
ROS2 versus AUTOSAR:

Automated Parking System

case-study

Master Thesis
submitted to the Faculty of the
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Abstract
Vehicles are complex systems as they combine several engineering disciplines, such as me-
chanical, electric, electronic, software and telecommunication. In the last decades, most
innovations in the automotive domain have been achieved as a combination of electron-
ics and software. Consequently, the software development and deployment has resulted
a highly sophisticated engineering process to manage and to integrate. With the intro-
duction of artificial intelligence, automated driving has become a reality. However it has
additionally increased the requirements on the system design.

One widely accepted approach to manage complexity is to divide the system into sub-
systems through a well-defined architecture. The architecture of an autonomous system
must be suitable to guarantee that the self-driving functionality remains safe in a broad
range of operational domains. The challenge is how to design the architecture of the
system to be reliable and resilient to changing context.

The automotive industry has well established standards and development practices, but it
is open to explore and integrate solutions from other domains like Internet of Things and
Robotics. In the area of autonomous systems, the capabilities of the robotics middleware
ROS2 have been used for prototyping purposes. It is an open question whether ROS2 is
suitable for automotive safety relevant applications.

This master thesis addresses this challenge through evaluating the possible application
of ROS2 in the automotive domain. The development consists of implementing an archi-
tecture for an autonomous driving function case-study, an Automated Parking System,
which adapts to its context by switching between different operational modes.

The Automated Parking System has been implemented and validated in a simulation
environment. The experiment results show which benefits bring ROS2 compared with the
automotive standardised architecture AUTOSAR.

Key words: ROS2, Autonomous Driving, Software Architecture, CARLA Simulator.
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Chapter 1

Preface

After many years of studying for a telecommunications bachelor’s degree and a master’s
degree in electronics, I realized that the world is filled with uncertainties, in fact, engineer-
ing tries to give solutions to those uncertainties. One of the great mysteries of mankind
has been knowing how the brain operates, which is the computational benchmark that
scientists are constantly trying to reach, since cerebrum is the most developed intelli-
gent structure known so far. As a cognitive system, it is capable of receiving an infinite
amount of data, processing these data, and reacting with the best behaviour. But the most
interesting capability is that the brain always processes an adequate safety response.

This thesis has been developed at one of Europe’s leading research centers, the Frauhofer
Institute for Cognitive Systems IKS in Munich, Germany. The Frauhofer Institute for
Cognitive Systems IKS investigates technologies for smart and adaptive systems to re-
spond reliably and safely to unexpected or previously unknown situations. This center
acts as a bridge between science and industry to bring innovative concepts of cognitive
systems into the tangible application.

1.1 Motivation

During my master’s degree I already got in contact with the automotive industry, con-
cretely in the Nextium hardware department, at IDNEO group. However, the lack of
knowledge in automotive software led me to enroll for a master thesis which would enhance
my knowledge in automotive software architecture and the design of vehicle functions.

Additionally, this master thesis gives me the chance to learn not only about automotive
software, but also about how to develop software in robotics. The reason for this is that
the project is focused on developing an architecture for the automotive industry using
a robotic operating system. The comparison of the AUTOSAR vs ROS II architectures
scopes the target of this project.
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Chapter 2

Introduction

Mobility has become a fundamental requirement in day-to-day life. People need to move
constantly, whether for work or pleasure. Globalization and new IoT technologies have
transformed the entire world in only decades. In this revolution, the automotive sector
has been immersed in the adaptation of innovative functionalities and technology.

The automotive industry has reached a large consensus on standardization. This sector
covers many disciplines, as for example mechanical, electronic, software, telecommunica-
tion, etc., which causes the deployment of a vehicle to become a highly complex engineering
project to manage and to integrate. For this reason, the major companies in the automo-
tive industry have reached an agreement to combine efforts in the creation of standards.
The main success of this strategy has been the AUTOSAR partnership, the first architec-
ture standardization in the field. Since the creation of AUTOSAR in 2003, the standard
has become the most widely adopted automotive software architecture worldwide.

With the boom of artificial intelligence, autonomous driving has emerged as a reality.
However, this involves many challenges for machine learning because the designer can-
not take an infinite range of scenarios into account during implementation. Architecture
must adapt to changing situations autonomously and safely. At the moment, safety is
the most critical element in the development of these technologies. The architecture of
an autonomous driving system must be suitable to guarantee that the automated driving
functionality is safe in a wide range of operational domains. This is in fact a requirement
for any autonomous system applicable to robots, drones and trains.

The development of autonomous robots began before vehicle manufacturers introduced
the first automated functionalities in the car. In 2007, activities on a modular architecture
for robots started with the Robotic Operational System (ROS). ROS is an open-source
framework supported by a variety of tools which help developers to record data, visualize
data and integrate a number of algorithms to develop autonomous functions using existing
open-source libraries. The automotive industry is taking advantage of ROS2 for building
prototypical autonomous functions, however it is still an open issue how to certify safety
using the ROS2 framework. This master thesis evaluates the possible applications of
ROS2 in the automotive domain. The results are presented through an automated parking
system case study.

2.1 State of purpose

The purpose of the dissertation is to implement an architecture in ROS2 which ensures
that automated driving functions are safe for well-defined operational domain. This ar-
chitecture will be exemplary for an automated parking system. The final purpose is to
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compare the performance of this architecture with a previous architecture implemented
in AUTOSAR [1] [2].

2.2 Requirements and specifications

The most relevant requirements of the system are taken from the ISO/TR 4804 (2020)
for automated driving systems. Two previous master thesis [1] [2] already implemented a
simple AUTOSAR Classic Platform architecture derived from the ISO/TR 4804 (2020).
An automated parking system study case was specified, designed and implemented. The
Cognitive Systems Engineering department at Fraunhofer Institute IKS proposed me to
study the advantages of using ROS2 for the architecture and validate the results for the
same automated parking system.

2.3 Methodology and procedure

The project methodology includes a modelling part and an evaluation part. The modelling
part consist on the ROS2 architecture with special focus on the automated system mode
management. The evaluation part concentrates on the validation of this architecture in
a simulated environment supporting ROS2, i.e. the CARLA Simulator. The crucial steps
of this development are the Mode Manager and the Drive Planning modules. The results
are compared with the ones in [1] [2].

2.4 Workplan

This master thesis started with the state-of-the-art on systems engineering and software
architecture. The requirements defined in [1] [2] were enhanced to provide a more realistic
design for the safe state. The AUTOSAR related requirements were adapted for the
ROS2 framework based on a service-oriented architecture. The resulting architecture was
deployed in the CARLA Simulator for the automated driving system and integrated in
ROS2. The thesis ends with a comparison between AUTOSAR and ROS2 for a safety
relevant automated functions. The block diagram, in Figure 2.1 shows clearly the stages
mentioned.

Phases of the Project - Year 2022
July August September October November

Literature
Writing
Design

Development
Tests and results

Conclusions

Figure 2.1: GAANT diagram of the project.
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Chapter 3

Background

An overview of the industry standards for autonomous systems combined with the defini-
tion of software architectures is required to understand this dissertation. This state of the
art contains a brief overview of systems engineering, an introduction to the principles of
software architecture and a comparison between two standardized software architectures:
Automation Software Architecture (AUTOSAR) Classic Platform and Robot Operating
System 2 (ROS2).

3.1 Systems engineering

The systems engineering is a multidisciplinary approach towards the design, construction,
management, performance and decommissioning of a system [3]. A method usually applied
in all fields involved in the design process of a product or application, being hardware or
software processes.

System engineering integrates different disciplines into a common aim, efforts and forms
an appropriate structured development process [4]. The decomposed subsystems can be
classified by priority, functionality and safety-level. This type of work reduces the costs
of the project and at the same time improves the quality of the product [5]. System
engineering uses an iterative approach, beginning by defining the system architecture
and continuing by defining more accurately the requirements, communication paths and
implementation.

