-centered, Earth-fixed coordinate system (ECEF). This will make it 
easier to work with the position of the waypoints as we have the same units of 
magnitude in each component of the coordinate and we can then use math 
operations without worrying about the conversion.  
 

Recall that the altitude that the Flight Plan gives us, is different from the Z 
coordinate of the ECEF system. The altitude provided by the plan is with respect 
to the take-off point. 
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The ECEF coordinate system represents points in the form of X, Y, Z with respect 
to the center of mass from the Earth: 

- Positive X axis lies on the equator, from the mass center towards the 
direction of the Greenwich Meridian.  

- Positive Y axis also lies on the equator, 90º to the East of the X axis 
(Greenwich Meridian) 

- Positive Z axis extends northwards, to the North Pole, from the center of 
mass.  

 

𝑿 = (𝑵(𝝓) + 𝒉)𝒄𝒐𝒔𝝓𝒄𝒐𝒔𝝀 (Eq. 1) 

 

𝒀 = (𝑵(𝝓) + 𝒉)𝒄𝒐𝒔𝝓𝒔𝒊𝒏𝝀 (Eq. 2) 

 

𝒁 = (
𝒃𝟐

𝒂𝟐
𝑵(𝝓) + 𝒉)𝒔𝒊𝒏𝝓 (Eq. 3) 

𝑵(𝝓) =
𝒂𝟐

√𝒂𝟐𝒄𝒐𝒔𝟐𝝓+𝒃𝟐𝒔𝒊𝒏𝟐𝝓
 (Eq. 4) 

 

Where 𝜙 is the latitude, 𝜆 the latitude, ℎ the altitude and 𝑁(𝜙) represents the 
prime vertical radius of curvature [4]. 

 

As for the parameters that define the shape of the ellipsoid, we take the World 
Geodetic System 1984 (WGS 84) model as it is standardized and widely used 
for services such as Global Positioning System (GPS) [5]: 

- Semi Major Axis, a = 6378137 m 
- Semi Minor Axis, b = 6356752.31424 m 

 

 

Figure 11.  ECEF, [6] 

 
 
After this conversion it does not get that much more intuitive as we are dealing 
with huge distances and the movement of the drone in comparison to the baseline 
distance of a point located above the surface of the Earth is incredibly small. 
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However, now the three coordinates share the same units and operations 
become easier and possible. In addition, we might have negative distances. For 
instance, if the drone moves South, from Castelldefels, that reduces the Z 
coordinate. If we then do operations such as subtracting the end point to the origin 
point of a segment, it can yield negative results. Distances can be considered in 
magnitude as always positive but the sign in this case will indicate the direction 
and it is helpful to keep it in. In Figure 11, we can see a Flight Plan plotted in X, 
Y, Z coordinates.  
 

 

Figure 12. Flight Plan representation after conversion from geodetic to ECEF 
coordinates 

 

 

Figure 13. Representation of a FlightPlan in ENU coordinates, [6]. Important to 
note that this figure show the real scale of a flight, unlike others that have their 

axis scaled for easier visualization. 
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Having done this conversion, it may appear hard to tell what kind of segment the 
drone is actually performing by just looking at Figure 12. It will appear that during 
the first segment, from waypoint 0 to waypoint 1, the drone is descending but it 
is actually the opposite. To categorize the segments based on the data that we 
have, it is simpler to do it in the geodetic coordinates before conversion. 
Determining the segment type is going to be useful for the model later. This can 
be done by simply comparing altitudes. If the altitude of the end point of a 
segment is lesser than than the altitude of the origin point, we are dealing with a 
descent. On the other hand, if it’s greater, it will be a climb. If the altitude remains 
the same, it can be defined as a cruise segment. And finally for the hover stages, 
we take a look at the information of the waypoint in the Flight Plan and see that it 
is defined by a hover and its respective time.  
 

 
 

Figure 14. Dataframe with segment type added into dataframes as column 
‘type’ 

 
Similarly, we will take the same approach for the model of drone utilized for every 
flight. The values in every row will be the same for a given Flight Plan as the 
model of drone doesn’t change along the trajectory. For the model to learn 
though, the values do not work with simply keeping them as strings. We should 
rather convert them to integers for each kind of segment and drone or do one-
hot-encoding. 
 

As mentioned, now that we have the ECEF coordinates for the points, it is 
possible for us to start computing distances between segments. To compute the 
distance between two points in 3D space, it is relatively easy with the following 
formula.  
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𝟑𝑫 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 =  √(𝒙𝟏 − 𝒙𝟎)𝟐 + (𝒚𝟏 − 𝒚𝟎)𝟐 + (𝒛𝟏 − 𝒛𝟎)𝟐 (Eq. 5) 

 

To determine the number of segments in a Flight Plan, we can apply a 
straightforward formula. For every Flight Plan, the number of segments is equal 
to the number of points minus one. This relationship comes from the fact that 
each segment is formed by a pair of consecutive points rather than individual 
points. Two points form a segment, not two. By connecting these paired points, 
we establish the trajectory of the drone throughout its flight. 
 

Mathematically, we can express this relationship as: 
 

𝒏𝒔𝒆𝒈𝒎𝒆𝒏𝒕𝒔 = 𝒏𝒘𝒂𝒚𝒑𝒐𝒊𝒏𝒕𝒔 − 𝟏  (Eq. 6) 

 
For the dataframes containing the segments, it is true that they will have a row 
less than the Flight Plan, however, the number of points will remain the same. 
Each row consisting of a segment will own two points: an origin point and an end 
point that will serve as the origin point for the next segment. 
 

## convert and replace the lat, lon, alt to x, y, z  

for i, row in flightPlan.iterrows(): 

  flightPlan.at[i,'FPLlat'],flightPlan.at[i,'FPLlon'],flightPlan.at[i,'FPLalt']= \ 

  geodetic2ecef(row['FPLlat'],row['FPLlon'],row['FPLalt']) 

 

## compute the segment time by dividing the absolute distance by the velocity  

for (_, original), (i, shift) in zip(flightPlan.iloc[:-1].iterrows(), 

flightPlan.iloc[1:].iterrows()): 

 

  if  (original['FPLvel']) > 0: 

dist=math.sqrt((shift['FPLlon']-original['FPLlon'])**2+ 

 (shift['FPLlat']-original['FPLlat'])**2+(shift['FPLalt']-original['FPLalt'])**2) 

flightPlan.at[i, 'timeSeg']=dist/(original['FPLvel']) 

 

  else: 

    flightPlan.at[i, 'timeSeg'] = int(flightPlan.at[i,'WPname'].replace( 

        'Hover', '').replace('s','')) 

 

## fill NaN of the first row (as it is not considered in the loop) and get global time 

flightPlan['timeSeg'].fillna(0, inplace=True) 

flightPlan['time']=(flightPlan['timeSeg'].cumsum(axis = 0))   

Listing 1: Computation of time associated to the FlightPlan 

 
In the Listing 1, we can see a part of the function of Colab that computes the time 
when the drone should be reaching every waypoint. The procedure is intuitive as 
we start by iterating row by row with the Dataframe.iterrows() method provided 
once again by Pandas library. With this method the iterations provide an index 
and the row information attached to that index. This way we can use both the 
index and row content comfortably to our needs.  
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In this case, it is used to apply the function of coordinate conversion 
geodetic2ecef to every single row as it works with 3 inputs and provides 3 values. 
 

In the development of this project, we also make extensive use of the zip() 
function in Python to create a powerful and highly useful data structure. The zip 
function allows us to combine iterables, such as dataframes, and pair them 
together in tuples. This functionality is extremely valuable when operating on 
multiple rows simultaneously while keeping track of their respective indices, 
allowing precise data allocation and manipulation. 
 

Specifically, when computing the time between segments in the Flight Plan, we 
take advantage of said zip function. We select two rows from the dataframe: one 
representing the origin point and the other representing the end point of the 
segment. By subtracting their corresponding coordinate and applying Equation 2 
we obtain the distance between these points. This distance is then divided by the 
velocity provided in the row containing the origin point. This calculation yields the 
time required for the drone to fly the segment. When it comes to hovering 
segments within the route, we directly extract the time from the waypoint definition 
specified in the Flight Plan. By summing up the individual segment times 
cumulatively, we obtain the total time it should take for the drone to complete the 
entire flight route. 
 

Now we can observe how our computation of the time resembles the U-Space 
time prediction and see if we can deduce any useful information. 
 

 

Figure 15. Comparison of the mathematical approach for a Flight Plan time 
versus the U-Space time prediction 

 
 
Observing Figure 15, it is clear that the U-Space predictions do not represent the 
exact mathematical time estimation for each point, or at least it is not like this for 
all files.  
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The coordinates in the U-Space predictions seem to remain unchanged, with only 
a temporal stretch applied to them. To assess the accuracy of these different time 
calculations, we can compare them against the telemetry data of the flight. This 
allows us to determine which time estimation method yields better results, or at 
least for a subset of flights to get a first glance. However, it is important to note 
that we can’t generalize these findings, as each flight can has its unique 
characteristics and variations. 
 

