

FINAL DEGREE PROJECT

Title: Assessing drone trajectory error and improving flightpath predictability

Degree: Bachelor's degree in Aerospace Systems Engineering

AUTHOR: Pau Terés i Teixiné

DIRECTOR: Cristina Barrado Muxí

DATE: June 19th 2023

Títol: Avaluació dels errors en trajectories de drons i millorant la seva predictibilitat

Autor: Pau Terés i Teixiné

Director: Cristina Barrado Muxí

Data: 19 de juny del 2023

Resum

El creixement ràpid de la indústria dels drons té com a objectiu desenvolupar
aplicacions i implementar-les en una àmplia gamma de sectors. Això inclou
àrees urbanes concorregudes per a serveis com la vigilància, les entregues i
monitoratge. En aquest context, és essencial tenir un excel·lent disseny de
l'espai aeri. Aquest projecte es centra en l'anàlisi d'un conjunt de dades del
projecte Very Large Demonstration de CORUS-XUAM, que contribueix a la
missió de l'U-Space de desenvolupar un espai aeri segur, sostenible, eficient i
totalment digitalitzat per a la Mobilitat Urbana Aèria integrada, que no
interfereixi en les operacions actuals de l'ATM. El conjunt de dades inclou plans
de vol, telemetria i prediccions de l'U-Space per a 72 vols de drons.

L'anàlisi implica comparar les trajectòries previstes amb les rutes reals per
identificar els factors que contribueixen a les desviacions respecte el pla de vol
i calcular els paràmetres de rendiment rellevants per evaluar l’adherència dels
drons amb el pla de vol. Això es fa mitjançant l'ús d'algoritmes de deformació
dinámica del temps per establir una connexió entre els punts de telemetria i el
pla de vol, el que estableix la base per a la següent secció del projecte.

Després de processar les dades, en aquest projecte desenvolupem models
d'aprenentatge automàtic per predir els paràmetres de telemetria basant-nos
en el pla de vol proporcionat. S’avaluen diversos models per trobar el més
adequat pel nostre objectiu. El projecte també implica la visualització i
interpretació de les dades per obtenir una visió més intutiva del rendiment del
dron i el compliment del pla de vol.

La predicció de la posició obre un nou camp de recerca i, en aquest projecte,
l'enfocament és utilitzar un mètode alternatiu per definir l'espaiat i les mides de
les aerovies que composen els plans de vol, de manera que es puguin establir
àrees de seguretat per prevenir qualsevol possible conflicte que pugui
aparèixer en futurs vols en una àrea concorreguda si l'espaiat fos inferior als
llindars establerts.

Els resultats d'aquest estudi demostren una progressió exitosa des de les
dades en brut fins a una anàlisi exhaustiva, que ofereix una visió valuosa per
avaluar el rendiment dels drons i predir els temps de vol. El desenvolupament
de diverses funcions de visualització de dades ha permès interpretar de
manera eficient i efectiva les dades. Tot i que els resultats obtinguts amb el
conjunt de dades disponible són notables, el potencial de millora rau
principalment en l'obtenció d'un conjunt de dades més gran amb més
característiques i mostres, el que milloraria el rendiment dels models
d'aprenentatge automàtic i proporcionaria prediccions encara més precises.

Title: Assessing drone trajectory error and improving flightpath predictability

Author: Pau Terés i Teixiné

Director: Cristina Barrado Muxí

Date: June 19th 2023

Overview

The rapid growth of the drone industry aims to develop applications and
implement them in a wide range of areas. This includes busy urban areas for
services such as surveillance, deliveries and monitoring. In this context, it is
essential to have an excellent design of the airspace. This thesis focuses on
the analysis of a dataset from the Very Large Demonstration project of CORUS-
XUAM, which contributes to the U-Space mission of developing a safe,
sustainable, efficient and fully digitalized airspace for integrated Urban Air
Mobility which does not interfere with current ATM operations. The dataset
includes flight plans, telemetry, and U-space predictions for 72 drone flights.

The analysis involves comparing intended trajectories with actual flight paths
to identify factors contributing to deviations from the flight plan and computing
relevant performance parameters to assess the adherence of the drones to the
flight plan. This is done with the use of dynamic time warping algorithms in
order to establish a link between the telemetry points and the flight plan, which
sets the basis for the next section of the project.

Having processed the data, during this project we develop machine learning
models to predict telemetry parameters based on the input flight plan. Several
models are tested and evaluated to find the most suitable one for our objective.
The project also involves visualizing and interpreting the data to gain insights
of the drone performance and adherence to the flight plan.

Position prediction opens up a new area of research and in this project the
approach is to use an alternative method to define the spacing and size of the
airways that compose the flight plans so as to dictate safety areas to prevent
any possible conflict that could appear in future flights in a busy area if the
spacing were to be below the thresholds.

The results of this study demonstrate a successful progression from raw data
to a comprehensive analysis, offering valuable insights for evaluating drone
performance and predicting flight times. The development of various data
visualization functions enabled efficient and effective interpretation of the data.
While the obtained results with the available dataset are remarkable, the
potential for further improvement lies mainly in acquiring a larger dataset with
more features and samples, which would enhance the performance of the
machine learning models and yield even more accurate predictions.

INDEX

FIGURES ... 6

INTRODUCTION .. 8

CHAPTER 1. DATA INSPECTION ... 10

1.1. Initial Data and structure ... 10
1.1.1. Files .. 11
1.1.2. Google Colab .. 14

CHAPTER 2. DATA PROCESSING ... 15

2.1. General data overview ... 15

2.2. Basic data processing ... 20

2.3. Time independent error analysis .. 30

CHAPTER 3. MACHINE LEARNING .. 39

3.1. What is Machine Learning? ... 39

3.2. Main machine learning types .. 40
3.2.1. Supervised Learning ... 40
3.2.2. Unsupervised Learning ... 40

3.3. Machine Learning Models ... 41
3.3.1. Regression Models ... 41
3.3.2. Classification Models .. 41

3.4. Detecting outliers in the data .. 42

3.5. Machine Learning dataset ... 44
3.5.1. Features .. 45
3.5.2. One Hot Encoding .. 48
3.5.3. Metrics for evaluation ... 48

CHAPTER 4. RESULTS.. 50

4.1. Time predictions ... 50

4.2. Position predictions ... 57

4.3. Airways safety margins ... 60

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 63

REFERENCES ... 65

ANNEXES .. 67

 FIGURES

Figure 1. Generic raw Flightplan .. 11
Figure 2. Generic raw Telemetry ... 12
Figure 3. Generic U-Space Prediction raw file ... 13
Figure 4. Representation of a FlightPlan file... 16
Figure 5. Representation of a telemetry file .. 16

Figure 6. Representation of a FlightPlan and a telemetry file in the same plot. 17
Figure 7. Example of contingency flights. See Annex for the plots of all

contingency flights. .. 18
Figure 8. Count of flights by drone operators and drone model used 19
Figure 9. Coordinates over time for the U-Space Prediction and Telemetry 20

Figure 10. Coordinates over time for two cases where the shape of the curves is
not easily fixable by correcting a delay. ... 21

Figure 11. ECEF, [6] .. 23

Figure 12. Flight Plan representation after conversion from geodetic to ECEF
coordinates .. 24

Figure 13. Representation of a FlightPlan in ENU coordinates, [7]. Important to
note that this figure show the real scale of a flight, unlike others that have
their axis scaled for easier visualization. ... 24

Figure 14. Dataframe with segment type added into dataframes as column ‘type’
 .. 25

Figure 15. Comparison of the mathematical approach for a Flight Plan time
versus the U-Space time prediction .. 27

Figure 16. Comparison of the mathematical approach for a Flight Plan, the U-
Space Prediction and the Telemetry ... 28

Figure 17. Different cases comparing the three files. High variation. 29
Figure 18. Euclidean matching between two time series, [10] 34

Figure 19. Dynamic Time Warping for two time series 35
Figure 20. Dynamic Time Warping sequence alignment and D matrix with optimal

warping path, [12]. ... 35
Figure 21. Example of warping path for one of the flights 36

Figure 22. Warping paths for all the flights (colored based on the operator of the
flight) ... 37

Figure 23. Dynamic Time Warping, no interpolation and interpolation 37

Figure 24. DTW algorithm linking telemetry points to FlightPlan (interpolated)
points... 38

Figure 25. Close up the the association between FlightPlan points and Telemetry
points using Dynamic Time Warping. The green line represents a single
segment with 3 extra interpolated points for better results. This is simplified
visualization purposed, the actual interpolation used of 50 points as
computational resources allow it. .. 38

Figure 26. Machine Leaning types, [13] ... 40
Figure 27. Error distributions for time independent analysis 43

Figure 28. Example of a telemetry file with missing data 44
Figure 29. Dataframe with examples of temporal features 46
Figure 30. String encoded values for a flight .. 47
Figure 31. One hot encoded string labels ... 48
Figure 32. Results obtained from the models (R2 sorted) 51

Figure 33. Metrics for the 4 best performing models (with validation data) 52

Figure 34. Cross Validation (CV) scores using k-fold validation. 53

Figure 35. Upper row: segment time predictions (𝒕_𝒔𝒆𝒈_𝒎𝒍). Added reference
times for comparison 𝒕_𝒔𝒆𝒈_𝒇𝒑, 𝒕_𝒔𝒆𝒈_𝒖𝒔, 𝒕_𝒔𝒆𝒈_𝒕𝒆𝒍; Middle row: global
accumalated trajectory times; Bottom row: MSE for each of the times with
respect to the ground truth, which are telemetry related times 54

Figure 36. Coordinates over time. Spatial locations (X, Y, Z) of the predicted lines
correspond to the input coordinates that have been relocated to the predicted
times with the XGB model. .. 55

Figure 37. Another, not as accurate plot of coordinates over time. Spatial
locations (X, Y, Z) of the predicted lines correspond to the input coordinates
that have been relocated to the predicted times with the XGB model. 55

Figure 38. Feature importances for the XGB model (left side figure) and for the
LGB model (right side figure) .. 56

Figure 39. Left side plot: Learning Curve for the XGB model; Right side plot:
Comparison of multiple learning curves (XGB included) 56

Figure 40. Scatter plot of True (𝒕_𝒕𝒆𝒍) and predicted values (𝒕_𝒎𝒍) for the XGB
Regressor model. Points on top of the ideal dashed line indicates perfect
predictions. .. 56

Figure 41. Performance of models for deviation prediction 58
Figure 42. Feature importances for Random Forest and Extreme Gradient

Boosting models. ... 58
Figure 43. Slight variation in the results with different arrangement of data 59

Figure 44 .. 59
Figure 45. Models overfitting due feature memorization 60
Figure 46. Sigma distribution of the deviation of the drones from the segments in

meters. .. 61

Figure 47. Average deviation [m] scatter plot and representation of a high average
error flight .. 61

Figure 48. Average deviation from the telemetry to the flight plan segments for all
flights ... 61

Figure 49. Distribution of average errors based on the type of segment with
threshold for which average deviation is 90, 95 and 99 percent of the times.
 .. 62

8

INTRODUCTION

Technology continues to advance rapidly in all aspects of our lives and this is no
exception for the aeronautics industry. However, implementing new measures in
this sector can be complex due to the need to consider regulations,
standardization, and safety measures. A particular challenge lies in aeronautical
communications, where the frequency band is saturated in busy areas, rendering
it obsolete. Unfortunately, progress in resolving this issue has been slow due to
the difficulties involved in making changes. Such issues should not exist in a
critical and sensitive sector like aviation, which requires precision, safety, and no
room for errors or mistakes.

The ability to adapt is crucial in today's industries, this implies the facts of
responding to different situations, coping with changes, and mitigating threats.
Aviation, which closely monitors safety procedures, adaptability is a must. As
demand continues to rise and safety standards become stricter, there is a need
to develop new systems that can support the future of the industry. Nearly twenty
years ago, the International Civil Aviation Organization (ICAO) highlighted the
expectation that air traffic would increase by 50% by 2035 compared to 2012 [1].
Upgrading current technology, including infrastructure and telecommunications,
was emphasized as necessary to handle the expected high volume of air traffic.

Furthermore, the drone industry is rapidly expanding, as drones prove to be
valuable tools for automating tasks efficiently, [2]. Drones are used for various
purposes, such as surveillance, delivery services, inspections, and maintenance.
Applications for drones keep on increasing and will play a fundamental role in the
near future performing a large number of tasks. An example can be seen in
assessing climate change by facilitating ecosystem tracking, mapping, monitoring
and data collection.

The seemingly expected growth comes at a cost, which is the concept once again
of making these applications reliable, robust and safe. Ensuring that the airspace
is free of conflicts is the key to the proper development of drone operations. In
comparison to aircraft, drones are much smaller and their nominal speeds are
low. This is beneficial as it solves the necessity of the large distances of
separation that exist between planes for things such as wake vortices or conflict
detection in all stages of flight but it does not strictly imply that safety is reduced.
Similar measures can be taken for drones yet this still can result in the drone
airspace being very densely populated with drones for relatively small volumes.
This should pose no problem as long as everything works as intended and the
design of the procedures are accordingly made to respect the safety guidelines.
However, this does require the proper planning that ensures that there will be no
conflicts over time and that safety will be preserved.