The software architecture can be described as a hierarchical structure with different levels
of abstraction. System blocks are connected to the others and the developer focuses on
what, where, and how to develop the tasks [6].

3.2 Software architecture

When an engineering project such as automated vehicle parking is developed, it is essential
to structure the complex system into subsystems. Well-defined and clean architecture gives
their advantages, their applicability, etc. All this information is required to choose which
architecture fits better the system under design.

Software architecture is the high-level structure of the system which defines the sub-
modules that will implement the functions. Software architecture is the structure of the
system explained at high-level behavior which provides a standardized framework to de-
velop the software of the system and give quality, maintainability, and correct performance
to the system [7][8]. Like a set of structures needed for the system, which comprises soft-
ware elements, relations among them, and properties of both [9]. The software architecture
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is the abstraction where the architecture defines the components and the interconnection
between components without specifying internal details [10].

There exist different architectural views which can be combined to provide the best de-
scription for all types of system complexities. There is not only one correct solution for
the architectural design of a system. The solution is open to what the developer wants
[11]. Software architecture provides a pattern of communication between stakeholders and
indicates the most important decisions [12]. At the same time, allowing the transfer and
reuse of the system abstraction.

The logical architecture abstracts the components of the system in a modular way and
captures their dependencies, without any implementation details. Only the interaction
between the components is taken into account. The logical architecture is technology
agnostic. The application software will be later developed according to a specific domain
on a Reference Software Architecture [13].

Reference Software Architecture contains the elements and relations provide templates
for concrete architectures in a particular domain. This architecture allows the application
software to specify and implement independently where the software is going to be exe-
cuted, providing a list of functions and their interfaces (APIs) on the one hand but on
the other hand, the interactions with each of the functions that are outside the scope of
the reference architecture [14] [15].

In the automotive domain, two Reference Software Architecture have been standardized by
the AUTOSAR consortium, namely the AUTOSAR Classic Platform and the AUTOSAR
Adaptive Platform. [16]. Whereas, in robotics domain, ROS is a well established RSA
through the name of Robotic Operational System which involves this project development
and is presented during the next sections.

3.2.1 AUTOSAR

The AUTomotive Open System Architecture (AUTOSAR) development partnership was
founded in July 2003 by BMW, Bosch, Continental, Daimler Chrysler, Siemens, VDO,
and Volkswagen to develop and establish an open industry standard for automotive E/E
architecture. Later, Ford Motor Company, Peugeot, Citroën Automobiles S.A., Toyota
Motor Corporation, and General Motors added to the partnership [17]. This framework
has become a global established developer partnership between vehicle manufacturers,
suppliers service providers, and automotive electronic, semiconductor, and software com-
panies.

Today vehicles integrate different Electronic Control Units (ECUs) which act as small
computers programmed with embedded software. These electronic components sometimes
are not prepared for the increasing requirements and complexity of this software systems
due to computational limitations [18].

The objective of this standards is to manage complexity of highly integrated E/E archi-
tectures through increased reuse and exchange of software modules between OEMs and
suppliers. AUTOSAR defines exchange formats for the configuration process for the basic
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software stack and the integration of the application software into the ECU. AUTOSAR
enables open E/E system architectures for future intelligent mobility, supporting high
levels of dependability, especially safety and security [19]. The aim is to define a common
specification language to describe the interfaces between components and communication
mechanisms to guarantee integration of the software in a vehicle [20]. Vehicle manufac-
turers and subsystem’s suppliers are able to cooperate in projects, while keeping and
protecting their know-how (business) at implementation level.

The partnership started with the AUTOSAR Classic Platform to support the develop-
ment of deeply embedded ECU, suitable for functions with high real-time demands and
strict safety requirements. Then these devices needed low-power computing of around
1000 DMIPs (Dhrystone Million Instructions per Second) whereas today the system re-
quires more computation [21]. In 2016, the partnership started the AUTOSAR Adaptive
Platform to support the development and integration of application software in high-
performance computers of around 20.000 DMIPs [22][23]. The AUTOSAR Adaptive Plat-
form focuses on supporting the growing trend of the connected and autonomous vehicle.
The comparison between AUTOSAR platforms is shown in Table 3.1.

Table 3.1: AUTOSAR Classic vs AUTOSAR Adaptive [22][23].

AUTOSAR Classic Platform AUTOSAR Adaptive Platform

Operating system based on OSEK Operating system based on POSIX (PSE51)

Code execution into ROM Code Execution into RAM

All applications have the same addresses Each application has its own address

Optimized for CAN signal-based communication Designed for signal-oriented communication

Fixed task configuration Support of multiple dynamic scheduling strategies

Specification Specification and code

C Programming C/C++ Programming

The Adaptive Platform (AP) supports complex applications, with maximum flexibility
and scalability in processing and computing, this platform follows service-oriented ar-
chitecture (SOA) [21]. The SOA makes each component more independent and free of
interference which guarantees safety and security. This last version aims to be adaptive
to different product development processes, more concretely in agile-based processes.

The AP stands planned dynamics in the sense of enabling the incremental deployment
of applications in short iterations cycles. Thus, it allows continuous development and
integration processes for the complete product life cycle of the vehicle. The communication
patterns of AUTOSAR are similar to the ROS communication patterns. In the next
chapters the robotic middleware ROS is explained in detail.

3.2.2 ROS

In robotic systems, the history of robot software is long and storied, going back more
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than 50 years. The appearance of robots like Shakey [24] and the deployment of robotics
frameworks which provide architectural methods to decompose complex software into
more manageable pieces represented a milestone in the robotic field.

What eventually would become ROS, started to gestate at Stanford University, 2007,
through two PhD students. The founders Eric Berger, KeenanWyrobeck and Scott Hassan
created the Willow Garage which was a technology incubator for the first commit of
ROS code. The concept evolved until today that it has become the most standardized
middleware and reference software architecture for robotics. Some years ago, in 2014,
NASA announced the first robot to run ROS in space, the Robotnaut 2 [25].

3.2.2.1 ROS1

The Robot Operating System is an open-source robotic middleware which contains lots
of software libraries and tools for easily building robot applications. It is a set of soft-
ware frameworks for robotic software development produced by a global community of
developers who implements and improve constantly the software. The middleframework
contribute with the tools, libraries and capabilities to create a robotic application through
ROS1. Nevertheless, this platform can be used in multiple domains beyond robotics, for
example automotive, space, industrial, aeronautic, and others [26]. ROS1 concerns archi-
tectural and engineering limitations have been address by the ROS2 initiative.

3.2.2.2 ROS2

The ROS2 platform was created to support real-time systems, because of the limited
support in ROS1. This new version has the advantage of modern libraries, the revision of
ROS API and giving real-time system code [25].

The new platform design has better distributions of systems approach where requirements
are separated into independent components [27]. The second principle is the abstraction by
getting the benefits of exposing the details of a component making easy the substitution
of an alternative. This new framework is asynchronous, working across multiple time
domains [29]. The last principle is modularity because the ecosystem is organized into
many federated packages, as opposed to a single code base [30]. The main reasons to use
one platform or another is depicted in Table 3.2.

Table 3.2: ROS1 vs ROS2 [28].

Category ROS1 ROS2

Network transport Bespoke protocol built on TCP/UDP Existing standard (DDS)

Network architecture Central name server Peer-to-peer discovery

Platform support Linux Linux, Windows and macOS

Client libraries Independently in each language Common underlying C library

Node vs process Single node per process Multiple nodes per process

Threading model Callback queues and handlers Swappable executor
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Category ROS1 ROS2

Node state management None Lifecycle nodes

Embedded systems Minimal experimental support Commercial support

Parameter access Auxiliary protocol in XMLRPC Implemented using service calls

Parameter types Type interfered when assigned Type declared and enforced

Security Suffers malicious misuse Secure against types of misuse

Cryptography None Encryption and access control

Computing Normal computing Real-time computing

Systems Research Commercial critical safety

In the ROS2, the processes are represented as nodes interconnected by edges known as
topics, where messages are sent and received, as bus functionality. Making possible the
node-to-node communication through the topics [31]. Objects in the nodes have to be
statically allocated for the correct behaviour in real-time system using a communication
within the ROS2 network realised by following the Data Distribution Service (DDS) [32]
standard defined by the Object Management Group (OMG) [32]. Chapter 3.2.2.3 helps
to understand the communication concepts of this middleware.