 

Figure 16. Comparison of the mathematical approach for a Flight Plan, the U-
Space Prediction and the Telemetry 

 
 
For instance, in Figure 16, we visualize the data from the three provided files for 
a given flight. In this case, there is evident variation between all of them and none 
of the update Flight Plan or U-Space prediction seems to closely match the 
telemetry. Yet if we put special emphasis on time prediction, the mathematical 
approach appears to have performed better, as the error on the final time of the 
U-Space seems to be more than twice (around 40 seconds) as the error from the 
mathematical approach on the Flight Plan, that is around 15 seconds. We could 
however also assess spatial accuracy, and in this sense it is not as clear on which 
of both trajectories resembles more the telemetry. A way of numerically 
computing these values can be seen in [7].  
 
By observing other representations of other flights, we get to the conclusion that 
there is indeed a high level of variation and unpredictability to these results. As 
seen in Figure 17, there are instances where both the mathematical approach 
virtually matches the U-Space predictions, seen in the left upper corner. In other 
cases the mathematical approach is way off from the telemetry, while in other 
cases it is the U-Space.  
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Figure 17. Different cases comparing the three files. High variation. 

 
 
It is true that in an ideal scenario, where the drone maintains a constant speed 
and follows a straight line with the designated turn radius to each waypoint, the 
telemetry data should closely align with the time computed in Listing 1. This 
computed time takes into account the regular behavior of the drone based on the 
Flight Plan waypoints. Even though the telemetry of the drone flights deviates 
from this theoretical one due to various factors, it is still valuable to consider the 
computed time for future comparisons and analysis. The computed time provides 
a consistent and predictable reference point, allowing us to assess the temporal 
accuracy and deviations in the telemetry data. This temporal reference and the 
suitable coordinate system, we establish a foundation for further analysis and 
exploration in the project.  
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2.3. Time independent error analysis  

 
Assessing the accuracy and performance of a drone along its intended route 
partly involves analyzing its adherence to the Flight Plan. With the deviations from 
the intended path, independent of time, we can evaluate how precisely the drone 
follows the intended trajectory. These deviations introduce additional distance 
traveled, as the drone moves away from the straight line connecting the points of 
each segment. The more significant the variations and noise in the trajectory, the 
greater the distance the drone has to cover, potentially resulting in longer flight 
times. 
Understanding the spatial aspects of the drone's trajectory is a key factor for 
evaluating its adherence to the Flight Plan. If the drone was perfectly designed to 
follow the exact trajectory at a constant speed, we would have a matching 
telemetry and flight plan. This analysis allows us to identify areas where the drone 
may deviate from the intended path, indicating potential issues or anomalies in 
its flight behavior or weak points in the drone’s auto-pilot system in particular 
shapes of the trajectory. 
 
In order to evaluate the deviations between Telemetry and Flight Plan, a careful 
manipulation of the dataframes is required. The approach taken in this analysis 
is primarily focussed on the telemetry points and establishing their association 
with the corresponding segments of the Flight Plan. However, this association of 
telemetry points to specific segments is not trivial during transitions between 
segments. The assignment based on the time is not reasonable, as we have 
observed in previous observations that there were significant variations between 
telemetry and Flight Plan time estimations, resulting in considerable deviations 
when the drone is either ahead of or behind the expected trajectory.  
 
Therefore, an alternative approach is used to address this issue. Instead of 
relying on time-based matching, other factors such as spatial correlation and 
proximity are considered for the associations between telemetry points and Flight 
Plan points. As we want to develop a robust function to compute this, that could 
work in any sort of trajectory despite knowing that the ones at our disposal are 
relatively simple, we will make use of a method that does not actually consider 
the segments as parts of the route where a given section of the telemetry has to 
be associated but rather considering all the trajectory as a whole and comparing 
it to the whole intended trajectory of the Flight Plan. This holds a similitude to 
signal correlation, where the analysis of correlation between signals is important 
for synchronization and to reduce the effect of the noise. For this sort of analysis, 
having a high amount of samples is essential and we will in our case increase the 
number of samples (points) in our Flight Plan so as to have more anchor 
reference points to attach the telemetry to. 
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## Flight Plan extension 

df_flightPlanExpanded = pd.concat( 

    [ 

        pd.DataFrame( 

            scipy.interpolate.interp1d([0, 1],[[original["FPLlat"], original["FPLlon"], 

original["FPLalt"]],[shift["FPLlat"], shift["FPLlon"], shift["FPLalt"]]], axis=0, 

Bounds_error=False,fill_value=[0, 0, 0])(np.linspace( 

0, 1, 50)), columns=["FPLlat", "FPLlon", "FPLalt"]) 

        for (_, original), (_, shift) in zip(df_flightPlan.iloc[:-1].iterrows(), 

df_flightPlan.iloc[1:].iterrows()) 

    ] 

) 

 

df_flightPlanExpanded = df_flightPlanExpanded.reset_index(drop=True) 

 

## Lat, Lon, Alt to x, y, z with geodetic2ecef 

for index, row in df_flightPlanExpanded.iterrows(): 

  df_flightPlanExpanded.at[index,'FPLlat'],df_flightPlanExpanded.at[index,'FPLlon'],_= 

geodetic2ecef(row['FPLlat'],row['FPLlon'],row['FPLalt']) 

 

for index, row in df_telemetry.iterrows(): 

  df_telemetry.at[index,'lat'],df_telemetry.at[index,'lon'],_= 

geodetic2ecef(row['lat'],row['lon'],row['alt'])  

 

Listing 2. FlightPlan interpolation and coordinate conversion 

 
First we are going to increase the number of points from the FlightPlan trajectory. 
The trajectory will remain the same but with a higher number of points that will be 
used to compute their distance to the telemetry path. The idea is to take two 
consecutive points of the FlightPlan and get the function of the line that connects 
them.  
 
This way, we have a function f(x), where: 
- 𝑓(0) = 𝑜𝑟𝑖𝑔𝑖𝑛_𝑝𝑜𝑖𝑛𝑡  
- 𝑓(1) = 𝑒𝑛𝑑_𝑝𝑜𝑖𝑛𝑡 

- 𝑓𝑜𝑟 0 ≤  𝑥 ≤  1 

 

We don not take into consideration values outside the range of x ∈  [0,1] as we 
only want to add points in the imaginary line that links two consecutive points of 
the FlightPlan, this is adding points only in-between the origin point (for x=0) and 
the end point (for x=1) of every segment that makes the FlightPlan.  
 

Essentially, with an origin_point = (lat0, lon0, alt0) and an end_point = (lat1, lon1, 
alt1). 
 

- 𝐹𝑃𝐿𝑙𝑎𝑡(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝐹𝑃𝐿𝑙𝑎𝑡(0) = 𝑙𝑎𝑡0 𝑎𝑛𝑑 𝐹𝑃𝐿𝑙𝑎𝑡(1) = 𝑙𝑎𝑡1 

- 𝐹𝑃𝐿𝑙𝑜𝑛(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝐹𝑃𝐿𝑙𝑜𝑛(0) = 𝑙𝑜𝑛0 𝑎𝑛𝑑 𝐹𝑃𝐿𝑙𝑜𝑛(1) = 𝑙𝑜𝑛1 

- 𝐹𝑃𝐿𝑎𝑙𝑡(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝐹𝑃𝐿𝑎𝑙𝑡(0) = 𝑎𝑙𝑡0 𝑎𝑛𝑑 𝐹𝑃𝐿𝑎𝑙𝑡(1) = 𝑎𝑙𝑡1 



32 
 

Therefore, we can take as many values x as we want to get points in the line as 
long as 0 ≤ x ≤ 1, so for instance, considering that the FlightPlan is made by 
straight lines connecting the waypoints, FPLlat(x) = (lat1 - lat0) * x + lat0 so if 
lat0=0 and lat1=10, FPLlat(0.5)=5, as expected, the middle point. 
 

In order to do this, what we are doing is to use scipy.interpolate.interp1d from the 
scipy library. As the name suggests, this is a function that finds a function(s) from 
given values of x and y. We are just providing two points so the interpolation is 
perfect, as by default this function does linear interpolation and by providing two 
points, it simply creates the line that contains the two points. 

 

Our first objective is to increase the number of points in the FlightPlan, in this 
case, we will add 50 points in each segment, so for a FlightPlan determined by 
12 waypoints, we will end up with 12*50=600 points. This is done by iterating the 
interpolation function scipy.interpolate.interp1d 50 times with values from 0 to 1, 
using np.linspace(0, 1, 50) we get an array from 0 to 1, both included, with 48 
other extra equally-spaced values in between.  
 