To address the challenge of ensuring safety, we rely on powerful tools capable
of processing and predicting outcomes. Among the most notable and anticipated
technologies, artificial intelligence stands out as an ideal solution for automation
and prediction tasks.

9

With the power of artificial intelligence, we can effectively adapt to the dynamic
changes that may arise during a flight, continuously reassess the situation, and
maintain seamless operations without encountering any issues. Currently, drones
are undergoing rigorous testing to observe their behavior, gather valuable data,
and verify their ability to fulfill their intended purposes. This ongoing process of
development and learning aligns perfectly with the scope of artificial intelligence,
particularly in the field of Machine Learning. Machine Learning is dedicated to
comprehending and constructing methodologies that enable machines to "learn"
from data, ultimately enhancing their performance across a range of tasks.

In this study, our aim is to extract valuable features from an extensive dataset
that encompasses flights conducted during the Very Large Demonstration (VLD)
of CORUS-XUAM in Castelldefels in March 2022. CORUS-XUAM, a two-year
VLD project, serves as a platform to showcase how U-space services and
solutions can effectively support integrated Urban Air Mobility (UAM) flight
operations. The project's main goal is to enable airspace users to operate in a
controlled and fully integrated airspace, ensuring safety, security, sustainability,
and efficiency throughout their operations.

This dataset comprises Flight Plans, Telemetry, and U-Space Predictions for
each drone flight. To begin our analysis, we initially focus on comparing the
intended trajectories with the actual flight paths, aiming to identify significant
factors that contribute to deviations from the Flight Plan. This raw data
necessitates processing to extract meaningful information, which can then be
utilized in a Machine Learning model. The primary purpose of this model is to
predict various parameters, including the telemetry time, based on a given Flight
Plan.

U-Space emerges as a response to the increasing number of drones in the
airspace, particularly in congested urban areas. With the goal of ensuring the
safety and efficiency of drone operations, U-Space provides a range of key
services and functionalities. These include drone traffic management, airspace
access control, real-time monitoring, flight notification, and obstacle detection and
avoidance, among others. The main objective of the U-Space concept is to
establish a digitized infrastructure and airspace management that allows for the
safe integration of drone operations into the existing airspace, without interfering
with manned aviation operations, [2].

10

CHAPTER 1. DATA INSPECTION

1.1. Initial Data and structure

Data holds immense value in today's world, but its true potential can only be seen
through appropriate utilization. Raw data, in its unprocessed state, lacks the
capability to yield impressive outcomes. Therefore, it becomes essential to
engage in a series of tasks such as data cleaning, processing, analysis, and
modeling to extract the maximum advantage from it. This project centers around
the comprehensive analysis and processing of drone data.

In conjunction with the project's main focus, we have available a collection of files
that will serve as the foundational source for our data models, following the
necessary processing steps. Specifically, these files originate from the Very
Large Demonstration conducted in Castelldefels, which aimed to gather data
from drones involved in delivery operations. Each trajectory took off from a
designated delivery vertiport, reached another delivery port for the purpose of
completing a delivery, and subsequently returned to the original port. Essentially,
the drones' mission revolved around delivery operations to their assigned
destinations.

However, it is crucial to recall that the trajectories followed by these drones have
no resemblance to straight lines. Due to various factors, including the presence
of airways operating at different altitudes than the delivery points, the drones must
navigate through a network of flight paths. This aspect closely mirrors real-world
scenarios of drone deliveries, particularly in urban environments where strategic
airway designs are employed to avoid obstacles such as buildings, powerlines,
or restricted areas. By adhering to these designated airways, drones can safely
reach their intended destinations. In essence, these airways serve as the aerial
equivalent of roads for ground traffic, but with the added vertical dimension to
accommodate drone operations.

The dataset we possess captures a specific segment of the drone's overall path
during its flights, rather than encompassing the entire duration from the moment
it was turned on. This limitation arises due to the fact that the takeoff and landing
procedures were manually executed by drone pilots, as opposed to being
autonomously controlled by the drones themselves. Therefore, the recorded data
begins at the precise instance when the drones reached the initial point of their
intended flight plan trajectory.

The first and last points of these trajectories align directly above the delivery
points, shifted at a certain vertical distance from them. It is worth noting that the
delivery vertiports are situated at an elevated altitude above the ground level. To
simulate the delivery operation, the drones hover at a specific altitude above the
delivery points. During the hovering phase, the drone remains stationary in the
exact position for an average duration of ten seconds. Although no actual delivery
takes place in this context, the focus here lies in assessing the drone's ability to
adhere to the predetermined flight plan.

11

1.1.1. Files

Among the provided files we can classify them in the following.

1.1.1.1. FlightPlan

The Flight Plan documents serve as the guidelines for the drone's designated
route. Our dataset is made of processed .kml (Keyhole Markup Language) files,
turned into .csv (Comma Separated Values) files, which provide a structured
format for storing data. In this format, the Flight Plan information is organized into
rows, with each row containing the properties of a specific point along the route.

To establish the trajectory, a series of waypoints are defined in three-dimensional
space, represented by latitude, longitude, and altitude, this latter one above the
vertiport. These waypoints act as reference points that define the desired path for
the drone to follow. By connecting two consecutive waypoints, a Flight Plan
Segment is formed, representing a distinct section of the overall route. Each
segment is meant to be flown at a specific velocity, as indicated in the
corresponding row for the origin point of that segment.

Additionally, the Flight Plan data includes a column specifying the Turn Radius
(as the smoothing radius of the arc, in meters, taken by the drone in order to avoid
an abrupt change in direction), which is the radius, measured in meters, that the
drone should maintain when transitioning between segments. This parameter
ensures that the drone maintains a smooth and controlled trajectory as it
navigates from one segment to the next. Waypoints named as Hover are
stationary stages of the flight which simulate the delivery. The drone must remain
still for the duration specified in the waypoint name.

We are not going to make use of the columns Unnamed: 0, WPname (except for
the information about the hover) and FPLwpt, as they do not provide information
that we can benefit from.

Figure 1. Generic raw Flightplan

12

1.1.1.2. Telemetry

In addition to the Flight Plan documents, we also have Telemetry files that capture
the actual flown trajectory of the drones. These files provide valuable data on the
drone's movement and position throughout its autonomous operation.

Telemetry data is collected starting from the moment the drone transitions into
autonomous mode at the first point, or close, that is specified in the Flight Plan.
It is a detailed record of the drone's flight, made up of latitude, longitude, and
altitude coordinates. Notably, the Telemetry files are generated with a high
frequency, recording the drone's position at a time step of 0.1 seconds.
Consequently, these files tend to be significantly longer in comparison to the
Flight Plan files.

Figure 2. Generic raw Telemetry

Given the increased length of the Telemetry files, it becomes crucial to optimize
how we handle and process this data. Efficient data processing techniques
should be employed to avoid excessive computation times and ensure the timely
extraction of valuable insights.

1.1.1.3. U-Space Predictions

In addition to the Flight Plan and Telemetry files, we have an additional set of files
called U-Space Prediction files. These files closely resemble the Flight Plan files,
containing the same information, however, they have an additional column that
introduces a crucial element: the time prediction.

13

Figure 3. Generic U-Space Prediction raw file

The time prediction column in the U-Space files indicates the estimated moment
at which the drone will be located over each point specified in the Flight Plan.
This temporal dimension will be compared with the machine learning time
predictions and evaluate the reliability of both approaches, among other
observations. Insights about the comparison of the U-Space time against the
Telemetry will be done too.

While the original Flight Plan files do not include temporal data, they offer
valuable information such as the waypoints and velocities. With these details, we
can obtain an approximate estimation of the time it would take for the drone to
reach each point along the trajectory.

1.1.1.4. Drone Models

We also have a file that links each flight to the corresponding drone model used.
This information is crucial for our machine learning models as it allows us to
leverage the unique features and associations specific to each drone model. By
observing patterns within a particular model type, we can analyze their impact on
flights flown with the same model while keeping other models unaffected. This
insight enables us to build more accurate and less generalized models, optimizing
our understanding of drone behavior and improving predictions.

14

1.1.2. Google Colab

Right from the very beginning this project requires the utilization of a
programming language as a means to comprehend the information of the drone
data files. Merely looking at the files would not give us a comprehensive
understanding of the underlying information, as achieving any sort of results relies
on the implementation of code. The process of data processing offers various
approaches which depend on the nature of the data. For instance, if we were
working with signal data, options like Matlab could be considered. Alternatively,
popular data analysis languages like R and Java could also serve the purpose.
However, Python is the chosen one for both for its prominence in the data sector
and personal preference.

Python's user-friendly syntax and the vast and supportive community surrounding
it make it an accessible language for programmers. Especially in the case of
myself not being too familiar with it at the start of the project. Also, the collection
of libraries available for Python significantly eases and facilitates numerous tasks.
In this project, we rely on libraries such as Pandas, Numpy, Matplotlib, and Scikit-
learn, which form the foundation of our data analysis and modeling.

Another aspect of our approach is the utilization of the interactive environment
provided by Google Colab, built on top of the Jupyter Notebook infrastructure.
Within Colab, we can effortlessly create, edit, and execute code cells, alongside
the explanatory text and visualizations and allowing us to save the results of
previous executions. Colab executes code in Google servers, providing cloud
storage capabilities and pre-installed libraries and packages. The interactive
nature of this environment grants us the luxury of visualizing, updating, and
modifying code while it runs, greatly facilitating the data processing workflow.
These advantages make Colab the most ideal environment for the construction
of our project.

15

CHAPTER 2. DATA PROCESSING

2.1. General data overview

Once we import the drone data into Google Colab, our initial task is to get an
understanding of the data and visualize its characteristics. In order to do this,
visualizing the Flight Plans becomes an essential step. While we could also go
for 2D plots that represent the evolution of the three coordinates along the route,
the absence of a temporal dimension makes it harder to create Latitude,
Longitude, and Altitude vs. Time plots. Therefore, our approach will involve
plotting the Flight Plans in 3D, which offers a clear visualization of the drone
trajectories and, importantly, provides insights into the structure and appearance
of individual segments. Understanding the shape and distribution of these
segments is crucial in comprehending how the drone navigates through the
delivery areas and to see how the airways are common in all Flight Plans. In the
following Figure 1, it is depicted a generic Flight Plan with the waypoints named
in the order and the 2 long straight segments are the airways while the delivery
(hover) happens midway in the flight.

The name of the flights that will appear in the figure are in the format of
𝑑𝑎𝑦_𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟_𝑣𝑒𝑟𝑡𝑖𝑝𝑜𝑟𝑡. For instance, we can take an example flight:

𝐴_𝐽𝑈𝑁𝑂_142_𝐷𝐸𝐿𝑉_06

This represents a flight performed on day A, from the JUNO operator and its
destination is the delivery vertiport 06. The number in between helps differentiate
flights that might share day, operator and destination vertiport.

When we represent the flights three-dimensionally, it is important to note that the
axis are scaled so it is easier to visualize the different segments. This is only for
the sake of visualizing the data. In Figure 13, a non-scaled flight is represented
after coordinate conversion.

16

Figure 4. Representation of a FlightPlan file

Similarly, we can apply the same visualization approach to the Telemetry data of
a flight. It is important to recall that the Telemetry data only provides information
about the drone's location at a specific point in time. As depicted in Figure 5, we
observe that there are no clearly defined segments in the Telemetry plot, and the
overall trajectory appears to be smooth with seamless transitions between
segments. This Telemetry representation corresponds to the Flight Plan
showcased in Figure 4 and thus the remarkable similarity to it. Nevertheless, it is
crucial to emphasize that the Telemetry data lacks a temporal component,
therefore, with simply the 3D representation it is challenging to determine whether
the drone adhered to the Flight Plan accurately in terms of time.

Figure 5. Representation of a telemetry file

17

While the spatial representation provides valuable insights into the drone's
trajectory and spatial coherence with the Flight Plan, evaluating temporal
alignment becomes a more complex task. Without explicit temporal information
in the plots, it becomes difficult to determine if the drone followed the Flight Plan
according to the temporal dimension. Even though the Flight Plan does not
explicitly provide the time, it indicates constant velocity for the segments, which
essentially dictates the time. Because of that, further analysis and techniques are
necessary to assess the temporal synchronization between the Telemetry data
and the corresponding Flight Plan. Regardless of that, we can still benefit from
the 3D representations for exploring the data and finding flights that did not follow
the Flight Plan.

An important aspect of our analysis involves plotting both the Flight Plan and
Telemetry data in the same visualization, allowing us to assess how closely the
drone adhered to its intended trajectory. This comparison between the Flight Plan
and corresponding Telemetry will be a typical study throughout the project, as we
continuously aim to identify similarities and differences between the two datasets.
By juxtaposing these plots, we can easily locate instances where drones may
have encountered issues or deviated from the prescribed trajectory. This
straightforward approach provides us with valuable insights, enabling us to
efficiently identify any anomalies that might be left out from the models to be used
lately in this project.