Self-driving vehicles must perform decisions based on real-time sensors, thus ensuring
high reliability on functional safety. Theoretically, the only difference between self-driving
vehicles and robots is the final application. ROS1 cannot fulfill high reliability and real-
time performance [33].

ROS2 is considered the solution for automated driving systems. Some studies are research-
ing on the implementation of ROS2 architecture for autonomous driving cars maintaining
the advantages such as a distributed architecture and standardized message types. It
provides the necessary reliability and real-time performance to allow the deployment of
automated vehicle functions, such as the automated parking function used in this master
thesis. Recent works [34] [35] show a good evaluation in different scenarios, verifying the
ROS2 architecture usability and variability.

3.2.2.3 Communication patterns

This Robotic Operational System is fundamented on communication patterns, more specif-
ically, topics, services and actions under the concept of a node. Moreover, the robotic soft-
ware also provides patterns for parameters, timers, launch, and other auxiliary tools that
can be used to design a robotic system.The environment is composed by nodes, topics,
messages, services, actions and discoveries.

The node serve for a single and modular purpose in the robotic system, it communicates
with other nodes through the topics and each of them has a unique name [36]. Each node
contains programming code for specific functions of each node and can receive (subscribe)
and share (publish) information to other nodes. The information transmitted is called
message. The topic is similar to a bus which send and receive messages as for example
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actuator commands, data sensor, etc. and only it allows to transfer of specific data. The
message has a concrete structure within its own parameters.

The service is a type of communication mode to achieve a result or advertisement, as well
as a request/response pattern where the client can request to generate a response. The
action is a goal-oriented and asynchronous communication interface, like service but with
a request, response, periodic feedback, and the ability to be canceled [36].

The discovery is an automatic process through which nodes determine how to talk to
each other. Nodes periodically advertise their presence and when they go offline. When
a node is started, it advertises its presence to other nodes on the network with the same
ROS domain [37]. Nodes respond to this threat with information about themselves so that
the appropriate connections can be made, and the nodes can communicate correctly. All
communication connections are shown more in detail in Figure 3.1.

The nodes are able to publish or subscribe multiple topics. The ROS client libraries
allow nodes to be written in different programming languages to communicate with each
other. A core ROS client library (RCL) implements common functionality needed for the
ROS APIs in different languages. The following client libraries maintained by the ROS
II are rclcpp (C++ client library) and rclpy (Python client library) [38]. The general
visualization of the Robotic Operational System structure is shown in Figure 3.2.

Figure 3.1: ROS2 node interfaces: Topics, services, and actions [28].
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Figure 3.2: ROS2 Client Library API Stack [28].

3.3 Safety in Automated Systems

3.3.1 Safety standards

In the automotive sector, there are different safety standards related to automated systems
and these standards must be fulfilled to guarantee safety. Some of the most relevant
standards of this dissertation are the next ones:

1. SAE Automated Driving Levels

2. ISO-26262

3. ISO/TR-4804

4. ASAM OpenODD Concept Paper

The SAE (J3016) describes various driving automation levels but without strict require-
ments. The ISO 26262-1:2018 [39] is specific for automotive systems but doesn’t consider
yet The requirements on automated systems.

The ISO/TR-4804 ”Road vehicles - Safety and cybersecurity - Design, verification, and
validation” [40] does focus on safety and cybersecurity in automated driving systems,
outlining a framework to develop, validate, fabricate, and operate an automated driving
system. This standard includes some technical verification and validation methods from
SAE J3016, in most cases only for levels 3 and 4 [41].
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The Association for Standardization of Autonomous and Measuring Systems (ASAM)
is an international association of car manufacturers, suppliers and engineering providers
[42]. ASAM is currently leading the Operational Design Domain (ODD) technical stan-
dardization.

3.3.2 Operational Design Domain

The Operational Design Domains are “Operating conditions under which a given driving
automation system or feature thereof is specifically designed to function, including, but
not limited to, environmental, geographical, and time-of-day restrictions, and/or the req-
uisite presence or absence of certain traffic or roadway characteristics” [43]. The ASAM
OpenODD introduces important use-cases and requirements that automated driving sys-
tems have to take into account to guarantee safety and to define the taxonomy.

The ODD should be valid for the whole operational life of an automobile and takes part
in the operational and security aspects of connected automated vehicles, specifying which
environment parameters is able to manage. The ODD has a huge impact on the design of
the functions and capabilities since it conditions the utility of the vehicle function [44].
Some domain taxonomies of an automated driving system are exemplary mentioned in
Figure 3.3.

Figure 3.3: ODD taxonomy domain.

3.4 Simulation environment and virtual integration

In the last years, different tools to an autonomous system in a simulated environment
have been developed. The simulator has to test the system in the most possible realistic
situations. The simulator software is capturing data through sensors to perception data
and environmental data for path planning.
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CARLA is a software to support the development, training, and validation of the au-
tomated vehicle systems. This software is recognized by many leading companies in the
industry such as Intel, Toyota, Samsung Europe, CVC, Valeo/KI Delta, Baselabsa and
various Fraunhofer institutes. This simulator allows the developer to modify cities, roads,
traffic, weather, etc., and to adapt the simulation to the real situation where the vehicle
can be involved [45][46]. This master thesis decides to simulate the system in CARLA
Simulator because it is open-source software and it is the most accurate equilibrium one
for good graphics, good vehicle dynamics, a good number of sensors, good driver models,
and good traffic flow simulations. But one of the most remarkable specifications of this
simulator is the ground truth.

The CARLA Simulator provides interesting packages for the purpose of this project,
to connect the simulator with the ROS2 environment. These packages fit in carla-ros-
bridge which considers all the communication information between ROS2 architecture
and functions and the CARLA client.

3.4.1 Simulator bridge

The CARLA developers provide an open-source bridge, known as carla-ros-bridge [47].
The bridge contains the tooling required to test the ROS2 architecture in the simulator.
These packages enable the acquisition of data from the CARLA Simulator providing many
tools to communicate the robotic environment and the simulator environment, as describe
the diagram in Figure 3.4.

Figure 3.4: Carla-ros-bridge functionality.
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Chapter 4

Methodology

4.1 Overview and system under design

The development of this project takes into account systems engineering and the industry
development processes such as the V-Model, as well as concepts derived from the safety
standards. A modular and scalable software architecture has been designed.

The architecture is generic and supports future developments for other vehicle functions
only adapting the requirements to the system. This research continues the work of two
previous projects based on a safe architecture in AUTOSAR [1][2].

The same as in [1][2], the architecture has been implemented for an Automated Parking
System (APS). The car parks autonomously once the driver has selected a free parking
slot via a mobile application. The APS assumes an External Cloud System (ECS) provider
which manages parking slots, Figure 4.2.

Figure 4.1: Automated Parking System (APS) and the External Cloud Service (ECS).

The customer gets out of the vehicle and activates the APS functionality through the mo-
bile application. Once the parking system is activated and the parking slot is selected, the
vehicle’s Mode Manager takes control of the situation and starts the automated parking
maneuver. The system must check with the different sensors that the maneuver can be
executed safely. If the system detects unsafe environmental conditions, the Mode Manager
has to activate the safe mode maneuver.

The system requirements of the APS are based on the use cases, constraints and require-
ments in [1] [2] and have been extended for a more realistic behaviour of the safe mode. In
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the Table 4.1, the system requirements that are been reused are indicated with a citation.