We have to provide the function of the two points, origin and end, which are 
consecutive points (rows) in df_flightPlan. In order to do this, we simply create a 
shifted copy of df_flightPlan that starts a point later than the original df_flightPlan 
with the use of df_shift = df_flightPlan.iloc[1:]. Doing this, reduces the length 
(rows) of the dataframe by one, so len(df_shift)=len(df_flightPlan)-1. Therefore, 
we need to trim the unshifted (df_original) dataframe by one row (the last one) so 
that both of them have the same length using df_original = df_flightPlan.iloc[:-1].  
 
Now, for the same index (same row number) in both dataframes, we will get the 
origin point and end point so that origin will be in original.iloc[0] and the end in 
shift.iloc[0]. This comes in handy to use a for loop as we are always using the 
same row index for both dataframes. To get the 50 points, we need to just provide 
a single origin_point and also a single end_point to the interpolate function. 
Providing the whole dataframe would create a line that is close to all waypoints, 
like a regression line and that's not what we want. In order to do this, we have to 
use scipy.interpolate.interp1d as many times as segments exist in the dataframe. 
 
The number of segments is just obtained by subtracting 1 to the number of 
waypoints in the FlightPlan, which is essentially what has been done before in 
the df_original and df_shift dataframes. Then, in each iteration, we take a row of 
each dataframe, get the origin_point from the df_original and the end_point from 
df_shift, with these two we obtain the line equation(s) f(x) to which we will pass 
the 50 numbers from 0 to 1, this is f(np.linspace(0, 1, 50)) where 
f=scipy.interpolate.interp1d([0, 1],[[origin_point],[end_point]) with the rest of 
parameters needed for the function (axis, fill_value...). 
 
This will give us 50 points in-between the first two consecutive points of 
df_flightPlan. We are creating a new dataframe df_flightPlanExpanded which will 
contain all these groups of 50 points generated in each iteration, so in every 
iteration we are appending 50 points to it. This can be done with pd.concat.  
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All the iterations are done with pandas.DataFrame.iterrows which, as the name 
suggests, iterates over the rows. We are using zip which pairs, in tuples, the items 
of the passed iterators. So the first item in each passed iterator is paired together, 
and then the second item in each passed iterator are paired together, etc. Put 
simply, in each iteration, it will create a tuple storing 2 other tuples, each of these 
tuples contains two items: an integer (int) being the index of the row and a series 
(pandas.Series) containing the information about the row (lat, lon, alt...). 
𝑧𝑖𝑝 →  (𝑡𝑢𝑝𝑙𝑒1, 𝑡𝑢𝑝𝑙𝑒2)  →  ((𝑖𝑛𝑡1, 𝑠𝑒𝑟𝑖𝑒𝑠1), (𝑖𝑛𝑡2, 𝑠𝑒𝑟𝑖𝑒𝑠2))  →  

((𝑖𝑛𝑡1, [𝑊𝑃𝑛𝑎𝑚𝑒1, 𝐹 𝑃𝐿𝑙𝑎𝑡1, 𝐹𝑃𝐿𝑙𝑜𝑛1. . . ]), (𝑖𝑛𝑡2, [𝑊𝑃𝑛𝑎𝑚𝑒2, 𝐹𝑃𝐿𝑙𝑎𝑡2, 𝐹𝑃𝐿𝑙𝑜𝑛2. . . ])) 

 

We don't need the first items from each tuple (int1 and int2) as it is just an integer 
indicating the index of the iterated row. Both int1 and int2 are the same from what 
has been said before about the same index of row getting the origin_point from 
df_original and end_point from df_shift. Therefore we just care about the series 
(series1 from tuple1 and series2 from tuple2). We obtain these with (_, original), 
(_, shift). So original[FPLlat] returns the latitude of the origin_point from the row 
that we're iterating and shift[FPLlat] returns the latitude of the end_point. 
 

Finally we reset the index of df_flightPlanExtended because otherwise it keeps 
the indexing from each concatenation, going from 0 to 50 and then starting again 
from 0 to 50, while what we want is that it goes from 0 to 600 (number of points). 
    
Now with this expanded FlightPlan, we have a solid base with which we can 
assess the error calculations much easily. Recall that the idea of finding the best 
alienation and error in the trajectory is independent of time only after we have 
established a link that relates every point (or points) of the telemetry to a point of 
the FlightPlan.  
 

To do this we need a way to find a relation between the two trajectories which are 
different lengths and that do not completely match considering the variations in 
speeds and deviations. We have seen it in previous figures when comparing the 
telemetry data to the flight plan data and the telemetry is not simply delayed but 
also scaled in the temporal axis in an irregular way, where some parts of the route 
are slower than intended while other parts take longer than intended. A way to do 
so without giving importance to these anomalies would be to either expand the 
FlightPlan dataframe to match the length of the telemetry and then match every 
point of the telemetry on a one-to-one relation. This is known as Euclidean 
Matching and it can be expressed in a simplified form as: 
 

𝑭𝒍𝒊𝒈𝒉𝒕𝑷𝒍𝒂𝒏 𝑻𝒓𝒂𝒋𝒆𝒄𝒕𝒐𝒓𝒚 𝑿 = 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒊, … , 𝒙𝒏 

𝑻𝒆𝒍𝒆𝒎𝒆𝒓𝒕𝒚 𝑻𝒓𝒂𝒋𝒆𝒄𝒕𝒐𝒓𝒚 𝒀 = 𝒚𝟏, 𝒚𝟐, … , 𝒚𝒊, … , 𝒚𝒏 

 

Where 𝑛 is the number of points (rows) in the Telemetry file. The elements of 
each series are points in the format of 𝒙𝒊 = (𝒙𝒊,𝑙𝑎𝑡, 𝒙𝒊,𝑙𝑜𝑛, 𝒙𝒊,𝑎𝑙𝑡) and 𝑦𝒊 =
(𝑦𝒊,𝑙𝑎𝑡, 𝑦𝒊,𝑙𝑜𝑛, 𝑦𝒊,𝑎𝑙𝑡). 
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This idea in Euclidean Matching is to match point xi from the FlightPlan to point 
yi from the telemetry. For this to work both series need to have the same number 
of points. The FlightPlan could be interpolated so as to have the same time step 
as the telemetry and then match both time series by timestamp. 
 

 

Figure 18.  Euclidean matching between two time series, [8] 

 
 
This is a straightforward approach that will yield the distance between these one-
to-one pairs. However, 𝒙𝒊 can be shifted in time in comparison to its pair 𝑦𝒊 and 
this association would not output the actual adherence to the trajectory. In 
addition to that, both time series at our disposal have different lengths in terms of 
time. We can interpolate the FlightPlan as much as we want by adding points in 
between the trajectory but that does not change the duration of the FlightPlan. If 
the FlightPlan time, say 𝑡𝑓𝑝, is the time at the last waypoint or in other words, the 

total time that it takes a drone to fly the intended trajectory, and 𝑡𝑡𝑒𝑙 the last 
telemetry time available, which is the time that it took the drone to follow the 
FlightPlan. In this situation, for a  𝑡𝑡𝑒𝑙 > 𝑡𝑓𝑝, there is not a clear relation for the 

points and we have to find a solution to assess this problem. 
 
This is where Dynamic Time Warping (DTW) comes in handy.  Dynamic Time 
Warping is a technique used to compare and align two sequences of data that 
may have different lengths and variable speeds. It is commonly used in time 
series analysis and has various applications, including comparing trajectories, 
speech recognition, and gesture matching, [9].  
 

To understand DTW, we can think about two sequences, like the flight plan and 
telemetry data. These sequences represent the movement of the drone over time. 
However, the sequences may not have the same length and may be distorted in 
terms of their timing. For example, as the telemetry data experiences delays and 
noise compared to the flight plan ideal route. 
 

DTW aims to find the best alignment between these two sequences by warping 
and stretching their time axes. It allows for the comparison of corresponding 
points from both sequences, even if they occur at different times. This is done by 
finding a path through the sequences that minimizes the differences between the 
corresponding points. In other words, DTW finds the optimal way to match similar 
patterns in the sequences, even if they occur at different times or have different 
durations. 
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𝑭𝒍𝒊𝒈𝒉𝒕𝑷𝒍𝒂𝒏 𝑻𝒓𝒂𝒋𝒆𝒄𝒕𝒐𝒓𝒚 𝑿 = 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒊, … , 𝒙𝒏 

𝑻𝒆𝒍𝒆𝒎𝒆𝒓𝒕𝒚 𝑻𝒓𝒂𝒋𝒆𝒄𝒕𝒐𝒓𝒚 𝒀 = 𝒚𝟏, 𝒚𝟐, … , 𝒚𝒋, … , 𝒚𝒎 

 

 

Figure 19. Dynamic Time Warping for two time series 

 
 
Now, not every point is not necessarily matched to its corresponding point with 
the same index from the other time series and that the distinctive shapes of the 
trajectory are paired together. Nota that despite seeming that the distance of the 
lines linking both series are greater as they some of them are diagonal, we are 
establishing links between similar points and that this indicates both points 𝑥𝑖 and 
𝑦𝑗 that are closer in space yet displaced temporally. A point of a time series can 

be paired with multiple points of the other time series as they have different 
lengths and all points must have a pair, closest in space, to compute the distance 
between them. This yields the best possible alignment, i.e. the minimum distance 
between time series. 
 