Figure 6. Representation of a FlightPlan and a telemetry file in the same plot.

In Figure 6, we can clearly observe a strong correlation between the telemetry
trajectory and the intended trajectory, indicating that the drone performed with an
excellent spatial performance during the flight. The smooth transitions between
segments are guided by the specified Turn Radius according to the Flight Plan.

18

However, it is important to note that not all flights showcased such a close
alignment between the Telemetry and Flight Plan. In multiple cases, we observe
significant deviations and incomplete trajectories, suggesting that some drones
may have experienced distortions or failed to follow the intended path accurately.
These deviations in the telemetry data highlight the need for further investigation
and analysis to identify these affected flights and later in the project we will assess
a way to detect these cases without having to decide based on the plots by human
eye. In Figure 7 we can visualize 4 flights whose telemetry did not perform
accordingly to the planned one.

Figure 7. Example of contingency flights. See Annex for the plots of all
contingency flights.

The deviations and anomalies observed in the flight trajectories cannot be
definitively attributed to a specific cause, as the Telemetry data only provides
spatial and time information.

19

However, several factors could potentially contribute to these behaviors. For
instance, the properties of the drone itself may cause the deviation from the
intended route. Factors such as low battery levels, overheating, loss of signal, or
irregular performance of mechanical components could make the drone abort the
planned trajectory. It is also possible that the pilot intervened and took remote
control of the drone for various reasons. Additionally, external factors such as
wind conditions or the presence of other air traffic may have played a role in some
of these situations. Given the variety of data at our disposal, further
comprehensive analysis can be performed to learn more about the nature of the
flights and evaluate them.

It is important for us to gain an understanding of the data by examining the
general context and factors that can influence the flights. Each drone operator
has the flexibility to operate their fleet according to their own preferences, while
always respecting the guidelines and regulations. This approach among
operators increases the variability in deviations or distinct behavioral patterns in
certain flights. But it is not just the operator as in the context of the Very Large
Demonstration, not all flights from the same operator were conducted using the
same drone model. Therefore, when analyzing the data and identifying
deviations, it is essential to consider both the drone operator and the specific
drone model employed, as these factors can contribute to the observations.

As we can observe in Figure 8, the number of flights performed by each operator
is not too homogenous and OMAHA is leading with 31 performed flights in the
VLM, followed by 20 flights from UTAH, 17 from JUNO and just 4 from SWORD.
This gives us a total number of 72 flights, each with their respective Flight Plan
and Telemetry.

Figure 8. Count of flights by drone operators and drone model used

An important consideration in our data analysis is the quantity of data available.
In our case, we have a database consisting of 72 sets of files, which raises the
question of whether this amount of data is sufficient to achieve our objectives.

20

2.2. Basic data processing

Now that we have a general data overview, we can start to manipulate it to further
see the nature of it and get interesting features from the data in the files. There
are multiple parameters to compute from the telemetry as well as from the Flight
Plan. The first test will be to get an idea of the U-Space time column, supposedly
predicting the time stamps of the telemetry when it should overfly each waypoint.
We can represent these as 3 subplots, Latitude, Longitude and Altitude versus
Time. Representing these and comparing them to the Telemetry will be very
helpful to visualize how accurate the U-Space predictions are.

Figure 9. Coordinates over time for the U-Space Prediction and Telemetry

After examining the visualization in Figure 9, we notice a distinct temporal shift
between the U-Space Prediction coordinates (plotted in green) and the Telemetry
coordinates (plotted in red). This becomes apparent as the telemetry data
appears to experience a delay of a few seconds before initiating the flight
trajectory. It gives the impression that the drone is simply hovering still before
initiating its movement.

To address this misalignment between the U-Space Prediction and Telemetry,
one possible solution could be to exclude the portion of the telemetry data when
the drone is stationary. Removing this period of inactivity from the dataset would
improve the alignment between the U-Space Prediction and the actual drone
trajectory, reducing the temporal shift observed. This is important considering that
when analyzing both plots, we need to know whether we consider time or not.
Without the time component, the trajectories are much more coherent as seen in
the 3D plots, while when plotting the three separate subplots it looks completely
different. Recall that the represented flight in Figure 1 in 3D is the same as the
one in the subplots from Figure 9.

21

This puts into perspective the effect that time has on the trajectories and despite
seeming accurate in 3D, the trajectories might not be even close to matching in
4D.

While it seems obvious to just adjust the telemetry delay by subtracting or adding
(or cropping the file) a constant value to all the telemetry and shifting it to match
the first point of the Flight Plan to the first point when the drone initiates the
movement, it might not be assumed to be as straightforward as that in other
cases.

Figure 10. Coordinates over time for two cases where the shape of the curves
is not easily fixable by correcting a delay.

Figure 10 presents an example where the discrepancy between the telemetry
and the expected flight trajectory is more complex than a simple temporal delay.
Multiple factors, as discussed previously, might have affected how the drone flew
its route and caused these distinctive anomalies in the telemetry data. On the left
side of the figure, the telemetry initiates at the expected time, aligning with the
start of the intended route. However, as the flight progresses, an irregularity
appears around the midpoint of the route as the telemetry from the drone tells
that it might have slowed down, stretching the shape of the Flight Plan before
resuming its normal pace.

In instances like these, it becomes apparent that introducing a time delay
adjustment may not provide a straightforward solution for achieving improved
accuracy. The issue here falls in the irregular patterns experienced by the drone
which are then presented in the telemetry data, which cannot be easily rectified
by simple temporal adjustments. If some of these irregularities happen unusually,
we might consider taking them out of the model’s training database as these kinds
of behaviors are out of the usual performance of the drone and adding corrupted
or excessively bad-performing flights can negatively affect the accuracy of the
predictions later on.

As we don’t know how the U-Space Prediction gets the time of the flights that it
processes, we will do some testing that hopefully gives us some idea about the
temporal aspect of the flight plans.

22

In order to assess the adherence of the telemetry data to the flight plan, we need
some criteria that brings us more information than spatial correlation alone.
Analyzing the velocity of the telemetry data based on its time steps could provide
useful insights, however, the variability of drone velocity in real-life trajectories
makes this approach less reliable. As seen in Figure 10, anomalies in telemetry
data will often coincide with variations in velocity, making an analysis based on
velocity might not be the best due to noise and not the most intuitive comparison
method.

To get around this, we can take advantage of the simplicity and structure of the
flight plans to obtain a more robust temporal reference. With the spatial
coordinates and the corresponding velocity between two points in the flight plan,
we can mathematically estimate the time stamps for each point in the flight plan
dataframe. This approach allows us to create a time reference for the flight plan
that can serve as a basis for comparison with the telemetry data. This method is
far more comprehensive as we assign the theoretical time to each waypoint and
from that, we can have references for the telemetry.

From now on, the data files that we have at our disposal will be referred to as
dataframes, a term that defines a data structure resembling a matrix, organized
in rows and columns. With dataframes, we have the ability to perform various
operations, such as targeting specific cells, rows, or columns, as well as applying
conditions to locate and extract desired data. The information stored within these
cells is not limited to numeric values. It includes a wide range of data types,
including strings, series, arrays, lists, objects, and more. To do this, we will be
using Pandas library, specifically designed for these purposes and integrated with
Python. Pandas contains the pandas.DataFrame class, as the primary form of
structuring and organizing data [3]. We will be using this library for the whole
project and it will facilitate us all the tasks.

To compute the time from a Flight Plan, we need to first get the distance between
points. We consider that the way the drone travels between two points is in a
straight line. However, to get the distance, we make a conversion of the
coordinate system, from geodetic coordinates (latitude, longitude and altitude) to
the Earth-centered, Earth-fixed coordinate system (ECEF). This will make it
easier to work with the position of the waypoints as we have the same units of
magnitude in each component of the coordinate and we can then use math
operations without worrying about the conversion.

Recall that the altitude that the Flight Plan gives us, is different from the Z
coordinate of the ECEF system. The altitude provided by the plan is with respect
to the take-off point.

23

The ECEF coordinate system represents points in the form of X, Y, Z with respect
to the center of mass from the Earth:

- Positive X axis lies on the equator, from the mass center towards the
direction of the Greenwich Meridian.

- Positive Y axis also lies on the equator, 90º to the East of the X axis
(Greenwich Meridian)

- Positive Z axis extends northwards, to the North Pole, from the center of
mass.

𝑿 = (𝑵(𝝓) + 𝒉)𝒄𝒐𝒔𝝓𝒄𝒐𝒔𝝀 (Eq. 1)

𝒀 = (𝑵(𝝓) + 𝒉)𝒄𝒐𝒔𝝓𝒔𝒊𝒏𝝀 (Eq. 2)

𝒁 = (
𝒃𝟐

𝒂𝟐
𝑵(𝝓) + 𝒉)𝒔𝒊𝒏𝝓 (Eq. 3)

𝑵(𝝓) =
𝒂𝟐

√𝒂𝟐𝒄𝒐𝒔𝟐𝝓+𝒃𝟐𝒔𝒊𝒏𝟐𝝓
 (Eq. 4)

Where 𝜙 is the latitude, 𝜆 the latitude, ℎ the altitude and 𝑁(𝜙) represents the
prime vertical radius of curvature [4].

As for the parameters that define the shape of the ellipsoid, we take the World
Geodetic System 1984 (WGS 84) model as it is standardized and widely used
for services such as Global Positioning System (GPS) [5]:

- Semi Major Axis, a = 6378137 m
- Semi Minor Axis, b = 6356752.31424 m

Figure 11. ECEF, [6]

After this conversion it does not get that much more intuitive as we are dealing
with huge distances and the movement of the drone in comparison to the baseline
distance of a point located above the surface of the Earth is incredibly small.

24

However, now the three coordinates share the same units and operations
become easier and possible. In addition, we might have negative distances. For
instance, if the drone moves South, from Castelldefels, that reduces the Z
coordinate. If we then do operations such as subtracting the end point to the origin
point of a segment, it can yield negative results. Distances can be considered in
magnitude as always positive but the sign in this case will indicate the direction
and it is helpful to keep it in. In Figure 11, we can see a Flight Plan plotted in X,
Y, Z coordinates.

Figure 12. Flight Plan representation after conversion from geodetic to ECEF
coordinates

Figure 13. Representation of a FlightPlan in ENU coordinates, [6]. Important to
note that this figure show the real scale of a flight, unlike others that have their

axis scaled for easier visualization.

25

Having done this conversion, it may appear hard to tell what kind of segment the
drone is actually performing by just looking at Figure 12. It will appear that during
the first segment, from waypoint 0 to waypoint 1, the drone is descending but it
is actually the opposite. To categorize the segments based on the data that we
have, it is simpler to do it in the geodetic coordinates before conversion.
Determining the segment type is going to be useful for the model later. This can
be done by simply comparing altitudes. If the altitude of the end point of a
segment is lesser than than the altitude of the origin point, we are dealing with a
descent. On the other hand, if it’s greater, it will be a climb. If the altitude remains
the same, it can be defined as a cruise segment. And finally for the hover stages,
we take a look at the information of the waypoint in the Flight Plan and see that it
is defined by a hover and its respective time.

Figure 14. Dataframe with segment type added into dataframes as column
‘type’

Similarly, we will take the same approach for the model of drone utilized for every
flight. The values in every row will be the same for a given Flight Plan as the
model of drone doesn’t change along the trajectory. For the model to learn
though, the values do not work with simply keeping them as strings. We should
rather convert them to integers for each kind of segment and drone or do one-
hot-encoding.

As mentioned, now that we have the ECEF coordinates for the points, it is
possible for us to start computing distances between segments. To compute the
distance between two points in 3D space, it is relatively easy with the following
formula.

26

𝟑𝑫 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 = √(𝒙𝟏 − 𝒙𝟎)𝟐 + (𝒚𝟏 − 𝒚𝟎)𝟐 + (𝒛𝟏 − 𝒛𝟎)𝟐 (Eq. 5)

To determine the number of segments in a Flight Plan, we can apply a
straightforward formula. For every Flight Plan, the number of segments is equal
to the number of points minus one. This relationship comes from the fact that
each segment is formed by a pair of consecutive points rather than individual
points. Two points form a segment, not two. By connecting these paired points,
we establish the trajectory of the drone throughout its flight.