Table 4.1: System requirements.

Requirements Definition

SYS-1 APS follows up the state of the parking maneuver in real-time.

SYS-2 APS supports parallel parking mode and perpendicular parking mode.

SYS-3 APS drives to the location provided by the ECS.

SYS-4 [1] The system calculates all possible routes in real-time and manages the best
fitting one, it can abort the maneuver if safety is not guaranteed.

SYS-5 [1] Real-time status information through the APS App.

SYS-6 [1] When APS is active, only the system can modify the route of the parking
maneuver.

SYS-7 [1] APS notifies the driver when the vehicle is parked.

SYS-8 APS detects any obstacle or ODD exit while maneuvering.

SYS-9 [1] APS avoids obstacle collision by stopping the car during the maneuver.

SYS-10 APS drives the car to a safe parking area when it detects an ODD exit.

SYS-11 ECS provides the localization of the spot, park mode and type of parking mode.

SYS-12 Parking speed is limited to 20 km/h forward and backwards but decreased
to 5-10 km/h in the last meters of the maneuver.

SYS-13 [1] APS aborts if any collision occurs or miss-recognize the scenario.

SYS-14 [1] APS aborts if the user stops the function via APS App and follow the new
route provided by the APS App.

SYS-15 [1] APS locks the vehicle whenever the system is active or the vehicle is parked.

SYS-16 APS manages the parking location modes as parallel or perpendicular.

4.2 Software Architecture

The aim of the project is to develop a software architectural that implements a minimal
automated driving and parking system. The architecture model consists on a ”Sense -
Plan - Act” abstract architecture which is based on perception, data process and action.
Figure 4.2 shows a high-level component diagram.
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Figure 4.2: APS Safety Architecture Model.

The perception collects the information of the different sensors, i.e. radar or lidar. This
information is processed by the system to recognize the vehicle’s surroundings and to be
able to anticipate obstacles and safety hazards. The ODD Handling module identifies the
operational context. The Mode Manager switches between operational modes to ensure
safety. The Drive Planning decides, depending on the mode switches, the correct maneuver
that Vehicle Motion is going to implement. All the modules are implemented in the ROS2
environment through nodes, topics, and messages [34][48]. The following chapters consist
of a concise description of the features of each component of the system.

4.2.1 Perception

The perception is responsible for taking data from the different sensors installed in the
vehicle and identifying important information [48]. In this project, supported sensors are
radar, lidar, camera, GNSS, and IMU. Figure 4.3 shows the localization of the sensors
on the vehicle. To create a reliable and robust system, it is necessary to combine the
information of several sources. All the information provided by the sensors is explained
in the next sub-sections.

When designing the system, it is essential to model each sensor component and define
where the component will be deployed in the vehicle. In this project, the Automated Park-
ing System is validated in the CARLA Simulator. CARLA has modelled radar, camera,
Lidar, GNSS, IMU, and semantic Lidar sensors [49]. The following chapters define the
type of data computed by each sensor.
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Figure 4.3: Vehicle sensors.

4.2.1.1 Radar

The Radar component converts the microwaves echo signals into electrical signals which
can be processed into digital signals. A radar can detect solid obstructions from cement,
metals, glass and other wall material like people, animals, and trees. The advantage of
the radar is that weather conditions and light incidence don’t affect its capability to
recognize objects. Furthermore, the radar detects the velocity and motion of objects that
could appear in its surroundings [50].

To have relevant information of the surroundings of the car, it is recommended to install
four radar sensors, at the front, laterals and back, as shown in Figure 4.3. The radar
sensor delivers the message through the carla-ros-bridge described in the next Table 4.2.

Table 4.2: Radar message.

Variable Units Type Description

Altitude angle rad Float Altitude angle signal

Azimuth angle rad Float Azimuth angle signal

Depth mts Float Depth of the signall

Velocity m/s Float Velocity signal

The radar message is published in the topic /carla/ego vehicle/radar.

4.2.1.2 Camera

The camera provides high-resolution images of the surroundings of the vehicle and allows
to detect objects.Recognized obstacles can be compared with other sensor information to
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verify if there is or not an object. The main disadvantage is that weather conditions affect
the camera detection [50]. Image processing has high computational demands. Cameras
provide 120 degrees of vision, it is enough to install one camera at the front and another
at the back, as demonstrated in Figure 4.3. The camera message has four variables, Table
4.3.

Table 4.3: Camera message.

Variable Units Type Description

Fov degrees Float Horizontal field

Height pixels Int Image height

Width pixels Int Image width

Raw - Float Array of RGB pixels

The camera message is published into /carla/ego vehicle/camera.

4.2.1.3 Lidar

Light Imaging Detection and Ranging (LIDAR) identifies objects in the surroundings,
measuring shape, size, and distance. This component uses laser light pulses to scan the
surroundings shooting millions of laser signals, which are reflected on the surfaces of
objects around and returned to the receiver incorporated into the module. The LIDAR
creates a 3D model of the vehicle’s surroundings [50].

The advantage of the lidar is the identification of elements with higher resolution than
radar, but the disadvantages are the high price of these component sensors and the affec-
tion of weather conditions to the measurements. This is the main reason to locate only
one in the vehicle, as indicated in Figure 4.3. Currently, vehicles that contain autonomous
driving systems are equipped with a single large 360-degree LIDAR sensor on the roof
that provides a complete view of the surroundings. The message variables are disclosed
in Table 4.4.

Table 4.4: Lidar variables.

Variable Units Type Description

x meters Float32 Position x

y meters Float32 Position y

z meters Float32 Position z

CosAngle degrees Float32 Orientation angle

ObjIdx - Uint32 Type of the object detected

ObjTag - Uint32 Tag of the object detected
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The lidar message is published into /carla/ego vehicle/lidar. The next Figure 4.4 gives an
idea of how RVIZ visualizer plot the points received from the topic.

Figure 4.4: RVIZ automated parking system architecture.

4.2.1.4 Semantic Lidar

Semantic Light Imaging Detection and Ranging are considered rotating LIDAR using
ray-casting. The differences within the Lidar sensor are that the semantic lidar includes
more data for each point [50]. For more information about message variables look at Table
4.5.

Table 4.5: Semantic lidar message.

Variable Units Type Description

x meters Float32 Position x

y meters Float32 Position y

z meters Float32 Position z

CosAngle degrees Float32 Orientation angle

ObjIdx - Uint32 Type of the object detected

ObjTag - Uint32 Tag of the object detected

The semantic lidar message is published into /carla/ego vehicle/semantic lidar.
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4.2.1.5 GNSS

Global Navigation Satellite System (GNSS) provides geospatial global positioning cover-
age autonomously, using triangulation to determine the position of a receiver in three-
dimensional space by calculating the distance between the vehicle and several satellites
[50].

The installation of one sensor is sufficient to achieve accurate information. One advantage
is that weather conditions have minimal impact on these elements, due to their operational
frequency at around 1.575 GHz is insensitive to weather conditions [50]. The message data
is shown in Table 4.6.

Table 4.6: GNSS message.

Variable Units Type Description

Altitude meters Float32 Altitude signal

Latitude degrees Float32 Latitude signal

Longitude degrees Float32 Longitude signal

The GNSS sensor message is published into /carla/ego vehicle/gnss.

4.2.1.6 IMU

Inertial Measurement Unit (IMU) consists of an accelerometer and a gyroscope. The
accelerometer measures a vehicle’s three linear acceleration components whereas the gy-
roscope measures a vehicle’s three rotational rate components. With the information from
the GNSS sensor, which provides the initial location of the vehicle, the IMU can provide
current information on the current vehicle location and orientation [50]. This sensor is
insensitive to weather conditions, due to independence from the motion of the vehicle.
More characteristics are presented in Table 4.7.

Table 4.7: IMU message.