𝑫(𝒊, 𝒋) = 𝒅(𝒊, 𝒋) + 𝒎𝒊𝒏 {

𝑫(𝒊 − 𝟏, 𝒋)
𝑫(𝒊 − 𝟏, 𝒋 − 𝟏)

𝑫(𝒊, 𝒋 − 𝟏)
 (Eq. 7) 

 

 

Figure 20. Dynamic Time Warping sequence alignment and D matrix with 
optimal warping path, [10]. 
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The optimal warp path is created based on the considerations of monotonicity, 
continuity and boundary. Monotonicity guarantees that the warping path does not 
roll back, in the sense that it will be always entire non-increasing or entirely non-
decreasing (depending on how we arrange the axis). Continuity along the warping 
path makes sure that it only advances on step at a time. And the boundary 
condition guarantees that it the warping path contains all points of both series of 
data. For the implementation of DTW through code we have used the 
implemented function in the library tslearn. 
 
Let’s take this approach for some of our flights to visualize the alienation between 
the telemetry and FlightPlan. Recall that we are computing 3D distances 
between  𝑥𝑖 = (𝑥𝑖,𝑙𝑎𝑡, 𝑥𝑖,𝑙𝑜𝑛, 𝑥𝑖,𝑎𝑙𝑡) and 𝑦𝑗 = (𝑦𝑗,𝑙𝑎𝑡, 𝑦𝑗,𝑙𝑜𝑛, 𝑦𝑗,𝑎𝑙𝑡) and finding the 

optimal warping path. 
 

 

Figure 21. Example of warping path for one of the flights 

 
We can represent the warping paths of all flights to visualize how is the general 
accuracy of the flights from out dataset. In Figure 22, the entire dataset has its 
DTW warping path plotted. The indexing is variable for all flights but the more 
straight the lines are, this is, without noise/irregularities, the better the adherence 
to the FlightPlan. Recall that every path starts at (0, 0) and ends at (𝑛, 𝑚). 
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Figure 22. Warping paths for all the flights (colored based on the operator of 
the flight) 

 
 
In addition, to get a more comprehensive look at what the DTW algorithm is doing, 
we can plot the distance association of a telemetry to a non-interpolated path, 
which computes the distance from the telemetry to the closest FlightPlan point. 
On the other hand, we can plot the DTW association between telemetry points 
and FlightPlan points. The plot is the view of a turn from the top and as the turn 
is not a perfect circumference, it is not trivial to tell which point of the telemetry 
related to the waypoint of the FlightPlan. It does not necessarily have to be the 
one with lowest distance but the one where the trajectories align better. 
 

  

Figure 23. Dynamic Time Warping, no interpolation and interpolation 
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If we plot the whole trajectory it offers a better view of what the algorithm does. 
In this case, in Figure 24, we have chosen a flight whose telemetry has a notable 
error to better observe the DTW. Also, the number of interpolated points of the 
FlightPlan is highly reduced for visualization purposes. 

 

 

Figure 24. DTW algorithm linking telemetry points to FlightPlan (interpolated) 
points  

 

Figure 25. Close up the the association between FlightPlan points and 
Telemetry points using Dynamic Time Warping. The green line represents a 

single segment with 3 extra interpolated points for better results. This is 
simplified visualization purposed, the actual interpolation used of 50 points as 

computational resources allow it. 
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CHAPTER 3. MACHINE LEARNING 
 

3.1. What is Machine Learning? 

 
Machine learning is a branch of artificial intelligence (AI) that focuses on the 
development of algorithms and models capable of automatically learning and 
making predictions or decisions. In traditional programming, computers are given 
explicit instructions to perform specific tasks. However, machine learning takes a 
different approach by enabling computers to learn from data and examples, 
recognize patterns, and make act without being explicitly programmed. 
 
The key idea behind machine learning is to design algorithms that can analyze 
and interpret data, identify meaningful patterns or relationships, and use them to 
generalize and make predictions on new unseen data. This ability to learn from 
data is what makes machine learning such a powerful tool. Instead of being 
programmed to perform specific tasks, machine learning algorithms learn from 
data through a process of training and adjustment of internal parameters. 
 
During the machine learning process, relevant data is given as input. This data 
can be in various formats, such as images, text, or numerical values. We have to 
be conscious about what data is used to train the machine learning algorithm, 
and that is the reason of the data preprocessing step that is taken to clean, 
organize, and transform the data and ensure that the data is in a consistent format 
for the analysis. In our case we are working with numeric data and basic strings 
of text that will be converted to numeric values for simplicity. 
 
The next step is training a machine learning model using the prepared data. The 
model is based on an appropriate algorithm that suits the problem that we need 
to solve. The algorithm is then provided with the prepared data, allowing it to learn 
and adjust its internal parameters with the patterns and relationships it discovers 
in the data. The learning process makes the algorithm manipulate the date 
iteratively, making predictions or decisions and comparing them to the correct 
outputs given also in the training data. When adjusting its parameters, the 
algorithm aims to minimize the difference between its predictions and the actual 
outputs. 
 
Machine learning has different types of algorithms, including supervised learning, 
unsupervised learning, reinforcement learning and combinations between them. 
Each type has its own characteristics and applications. Supervised learning 
involves learning from labeled examples, where the algorithm is provided with 
input data along with corresponding target outputs. Unsupervised learning aims 
to find hidden patterns or structures in unlabeled data. And reinforcement learning 
involves learning through interactions and receiving feedback in the form of 
rewards or penalties. Briefly, the models are trained with a partition of the data, 
called train data.  
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Figure 26. Machine Leaning types, [11] 

 

3.2. Main machine learning types 

 

In order to put the data to the test a specific machine learn model has to be 
chosen. Models differ in the way that they learn from the data. The way the 
algorithms work for each model is what makes them different from one another 
and their applications are distinct. Simpler models like Linear Regression, that 
will be explained later, use linear equations to predict the outputs while other 
more advanced models such as Random Forest are based on hierarchical 
decision and rules to observe the patterns in the data.  
 

3.2.1. Supervised Learning 

 
Supervised machine learning is a type of machine learning where the algorithm 
learns from labeled training data. In supervised learning, the input data (features) 
and the corresponding output labels are provided to the algorithm during the 
training phase. The goal is to learn a mapping function that can accurately predict 
the output labels for unseen input data. Therefore, this is clearly our case as we 
will provide both the input and output to train the model and after the training 
phase, we will just provide the input and obtain the predicted output. 
 
The model finds the patterns with the output labels and then it is tested with the 
other partition of the data called test data. From the test data we get the 
evaluation metrics as it is unseen data. 

3.2.2. Unsupervised Learning 

 
Unsupervised machine learning is a type of machine learning where the algorithm 
learns patterns and structures in unlabeled data. Unlike supervised learning, 
there are no output labels provided in unsupervised learning. The goal is to 
discover hidden patterns, relationships, or clusters in the data.  
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3.3. Machine Learning Models 

 

3.3.1. Regression Models 

Regression models are used when the target variable is continuous, and the goal 
is to predict a numeric value. In the given list of models, the following models fall 
under this category: 
 

3.3.1.1. Linear Regression: 

Linear regression assumes a linear relationship between the input features and 
the target variable. It fits a linear equation to the data by minimizing the sum of 
squared differences between the observed and predicted values. 
 

3.3.1.2. Random Forest 

Random Forest is an ensemble of decision trees. It combines multiple decision 
trees to make predictions and provides an average prediction based on the 
predictions of individual trees. 
 

3.3.1.3. Gradient Boosting Regressor 

Gradient Boosting Regressor also combines multiple decision trees, but in a 
sequential manner. It fits each subsequent tree to the residuals of the previous 
tree, improving the predictions gradually. 
 

3.3.1.4. Extreme Gradient Boosting (XGBoost) 

XGBoost is an optimized implementation of gradient boosting that provides faster 
and more accurate predictions. It incorporates regularization techniques and 
advanced algorithms to boost the performance. Showed good performance in 
[12] in a similar drone application. 
 

3.3.1.5. Light Gradient Boosting (LightGBM) 

LightGBM is another gradient boosting framework that aims for faster training 
speed and lower memory usage. It uses a novel tree-growing algorithm and 
various optimization techniques. 
 
 

3.3.2. Classification Models 

Classification models are used when the target variable is categorical, and the 
goal is to assign the input data to one of the predefined classes. In the given list, 
the following models fall under this category: 
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3.3.2.1. Logistic Regression 

Logistic regression is a binary classification algorithm that models the probability 
of an instance belonging to a certain class. It uses a logistic function to map the 
input features to the target class probabilities. 
 