Mathematically, we can express this relationship as:

𝒏𝒔𝒆𝒈𝒎𝒆𝒏𝒕𝒔 = 𝒏𝒘𝒂𝒚𝒑𝒐𝒊𝒏𝒕𝒔 − 𝟏 (Eq. 6)

For the dataframes containing the segments, it is true that they will have a row
less than the Flight Plan, however, the number of points will remain the same.
Each row consisting of a segment will own two points: an origin point and an end
point that will serve as the origin point for the next segment.

convert and replace the lat, lon, alt to x, y, z

for i, row in flightPlan.iterrows():

 flightPlan.at[i,'FPLlat'],flightPlan.at[i,'FPLlon'],flightPlan.at[i,'FPLalt']= \

 geodetic2ecef(row['FPLlat'],row['FPLlon'],row['FPLalt'])

compute the segment time by dividing the absolute distance by the velocity

for (_, original), (i, shift) in zip(flightPlan.iloc[:-1].iterrows(),

flightPlan.iloc[1:].iterrows()):

 if (original['FPLvel']) > 0:

dist=math.sqrt((shift['FPLlon']-original['FPLlon'])**2+

 (shift['FPLlat']-original['FPLlat'])**2+(shift['FPLalt']-original['FPLalt'])**2)

flightPlan.at[i, 'timeSeg']=dist/(original['FPLvel'])

 else:

 flightPlan.at[i, 'timeSeg'] = int(flightPlan.at[i,'WPname'].replace(

 'Hover', '').replace('s',''))

fill NaN of the first row (as it is not considered in the loop) and get global time

flightPlan['timeSeg'].fillna(0, inplace=True)

flightPlan['time']=(flightPlan['timeSeg'].cumsum(axis = 0))

Listing 1: Computation of time associated to the FlightPlan

In the Listing 1, we can see a part of the function of Colab that computes the time
when the drone should be reaching every waypoint. The procedure is intuitive as
we start by iterating row by row with the Dataframe.iterrows() method provided
once again by Pandas library. With this method the iterations provide an index
and the row information attached to that index. This way we can use both the
index and row content comfortably to our needs.

27

In this case, it is used to apply the function of coordinate conversion
geodetic2ecef to every single row as it works with 3 inputs and provides 3 values.

In the development of this project, we also make extensive use of the zip()
function in Python to create a powerful and highly useful data structure. The zip
function allows us to combine iterables, such as dataframes, and pair them
together in tuples. This functionality is extremely valuable when operating on
multiple rows simultaneously while keeping track of their respective indices,
allowing precise data allocation and manipulation.

Specifically, when computing the time between segments in the Flight Plan, we
take advantage of said zip function. We select two rows from the dataframe: one
representing the origin point and the other representing the end point of the
segment. By subtracting their corresponding coordinate and applying Equation 2
we obtain the distance between these points. This distance is then divided by the
velocity provided in the row containing the origin point. This calculation yields the
time required for the drone to fly the segment. When it comes to hovering
segments within the route, we directly extract the time from the waypoint definition
specified in the Flight Plan. By summing up the individual segment times
cumulatively, we obtain the total time it should take for the drone to complete the
entire flight route.

Now we can observe how our computation of the time resembles the U-Space
time prediction and see if we can deduce any useful information.

Figure 15. Comparison of the mathematical approach for a Flight Plan time
versus the U-Space time prediction

Observing Figure 15, it is clear that the U-Space predictions do not represent the
exact mathematical time estimation for each point, or at least it is not like this for
all files.

28

The coordinates in the U-Space predictions seem to remain unchanged, with only
a temporal stretch applied to them. To assess the accuracy of these different time
calculations, we can compare them against the telemetry data of the flight. This
allows us to determine which time estimation method yields better results, or at
least for a subset of flights to get a first glance. However, it is important to note
that we can’t generalize these findings, as each flight can has its unique
characteristics and variations.

Figure 16. Comparison of the mathematical approach for a Flight Plan, the U-
Space Prediction and the Telemetry

For instance, in Figure 16, we visualize the data from the three provided files for
a given flight. In this case, there is evident variation between all of them and none
of the update Flight Plan or U-Space prediction seems to closely match the
telemetry. Yet if we put special emphasis on time prediction, the mathematical
approach appears to have performed better, as the error on the final time of the
U-Space seems to be more than twice (around 40 seconds) as the error from the
mathematical approach on the Flight Plan, that is around 15 seconds. We could
however also assess spatial accuracy, and in this sense it is not as clear on which
of both trajectories resembles more the telemetry. A way of numerically
computing these values can be seen in [7].

By observing other representations of other flights, we get to the conclusion that
there is indeed a high level of variation and unpredictability to these results. As
seen in Figure 17, there are instances where both the mathematical approach
virtually matches the U-Space predictions, seen in the left upper corner. In other
cases the mathematical approach is way off from the telemetry, while in other
cases it is the U-Space.

29

Figure 17. Different cases comparing the three files. High variation.

It is true that in an ideal scenario, where the drone maintains a constant speed
and follows a straight line with the designated turn radius to each waypoint, the
telemetry data should closely align with the time computed in Listing 1. This
computed time takes into account the regular behavior of the drone based on the
Flight Plan waypoints. Even though the telemetry of the drone flights deviates
from this theoretical one due to various factors, it is still valuable to consider the
computed time for future comparisons and analysis. The computed time provides
a consistent and predictable reference point, allowing us to assess the temporal
accuracy and deviations in the telemetry data. This temporal reference and the
suitable coordinate system, we establish a foundation for further analysis and
exploration in the project.

30

2.3. Time independent error analysis

Assessing the accuracy and performance of a drone along its intended route
partly involves analyzing its adherence to the Flight Plan. With the deviations from
the intended path, independent of time, we can evaluate how precisely the drone
follows the intended trajectory. These deviations introduce additional distance
traveled, as the drone moves away from the straight line connecting the points of
each segment. The more significant the variations and noise in the trajectory, the
greater the distance the drone has to cover, potentially resulting in longer flight
times.
Understanding the spatial aspects of the drone's trajectory is a key factor for
evaluating its adherence to the Flight Plan. If the drone was perfectly designed to
follow the exact trajectory at a constant speed, we would have a matching
telemetry and flight plan. This analysis allows us to identify areas where the drone
may deviate from the intended path, indicating potential issues or anomalies in
its flight behavior or weak points in the drone’s auto-pilot system in particular
shapes of the trajectory.

In order to evaluate the deviations between Telemetry and Flight Plan, a careful
manipulation of the dataframes is required. The approach taken in this analysis
is primarily focussed on the telemetry points and establishing their association
with the corresponding segments of the Flight Plan. However, this association of
telemetry points to specific segments is not trivial during transitions between
segments. The assignment based on the time is not reasonable, as we have
observed in previous observations that there were significant variations between
telemetry and Flight Plan time estimations, resulting in considerable deviations
when the drone is either ahead of or behind the expected trajectory.

Therefore, an alternative approach is used to address this issue. Instead of
relying on time-based matching, other factors such as spatial correlation and
proximity are considered for the associations between telemetry points and Flight
Plan points. As we want to develop a robust function to compute this, that could
work in any sort of trajectory despite knowing that the ones at our disposal are
relatively simple, we will make use of a method that does not actually consider
the segments as parts of the route where a given section of the telemetry has to
be associated but rather considering all the trajectory as a whole and comparing
it to the whole intended trajectory of the Flight Plan. This holds a similitude to
signal correlation, where the analysis of correlation between signals is important
for synchronization and to reduce the effect of the noise. For this sort of analysis,
having a high amount of samples is essential and we will in our case increase the
number of samples (points) in our Flight Plan so as to have more anchor
reference points to attach the telemetry to.

31

Flight Plan extension

df_flightPlanExpanded = pd.concat(

 [

 pd.DataFrame(

 scipy.interpolate.interp1d([0, 1],[[original["FPLlat"], original["FPLlon"],

original["FPLalt"]],[shift["FPLlat"], shift["FPLlon"], shift["FPLalt"]]], axis=0,

Bounds_error=False,fill_value=[0, 0, 0])(np.linspace(

0, 1, 50)), columns=["FPLlat", "FPLlon", "FPLalt"])

 for (_, original), (_, shift) in zip(df_flightPlan.iloc[:-1].iterrows(),

df_flightPlan.iloc[1:].iterrows())

]

)

df_flightPlanExpanded = df_flightPlanExpanded.reset_index(drop=True)

Lat, Lon, Alt to x, y, z with geodetic2ecef

for index, row in df_flightPlanExpanded.iterrows():

 df_flightPlanExpanded.at[index,'FPLlat'],df_flightPlanExpanded.at[index,'FPLlon'],_=

geodetic2ecef(row['FPLlat'],row['FPLlon'],row['FPLalt'])

for index, row in df_telemetry.iterrows():

 df_telemetry.at[index,'lat'],df_telemetry.at[index,'lon'],_=

geodetic2ecef(row['lat'],row['lon'],row['alt'])

Listing 2. FlightPlan interpolation and coordinate conversion

First we are going to increase the number of points from the FlightPlan trajectory.
The trajectory will remain the same but with a higher number of points that will be
used to compute their distance to the telemetry path. The idea is to take two
consecutive points of the FlightPlan and get the function of the line that connects
them.

This way, we have a function f(x), where:
- 𝑓(0) = 𝑜𝑟𝑖𝑔𝑖𝑛_𝑝𝑜𝑖𝑛𝑡
- 𝑓(1) = 𝑒𝑛𝑑_𝑝𝑜𝑖𝑛𝑡

- 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 1

We don not take into consideration values outside the range of x ∈ [0,1] as we
only want to add points in the imaginary line that links two consecutive points of
the FlightPlan, this is adding points only in-between the origin point (for x=0) and
the end point (for x=1) of every segment that makes the FlightPlan.

Essentially, with an origin_point = (lat0, lon0, alt0) and an end_point = (lat1, lon1,
alt1).

- 𝐹𝑃𝐿𝑙𝑎𝑡(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝐹𝑃𝐿𝑙𝑎𝑡(0) = 𝑙𝑎𝑡0 𝑎𝑛𝑑 𝐹𝑃𝐿𝑙𝑎𝑡(1) = 𝑙𝑎𝑡1

- 𝐹𝑃𝐿𝑙𝑜𝑛(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝐹𝑃𝐿𝑙𝑜𝑛(0) = 𝑙𝑜𝑛0 𝑎𝑛𝑑 𝐹𝑃𝐿𝑙𝑜𝑛(1) = 𝑙𝑜𝑛1

- 𝐹𝑃𝐿𝑎𝑙𝑡(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝐹𝑃𝐿𝑎𝑙𝑡(0) = 𝑎𝑙𝑡0 𝑎𝑛𝑑 𝐹𝑃𝐿𝑎𝑙𝑡(1) = 𝑎𝑙𝑡1

32

Therefore, we can take as many values x as we want to get points in the line as
long as 0 ≤ x ≤ 1, so for instance, considering that the FlightPlan is made by
straight lines connecting the waypoints, FPLlat(x) = (lat1 - lat0) * x + lat0 so if
lat0=0 and lat1=10, FPLlat(0.5)=5, as expected, the middle point.

In order to do this, what we are doing is to use scipy.interpolate.interp1d from the
scipy library. As the name suggests, this is a function that finds a function(s) from
given values of x and y. We are just providing two points so the interpolation is
perfect, as by default this function does linear interpolation and by providing two
points, it simply creates the line that contains the two points.

Our first objective is to increase the number of points in the FlightPlan, in this
case, we will add 50 points in each segment, so for a FlightPlan determined by
12 waypoints, we will end up with 12*50=600 points. This is done by iterating the
interpolation function scipy.interpolate.interp1d 50 times with values from 0 to 1,
using np.linspace(0, 1, 50) we get an array from 0 to 1, both included, with 48
other extra equally-spaced values in between.

We have to provide the function of the two points, origin and end, which are
consecutive points (rows) in df_flightPlan. In order to do this, we simply create a
shifted copy of df_flightPlan that starts a point later than the original df_flightPlan
with the use of df_shift = df_flightPlan.iloc[1:]. Doing this, reduces the length
(rows) of the dataframe by one, so len(df_shift)=len(df_flightPlan)-1. Therefore,
we need to trim the unshifted (df_original) dataframe by one row (the last one) so
that both of them have the same length using df_original = df_flightPlan.iloc[:-1].

Now, for the same index (same row number) in both dataframes, we will get the
origin point and end point so that origin will be in original.iloc[0] and the end in
shift.iloc[0]. This comes in handy to use a for loop as we are always using the
same row index for both dataframes. To get the 50 points, we need to just provide
a single origin_point and also a single end_point to the interpolate function.
Providing the whole dataframe would create a line that is close to all waypoints,
like a regression line and that's not what we want. In order to do this, we have to
use scipy.interpolate.interp1d as many times as segments exist in the dataframe.

The number of segments is just obtained by subtracting 1 to the number of
waypoints in the FlightPlan, which is essentially what has been done before in
the df_original and df_shift dataframes. Then, in each iteration, we take a row of
each dataframe, get the origin_point from the df_original and the end_point from
df_shift, with these two we obtain the line equation(s) f(x) to which we will pass
the 50 numbers from 0 to 1, this is f(np.linspace(0, 1, 50)) where
f=scipy.interpolate.interp1d([0, 1],[[origin_point],[end_point]) with the rest of
parameters needed for the function (axis, fill_value...).

This will give us 50 points in-between the first two consecutive points of
df_flightPlan. We are creating a new dataframe df_flightPlanExpanded which will
contain all these groups of 50 points generated in each iteration, so in every
iteration we are appending 50 points to it. This can be done with pd.concat.