Variable Units Type Description

Accelerometer m/s2 Vector3D Acceleration value

Compass radians Float Compass orientation

Gyroscope rad/s Vector3D Gyroscope orientation

The imu message is published into /carla/ego vehicle/imu.

4.2.2 ODD Handling

The ODD Handling component processes the information provided by the sensors to
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recognized context information. Context is designed according to the attributes of the
operational design domains using the standard TR/PAS 1883:2020.

The ODD Handling component considers the scenarios and attributes listed in Table 4.8.
With the peculiarity of the climatic phenomena scenarios, exceeding the 70% range in
some attributes constitutes exiting the ODD. When the system exits the designed ODD,
the safe mode is activated.

Table 4.8: Predefined ODD based CARLA simulator support.

ODD taxonomy Attribute Sub-Attribute Threshold

Scenary Derivable area Type Urban roads 100

Geometry Up-slope -

Down-slope -

Level plane -

Structures Buildings - -

Street lights - -

Special structures Pedestrians crossing - -

Environment Weather Water retention 70

Wind - 70

Rainfall - 70

Fog - 70

Sunny - -

Illumination Day - -

Night/Low light - -

Cloudiness Clear -

Partly cloudy -

Overcast -

Artificial illumination - -

Dynamic elements Traffic Parked vehicles - -

On road vehicles - -

4.2.3 AS Mode Manager

The AS Mode Manager is the essential component of the architecture to guarantee safety.
It receives information about the context from the ODD Handling component. This signals
received are explained in Table 4.9. If the system exits the operational design domain
(out of ODD), then the AS Mode Manager will enable the M Safe mode. In the case
an obstacle is detected (hazard detection), then the Drive Planning will be notified. The
Drive Planning use the three output signals of the AS Mode Manager to choose the motion
function.
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The component receives inputs signals from the ECS required to know the properties
of the parking slot (APS activation, location selection, parking selection). The As Mode
Manager is modelled with a state machine. Depending on the input signals in Table 4.9,
the component assigns one or another value to the output signals shown in Table 4.10.

Table 4.9: Mode manager module input signals.

Topic Units Type Description Origin module

APS activation - Int8 Activation of the system External cloud

location selection - Int8 Type of spot selected External cloud

parking selection - Int8 Park or unpark External cloud

hazard detection - Bool Hazard detection ODD Handling

out of ODD - Bool Out of ODD detection ODD Handling

APS done - Bool Parking maneuver finished Drive Planning

Table 4.10: Mode manager module output signals.

Topic Value name Value Description

APS vehicle mode VEH DRIVING 0 When vehicle is driving

VEH PARKING 1 When vehicle is parking

VEH UNPARKING 2 When vehicle is unparking

VEH STOPPED 3 When vehicle is stopped

APS state mode APS OFF 0 APS deactivated

APS ON 1 APS activated

APS SAFEMODE 2 APS safe mode activated

APS maneuver mode PARALLEL PARKING 0 Parallel parking

PERPENDICULAR PARKING 1 Perpendicular parking

The AS Mode Manager state machine has three different states. The OFF state indicates
when APS is not activated, when APS maneuver is completed and when the vehicle doesn’t
detect more hazard or out of ODD situation after entering the EMERGENCY state.
EMERGENCY state is compulsory to create when hazard detection, out of ODD and
APS activation are activated. The rest of the cases while APS activation is activated, the
system is going to be in PARKING MANEUVER state. The states and transitions of the
state machine are depicted in Figure 4.5.

In PARKING MANEUVER state, depending on the input signal values, the outputs have
one or another value. These logic is explained in the next implementation chapters.
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Figure 4.5: Mode Manager state machine.

4.2.4 Localization

The localization module is responsible for identifying the vehicle’s surroundings by ana-
lyzing and combining sensors’ information. This unit delivers the surrounding info to the
Drive Planning and AS Mode Manager components.

In this project, the current position of the vehicle and the surrounding data is provided
by of some topics where sensors real-time information is published. As an example, the
current location of the vehicle can be collected through some ROS2 topics defined in the
implementation part. The combination of this data with the other sensors data allows the
vehicle to have a clear situation about the surrounding of the vehicle. This component
emulates the behaviour of a complex sensor structure.

4.2.5 Drive Planning

The Drive Planning component defines the function maneuver without colliding with any
obstacle. This component needs Localization and As Mode Manager output signals. The
component also requires the coordinates, provided by the ECS, where the vehicle has to
park. It obeys traffic rules, but to avoid a crash situation, traffic laws can be overridden
by collision avoidance maneuvers.

The Localization provides the position of the surrounding objects. With this information,
the parking mode and the location of the parking slot, the Drive Planning component
starts the parking maneuver. The Drive Planning implements four different maneuver
functions: Park and unpark, shown in Table 4.11, using parallel and perpendicular ma-
neuvers, shown in Figures 4.6 and 4.7.

Figure 4.6: Parallel parking maneuver.
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Apart from these four functions, there is a safe maneuver M Safe if something unexpected
happens.

M Safe function stops the car if there is a threat as for example a collisions or the system
gets out of the defined ODD. If the system is out of the Operational Design Domains
(ODD), the vehicle drives autonomously to the initial position whereas if the system is
going to collide, the vehicle effectuates an emergency stop. This project does address in
the perpendicular backwards parking since this is not considered a required maneuver.

Figure 4.7: Perpendicular parking maneuver.

The Drive Planning receives the three AS Mode Manager signals to choose which maneu-
ver to implement. APS state mode defines whether the automated parking system has to
be activated or deactivated. As long as the signal is disabled, the drive planning remains on
standby with no movement of the vehicle. When this signal activates, the component pro-
ceeds to engage the parking maneuvers (PM ForwardBackwards, UM BackwardForwards,
PM Forward, UM Backward).

Table 4.11: Drive Planning states when APS state mode is ON.

APS vehicle mode

VEH DRIVING VEH PARKING VEH UNPARKING VEH STOPPED

A
P
S

m
a
n
e
u
v
e
r
m
o
d
e

P
A
R
A
L
L
E
L

- PM ForwardBackwards UM BackwardForwards -

P
E
R
P
E
N
D
IC

U
L
A
R

- PM Forward UM Backward -

If the system is activated, APS vehicle mode and APS maneuver mode signals get into
the scene. The APS vehicle mode indicates the status of the vehicle. If this signal reports
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VEH PARKING or VEH UNPARKING states, then the module verifies in which type of
parking slot the vehicle is going to maneuver. This verification is done by means of the
signal APS maneuver mode. Otherwise, if APS vehicle mode displays VEH DRIVING or
VEH STOPPED the drive planning stays deactivated. The Algorithm 1 of the implemen-
tation section shows more in detail how the Drive Planning decides the correct maneuver.

4.2.6 Motion

The Vehicle Motion component executes the different maneuvers as well as autopilot,
PM ForwardBackwards, UM BackwardForwards, PM Forward and UM Backward func-
tions. These functions contains the algorithms and the actuator’s commands needed to
move the vehicle. The design of a motion controller is required to calculate the correct
force needed in the actuator to avoid any collision or to move at a concrete speed.

The component function is to execute the movements indicated by the Drive Planning,
by translating the actions into a throttle, steer, brake, etc. strengths messages. These
messages depends on the final application, if it is tested over a simulator or over physical
actuators.

4.3 ROS2 Design

Once architecture has been defined, the structure of the ROS2 software must be described.
The implementation of ROS2 allows the execution of independent computing processes.
These processes are known as nodes, which provide robustness against fault isolation,
code reusability, simplicity, and faster development and modularity.

Communication between these nodes takes place by sending messages through topics,
which must be structured according to the messages. When defining the nodes, the con-
tent of a message and the topic has to be described. The node publishes or subscribes
these topics what means inserting a message or extracting a message. The publishing/-
subscription model is intended to be modular in scale and is adequate for distributed
systems.