3.3.2.2. Naive Bayes 

Naive Bayes is a probabilistic classification algorithm based on Bayes' theorem. 
It assumes that the features are conditionally independent given the class label 
and calculates the probabilities of each class based on this assumption. 
 

3.3.2.3. Support Vector Regression 

Support Vector Regression (SVR) is typically used for regression tasks, but it can 
also be adapted for classification. SVR maps the input features to a higher-
dimensional space and finds a hyperplane that maximizes the margin between 
the classes. 
 

3.3.2.4. Instance-based Learning Models 

Instance-based learning models make predictions based on the similarity 
between instances in the training data and the test data. In the given list, the K-
Nearest Neighbors (KNN) algorithm falls under this category. KNN classifies or 
regresses a new instance by finding the K closest instances in the training data 
and predicting based on their labels or values. 
 

3.4. Detecting outliers in the data 

 
When it comes to training a machine learning model, the approach we take on 
data input plays a crucial role in its performance. In our specific case, we have 
from the files a decent amount of data that could potentially be relevant for 
training the model. However, it is important to be cautious and not saturate the 
model with an excessive amount of data in the hope of achieving the best 
performance. As we have discussed, in traditional programming, specific 
behaviors can be defined, machine learning models define these themselves and 
despite some behaviors may be apparent to us, they might not be to the model if 
the data is not well provided. Therefore, we need to make decisions when it 
comes to choosing the most relevant and informative input data for the model 
and choosing as well an output variable (or variables) that the model will try to 
predict. 
 
At the same time, even with the right amount of input variables, we have to make 
sure that the data which we are providing is not corrupt or contain values that are 
abnormal in comparison to the rest of the dataset. This could be for several 
reasons but in the case of our data, it may be the case with the acquisition of the 
data or when writing it.  
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As we are dealing with positions in time mainly, we have seen in Figure 7 that 
some of the telemetry files have failed at completing the trajectory and the data 
regarding the part of the trajectory that is outside the typical functioning of the 
drone can’t be considered for the analysis as it would skew the results and reduce 
performance. 
 
We can make use of the Dynamic Time Warping algorithm that we have created 
in Chapter 2. This will come in very handy to identify trajectories whose telemetry 
has not adhered to the FlightPlan. It can be done by analyzing the error during 
the trajectory, [13]. When the drone deviates from the trajectory, the warping path 
also deviates from the diagonal line which represents the ideal adherence and 
the more it deviates the higher the error and the odds of being an abnormal flight. 
In Figure 27 we can visualize both the maximum error of the flights in meters as 
well as the average errors. Both graphs show similarities but we specially take 
into account the average errors as maximum errors can likely associated to the 
drone telemetry data before it even reaches the start of the route or continuing to 
record data after the trajectory. In this case, the average error accounts for that 
and it will remain low during the trajectory to still be considered. 
 
 

  
 

Figure 27. Error distributions for time independent analysis 

 
 
Some of the flights have only recorded a part of their telemetry as can be seen in 
Figure 27. These flights have a high maximum error but the average is 
remarkably low yet still affected by the maximum error values. The case seen 
below represents the third flight seen in Figure 27, the one on the left with 
maximum error around 550 m and we can see that its average is within the 20 m 
threshold. The value of 20 m is chosen based on inspecting the flights with higher 
error and seeing that above 20 meters the telemetry is highly unrelated to the 
FlightPlan, while the ones below 20 m but with relatively high error represent 
flights with missing data, see Annex to have a closer look on these flights.  We 
will not use the part of the telemetry and FlightPlan that we don’t have from and 
later we will analyze by segments which will examine segments individually 
instead of the whole trajectory, resulting in lower average errors in cases like this 
one.  
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This discussed method of detecting the outliers is not used to generate input data 
for the model. The error values could be used if necessary but these will not be 
considered as a feature in the model data. After this procedure the data is cleaner 
and slightly reduced. As we do not know why the data is missing or the why the 
drone did not adhere to the intended trajectory, it is questionable whether to 
consider the data where the drone does adhere to the telemetry because it may 
have experienced some flying conditions out of the usual which led the drone to 
not properly record the data. 
 

 

 

Figure 28. Example of a telemetry file with missing data 

 

3.5. Machine Learning dataset 

 
Let’s discuss the different features that can be obtain from the data that we have 
and that can potentially be useful for the model. These have to include information 
about the flight that affects the adherence to the trajectory. Depending on what 
we want to predict as an output, the importance of the different input data be 
altered. This is, if we want to predict time-related parameters, the most beneficial 
inputs will be likely time-related yet that does not exclude other features may also 
play an important role.  
 
In addition to that, as machine learning is based on learning patterns, for it to be 
as accurate as possible, it is essential that the input data exhibits some sort of 
patterns across the dataset. In the case of our dataset, we count with tenths of 
flights that, despite all of them being different, they hold similarities and the model 
is able to establish connections between behaviors happening in a route and see 
great results when training in another route. If we were to have a dataset whose 
flights had no similarities in terms of the segments, duration and speed, basically 
being all of them unrelated, the odds of the results being less accurate would be 
high. 
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3.5.1. Features 

3.5.1.1. Spatial features 

 
The first feature that is considered for the flights and that can be considered is 
the positional values of the trajectory. Both the FlightPlan and the telemetry 
contain valuable information of the points in space, however, it is not a single 
point that matters but the relationship of two consecutive points. Providing a 
single point per line in a dataframe can be irrelevant as there is no association 
that can be done with another point for that particular entry of data. That is why 
working with segments has potential benefits as the relation between x, y and z 
magnitudes has a strong effect on the prediction of the model as it contains 
essentially the attributes of that segment.  
 
While it is true that considering the origin point of a segment as (0, 0, 0) and the 
giving simply the corresponding value to the end point might seem like an easier 
approach for the model as it deals with less data. However, considering what we 
have mentioned earlier about the similarities and relationships between routes, it 
comes in handy too to give information about the starting point too as the 
performance of the drone can be different based on the altitude or in certain areas 
of a given trajectory. Note that for this latter assumption, ECEF coordinates for 
the raw points have to be used as to identify particular patterns based on the 
location of the drone. ENU coordinates depend on the reference of each flight 
which is set to the origin point of the FlightPlan. Unless the reference point is the 
same for all flights, the ENU coordinates contain information useful for every 
individual flight yet we cannot generalize with merely the information about 
position. 
 

3.5.1.2. Temporal features 

 
Time also plays a critical role in terms of predictions as it contains valuable 
information about the intended position of the drone along the trajectory. In 
Chaper 2 we have seen a way to compute the theoretical time that it should take 
a drone to fly the FlightPlan trajectory. This is an obtained feature from the raw 
data and it can be extremely helpful when compared with the telemetry time as a 
way to get the delay that the drone experiences in every segment.  
 
When generating the time data for the model, we want to associate a telemetry 
time to each segment, for instance the time at the end of the segment for both 
telemetry and FlightPlan, the difference between these times is the delay in that 
given segment. If necessary, we can use 𝑑𝑒𝑙𝑎𝑦 = 𝑡𝑡𝑒𝑙 − 𝑡𝑓𝑝 where 𝑡𝑡𝑒𝑙 is the time 

at of the telemetry at given point and 𝑡𝑓𝑝 the time of the FlightPlan at that point. 

Finding the 𝑡𝑡𝑒𝑙 for a given point can be expensive in terms of computation 
resources as telemetry points rarely coincide exactly with the FlightPlan points 
and the approach of computing the distance from the desired point to all the 
points of the telemetry to find which one is closer is not a reliable method as the 
drone may be closer to another segment during that particular time, specially is 
segments were to be very close, separated a distance of around the average 
error, would result in wrong associations between the times.  
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To obtain the telemetry time associated with a specific point in the Flight Plan, we 
use the power of Dynamic Time Warping (DTW) once again. As we have 
commented earlier, DTW establishes a link between all points in the trajectory, 
allowing us to effectively map the Flight Plan points to their corresponding 
telemetry points. This wat, when identifying a point in the Flight Plan, we can 
effortlessly locate its associated telemetry point using the DTW alignment as it 
ensures that each point in the FlightPlan is properly matched with its 
corresponding point (or points) in the telemetry data. Once we have identified the 
telemetry point linked to the desired Flight Plan point, we can obtain the 
associated time value stored in the corresponding row of the telemetry data. In a 
similar manner we can use this to obtain the telemetry position at that time if the 
objective is to predict positions. 
 