33

All the iterations are done with pandas.DataFrame.iterrows which, as the name
suggests, iterates over the rows. We are using zip which pairs, in tuples, the items
of the passed iterators. So the first item in each passed iterator is paired together,
and then the second item in each passed iterator are paired together, etc. Put
simply, in each iteration, it will create a tuple storing 2 other tuples, each of these
tuples contains two items: an integer (int) being the index of the row and a series
(pandas.Series) containing the information about the row (lat, lon, alt...).
𝑧𝑖𝑝 → (𝑡𝑢𝑝𝑙𝑒1, 𝑡𝑢𝑝𝑙𝑒2) → ((𝑖𝑛𝑡1, 𝑠𝑒𝑟𝑖𝑒𝑠1), (𝑖𝑛𝑡2, 𝑠𝑒𝑟𝑖𝑒𝑠2)) →

((𝑖𝑛𝑡1, [𝑊𝑃𝑛𝑎𝑚𝑒1, 𝐹 𝑃𝐿𝑙𝑎𝑡1, 𝐹𝑃𝐿𝑙𝑜𝑛1. . .]), (𝑖𝑛𝑡2, [𝑊𝑃𝑛𝑎𝑚𝑒2, 𝐹𝑃𝐿𝑙𝑎𝑡2, 𝐹𝑃𝐿𝑙𝑜𝑛2. . .]))

We don't need the first items from each tuple (int1 and int2) as it is just an integer
indicating the index of the iterated row. Both int1 and int2 are the same from what
has been said before about the same index of row getting the origin_point from
df_original and end_point from df_shift. Therefore we just care about the series
(series1 from tuple1 and series2 from tuple2). We obtain these with (_, original),
(_, shift). So original[FPLlat] returns the latitude of the origin_point from the row
that we're iterating and shift[FPLlat] returns the latitude of the end_point.

Finally we reset the index of df_flightPlanExtended because otherwise it keeps
the indexing from each concatenation, going from 0 to 50 and then starting again
from 0 to 50, while what we want is that it goes from 0 to 600 (number of points).

Now with this expanded FlightPlan, we have a solid base with which we can
assess the error calculations much easily. Recall that the idea of finding the best
alienation and error in the trajectory is independent of time only after we have
established a link that relates every point (or points) of the telemetry to a point of
the FlightPlan.

To do this we need a way to find a relation between the two trajectories which are
different lengths and that do not completely match considering the variations in
speeds and deviations. We have seen it in previous figures when comparing the
telemetry data to the flight plan data and the telemetry is not simply delayed but
also scaled in the temporal axis in an irregular way, where some parts of the route
are slower than intended while other parts take longer than intended. A way to do
so without giving importance to these anomalies would be to either expand the
FlightPlan dataframe to match the length of the telemetry and then match every
point of the telemetry on a one-to-one relation. This is known as Euclidean
Matching and it can be expressed in a simplified form as:

𝑭𝒍𝒊𝒈𝒉𝒕𝑷𝒍𝒂𝒏 𝑻𝒓𝒂𝒋𝒆𝒄𝒕𝒐𝒓𝒚 𝑿 = 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒊, … , 𝒙𝒏

𝑻𝒆𝒍𝒆𝒎𝒆𝒓𝒕𝒚 𝑻𝒓𝒂𝒋𝒆𝒄𝒕𝒐𝒓𝒚 𝒀 = 𝒚𝟏, 𝒚𝟐, … , 𝒚𝒊, … , 𝒚𝒏

Where 𝑛 is the number of points (rows) in the Telemetry file. The elements of
each series are points in the format of 𝒙𝒊 = (𝒙𝒊,𝑙𝑎𝑡, 𝒙𝒊,𝑙𝑜𝑛, 𝒙𝒊,𝑎𝑙𝑡) and 𝑦𝒊 =
(𝑦𝒊,𝑙𝑎𝑡, 𝑦𝒊,𝑙𝑜𝑛, 𝑦𝒊,𝑎𝑙𝑡).

34

This idea in Euclidean Matching is to match point xi from the FlightPlan to point
yi from the telemetry. For this to work both series need to have the same number
of points. The FlightPlan could be interpolated so as to have the same time step
as the telemetry and then match both time series by timestamp.

Figure 18. Euclidean matching between two time series, [8]

This is a straightforward approach that will yield the distance between these one-
to-one pairs. However, 𝒙𝒊 can be shifted in time in comparison to its pair 𝑦𝒊 and
this association would not output the actual adherence to the trajectory. In
addition to that, both time series at our disposal have different lengths in terms of
time. We can interpolate the FlightPlan as much as we want by adding points in
between the trajectory but that does not change the duration of the FlightPlan. If
the FlightPlan time, say 𝑡𝑓𝑝, is the time at the last waypoint or in other words, the

total time that it takes a drone to fly the intended trajectory, and 𝑡𝑡𝑒𝑙 the last
telemetry time available, which is the time that it took the drone to follow the
FlightPlan. In this situation, for a 𝑡𝑡𝑒𝑙 > 𝑡𝑓𝑝, there is not a clear relation for the

points and we have to find a solution to assess this problem.

This is where Dynamic Time Warping (DTW) comes in handy. Dynamic Time
Warping is a technique used to compare and align two sequences of data that
may have different lengths and variable speeds. It is commonly used in time
series analysis and has various applications, including comparing trajectories,
speech recognition, and gesture matching, [9].

To understand DTW, we can think about two sequences, like the flight plan and
telemetry data. These sequences represent the movement of the drone over time.
However, the sequences may not have the same length and may be distorted in
terms of their timing. For example, as the telemetry data experiences delays and
noise compared to the flight plan ideal route.

DTW aims to find the best alignment between these two sequences by warping
and stretching their time axes. It allows for the comparison of corresponding
points from both sequences, even if they occur at different times. This is done by
finding a path through the sequences that minimizes the differences between the
corresponding points. In other words, DTW finds the optimal way to match similar
patterns in the sequences, even if they occur at different times or have different
durations.

35

𝑭𝒍𝒊𝒈𝒉𝒕𝑷𝒍𝒂𝒏 𝑻𝒓𝒂𝒋𝒆𝒄𝒕𝒐𝒓𝒚 𝑿 = 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒊, … , 𝒙𝒏

𝑻𝒆𝒍𝒆𝒎𝒆𝒓𝒕𝒚 𝑻𝒓𝒂𝒋𝒆𝒄𝒕𝒐𝒓𝒚 𝒀 = 𝒚𝟏, 𝒚𝟐, … , 𝒚𝒋, … , 𝒚𝒎

Figure 19. Dynamic Time Warping for two time series

Now, not every point is not necessarily matched to its corresponding point with
the same index from the other time series and that the distinctive shapes of the
trajectory are paired together. Nota that despite seeming that the distance of the
lines linking both series are greater as they some of them are diagonal, we are
establishing links between similar points and that this indicates both points 𝑥𝑖 and
𝑦𝑗 that are closer in space yet displaced temporally. A point of a time series can

be paired with multiple points of the other time series as they have different
lengths and all points must have a pair, closest in space, to compute the distance
between them. This yields the best possible alignment, i.e. the minimum distance
between time series.

𝑫(𝒊, 𝒋) = 𝒅(𝒊, 𝒋) + 𝒎𝒊𝒏 {

𝑫(𝒊 − 𝟏, 𝒋)
𝑫(𝒊 − 𝟏, 𝒋 − 𝟏)

𝑫(𝒊, 𝒋 − 𝟏)
 (Eq. 7)

Figure 20. Dynamic Time Warping sequence alignment and D matrix with
optimal warping path, [10].

36

The optimal warp path is created based on the considerations of monotonicity,
continuity and boundary. Monotonicity guarantees that the warping path does not
roll back, in the sense that it will be always entire non-increasing or entirely non-
decreasing (depending on how we arrange the axis). Continuity along the warping
path makes sure that it only advances on step at a time. And the boundary
condition guarantees that it the warping path contains all points of both series of
data. For the implementation of DTW through code we have used the
implemented function in the library tslearn.

Let’s take this approach for some of our flights to visualize the alienation between
the telemetry and FlightPlan. Recall that we are computing 3D distances
between 𝑥𝑖 = (𝑥𝑖,𝑙𝑎𝑡, 𝑥𝑖,𝑙𝑜𝑛, 𝑥𝑖,𝑎𝑙𝑡) and 𝑦𝑗 = (𝑦𝑗,𝑙𝑎𝑡, 𝑦𝑗,𝑙𝑜𝑛, 𝑦𝑗,𝑎𝑙𝑡) and finding the

optimal warping path.

Figure 21. Example of warping path for one of the flights

We can represent the warping paths of all flights to visualize how is the general
accuracy of the flights from out dataset. In Figure 22, the entire dataset has its
DTW warping path plotted. The indexing is variable for all flights but the more
straight the lines are, this is, without noise/irregularities, the better the adherence
to the FlightPlan. Recall that every path starts at (0, 0) and ends at (𝑛, 𝑚).

37

Figure 22. Warping paths for all the flights (colored based on the operator of
the flight)

In addition, to get a more comprehensive look at what the DTW algorithm is doing,
we can plot the distance association of a telemetry to a non-interpolated path,
which computes the distance from the telemetry to the closest FlightPlan point.
On the other hand, we can plot the DTW association between telemetry points
and FlightPlan points. The plot is the view of a turn from the top and as the turn
is not a perfect circumference, it is not trivial to tell which point of the telemetry
related to the waypoint of the FlightPlan. It does not necessarily have to be the
one with lowest distance but the one where the trajectories align better.

Figure 23. Dynamic Time Warping, no interpolation and interpolation

38

If we plot the whole trajectory it offers a better view of what the algorithm does.
In this case, in Figure 24, we have chosen a flight whose telemetry has a notable
error to better observe the DTW. Also, the number of interpolated points of the
FlightPlan is highly reduced for visualization purposes.

Figure 24. DTW algorithm linking telemetry points to FlightPlan (interpolated)
points

Figure 25. Close up the the association between FlightPlan points and
Telemetry points using Dynamic Time Warping. The green line represents a

single segment with 3 extra interpolated points for better results. This is
simplified visualization purposed, the actual interpolation used of 50 points as

computational resources allow it.

39

CHAPTER 3. MACHINE LEARNING

3.1. What is Machine Learning?

Machine learning is a branch of artificial intelligence (AI) that focuses on the
development of algorithms and models capable of automatically learning and
making predictions or decisions. In traditional programming, computers are given
explicit instructions to perform specific tasks. However, machine learning takes a
different approach by enabling computers to learn from data and examples,
recognize patterns, and make act without being explicitly programmed.

The key idea behind machine learning is to design algorithms that can analyze
and interpret data, identify meaningful patterns or relationships, and use them to
generalize and make predictions on new unseen data. This ability to learn from
data is what makes machine learning such a powerful tool. Instead of being
programmed to perform specific tasks, machine learning algorithms learn from
data through a process of training and adjustment of internal parameters.

During the machine learning process, relevant data is given as input. This data
can be in various formats, such as images, text, or numerical values. We have to
be conscious about what data is used to train the machine learning algorithm,
and that is the reason of the data preprocessing step that is taken to clean,
organize, and transform the data and ensure that the data is in a consistent format
for the analysis. In our case we are working with numeric data and basic strings
of text that will be converted to numeric values for simplicity.

The next step is training a machine learning model using the prepared data. The
model is based on an appropriate algorithm that suits the problem that we need
to solve. The algorithm is then provided with the prepared data, allowing it to learn
and adjust its internal parameters with the patterns and relationships it discovers
in the data. The learning process makes the algorithm manipulate the date
iteratively, making predictions or decisions and comparing them to the correct
outputs given also in the training data. When adjusting its parameters, the
algorithm aims to minimize the difference between its predictions and the actual
outputs.

Machine learning has different types of algorithms, including supervised learning,
unsupervised learning, reinforcement learning and combinations between them.
Each type has its own characteristics and applications. Supervised learning
involves learning from labeled examples, where the algorithm is provided with
input data along with corresponding target outputs. Unsupervised learning aims
to find hidden patterns or structures in unlabeled data. And reinforcement learning
involves learning through interactions and receiving feedback in the form of
rewards or penalties. Briefly, the models are trained with a partition of the data,
called train data.

40

Figure 26. Machine Leaning types, [11]

3.2. Main machine learning types

In order to put the data to the test a specific machine learn model has to be
chosen. Models differ in the way that they learn from the data. The way the
algorithms work for each model is what makes them different from one another
and their applications are distinct. Simpler models like Linear Regression, that
will be explained later, use linear equations to predict the outputs while other
more advanced models such as Random Forest are based on hierarchical
decision and rules to observe the patterns in the data.

3.2.1. Supervised Learning

Supervised machine learning is a type of machine learning where the algorithm
learns from labeled training data. In supervised learning, the input data (features)
and the corresponding output labels are provided to the algorithm during the
training phase. The goal is to learn a mapping function that can accurately predict
the output labels for unseen input data. Therefore, this is clearly our case as we
will provide both the input and output to train the model and after the training
phase, we will just provide the input and obtain the predicted output.