This robotic environment embraces DDS as the communication protocol, nevertheless, as
an outlier, internal process communication is run outside of DDS. For the time being, the
design is focused on the node structure executing within ROS2 in Python 3.8. A software
system in ROS2 is created as a workspace with a standardized package structure.

The workspace is composed by four folders: source (src), build, install and log, see Figure
4.8. The other folders are built for the correct function of the software design over the
middleware. The source (src) folder includes packages as well as the carla-ros-bridge, the
automated driving system and the vehicle functions.
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Figure 4.8: ROS2 Automated Parking System workspace structure.
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4.3.1 CARLA-ROS-Bridge packages

The bridge has multiple factors to highlight, however, the most remarkable ones are the
compatibility between CARLA Simulator and ROS2 middleware, the perfect communica-
tion between both worlds, and the achievement of a standardized structure of this robotic
environment projects developed for this simulator, which allows the reuse and modulation
of the developed projects. Of the many utility packages provided by this tool, only a few
have been used for this project. Nonetheless, the fact of having more utilities just leaves
the door open for future releases of this project with more functionalities.

These packages allow architectures to be launched on ROS2 environment over CARLA
Simulator, visualizing the results on the CARLA Simulator or on RVIZ. Basically, it is
common for programs running in this promising robotic environment to be launched with
.launch.py, known as launch files. The final implementation section goes into detail on the
structure of this launch and the configuration file.

4.3.2 CARLA World

The project implements CARLA classes to emulate the behavior wanted for the APS.
The system uses the data from the GNSS sensor to know the odomotery and the ground
truth data proportioned by the simulator for the object detection.

The Global Navigation Satellite System (GNSS) sensor is considered an actor from the
simulation world, the simulation receives a simulation of the GPS signal of the vehicle in
real-time. The position displays the geographical reference given by the map, being the
parameters as longitude, latitude, and altitude of the vehicle. The odometry topic has a
processed information of this GNSS sensor, the reason why the system directly uses this
topic to know the correct position of the car.

The obstacle detection is a function developed in this project to calculate the distance
of the vehicle from a possible obstacle by using a norm algorithms. The simulator and
carla-ros-bridge gives the possibility to use services which gives the position of the objects.

4.4 APS Deployment in ROS2

After presenting the top-level architecture, the software components and describe the
functionality to be implemented, now it is time to start with the detailed design of the
software in ROS2. The implementation includes the development of the nodes and topics
to implement the APS and the requirements described in Section 4.1 and Section 4.3.

4.4.1 Nodes

It is best practice to create a ROS2 node for each component of the top-level architecture
described in Figure 4.2 of Section 4.1. The nodes defined specifically for the Autonomous
Parking System are launch after the carla-ros-bridge node is running over the ROS2
environment. The nodes created are shown in Figure 4.9 and their implementation are
explained in Section 4.5.
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Figure 4.9: ROS2 nodes. Three different function nodes: APS components ( ), CARLA
components ( ) and External components ( ).
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Each node has a very specific function to execute. However, the execution cannot occur
randomly, rather it has to remain strictly predetermined by the designers in order to fulfill
the run-time requirements. A connection between two nodes determines a communication
path. This communication takes place through the topics where these nodes are published
or subscribed.

4.4.2 Topics and messages

The system consists of predefined topics on carla-ros-bridge to communicate automatically
with CARLA and obtain feedback or perform actions on the simulator. Additional topics
shall be created to communicate the nodes of the Automated Parking System. More
information about topics and their respective messages are described in the Table C.1 of
Appendix C. An example of this table is a topic and the message type shown in Table
4.12. It is a predefined topic from carla-ros-bridge which is responsible of the actuators
located in the vehicle. The topic vehicle control cmd is published by the Vehicle Motion
node.

Table 4.12: Topic /carla/ego vehicle/vehicle control cmd example.

Topic Message

/carla/ego vehicle/vehicle control cmd CarlaEgoVehicleControl
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The topics contain a message structure, for example, there are message types as carla-
msgs, std-msgs, nav-msgs, etc. Inside the types exist different messages with different
formats. In this case, the message CarlaEgoVehicleControl is declared in carla-msgs types.

Messages contain the data formats required to get into a topic, if this format is not
followed, errors might occur producing the consequent non-communication between nodes.
The carla-msgs package contains some of the messages utilized for the topics available in
carla-ros-bridge. The CarlaEgoVehicleControl contains all the parameters to apply into
actuators control as shown in Table 4.13. A detailed list of the messages used in this
project can be found in Appendix D.

Table 4.13: CarlaEgoVehicleControl message.

Variable Units Type Description

throttle - Float32 Motive force

steer - Float32 Wheel deviation

brake - Float32 Brake force

hand brake - Bool Hand brake activation

reverse - Bool Reverse activation

gear - Int32 Current gear of the vehicle

manual gear shift - Bool Manual gear shift activation

When a node publishes the topic, all nodes subscribed to this topic receive the message
and execute functions according to the received data. Using this publish/subscribe mech-
anism, it is possible to develop practically infinite and complex network systems. The
implementation of the node functionality is described briefly in the upcoming section to
have an idea of how to program code which can be ran in ROS2.

4.4.3 Node - Topic Architecture

The most critical and important step of the implementation is to define the low-level
architecture. Perception, Location, Driving Planning, ODD Handling, Vehicle Motion and
AS Mode Manager components have to be implemented as nodes, topics, and messages
through the aforementioned bridge. The challenge is to run nodes over ROS2, which is
not designed for automotive applications.

In the system, the topics can be classified according to what object they act on, basically,
some of them simply act on general actors as weather and simulator state. Others are
totally focused on the vehicle and others on receiving data from the /external-cloud such
as traffic information, traffic lights, weather, parking spot and maneuver estimated.

The most relevant topics are described in the Figure 4.10 and Table 4.14. The Figure
4.10 shows three different function nodes: CARLA components ( ), External components
( ) and APS components ( ). A complete architecture extracted from ROS2 through
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rqt graph is on Figure E.1 of Appendix E. Carla ros bridge publishes and subscribes all
the information from ROS2 to CARLA and vice versa. Each node is represented with
circle boxes whereas the topics are the directed edges of the graph.

Three nodes provided by CARLA are used in the APS. Carla Spawn generates the objects
and vehicle into the simulation map. SetInitialPose contains the initial vehicle position
when requests the APS service. CarlaWaypoint generates the waypoints for automated
operation to be able to follow a path of points on the map. The VehicleMotion traces
the movements following the instructions of the DrivePlanning. The Drive Planning node
processes the waypoints coming from the CarlaWaypoint node and publishes the command
needed by VehicleMotion to produce motion.

For the integration of the APS in CARLA, another node has been created for simulate
the real External Cloud Service (ECS), by the name of ExternalCloud. Thus, creating a
node that publishes the parking location selected by the driver.

Finally, two more nodes are created for the parking maneuver of the vehicle. The first one
is the ODDHandling which implements the algorithms to perform the detection of hazards
for the safety. The second node is the Localization which manages the surrounding of the
car.

When the system is implemented and operating, apart from being able to visualize the
simulation, the ROS2 middleware provides a graph of the complete state of the system and
the interconnections. Fortunately, the ROS2 framework enables to visualize either through
CARLA Simulator, through a PyGame window or through RVIZ, which is typically used
by Robotic Operational System.
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Figure 4.10: ROS2 architecture. Three different function nodes: APS components ( ),
CARLA components ( ) and External components ( ).
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Table 4.14: Topics used in the communication.