In Listing 3 we can see the way this time is obtained. Essentially, we are looking 
for the associated index to a particular FlightPlan segment in the synchronized 
dataframe that contains the correlation between the segments. Knowing the 
telemetry index we can easily get its time. 
  
  for i, row in model_df.iterrows(): 

    model_df.loc[i, "t_tel"] = telemetry.iloc[sync[np.where(np.array(sync)[:,1] == 

find_nearest(np.array(sync)[:,1],(i+1)*n))[0][0]][0]]['secs']  

Listing 3. Closest telemetry time obtention 

 
 

 

Figure 29. Dataframe with examples of temporal features 

 

3.5.1.3. Drone characteristic features 

 
Information that we also have available which is not initially in a numerical value 
is the drone model type. The drone model can have an impact on the adherence 
to the FlightPlan as higher end drones count with better specifications which can 
potentially contribute to a better awareness and therefore better response to the 
FlightPlan guidelines. At first glance we are not going to analyze by model type 
but this data can be provided to the model for its algorithms. 
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Other comparable features include the segment type, which can either be: 
descent, climb, cruise and hover. Knowing this data is helpful as drones can have 
different performances depending on the kind of segment that they are dealing 
with. 
 
In addition, the operator of the drone is a factor to take into account as operators 
may use different criteria and software when setting up the drones. This however, 
is a piece of information that we do not know for sure and we will let the machine 
learning model assess the data and find the patterns, if there are any. 

 

 

Figure 30. String encoded values for a flight 

 
 
For machine learning purposes, the general tendency is to acquire as much data 
as possible in order to capture a wide range of variations and patterns related to 
the problem to solve. However, it is important to note that handling an excessively 
large dataset can also impact computation time and resource requirements. 
Therefore, it becomes essential to find the optimal trade-off that suits a specific 
scenario.  
 

In our case, for the drone flights, we observe that they follow specific airways with 
consistent altitudes, and this pattern is repeated across multiple flights and 
delivery scenarios. Additionally, we notice a consistent sequence of actions, such 
as starting with a climb, followed by a hover at some point of the trajectory, and 
ending with a descent. These patterns are helpful and justify the feasibility of 
solving our problem. Having a dataset that shows such patterns is essential for 
developing an accurate model. Random flights performed by unknown operators 
with irregular routes would lack the necessary correlation for the machine learning 
model to properly identify and understand the provided data. Without the right 
dataset, the predictions derived from the model would likely be inaccurate and 
unreliable. However, we are not going to limit the model with any of these 
conditions, as the model is suitable to be trained with data that showcases some 
sort of patterns, yet we will not generalize and make assumptions for all flights, 
the model will be able to do this on its own.  
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3.5.2. One Hot Encoding 

 
For the model to understand the string values that we will provide, it needs a 
numerical value that can be used for the pattern recognition. A possible option is 
to replace the string values by numbers representing each case while keeping 
the values in the same column such as representing the model type as number 
0 for climb segments, number 1 for cruise and so on. This method is a simple 
way to assign numeric values to different categories of a categorical variable. 
However, it has a significant limitation in that these numeric values can be 
misinterpreted by some machine learning algorithms. For example, if we encode 
four drone models with values 0, 1, 2, and 3, an algorithm may incorrectly 
interpret that the operator corresponding to value 3 is three times greater than 
the drone model with value 1, which is not true. 
 
An alternative to this method is the method called One Hot Encoding. This 
strategy involves creating a binary column (which can only contain values 0 or 1) 
for each unique value in the categorical variable being encoded. The column 
corresponding to the current value in each row is marked with a 1, while the 
remaining columns are assigned a value of 0. For example, in the case of the 
drone operator variable of the dataframe, One Hot Encoding creates four binary 
columns (JUNO, OMAHA, UTAH and SWORD). For each flight, a value of 1 is 
assigned to the column corresponding to their operator, and a value of 0 is be 
assigned to the columns of the other operators. This way, each flight is 
represented by a binary vector indicating the presence or absence of each 
categorical value, which avoids the possibility of the model and algorithms to 
misinterpreting the numeric values assigned by other ways of encoding. 
 

 

Figure 31. One hot encoded string labels 

 

3.5.3. Metrics for evaluation 

 
R2 (R-squared), MSE (Mean Squared Error), and MAE (Mean Absolute Error) 
are commonly used metrics to evaluate the performance of machine learning 
models. They provide insights into how well the model fits the data and how 
accurate its predictions are. 
 
R2, is a statistical metric used to evaluate the how good the model fits the data 
for a regression model. It provides an indication of how well the independent 
variables (features) in the model explain the variability in the dependent variable 
(target). It ranges from 0 to 1, with 1 representing a perfect fit where the model 
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predicts all the variability in the target variable, and 0 indicating that the model 
does not have any precision in the predictions it makes. It measures the 
proportion of the variance in the target variable. 
 
MSE is a commonly used metric to assess the accuracy of models. It calculates 
the average of the squared differences between the predicted values and the 
actual values of the target variable. Squaring the differences makes MSE yield 
higher weight on larger errors. It penalizes the model for larger deviations 
between predicted and actual values. MSE is useful for evaluating the overall 
quality of predictions and provides a measure of the average squared deviation 
between the predicted and actual values. 
 
MAE is another metric used to evaluate the performance of regression models. It 
calculates the average of the absolute differences between the predicted values 
and the actual values of the target variable. In this case, it does not square the 
errors. It takes the absolute value of the differences. This means that all errors 
are weighted equally, regardless of their direction. It provides a more interpretable 
measure of error, as it represents the average magnitude of the errors in the 
original units of the target variable. 
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CHAPTER 4. Results  
 
Having at our disposal the features that we have computed, the next stage is 
training and testing the models. Machine Learning does require trial and error to 
find the optimal features which yield the best performance. The aim is to test the 
machines learning models discussed in the previous chapter and evaluating their 
performance. The results with the best performance will be tested further with 
validation data. 
 
As the last step the obtained machine results will be compared to the U-Space 
predictions and to the real telemetry data. This way, it will be possible to 
determine if we have made a positive contribution to U-Space by having more 
accurate predictions. 
 

4.1. Time predictions 

 
The prediction of time at specific points along the FlightPlan trajectory is a 
significant aspect of our analysis. To achieve this, we provide segment-related 
input data, where each row contains relevant information about the segment as 
well as characteristic details about the drone. Our objective is to predict the 
corresponding telemetry time, also denoted as 𝑦 (output variable), which we have 
previously computed with the help the telemetry files. This telemetry time 
represents the moment when the drone is closest to the designated FlightPlan 
point, taking into account the nature of the trajectory. It is crucial to ensure that 
the predicted time corresponds accurately to the intended point along the 
FlightPlan and is not mistakenly associated with a point from a later segment of 
the trajectory that might be closer. 
 
For the time predictions, we will train the model with segments of all flights, all of 
them as independent rows in the dataframe. The intention is to be able to split 
every flight into segments so that in the end we have a database with all segments 
of all routes, without any relation to one another. All the origins of the individual 
segments are brought to the origin at coordinates (0, 0, 0) and they end at their 
respective points. The time at the start of each segment is set to 0 seconds and 
it also has the end time as computed in the mathematical approach of Chapter 2 
and its related telemetry time. In addition, there is information of the drone, 
operator that flew this segment and the segment type (yet this latter one can likely 
be deduced by the model from taking int consideration the information about the 
origin and end points). 
 
Input data: ['JUNO', 'OMAHA','UTAH', 'SWORD', 'M300', 'M600', 'Mavic2', 
'S9000', 'z0', 'x3', 'y3', 'z3', 'vel_fp', 'turn_fp', 't_seg_fp','3Ddist'] 
 
Where ['JUNO', 'OMAHA', 'UTAH', 'SWORD'], ['M300', 'M600', 'Mavic2', 'S9000'] 
are the one hot encoded columns of ‘dronemodel’ and ‘droneOperator’ 
respectively. 
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Let’s discuss the reason behind this selection of columns, which from the 
computed features, appears to be the selection of features that performs better 
after testing the possible combinations. 
 
We include 𝑥3, 𝑦3, 𝑧3 as they represent the point in space where, from (0, 0), it 
creates the line making a the segment. This way we avoid using origins and end 
points that the model could misinterpret or memorize. Also 𝑧0 is altitude at which 
the segment starts from as it can help the model identify patterns related to 
airways, that are in constant altitudes. 
 
In addition, we provide parameters about the segments such as 𝑣𝑒𝑙_𝑓𝑝, 𝑡𝑢𝑟𝑛_𝑓𝑝 
that represent the velocity and turn radius specified by the FlightPlan. Finally, we 
provide the theoretical segment time, 𝑡_𝑠𝑒𝑔_𝑓𝑝, and 3D distance of the segment, 

3𝐷 𝑑𝑖𝑠𝑡. 
 
The output data is the telemetry time, variable 𝑦: t_seg_tel 
 
In this model, the dataset contains 690 rows which represent individual segments. 
The excluded flights are only the outliers, this is, 5 flights. The flights with missing 
data can be included in exception of the segments where the data is missing as 
we are considering individual segments. 
 
The 9 models are trained with the same exact data and the obtained results are 
shown in Figure 32. 
 