The model finds the patterns with the output labels and then it is tested with the
other partition of the data called test data. From the test data we get the
evaluation metrics as it is unseen data.

3.2.2. Unsupervised Learning

Unsupervised machine learning is a type of machine learning where the algorithm
learns patterns and structures in unlabeled data. Unlike supervised learning,
there are no output labels provided in unsupervised learning. The goal is to
discover hidden patterns, relationships, or clusters in the data.

41

3.3. Machine Learning Models

3.3.1. Regression Models

Regression models are used when the target variable is continuous, and the goal
is to predict a numeric value. In the given list of models, the following models fall
under this category:

3.3.1.1. Linear Regression:

Linear regression assumes a linear relationship between the input features and
the target variable. It fits a linear equation to the data by minimizing the sum of
squared differences between the observed and predicted values.

3.3.1.2. Random Forest

Random Forest is an ensemble of decision trees. It combines multiple decision
trees to make predictions and provides an average prediction based on the
predictions of individual trees.

3.3.1.3. Gradient Boosting Regressor

Gradient Boosting Regressor also combines multiple decision trees, but in a
sequential manner. It fits each subsequent tree to the residuals of the previous
tree, improving the predictions gradually.

3.3.1.4. Extreme Gradient Boosting (XGBoost)

XGBoost is an optimized implementation of gradient boosting that provides faster
and more accurate predictions. It incorporates regularization techniques and
advanced algorithms to boost the performance. Showed good performance in
[12] in a similar drone application.

3.3.1.5. Light Gradient Boosting (LightGBM)

LightGBM is another gradient boosting framework that aims for faster training
speed and lower memory usage. It uses a novel tree-growing algorithm and
various optimization techniques.

3.3.2. Classification Models

Classification models are used when the target variable is categorical, and the
goal is to assign the input data to one of the predefined classes. In the given list,
the following models fall under this category:

42

3.3.2.1. Logistic Regression

Logistic regression is a binary classification algorithm that models the probability
of an instance belonging to a certain class. It uses a logistic function to map the
input features to the target class probabilities.

3.3.2.2. Naive Bayes

Naive Bayes is a probabilistic classification algorithm based on Bayes' theorem.
It assumes that the features are conditionally independent given the class label
and calculates the probabilities of each class based on this assumption.

3.3.2.3. Support Vector Regression

Support Vector Regression (SVR) is typically used for regression tasks, but it can
also be adapted for classification. SVR maps the input features to a higher-
dimensional space and finds a hyperplane that maximizes the margin between
the classes.

3.3.2.4. Instance-based Learning Models

Instance-based learning models make predictions based on the similarity
between instances in the training data and the test data. In the given list, the K-
Nearest Neighbors (KNN) algorithm falls under this category. KNN classifies or
regresses a new instance by finding the K closest instances in the training data
and predicting based on their labels or values.

3.4. Detecting outliers in the data

When it comes to training a machine learning model, the approach we take on
data input plays a crucial role in its performance. In our specific case, we have
from the files a decent amount of data that could potentially be relevant for
training the model. However, it is important to be cautious and not saturate the
model with an excessive amount of data in the hope of achieving the best
performance. As we have discussed, in traditional programming, specific
behaviors can be defined, machine learning models define these themselves and
despite some behaviors may be apparent to us, they might not be to the model if
the data is not well provided. Therefore, we need to make decisions when it
comes to choosing the most relevant and informative input data for the model
and choosing as well an output variable (or variables) that the model will try to
predict.

At the same time, even with the right amount of input variables, we have to make
sure that the data which we are providing is not corrupt or contain values that are
abnormal in comparison to the rest of the dataset. This could be for several
reasons but in the case of our data, it may be the case with the acquisition of the
data or when writing it.

43

As we are dealing with positions in time mainly, we have seen in Figure 7 that
some of the telemetry files have failed at completing the trajectory and the data
regarding the part of the trajectory that is outside the typical functioning of the
drone can’t be considered for the analysis as it would skew the results and reduce
performance.

We can make use of the Dynamic Time Warping algorithm that we have created
in Chapter 2. This will come in very handy to identify trajectories whose telemetry
has not adhered to the FlightPlan. It can be done by analyzing the error during
the trajectory, [13]. When the drone deviates from the trajectory, the warping path
also deviates from the diagonal line which represents the ideal adherence and
the more it deviates the higher the error and the odds of being an abnormal flight.
In Figure 27 we can visualize both the maximum error of the flights in meters as
well as the average errors. Both graphs show similarities but we specially take
into account the average errors as maximum errors can likely associated to the
drone telemetry data before it even reaches the start of the route or continuing to
record data after the trajectory. In this case, the average error accounts for that
and it will remain low during the trajectory to still be considered.

Figure 27. Error distributions for time independent analysis

Some of the flights have only recorded a part of their telemetry as can be seen in
Figure 27. These flights have a high maximum error but the average is
remarkably low yet still affected by the maximum error values. The case seen
below represents the third flight seen in Figure 27, the one on the left with
maximum error around 550 m and we can see that its average is within the 20 m
threshold. The value of 20 m is chosen based on inspecting the flights with higher
error and seeing that above 20 meters the telemetry is highly unrelated to the
FlightPlan, while the ones below 20 m but with relatively high error represent
flights with missing data, see Annex to have a closer look on these flights. We
will not use the part of the telemetry and FlightPlan that we don’t have from and
later we will analyze by segments which will examine segments individually
instead of the whole trajectory, resulting in lower average errors in cases like this
one.

44

This discussed method of detecting the outliers is not used to generate input data
for the model. The error values could be used if necessary but these will not be
considered as a feature in the model data. After this procedure the data is cleaner
and slightly reduced. As we do not know why the data is missing or the why the
drone did not adhere to the intended trajectory, it is questionable whether to
consider the data where the drone does adhere to the telemetry because it may
have experienced some flying conditions out of the usual which led the drone to
not properly record the data.

Figure 28. Example of a telemetry file with missing data

3.5. Machine Learning dataset

Let’s discuss the different features that can be obtain from the data that we have
and that can potentially be useful for the model. These have to include information
about the flight that affects the adherence to the trajectory. Depending on what
we want to predict as an output, the importance of the different input data be
altered. This is, if we want to predict time-related parameters, the most beneficial
inputs will be likely time-related yet that does not exclude other features may also
play an important role.

In addition to that, as machine learning is based on learning patterns, for it to be
as accurate as possible, it is essential that the input data exhibits some sort of
patterns across the dataset. In the case of our dataset, we count with tenths of
flights that, despite all of them being different, they hold similarities and the model
is able to establish connections between behaviors happening in a route and see
great results when training in another route. If we were to have a dataset whose
flights had no similarities in terms of the segments, duration and speed, basically
being all of them unrelated, the odds of the results being less accurate would be
high.

45

3.5.1. Features

3.5.1.1. Spatial features

The first feature that is considered for the flights and that can be considered is
the positional values of the trajectory. Both the FlightPlan and the telemetry
contain valuable information of the points in space, however, it is not a single
point that matters but the relationship of two consecutive points. Providing a
single point per line in a dataframe can be irrelevant as there is no association
that can be done with another point for that particular entry of data. That is why
working with segments has potential benefits as the relation between x, y and z
magnitudes has a strong effect on the prediction of the model as it contains
essentially the attributes of that segment.

While it is true that considering the origin point of a segment as (0, 0, 0) and the
giving simply the corresponding value to the end point might seem like an easier
approach for the model as it deals with less data. However, considering what we
have mentioned earlier about the similarities and relationships between routes, it
comes in handy too to give information about the starting point too as the
performance of the drone can be different based on the altitude or in certain areas
of a given trajectory. Note that for this latter assumption, ECEF coordinates for
the raw points have to be used as to identify particular patterns based on the
location of the drone. ENU coordinates depend on the reference of each flight
which is set to the origin point of the FlightPlan. Unless the reference point is the
same for all flights, the ENU coordinates contain information useful for every
individual flight yet we cannot generalize with merely the information about
position.

3.5.1.2. Temporal features

Time also plays a critical role in terms of predictions as it contains valuable
information about the intended position of the drone along the trajectory. In
Chaper 2 we have seen a way to compute the theoretical time that it should take
a drone to fly the FlightPlan trajectory. This is an obtained feature from the raw
data and it can be extremely helpful when compared with the telemetry time as a
way to get the delay that the drone experiences in every segment.

When generating the time data for the model, we want to associate a telemetry
time to each segment, for instance the time at the end of the segment for both
telemetry and FlightPlan, the difference between these times is the delay in that
given segment. If necessary, we can use 𝑑𝑒𝑙𝑎𝑦 = 𝑡𝑡𝑒𝑙 − 𝑡𝑓𝑝 where 𝑡𝑡𝑒𝑙 is the time

at of the telemetry at given point and 𝑡𝑓𝑝 the time of the FlightPlan at that point.

Finding the 𝑡𝑡𝑒𝑙 for a given point can be expensive in terms of computation
resources as telemetry points rarely coincide exactly with the FlightPlan points
and the approach of computing the distance from the desired point to all the
points of the telemetry to find which one is closer is not a reliable method as the
drone may be closer to another segment during that particular time, specially is
segments were to be very close, separated a distance of around the average
error, would result in wrong associations between the times.

46

To obtain the telemetry time associated with a specific point in the Flight Plan, we
use the power of Dynamic Time Warping (DTW) once again. As we have
commented earlier, DTW establishes a link between all points in the trajectory,
allowing us to effectively map the Flight Plan points to their corresponding
telemetry points. This wat, when identifying a point in the Flight Plan, we can
effortlessly locate its associated telemetry point using the DTW alignment as it
ensures that each point in the FlightPlan is properly matched with its
corresponding point (or points) in the telemetry data. Once we have identified the
telemetry point linked to the desired Flight Plan point, we can obtain the
associated time value stored in the corresponding row of the telemetry data. In a
similar manner we can use this to obtain the telemetry position at that time if the
objective is to predict positions.

In Listing 3 we can see the way this time is obtained. Essentially, we are looking
for the associated index to a particular FlightPlan segment in the synchronized
dataframe that contains the correlation between the segments. Knowing the
telemetry index we can easily get its time.

 for i, row in model_df.iterrows():

 model_df.loc[i, "t_tel"] = telemetry.iloc[sync[np.where(np.array(sync)[:,1] ==

find_nearest(np.array(sync)[:,1],(i+1)*n))[0][0]][0]]['secs']

Listing 3. Closest telemetry time obtention

Figure 29. Dataframe with examples of temporal features

3.5.1.3. Drone characteristic features

Information that we also have available which is not initially in a numerical value
is the drone model type. The drone model can have an impact on the adherence
to the FlightPlan as higher end drones count with better specifications which can
potentially contribute to a better awareness and therefore better response to the
FlightPlan guidelines. At first glance we are not going to analyze by model type
but this data can be provided to the model for its algorithms.

47

Other comparable features include the segment type, which can either be:
descent, climb, cruise and hover. Knowing this data is helpful as drones can have
different performances depending on the kind of segment that they are dealing
with.

In addition, the operator of the drone is a factor to take into account as operators
may use different criteria and software when setting up the drones. This however,
is a piece of information that we do not know for sure and we will let the machine
learning model assess the data and find the patterns, if there are any.

Figure 30. String encoded values for a flight

For machine learning purposes, the general tendency is to acquire as much data
as possible in order to capture a wide range of variations and patterns related to
the problem to solve. However, it is important to note that handling an excessively
large dataset can also impact computation time and resource requirements.
Therefore, it becomes essential to find the optimal trade-off that suits a specific
scenario.

In our case, for the drone flights, we observe that they follow specific airways with
consistent altitudes, and this pattern is repeated across multiple flights and
delivery scenarios. Additionally, we notice a consistent sequence of actions, such
as starting with a climb, followed by a hover at some point of the trajectory, and
ending with a descent. These patterns are helpful and justify the feasibility of
solving our problem. Having a dataset that shows such patterns is essential for
developing an accurate model. Random flights performed by unknown operators
with irregular routes would lack the necessary correlation for the machine learning
model to properly identify and understand the provided data. Without the right
dataset, the predictions derived from the model would likely be inaccurate and
unreliable. However, we are not going to limit the model with any of these
conditions, as the model is suitable to be trained with data that showcases some
sort of patterns, yet we will not generalize and make assumptions for all flights,
the model will be able to do this on its own.

48

3.5.2. One Hot Encoding

For the model to understand the string values that we will provide, it needs a
numerical value that can be used for the pattern recognition. A possible option is
to replace the string values by numbers representing each case while keeping
the values in the same column such as representing the model type as number
0 for climb segments, number 1 for cruise and so on. This method is a simple
way to assign numeric values to different categories of a categorical variable.
However, it has a significant limitation in that these numeric values can be
misinterpreted by some machine learning algorithms. For example, if we encode
four drone models with values 0, 1, 2, and 3, an algorithm may incorrectly
interpret that the operator corresponding to value 3 is three times greater than
the drone model with value 1, which is not true.