Branch Topics

1 /carla/ego vehicle/control/set transform
/carla/ego vehicle/odometry
/carla/ego vehicle/radar front

/carla/ego vehicle/rgb front/image
/carla/ego vehicle/semantic lidar

/carla/ego vehicle/semantic segmentation front/image
/carla/ego vehicle/gnss
/carla/ego vehicle/imu
/carla/ego vehicle/lidar

2 /carla/weather control

3 /carla/ego vehicle/odometry
/carla/ego vehicle/radar front

/carla/ego vehicle/rgb front/image
/carla/ego vehicle/semantic lidar

/carla/ego vehicle/semantic segmentation front/image
/carla/ego vehicle/gnss
/carla/ego vehicle/imu
/carla/ego vehicle/lidar

4 /carla/ego vehicle/odometry
/carla/ego vehicle/objects
/carla/traffic lights/info
/carla/traffic lights/status
/carla/weather control

5 /initial maneuver goal pose

6 /initial parking maneuver goal pose
/final parking maneuver goal pose

7 /carla/ego vehicle/APS activation
/carla/ego vehicle/location selection
/carla/ego vehicle/parking selection

8 /carla/ego vehicle/localization/info

9 /carla/ego vehicle/out of ODD
/carla/ego vehicle/hazard detection

10 /carla/ego vehicle/waypoints

11 /carla/ego vehicle/APS done
/carla/ego vehicle/speed command
/carla/ego vehicle/APS state mode

/carla/ego vehicle/APS maneuver mode
/carla/ego vehicle/APS vehicle mode

12 /carla/ego vehicle/motion/info

13 /carla/ego vehicle/vehicle control cmd
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4.5 Implementation

The implementation of most of the items of this project has already been described pre-
viously. Nevertheless, how to generate the node and make it publish or subscribe hasn’t
been stated yet. For this reason, this section provides a demonstration of construction of
a node class and how publications and subscriptions are defined in the initialization defi-
nition. The main function generates the node through Threads with an specific function
during a time lap and next the system spins this node.

Additionally, it is explained how the system manages path planning through waypoints. In
the parking, it is necessary to generate waypoints for planning the trajectory to the parking
slot. The location is given by an external node to the system, known as the External
Cloud (ECS). This section ends up with the description of the algorithms describing the
autonomous vehicle functionality.

4.5.1 Waypoints

The waypoint node generates a route between the position of the vehicle and the selected
destination. Multiple pieces of information are provided by the simulator, such as the lines
of the road and the direction of each street, the node generates points to trace a trajectory
towards the target. The map allows to generate waypoints only in the road ways.

An algorithm provided by the CARLA’s developers provides transformation functions
from Carla.Tranform to Ros.Transform. This occurs since the bridge and the simulator
communicate with Carla.Tranform. However, between the nodes and the bridge, the com-
munication must consist on messages supported in ROS2, therefore, the communication
must be performed on Ros.Transform. These messages contain position and orientation
and are the basis of the waypoints.

#CARLA Transform
Transform ( Locat ion (x , y , z ) , Rotation ( pitch , yaw , r o l l ) )

#ROS2 Transform
geometry msgs .msg . Pose ( p o s i t i o n=geometry msgs .msg . Point (x , y , z ) , o r i e n t a t i o n=

geometry msgs .msg . Quaternion (x , y , z ,w) )

Otherwise, to park in the outdoor parking requires different implementation due to way-
points cannot be located inside the outdoor parking. For this reason, the route chart
within the outdoor parking, which was already implemented supported in [2], has been
re-adapted to the robotic environment.

4.5.2 External Cloud

The External Cloud node emulates a real ECS which verifies if the maneuver selected
by the driver is possible. Then, the component sends three essential signals to AS Mode
Manager and the parking spot position to the Drive Planning. The description is placed
in Figure 4.15.
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Table 4.15: External Cloud signals.

Topic Type Description

APS activation Boolean True if the client activates the APS

parking selection Int8 Different integer for park, unpark and stop

location selection Int8 Different integer for parallel and perpendicular

parking maneuver goal pose Pose 3D vector containing the parking spot location

4.5.3 Vehicle functions

The autopilot function is considered the first phase of the autonomous driving and indi-
cated as green line. The autopilot involves the usage of waypoints combined with controller
and misc classes developed by CARLA developers. The autopilot executes the appropriate
movement on the actuators to reach the next waypoint at the set speed. The visualization
of the autopilot phase (green + white arrows) is available in Figures 4.11 and 4.12. The
white arrows indicate forward motion while the black ones describe reverse motion.

The second phase in the parallel parking includes a backward maneuver (orange + black
arrows) and in perpendicular parking includes forward driving (orange + white arrows)
through the parking zone. The third and last phase (red + white arrows) consists of a
short forward movement in the parallel parking and forward curved movement, using an
open-source quintic polynomial algorithm [51], in the perpendicular parking.

Figure 4.11: Parallel parking maneuver waypoints.
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Figure 4.12: Outdoor parking maneuver waypoints.

4.5.4 Parking maneuver selection

Once the AS Mode Manager guarantees the parking execution ensuring safety, the Drive
Planning component processes the data received using the following Algorithm 1.

Algorithm 1 Drive Planning Algorithm to select the parking maneuver

1: procedure select maneuver(M Sta,M V eh,M Man)
2: if M Sta == aps on then
3: if M V eh == veh parking +M Man == parallel parking then
4: maneuver setected← PM ForwardBackwards
5: else if M V eh == veh parking +M Man == perpendicular parking then
6: maneuver setected← PM Forwards
7: else if M V eh == veh unparking +M Man == parallel parking then
8: maneuver setected← UM BackwardForwards
9: else if M V eh == veh parking +M Man == parallel parking then

10: maneuver setected← UM Backward
11: else
12: maneuver setected← None
13: else if M Sta == aps safemode then
14: maneuver setected←M Safe
15: else
16: maneuver setected← None
17: return maneuver setected ▷ The output is the maneuver function
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To appreciate a more technical description about how to develop node architectures based
in carla-ros-bridge usage, some important commands are listed in the next lines. For
example, the concrete way to initializes a publisher or a subscriber is described into
the init . Then, in the run step function the publishers are sending messages to the
topics following the next command which allows to publish the message passed as a
parameter. Finally, in the main function, the node is execute through the initialization
and the spinning.

# Mode Manager Node Code
import copy
import sys
import time
import thread ing

import r o s c ompa t i b i l i t y as roscomp
from r o s c ompa t i b i l i t y . except i ons import ∗
from r o s c ompa t i b i l i t y . qos import QoSProf i le , Durab i l i t yPo l i c y

import mode manager . s e t t i n g s as s
from mode manager . agent import Agent , AgentState

import carla common . t rans forms as t rans

from car la msgs .msg import Car l aTra f f i cL i gh tS t a tu sL i s t
from de r i v ed ob j e c t msg s .msg import ObjectArray
from nav msgs .msg import Odometry
from std msgs .msg import Float64 , Bool , Int8
from statemachine import StateMachine , State

class APS state machine ( StateMachine ) :
. . .
o f f = State ( ’STATE OFF ’ , i n i t i a l=True )
on = State ( ’STATEPARKINGMANEUVER’ )
emergency = State ( ’STATEEMERGENCY’ )
. . .

class ModeManagerAgent (Agent ) :
def i n i t ( s e l f ) :

. . .
# Pub l i s h e r s
APS state mode publ i sher = s e l f . new publ i sher ( Int8 , ”/ c a r l a /

e g o v eh i c l e /APS state mode” , q o s p r o f i l e = 10)
. . .
# Sub s c r i b e r s
ha za rd d e t e c t i o n sub s c r i b e r = s e l f . new subsc r ip t i on ( Bool , ”/ c a r l a /

ego v eh i c l e / haza rd de t e c t i on ” , hazard detec t i on , q o s p r o f i l e =
10)

. . .
# Other a l g o r i t hm i c f unc t i on s . . .
def run s tep ( s e l f ) :

# Run s t e p s dec l a r ed in the node loop
. . .
# Example o f how to pu b l i s h
APS state mode publ i sher . pub l i sh ( new state [ 1 ] )
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. . .
def main ( args=None ) :