 

Figure 32. Results obtained from the models (R2 sorted) 

 
 
The evaluation of the metrics suggests that the XGB model performs 
exceptionally well in terms of time predictions. It is true that it presents the lowest 
MSE, as well as the highest R-squared, however it is important to emphasize 
before concluding, that it might still be worth to keep its close competitors. As 
these metrics are obtained from the test data used during training, they do not 
strictly guarantee in every situation that the model will outperform its closest 
competitors, such as the Random Forest and LGB models as the difference 
between their metrics is very slight in this case. 
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The subtle differences definitely guarantee these top scoring models will have 
remarkable prediction capabilities, however their performance on validation data 
might not maintain the same order as in the previous figure. It is important to 
consider the context and possible variations in performance when providing new 
and unseen data. Therefore, even though the XGB model may show the best 
performance with the evaluation metrics, we can still need to verify and observe 
its behavior with validation data.  
 
For the validation data, in our case full trajectories, we take the four top scoring 
models and test them once again with this data that we can actually visualize as 
we predict the time for a whole trajectory and not random segments like it is done 
with the test data. 
 
The following Figure 33 shows the results of the validation data which are of 5 
flights, which have been checked that they are not outliers or contain missing 
data so we can compare them smoothly with the entirety of the telemetry.  
 

 
 

 

 

 

 

Figure 33. Metrics for the 4 best performing models (with validation data) 

 
 
The XGB regressor has the best performance even for the MAE, with the testing 
done with validation data. Note that the smaller the MAE and MSE the better 
while for the R2 the higher the better.  
 
And finally, to further understand which model performs better for this time 
analysis, we can perform cross validation so the models can be trained and tested 
with all the data, except from the validation data. The cross validation score is the 
average of the scores obtained from each data split while choosing a different 
fold of test data every time. We expect the difference to be small as generally a 
test/train split selecting random pieces of data results in a non-biased dataframe, 
which is what we want. As it can be seen, the 6 best performing models are 
represented in the dataframe below and the ranking remains the same. 
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We could take this step before training the models and merely pick the top one 
scorer to fit it with the data.  
 

 
 

Figure 34. Cross Validation (CV) scores using k-fold validation. 

 
 

Now we can plot the results of the validation data for some trajectories and see 
how the model performs. We will choose the XGB regressor as it showed the best 
performance and accuracy.  
 
In the plots, four times will be represented: 

- 𝑡_𝑠𝑒𝑔_𝑓𝑝 → for the theoretical time of every segment of the FlightPlan as 
computed in Listing 1. 

- 𝑡_𝑠𝑒𝑔_𝑢𝑠 → for the time of each segment according to the U-Space 
prediction. 

- 𝑡_𝑠𝑒𝑔_𝑡𝑒𝑙 → for the telemetry time, where every segment has been 
delimited with the use of Dynamic Time Warping (see section Time 
Independent Error Analysis) 

- 𝑡_𝑠𝑒𝑔_𝑚𝑙 → for the machine learning model predicted time of each 
segment. In this case, using the XGB model. 

 
We can plot the time per segment individually and then the accumulated time as 
the representation of the increasing time during the trajectory. 
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Time MSE 
t_us 315.8 
t_fp 74.7 
t_ml 28.9 

 

Time MSE 
t_us 2943.57 
t_fp 127.96 
t_ml 7.07 

 

Time MSE 
t_us 1652.2 
t_fp 1078.7 
t_ml 578.5 

 

 

Figure 35. Upper row: segment time predictions (𝒕_𝒔𝒆𝒈_𝒎𝒍). Added reference 
times for comparison 𝒕_𝒔𝒆𝒈_𝒇𝒑, 𝒕_𝒔𝒆𝒈_𝒖𝒔, 𝒕_𝒔𝒆𝒈_𝒕𝒆𝒍;  Middle row: global 

accumalated trajectory times; Bottom row: MSE for each of the times with 
respect to the ground truth, which are telemetry related times 

 
A more intuitive way of visualizing the prediction of times is by plotting the 
coordinates over time. During this project, we have seen various representations 
of telemetry and FlightPlan data over time. Now, we can take the results of our 
predictions and plot the FlightPlan waypoints at the predicted cumulative sum of 
𝑡_𝑠𝑒𝑔_𝑚𝑙 (𝑡_𝑚𝑙). This allows us to observe how the original FlightPlan will look 
like with the predicted times, resembling the telemetry data. In Figure 36 we plot 
also the input of to the model. Essentially, the lines labeled as FP are the 
representation of the FlightPlan coordinates with the mathematically computed 
𝑡_𝑓𝑝. The dashed line labeled as TEL represents the actual flown trajectory, the 
telemetry coordinates over time. And the lines labeled as ML represent the 
FlightPlan coordinates at the predicted times. 
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Figure 36. Coordinates over time. Spatial locations (X, Y, Z) of the predicted 
lines correspond to the input coordinates that have been relocated to the 

predicted times with the XGB model. 

 
In other cases, it is not as accurate. However, as it can be seen in the MSE, the 
error is still lower than the U-Space approach and mathematical approach. 
 

 

Figure 37. Another, not as accurate plot of coordinates over time. Spatial 
locations (X, Y, Z) of the predicted lines correspond to the input coordinates that 

have been relocated to the predicted times with the XGB model. 

 
 
We can also get a more detailed view of this models’ performance by plotting the 
feature importances. Models utilize the features differently and below we see two 
example of the importance given to each feature (note that the Y scale is not the 
same). At first sight it appears that LGB is making a better use of the features, 
however that does not necessarily mean that the predictions are better. 
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Figure 38. Feature importances for the XGB model (left side figure) and for the 
LGB model (right side figure) 

 

 

 

Figure 39. Left side plot: Learning Curve for the XGB model; Right side plot: 
Comparison of multiple learning curves (XGB included) 

 

 

Figure 40. Scatter plot of True (𝒕_𝒕𝒆𝒍) and predicted values (𝒕_𝒎𝒍) for the XGB 
Regressor model. Points on top of the ideal dashed line indicates perfect 

predictions.  
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4.2. Position predictions 

 
When it comes to predicting positions, it's important to note that the features 
obtained from the available data may have a weaker performance in the final 
model. This is mainly due to the fact that telemetry positions (or related spatial 
metrics), for instance, at the end of a segment, are extremely variable and the 
noise in this kind of data will make it tough for a model to predict it accurately. 
 
In contrast, the prediction of time benefits from more suitable features that we 
obtain in the data. Features such as distance, velocity, and segment properties 
play a significant role in determining the time required to fly a particular segment. 
For instance, we include a time reference feature (𝑡_𝑓𝑝) which is particularly 
influential, as it closely related with the ground truth time (𝑡_𝑡𝑒𝑙). Even without 

𝑡_𝑓𝑝, the relationship between distance and velocity yields that the predicted 

value is typically similar or higher than 𝑡_𝑓𝑝. And this relationship is highly 
consistent, as we have observed from the data.  
 
However, when it comes to predicting the position of the drone, these features do 
not necessarily help determine the position at a given time. While time prediction 
benefits from a strong relationship between feature and the target variable, 
predicting positions requires also strong relationships that we might not be able 
to obtain.  
 
We can predict the deviations 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 which are the difference between the 
intended FlightPlan point to the actual telemetry point at a given time, which in 
this case is the time stamp at the end of each segment. 
 
Therefore, 𝑑𝑥 = 𝑥2 − 𝑥1,  𝑑𝑦 = 𝑦2 − 𝑥1,  𝑑𝑧 = 𝑧2 − 𝑥1. These deviations are the 
output labels that the model trains on. With an accurate prediction of 𝑑𝑥, 𝑑𝑦, 𝑑𝑧, it 
is possible to obtain the telemetry point 𝑥2, 𝑦2, 𝑧2, 𝑥2 = 𝑥1 + 𝑑𝑥,  𝑦2 = 𝑦1 + 𝑑𝑦,  

𝑧2 = 𝑧1 + 𝑑𝑦. 
 
Input data: ['JUNO', 'OMAHA', 'UTAH', 'SWORD', 'M300', 'M600', 'Mavic2', 
'S9000', 'z0', 'x3', 'y3', 'z3', 'vel_fp', 'turn_fp', '3Ddist', '2Ddist', 't_seg_fp'], 
 
Output data: [‘dx’, ‘dy’, ‘dz’] 
 
Below we can the performance of some of four models. These are models that 
accept multiple outputs as now we are predicting the three variables at the same 
time. We could predict one at a time but after having tested that, the results are 
worse. This is likely due to the relation between coordinates and the model 
benefits can establish links between the output variables and its magnitude. 
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Figure 41. Performance of models for deviation prediction 

 
As mentioned at the start of this position prediction section, the supposition about 
no strong relationship on between input and output data can be seen here below 
with the two best performing models. For instance, the XGB model gives almost 
the same importance to the feature SWORD, which is a categorical vertiport 
feature, as x3 which describes the length in the X coordinate of the segment. This 
does not mean that the model misassigns the importance as it has performed 
decently, but it puts into perspective the lack of strong relationships. 
 