An alternative to this method is the method called One Hot Encoding. This
strategy involves creating a binary column (which can only contain values 0 or 1)
for each unique value in the categorical variable being encoded. The column
corresponding to the current value in each row is marked with a 1, while the
remaining columns are assigned a value of 0. For example, in the case of the
drone operator variable of the dataframe, One Hot Encoding creates four binary
columns (JUNO, OMAHA, UTAH and SWORD). For each flight, a value of 1 is
assigned to the column corresponding to their operator, and a value of 0 is be
assigned to the columns of the other operators. This way, each flight is
represented by a binary vector indicating the presence or absence of each
categorical value, which avoids the possibility of the model and algorithms to
misinterpreting the numeric values assigned by other ways of encoding.

Figure 31. One hot encoded string labels

3.5.3. Metrics for evaluation

R2 (R-squared), MSE (Mean Squared Error), and MAE (Mean Absolute Error)
are commonly used metrics to evaluate the performance of machine learning
models. They provide insights into how well the model fits the data and how
accurate its predictions are.

R2, is a statistical metric used to evaluate the how good the model fits the data
for a regression model. It provides an indication of how well the independent
variables (features) in the model explain the variability in the dependent variable
(target). It ranges from 0 to 1, with 1 representing a perfect fit where the model

49

predicts all the variability in the target variable, and 0 indicating that the model
does not have any precision in the predictions it makes. It measures the
proportion of the variance in the target variable.

MSE is a commonly used metric to assess the accuracy of models. It calculates
the average of the squared differences between the predicted values and the
actual values of the target variable. Squaring the differences makes MSE yield
higher weight on larger errors. It penalizes the model for larger deviations
between predicted and actual values. MSE is useful for evaluating the overall
quality of predictions and provides a measure of the average squared deviation
between the predicted and actual values.

MAE is another metric used to evaluate the performance of regression models. It
calculates the average of the absolute differences between the predicted values
and the actual values of the target variable. In this case, it does not square the
errors. It takes the absolute value of the differences. This means that all errors
are weighted equally, regardless of their direction. It provides a more interpretable
measure of error, as it represents the average magnitude of the errors in the
original units of the target variable.

50

CHAPTER 4. Results

Having at our disposal the features that we have computed, the next stage is
training and testing the models. Machine Learning does require trial and error to
find the optimal features which yield the best performance. The aim is to test the
machines learning models discussed in the previous chapter and evaluating their
performance. The results with the best performance will be tested further with
validation data.

As the last step the obtained machine results will be compared to the U-Space
predictions and to the real telemetry data. This way, it will be possible to
determine if we have made a positive contribution to U-Space by having more
accurate predictions.

4.1. Time predictions

The prediction of time at specific points along the FlightPlan trajectory is a
significant aspect of our analysis. To achieve this, we provide segment-related
input data, where each row contains relevant information about the segment as
well as characteristic details about the drone. Our objective is to predict the
corresponding telemetry time, also denoted as 𝑦 (output variable), which we have
previously computed with the help the telemetry files. This telemetry time
represents the moment when the drone is closest to the designated FlightPlan
point, taking into account the nature of the trajectory. It is crucial to ensure that
the predicted time corresponds accurately to the intended point along the
FlightPlan and is not mistakenly associated with a point from a later segment of
the trajectory that might be closer.

For the time predictions, we will train the model with segments of all flights, all of
them as independent rows in the dataframe. The intention is to be able to split
every flight into segments so that in the end we have a database with all segments
of all routes, without any relation to one another. All the origins of the individual
segments are brought to the origin at coordinates (0, 0, 0) and they end at their
respective points. The time at the start of each segment is set to 0 seconds and
it also has the end time as computed in the mathematical approach of Chapter 2
and its related telemetry time. In addition, there is information of the drone,
operator that flew this segment and the segment type (yet this latter one can likely
be deduced by the model from taking int consideration the information about the
origin and end points).

Input data: ['JUNO', 'OMAHA','UTAH', 'SWORD', 'M300', 'M600', 'Mavic2',
'S9000', 'z0', 'x3', 'y3', 'z3', 'vel_fp', 'turn_fp', 't_seg_fp','3Ddist']

Where ['JUNO', 'OMAHA', 'UTAH', 'SWORD'], ['M300', 'M600', 'Mavic2', 'S9000']
are the one hot encoded columns of ‘dronemodel’ and ‘droneOperator’
respectively.

51

Let’s discuss the reason behind this selection of columns, which from the
computed features, appears to be the selection of features that performs better
after testing the possible combinations.

We include 𝑥3, 𝑦3, 𝑧3 as they represent the point in space where, from (0, 0), it
creates the line making a the segment. This way we avoid using origins and end
points that the model could misinterpret or memorize. Also 𝑧0 is altitude at which
the segment starts from as it can help the model identify patterns related to
airways, that are in constant altitudes.

In addition, we provide parameters about the segments such as 𝑣𝑒𝑙_𝑓𝑝, 𝑡𝑢𝑟𝑛_𝑓𝑝
that represent the velocity and turn radius specified by the FlightPlan. Finally, we
provide the theoretical segment time, 𝑡_𝑠𝑒𝑔_𝑓𝑝, and 3D distance of the segment,

3𝐷 𝑑𝑖𝑠𝑡.

The output data is the telemetry time, variable 𝑦: t_seg_tel

In this model, the dataset contains 690 rows which represent individual segments.
The excluded flights are only the outliers, this is, 5 flights. The flights with missing
data can be included in exception of the segments where the data is missing as
we are considering individual segments.

The 9 models are trained with the same exact data and the obtained results are
shown in Figure 32.

Figure 32. Results obtained from the models (R2 sorted)

The evaluation of the metrics suggests that the XGB model performs
exceptionally well in terms of time predictions. It is true that it presents the lowest
MSE, as well as the highest R-squared, however it is important to emphasize
before concluding, that it might still be worth to keep its close competitors. As
these metrics are obtained from the test data used during training, they do not
strictly guarantee in every situation that the model will outperform its closest
competitors, such as the Random Forest and LGB models as the difference
between their metrics is very slight in this case.

52

The subtle differences definitely guarantee these top scoring models will have
remarkable prediction capabilities, however their performance on validation data
might not maintain the same order as in the previous figure. It is important to
consider the context and possible variations in performance when providing new
and unseen data. Therefore, even though the XGB model may show the best
performance with the evaluation metrics, we can still need to verify and observe
its behavior with validation data.

For the validation data, in our case full trajectories, we take the four top scoring
models and test them once again with this data that we can actually visualize as
we predict the time for a whole trajectory and not random segments like it is done
with the test data.

The following Figure 33 shows the results of the validation data which are of 5
flights, which have been checked that they are not outliers or contain missing
data so we can compare them smoothly with the entirety of the telemetry.

Figure 33. Metrics for the 4 best performing models (with validation data)

The XGB regressor has the best performance even for the MAE, with the testing
done with validation data. Note that the smaller the MAE and MSE the better
while for the R2 the higher the better.

And finally, to further understand which model performs better for this time
analysis, we can perform cross validation so the models can be trained and tested
with all the data, except from the validation data. The cross validation score is the
average of the scores obtained from each data split while choosing a different
fold of test data every time. We expect the difference to be small as generally a
test/train split selecting random pieces of data results in a non-biased dataframe,
which is what we want. As it can be seen, the 6 best performing models are
represented in the dataframe below and the ranking remains the same.

53

We could take this step before training the models and merely pick the top one
scorer to fit it with the data.

Figure 34. Cross Validation (CV) scores using k-fold validation.

Now we can plot the results of the validation data for some trajectories and see
how the model performs. We will choose the XGB regressor as it showed the best
performance and accuracy.

In the plots, four times will be represented:

- 𝑡_𝑠𝑒𝑔_𝑓𝑝 → for the theoretical time of every segment of the FlightPlan as
computed in Listing 1.

- 𝑡_𝑠𝑒𝑔_𝑢𝑠 → for the time of each segment according to the U-Space
prediction.

- 𝑡_𝑠𝑒𝑔_𝑡𝑒𝑙 → for the telemetry time, where every segment has been
delimited with the use of Dynamic Time Warping (see section Time
Independent Error Analysis)

- 𝑡_𝑠𝑒𝑔_𝑚𝑙 → for the machine learning model predicted time of each
segment. In this case, using the XGB model.

We can plot the time per segment individually and then the accumulated time as
the representation of the increasing time during the trajectory.

54

Time MSE
t_us 315.8
t_fp 74.7
t_ml 28.9

Time MSE
t_us 2943.57
t_fp 127.96
t_ml 7.07

Time MSE
t_us 1652.2
t_fp 1078.7
t_ml 578.5

Figure 35. Upper row: segment time predictions (𝒕_𝒔𝒆𝒈_𝒎𝒍). Added reference
times for comparison 𝒕_𝒔𝒆𝒈_𝒇𝒑, 𝒕_𝒔𝒆𝒈_𝒖𝒔, 𝒕_𝒔𝒆𝒈_𝒕𝒆𝒍; Middle row: global

accumalated trajectory times; Bottom row: MSE for each of the times with
respect to the ground truth, which are telemetry related times

A more intuitive way of visualizing the prediction of times is by plotting the
coordinates over time. During this project, we have seen various representations
of telemetry and FlightPlan data over time. Now, we can take the results of our
predictions and plot the FlightPlan waypoints at the predicted cumulative sum of
𝑡_𝑠𝑒𝑔_𝑚𝑙 (𝑡_𝑚𝑙). This allows us to observe how the original FlightPlan will look
like with the predicted times, resembling the telemetry data. In Figure 36 we plot
also the input of to the model. Essentially, the lines labeled as FP are the
representation of the FlightPlan coordinates with the mathematically computed
𝑡_𝑓𝑝. The dashed line labeled as TEL represents the actual flown trajectory, the
telemetry coordinates over time. And the lines labeled as ML represent the
FlightPlan coordinates at the predicted times.

55

Figure 36. Coordinates over time. Spatial locations (X, Y, Z) of the predicted
lines correspond to the input coordinates that have been relocated to the

predicted times with the XGB model.

In other cases, it is not as accurate. However, as it can be seen in the MSE, the
error is still lower than the U-Space approach and mathematical approach.

Figure 37. Another, not as accurate plot of coordinates over time. Spatial
locations (X, Y, Z) of the predicted lines correspond to the input coordinates that

have been relocated to the predicted times with the XGB model.

We can also get a more detailed view of this models’ performance by plotting the
feature importances. Models utilize the features differently and below we see two
example of the importance given to each feature (note that the Y scale is not the
same). At first sight it appears that LGB is making a better use of the features,
however that does not necessarily mean that the predictions are better.

56

Figure 38. Feature importances for the XGB model (left side figure) and for the
LGB model (right side figure)

Figure 39. Left side plot: Learning Curve for the XGB model; Right side plot:
Comparison of multiple learning curves (XGB included)

Figure 40. Scatter plot of True (𝒕_𝒕𝒆𝒍) and predicted values (𝒕_𝒎𝒍) for the XGB
Regressor model. Points on top of the ideal dashed line indicates perfect

predictions.

57

4.2. Position predictions

When it comes to predicting positions, it's important to note that the features
obtained from the available data may have a weaker performance in the final
model. This is mainly due to the fact that telemetry positions (or related spatial
metrics), for instance, at the end of a segment, are extremely variable and the
noise in this kind of data will make it tough for a model to predict it accurately.

In contrast, the prediction of time benefits from more suitable features that we
obtain in the data. Features such as distance, velocity, and segment properties
play a significant role in determining the time required to fly a particular segment.
For instance, we include a time reference feature (𝑡_𝑓𝑝) which is particularly
influential, as it closely related with the ground truth time (𝑡_𝑡𝑒𝑙). Even without

𝑡_𝑓𝑝, the relationship between distance and velocity yields that the predicted

value is typically similar or higher than 𝑡_𝑓𝑝. And this relationship is highly
consistent, as we have observed from the data.

However, when it comes to predicting the position of the drone, these features do
not necessarily help determine the position at a given time. While time prediction
benefits from a strong relationship between feature and the target variable,
predicting positions requires also strong relationships that we might not be able
to obtain.

We can predict the deviations 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 which are the difference between the
intended FlightPlan point to the actual telemetry point at a given time, which in
this case is the time stamp at the end of each segment.

Therefore, 𝑑𝑥 = 𝑥2 − 𝑥1, 𝑑𝑦 = 𝑦2 − 𝑥1, 𝑑𝑧 = 𝑧2 − 𝑥1. These deviations are the
output labels that the model trains on. With an accurate prediction of 𝑑𝑥, 𝑑𝑦, 𝑑𝑧, it
is possible to obtain the telemetry point 𝑥2, 𝑦2, 𝑧2, 𝑥2 = 𝑥1 + 𝑑𝑥, 𝑦2 = 𝑦1 + 𝑑𝑦,

𝑧2 = 𝑧1 + 𝑑𝑦.