  
 

Figure 42. Feature importances for Random Forest and Extreme Gradient 
Boosting models.  

 
 
We could try removing the less important features and adding other that might be 
relevant yet it is not simple with our data to obtain a feature that has a strong 
impact on the deviation of the drone. Maybe it could be due to wind conditions or 
the quality of the signal, among similar factors, that we do not have data on. By 
removing the drone models and adding some columns the results are similar. 
That is expected as these features do not really contribute to the final result. 
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Figure 43. Slight variation in the results with different arrangement of data 

 
It is interesting to note how the XGB model in this case makes the cruise feature 
as the most relevant. This can be associated to finding a clear relationship 
between deviations and cruise segments. It makes sense as deviations tend to 
be rather small and constant during cruise segments. 
 
We can inspect the learning curves to see how the model is learning from this 
data. As seen in the figure below, it does seem like the models are slowly 
learning. There is a slow tendency to convergence yet the value is not 
impressively high. This suggest again that the model would highly benefit from 
more data to reach a higher scoring.  

  

Figure 44 

We have to be careful when choosing the features. If we include 𝑥0, 𝑦0, 𝑧0 and 
𝑥1, 𝑦1, 𝑧1 to the input data, which might make sense at first as it represents the 
actual origin and end point of the segment, the performance will appear to clearly 
increase yet this is a clear case of overfitting the model. 
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Figure 45. Models overfitting due feature memorization 

 
We can clearly see that the model has increased its R2, almost doubling it, yet 
the errors on the test data remain the same or even higher. This is due to the 
memorization of a feature and predicting based on that feature. In this case, it is 
memorizing x1 which provides no direct information to the deviation of the drone. 
The feature x1 represents the X coordinate of end point of a segment and merely 
with a point in space it is not possible to make a prediction on the deviations. In 
the test data there are probably some points with very similar x1 as some of the 
trajectories share points and it makes the prediction entirely based on this feature. 
That explains why despite increasing the accuracy, the error is even higher. 
Unlike the case with 𝑡_𝑓𝑝, that closely related to the output variable 𝑡_𝑡𝑒𝑙 when 
predicting time. In that case, the reason on why a feature stands out is feasible. 
 
 

4.3. Airways safety margins 

 
In order to establish a criterion when designing the spacing between areas, we 
can analyze the telemetry data against the FlightPlan to obtain valuable results 
that can be helpful in terms of safety and prevention of collisions. Also, this also 
ensures the telemetry will remain inside these margins. In a way this serves as 
an alternative to predicting positions.  
 
If we can determine the area (or volume) where the drone will be flying with a 
high degree of confidence, we do not need to strictly know where it will be exactly 
located at a given time, instead we can guarantee that it will be inside a volume 
close to the trajectory. The volume can be a buffering of the segments by 
specifying distances or a tube-like shape with the segment in the center. In a way 
we can imagine trajectories as imaginary cylinders where the segment is the 
longitudinal axis. In this case, the imaginary cylinder is hollow and the drones 
would fly inside it.  
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Figure 46. Sigma distribution of the deviation of the drones from the segments 
in meters.  

 
This, in combination with the time predictions makes a pretty solid foundation for 
U-Space as we can give a prediction of the drones’ real time in every waypoint 
and also specify a safety volume where the drone will be inside at that predicted 
time with confidence.  

 
 

 

Figure 47. Average deviation [m] scatter plot and representation of a high 
average error flight 

 

Figure 48. Average deviation from the telemetry to the flight plan segments for 
all flights 
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To better understand these results, it is helpful to plot the distribution by segment 
type. We have considered only for these plots the flights that have no 
contingencies or missing data. For reference, we are dealing with 354 cruise 
segments, 152 climb segments, 118 descent segments and 59 hoverings. The 
number of climbs and descents does not have to strictly match as in some case 
multiple climbs can be taken to reach a certain altitude, while the descent can be 
one in only one segment or vice versa. 
 

  

  
 

Figure 49. Distribution of average errors based on the type of segment with 
threshold for which average deviation is 90, 95 and 99 percent of the times. 
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CHAPTER 5. Conclusions and future work 
 
Throughout the realization of this final degree project, we have managed to go 
from raw data in the form of flight plans and their associated telemetry, to a 
detailed analysis which is of high value to visualize the performance of the drones 
in terms of adherence to the flight plan and predicting times, which are essential 
for the development and improvement of the U-Space. 
 
Several data visualization and observation functions have been made to clearly 
represent the data that we are dealing with. This has been indispensable to 
progress with the making of this project as the raw data itself is not intuitive at 
first sight and does require manipulation in order to get assumptions from it. In 
this kind of studies with experimental it is important to have a solid representation 
of the processing of the data as it is works well together with the numeric results 
that are obtained in each stage. 
 
The time independent analysis done in Chapter 2 has set a base for us to build 
the rest of the project. To achieve objectives, observing the different relationships 
between the flight plan and telemetry is necessary. This analysis and developed 
algorithms make possible the relation between both kinds of data in the form of 
linking the indices, or points, of the telemetry to the flight plan despite the noise 
and smoothed shape that the real trajectory shows when the drone flies it. 
Without a clear correlation between this data, analyzing the data becomes an 
obstacle. The synchronization of the data also plays an important role on getting 
rid of the delay that the telemetry might experience, specially at the beginning of 
the trajectories and to train the models it is important to treat all telemetries the 
same, without any bias due to delay. And this does not only serve for the models 
but also for delimiting segments in telemetry and computing deviations which help 
determine the spacing of the airways that the drones use. 
 
This project also contributes to the prediction of times for a given flight plan. 
Assessing the difference between the intended plan time and the actual telemetry 
is crucial for safety and capacity terms. With the use of various models, we have 
been able to obtain accurate time predictions based on the input of a flight plan 
after computing some features that can be obtained from it. The predictions have 
a remarkably good performance in comparison to the U-Space predictions, which 
satisfies the main goal of this final degree project. The high variation in the 
different telemetries of the flights makes it complex to always achieve low errors 
and there is room for improvement. Having more features in the raw could 
minimize these errors and increase accuracy. From the learning curves we can 
tell that also increasing the size of the dataset would be beneficial for the models 
to achieve convergence for the training data and validation data. 
 
Related to what has been mentioned, when it comes to predicting positions 
becomes a complex task for supervised machine learning models. This is due to 
the fact that predicting the future position of telemetry for a whole trajectory based 
only on the intended flight plan is not an straightforward task as the deviations 
are highly irregular and variable during the trajectory. However, what we do to 
tackle this issue is to seek an alternative way of determining positions with some 
degree of uncertainty.  
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From the utilization of the data at out hand, we can define average deviations the 
drones experience from the intended segments of the flight plan. Plotting these 
deviations as distributions with threshold values ensures certain key parameters 
for the definition of the corridors composing the airways that can as well be 
interpreted as the spacing between airways, which can be beneficial for collision 
avoidance problems and maintaining safety. This is one of the fundamentals for 
the U-Space and being able to provide these insights is a valuable way of 
contributing to that. 
 
Future projects can evolve from the basis of this project. Data analysis is time-
consuming tasks and there are countless steps from the moment when the data 
is captured by the drone’s sensor to having the data ready for a machine learning 
model. The developed algorithms are able to process the data after the initial 
stage of processing the KML files obtained from the readings of the drones. By 
having a set of data containing location coordinates and time, the algorithms and 
models used for this project can be used. 
 
A way to improve this study is to gather more features that could be potentially 
useful for the machine learning models. These can range from meteorologic 
parameters that affect the adherence to the flight plan such as wind 
measurements, to specific parameters of the drone’s battery level, quality of 
signal coverage, number of visible satellites for the positioning system of the 
drone, among others. Another beneficial improvement is to increase the size of 
the available dataset. The more data, as long as it is not repetitive, is a clear 
advantage for machine learning models as they are exposed to more 
combinations of the data and therefore learn to generalize for future unseen data. 
 
In the area of prediction, future research can be done in the field of deep learning. 
A broad and powerful branch of machine learning falls on the algorithms of neural 
networks. Neural networks operate with a set of hidden neurons, or algorithms, 
layered together to create a complex network that acts as model that to make 
predictions. In addition to that, different kinds of neural networks can be used in 
order to learn from a time series and predict the future values. A way of 
implementing these kinds of neural networks is to make predictions based on 
previous data. In that case, previous information of the real time telemetry can be 
provided as an input to the model, alongside other features, to output the 
continuation of the telemetry. Precisely, LSTM (Long Short-Term Memory) and 
RNN (Recurrent Neural Networks) can be used to achieve said goal, [14], [15]. A 
network able to determine future positions can be used in combination with the 
developed machine learning models to have a more robust behavior. 
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ANNEXES 
 

Contingency flights (including the ones with missing data) 
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