Input data: ['JUNO', 'OMAHA', 'UTAH', 'SWORD', 'M300', 'M600', 'Mavic2',
'S9000', 'z0', 'x3', 'y3', 'z3', 'vel_fp', 'turn_fp', '3Ddist', '2Ddist', 't_seg_fp'],

Output data: [‘dx’, ‘dy’, ‘dz’]

Below we can the performance of some of four models. These are models that
accept multiple outputs as now we are predicting the three variables at the same
time. We could predict one at a time but after having tested that, the results are
worse. This is likely due to the relation between coordinates and the model
benefits can establish links between the output variables and its magnitude.

58

Figure 41. Performance of models for deviation prediction

As mentioned at the start of this position prediction section, the supposition about
no strong relationship on between input and output data can be seen here below
with the two best performing models. For instance, the XGB model gives almost
the same importance to the feature SWORD, which is a categorical vertiport
feature, as x3 which describes the length in the X coordinate of the segment. This
does not mean that the model misassigns the importance as it has performed
decently, but it puts into perspective the lack of strong relationships.

Figure 42. Feature importances for Random Forest and Extreme Gradient
Boosting models.

We could try removing the less important features and adding other that might be
relevant yet it is not simple with our data to obtain a feature that has a strong
impact on the deviation of the drone. Maybe it could be due to wind conditions or
the quality of the signal, among similar factors, that we do not have data on. By
removing the drone models and adding some columns the results are similar.
That is expected as these features do not really contribute to the final result.

59

Figure 43. Slight variation in the results with different arrangement of data

It is interesting to note how the XGB model in this case makes the cruise feature
as the most relevant. This can be associated to finding a clear relationship
between deviations and cruise segments. It makes sense as deviations tend to
be rather small and constant during cruise segments.

We can inspect the learning curves to see how the model is learning from this
data. As seen in the figure below, it does seem like the models are slowly
learning. There is a slow tendency to convergence yet the value is not
impressively high. This suggest again that the model would highly benefit from
more data to reach a higher scoring.

Figure 44

We have to be careful when choosing the features. If we include 𝑥0, 𝑦0, 𝑧0 and
𝑥1, 𝑦1, 𝑧1 to the input data, which might make sense at first as it represents the
actual origin and end point of the segment, the performance will appear to clearly
increase yet this is a clear case of overfitting the model.

60

Figure 45. Models overfitting due feature memorization

We can clearly see that the model has increased its R2, almost doubling it, yet
the errors on the test data remain the same or even higher. This is due to the
memorization of a feature and predicting based on that feature. In this case, it is
memorizing x1 which provides no direct information to the deviation of the drone.
The feature x1 represents the X coordinate of end point of a segment and merely
with a point in space it is not possible to make a prediction on the deviations. In
the test data there are probably some points with very similar x1 as some of the
trajectories share points and it makes the prediction entirely based on this feature.
That explains why despite increasing the accuracy, the error is even higher.
Unlike the case with 𝑡_𝑓𝑝, that closely related to the output variable 𝑡_𝑡𝑒𝑙 when
predicting time. In that case, the reason on why a feature stands out is feasible.

4.3. Airways safety margins

In order to establish a criterion when designing the spacing between areas, we
can analyze the telemetry data against the FlightPlan to obtain valuable results
that can be helpful in terms of safety and prevention of collisions. Also, this also
ensures the telemetry will remain inside these margins. In a way this serves as
an alternative to predicting positions.

If we can determine the area (or volume) where the drone will be flying with a
high degree of confidence, we do not need to strictly know where it will be exactly
located at a given time, instead we can guarantee that it will be inside a volume
close to the trajectory. The volume can be a buffering of the segments by
specifying distances or a tube-like shape with the segment in the center. In a way
we can imagine trajectories as imaginary cylinders where the segment is the
longitudinal axis. In this case, the imaginary cylinder is hollow and the drones
would fly inside it.

61

Figure 46. Sigma distribution of the deviation of the drones from the segments
in meters.

This, in combination with the time predictions makes a pretty solid foundation for
U-Space as we can give a prediction of the drones’ real time in every waypoint
and also specify a safety volume where the drone will be inside at that predicted
time with confidence.

Figure 47. Average deviation [m] scatter plot and representation of a high
average error flight

Figure 48. Average deviation from the telemetry to the flight plan segments for
all flights

62

To better understand these results, it is helpful to plot the distribution by segment
type. We have considered only for these plots the flights that have no
contingencies or missing data. For reference, we are dealing with 354 cruise
segments, 152 climb segments, 118 descent segments and 59 hoverings. The
number of climbs and descents does not have to strictly match as in some case
multiple climbs can be taken to reach a certain altitude, while the descent can be
one in only one segment or vice versa.

Figure 49. Distribution of average errors based on the type of segment with
threshold for which average deviation is 90, 95 and 99 percent of the times.

63

CHAPTER 5. Conclusions and future work

Throughout the realization of this final degree project, we have managed to go
from raw data in the form of flight plans and their associated telemetry, to a
detailed analysis which is of high value to visualize the performance of the drones
in terms of adherence to the flight plan and predicting times, which are essential
for the development and improvement of the U-Space.

Several data visualization and observation functions have been made to clearly
represent the data that we are dealing with. This has been indispensable to
progress with the making of this project as the raw data itself is not intuitive at
first sight and does require manipulation in order to get assumptions from it. In
this kind of studies with experimental it is important to have a solid representation
of the processing of the data as it is works well together with the numeric results
that are obtained in each stage.

The time independent analysis done in Chapter 2 has set a base for us to build
the rest of the project. To achieve objectives, observing the different relationships
between the flight plan and telemetry is necessary. This analysis and developed
algorithms make possible the relation between both kinds of data in the form of
linking the indices, or points, of the telemetry to the flight plan despite the noise
and smoothed shape that the real trajectory shows when the drone flies it.
Without a clear correlation between this data, analyzing the data becomes an
obstacle. The synchronization of the data also plays an important role on getting
rid of the delay that the telemetry might experience, specially at the beginning of
the trajectories and to train the models it is important to treat all telemetries the
same, without any bias due to delay. And this does not only serve for the models
but also for delimiting segments in telemetry and computing deviations which help
determine the spacing of the airways that the drones use.

This project also contributes to the prediction of times for a given flight plan.
Assessing the difference between the intended plan time and the actual telemetry
is crucial for safety and capacity terms. With the use of various models, we have
been able to obtain accurate time predictions based on the input of a flight plan
after computing some features that can be obtained from it. The predictions have
a remarkably good performance in comparison to the U-Space predictions, which
satisfies the main goal of this final degree project. The high variation in the
different telemetries of the flights makes it complex to always achieve low errors
and there is room for improvement. Having more features in the raw could
minimize these errors and increase accuracy. From the learning curves we can
tell that also increasing the size of the dataset would be beneficial for the models
to achieve convergence for the training data and validation data.

Related to what has been mentioned, when it comes to predicting positions
becomes a complex task for supervised machine learning models. This is due to
the fact that predicting the future position of telemetry for a whole trajectory based
only on the intended flight plan is not an straightforward task as the deviations
are highly irregular and variable during the trajectory. However, what we do to
tackle this issue is to seek an alternative way of determining positions with some
degree of uncertainty.

64

From the utilization of the data at out hand, we can define average deviations the
drones experience from the intended segments of the flight plan. Plotting these
deviations as distributions with threshold values ensures certain key parameters
for the definition of the corridors composing the airways that can as well be
interpreted as the spacing between airways, which can be beneficial for collision
avoidance problems and maintaining safety. This is one of the fundamentals for
the U-Space and being able to provide these insights is a valuable way of
contributing to that.

Future projects can evolve from the basis of this project. Data analysis is time-
consuming tasks and there are countless steps from the moment when the data
is captured by the drone’s sensor to having the data ready for a machine learning
model. The developed algorithms are able to process the data after the initial
stage of processing the KML files obtained from the readings of the drones. By
having a set of data containing location coordinates and time, the algorithms and
models used for this project can be used.

A way to improve this study is to gather more features that could be potentially
useful for the machine learning models. These can range from meteorologic
parameters that affect the adherence to the flight plan such as wind
measurements, to specific parameters of the drone’s battery level, quality of
signal coverage, number of visible satellites for the positioning system of the
drone, among others. Another beneficial improvement is to increase the size of
the available dataset. The more data, as long as it is not repetitive, is a clear
advantage for machine learning models as they are exposed to more
combinations of the data and therefore learn to generalize for future unseen data.

In the area of prediction, future research can be done in the field of deep learning.
A broad and powerful branch of machine learning falls on the algorithms of neural
networks. Neural networks operate with a set of hidden neurons, or algorithms,
layered together to create a complex network that acts as model that to make
predictions. In addition to that, different kinds of neural networks can be used in
order to learn from a time series and predict the future values. A way of
implementing these kinds of neural networks is to make predictions based on
previous data. In that case, previous information of the real time telemetry can be
provided as an input to the model, alongside other features, to output the
continuation of the telemetry. Precisely, LSTM (Long Short-Term Memory) and
RNN (Recurrent Neural Networks) can be used to achieve said goal, [14], [15]. A
network able to determine future positions can be used in combination with the
developed machine learning models to have a more robust behavior.

65

REFERENCES

[1] EUROCONTROL, “Challenges of Growth 2013 - Task 4: European Air Traffic in
2035,” 2013.

[2] SESAR, Joint Undertaking, “SMART ATM U-space”, (2023).
https://www.sesarju.eu/U-space

[3] Thipphavong, D.P., Apaza, R.D., Barmore, B.E., Battiste, V., Belcastro, C.M.,
Burian, B.K., Dao, Q.V., Feary, M., Go, S., Goodrich, K.H., Homola, J.R., Idris,
H.R., Kopardekar, P., Lachter, J., Neogi, N.A., Ng, H.K., Oseguera-Lohr, R.M.,
Patterson, M.D., & Verma, S.A. (2018). Urban Air Mobility Airspace Integration
Concepts and Considerations. 2018 Aviation Technology, Integration, and
Operations Conference.

[4] pandas Development Team. "pandas: Data Analysis Library." 2023. Web.
Retrieved from https://pandas.pydata.org/.

[5] "Geographic coordinate conversion." Wikipedia: The Free Encyclopedia.
Wikimedia Foundation, [2023].
https://en.wikipedia.org/wiki/Geographic_coordinate_conversion#From_geodeti
c_to_ECEF_coordinates.

[6] "World Geodetic System" Wikipedia: The Free Encyclopedia. Wikimedia
Foundation, [2023].
https://en.wikipedia.org/wiki/World_Geodetic_System#WGS84

[7] "Local tangent plane coordinates" Wikipedia: The Free Encyclopedia.
Wikimedia Foundation, [2023].
https://en.wikipedia.org/wiki/Local_tangent_plane_coordinates

[8] Paglione, Mike & Oaks, Robert. (2007). Implementation and Metrics for a
Trajectory Prediction Validation Methodology. 10.2514/6.2007-6517.

[9] B. Johnen and B. Kuhlenkoetter, "A Dynamic Time Warping algorithm for
industrial robot motion analysis," 2016 Annual Conference on Information
Science and Systems (CISS), Princeton, NJ, USA, 2016, pp. 18-23, doi:
10.1109/CISS.2016.7460470.

[10] Romain Tavenard, . "An introduction to Dynamic Time Warping." . (2021).
Available at: https://rtavenar.github.io/blog/dtw.html

[11] B. Johnen and B. Kuhlenkoetter, "A Dynamic Time Warping algorithm for
industrial robot motion analysis," 2016 Annual Conference on Information
Science and Systems (CISS), Princeton, NJ, USA, 2016, pp. 18-23, doi:
10.1109/CISS.2016.7460470.

66

[12] Al-Naymat, Ghazi & Chawla, Sanjay & Taheri, Javid. (2012). SparseDTW: A
Novel Approach to Speed up Dynamic Time Warping. Conferences in Research
and Practice in Information Technology Series. 101.

[13] Georgia Tech Professional Education. (2023). Introduction to Machine
Learning and Three Common Algorithms.

[14] Dai, Wei & Zhang, Mingcheng & Low, Kin. (2022). Data-Efficient Modeling
for Precise Power Consumption Estimation of Quadrotor Operations Using
Ensemble Learning. 10.48550/arXiv:2205.10997.

[15] Anush Manukyan, Olivares-Mendez Miguel, Holger Voos, Matthieu Geist.
Real time degradation identification of UAV using machine learning techniques.
International Conference on Unmanned Aircraft Systems (ICUAS), 2017, Miami,
United States. ffhal-01629680f

[16] H. -C. Choi, C. Deng and I. Hwang, "Hybrid Machine Learning and
Estimation-Based Flight Trajectory Prediction in Terminal Airspace," in IEEE
Access, vol. 9, pp. 151186-151197, 2021, doi: 10.1109/ACCESS.2021.3126117.

[17] Shi, Zhiyuan & Xu, Min & Pan, Quan & Yan, Bing & Zhang, Haimin. (2018).
LSTM-based Flight Trajectory Prediction. 1-8. 10.1109/IJCNN.2018.8489734.

67

ANNEXES

Contingency flights (including the ones with missing data)

68