# Node i n i t i a l i z a t i o n and launch ing
roscomp . i n i t ( ”mode manager” , args=args )
c o n t r o l l e r = None
try :

executor = roscomp . executo r s . MultiThreadedExecutor ( )
c o n t r o l l e r = ModeManagerAgent ( )
executor . add node ( c o n t r o l l e r )
roscomp . on shutdown ( c o n t r o l l e r . emergency stop )
update t imer = c o n t r o l l e r . new timer ( 0 . 0 5 , lambda t imer event=None :

c o n t r o l l e r . run s tep ( ) )
c o n t r o l l e r . sp in ( )

except ( ROSInterruptException , ROSException ) as e :
i f roscomp . ok ( ) :

roscomp . logwarn ( ”ROS error dur ing exec t ion :{} ” . format ( e ) )
except KeyboardInterrupt :

roscomp . l o g i n f o ( ”User requested shut down . ” )
f ina l ly :

roscomp . shutdown ( )

i f name ==” main ” :
main ( )

The last point to be highlighted is known as the launch file. These files are essential for
launching any minimal sophisticated ROS2 project. The next code explains the method-
ology to wake up a node.

import os
import sys
import launch
import l aunch ro s . a c t i on s

def g en e r a t e l aun ch d e s c r i p t i o n ( ) :
ld = launch . LaunchDescr ipt ion ( [

launch . a c t i on s . DeclareLaunchArgument (
name=’ role name ’ ,
d e f a u l t v a l u e=’ e g o v eh i c l e ’

) ,
l aunch ro s . a c t i on s . Node (

package=’mode manager ’ ,
executab l e=’mode manager ’ ,
name=[ ’mode manager ’ , launch . s u b s t i t u t i o n s . LaunchConf iguration

( ’ ro le name ’ ) ] ,
output=’ s c r e en ’ ,
emulate t ty=True ,
parameters=[

{
’ ro le name ’ : launch . s u b s t i t u t i o n s . LaunchConf igurat ion ( ’

ro le name ’ )
}

]
)
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] )
return ld

i f name == ’ ma in ’ :
g en e r a t e l aun ch d e s c r i p t i o n ( )

In a complex architecture, the recommendation is not to launch nodes one by one because
some information could be lost if some node wakes up and publishing while the subscribers
aren’t still operative. That is the reason why a customized launch file is implemented in
this project for synchronizing all the nodes launch files at the same time.

This technical overview of the ROS2 system implementation concludes the development
section. Subsequently, in the results chapter, the analysis of the architecture and a com-
parison with the AUTOSAR Classic Platform is made.
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Chapter 5

Results

In this chapter, the results of the ROS2 architecture are presented, described and evalu-
ated. The architecture designed in ROS2 is compared with the architecture designed in
AUTOSAR Classic [1]. The comparison provides knowledge about how to migrate from
one to another architecture avoiding rewriting the entire system in future works.

5.1 APS integration in ROS2

The interest of the automotive industry to use ROS2 has motivated the development of a
communication bridge for ROS2 nodes to interact with CARLA. A careful analysis of the
functionality implemented in the carla-ros-bridge was done before start of development.

The communication among nodes is extremely fast and efficient, enabling the realization
of sophisticated architectural structures. Thus providing a quick and a safe response for
the safety of the vehicle. The operation of the system, when running, is shown clearly in
the following flowchart in Figure 5.1, fulfilling the expectations of having an autonomous
system in ROS2 architecture which ensures safety.

An easy method to understand the ultimate functionality of the system in various situa-
tions is through the use of sequential diagrams. In Figure 5.2, the meteorological condi-
tions become severe exceeding the ODD maximum levels in cloudiness and precipitation.
When these parameters are exceeded, the AS Mode Manager switches to M Safe mode,
thereby preserving safety of the vehicle and the surrounding. The Figure F.1, Appendix
F, illustrates the operation of the parking system when the APS has been activated by
the customer and the parking maneuver is safely executed.

The workflow of the safe parking system is depicted in Figure 5.1. The workflow is initiated
when the vehicle is engaged. The nodes are automatically initialized and launched. The
first one to be launched is carla-ros-bridge and afterward the rest. The system enters the
OFF state if no issues occur. When the Automated Parking System is switched on by the
driver and no danger is detected, the system enters the ON or PARKING MANEUVER
state. The ON state develops the maneuvers and the system detects any hazard or the
exit of the ODD, the flow switches to the SAFE or EMERGENCY state.

47



idle

Launch

carla-ros-bridge

other nodes

Connection?

off

Sensors

APS on?

Hazard /

OutODD?

on
Hazard /

OutODD?
Parking Maneuver

Emergency Maneuver

Hazard /

OutODD?

APS done?

safe

yes

yes

no

yes

no

no

no

yes

yes

no

yes

no

Figure 5.1: ROS2 architecture flowchart.
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Figure 5.2: Sequence diagram example PM Forward out of ODD situation.

49



Table 5.1: APS most relevant signals.

Topic Type name Type parameter Description

APS vehicle mode VEH DRIVING Int8 = 0 When vehicle is driving

VEH PARKING Int8 = 1 When vehicle is parking

VEH UNPARKING Int8 = 2 When vehicle is unparking

VEH STOPPED Int8 = 3 When vehicle is stopped

APS state mode APS OFF Int8 = 0 APS deactivated

APS ON Int8 = 1 APS activated

APS SAFEMODE Int8 = 2 APS safe mode activated

APS maneuver mode PARALLEL Int8 = 0 Parallel parking

PERPENDICULAR Int8 = 1 Perpendicular parking

hazard detection HAZARD Bool = True Hazard detection

NO HAZARD Bool = False Non hazard detection

out of ODD INSIDE ODD Bool = True Inside the ODD

OUTSIDE ODD Bool = False Outside the ODD

APS done APS COMPLETE Bool = True Parking maneuver finished

APS UNCOMPLETE Bool = False Parking maneuver undone

The system is able to detect, pedestrians, traffic lights, vehicles and other object as shown
in Figure 5.3. When the Localization detects an obstacle, the Drive Planning stops and
triggers the M Safe mode.

Figure 5.3: Obstacle detection example.
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5.2 ROS2 versus AUTOSAR

AUTOSAR Classic Platform has standardized the mode manager methodology. This
methodology enables the system to describe switch mechanisms as part of the software
component description in a standardized way. The communication is implemented by
automated generation of the RTE (Run Time Environment).

The present dissertation has only analyzed the the AUTOSAR Classic Platform. Like
ROS2, the AUTOSAR Adaptive Platform is a service oriented architecture and it is out
of this master thesis scope.

ROS2 is a potential solution to compete head-to-head with AUTOSAR in the automotive
domain. Table 5.2 provides a first comparison of the capabilities of ROS2 with respect to
AUTOSAR Classic based on the development work of this master thesis versus [1].

Table 5.2: ROS2 vs AUTOSAR Classic

Category ROS2 AUTOSAR Classic

Programming code Python, C++ and Java code C code

Platform support micro-Processor micro-Controller

OS support Linux, Windows and macOS OSEK

Embedded system support Newcomer and commercial Experienced and commercial

Network transport DDS TCP/UDP

Components Nodes Software Components (SWC)

Industry usage Robotic and other prototyping Automotive

Extendability Modular (SOA) Re-code/Re-config required

Scalability High Medium

Performance Medium High

Security support High High

Reliability Medium High

Real-time computing Soft real-time High real-time

The ROS2 architecture fulfills the requirements of a self-driving system. Some ROS2 sys-
tem results exceed the expectations compared with AUTOSAR Classic. The comparison is
based on the most crucial aspects required for automated system architectures, as shown
in [34], and it is depicted in the spider diagram of Figure 5.4.

AUTOSAR is a widely established standard and most automotive stakeholders are com-
mitted to the standard. However, there are almost no open-source AUTOSAR solutions.
On the contrary, ROS2 is an open source platform with a big number of contributers
and tools. The ROS2 community reacts very quickly to the development needs and has a
promising future in automotive. Since ROS2 is a service-oriented architecture, it is better
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suited to adapt to changing conditions. The AUTOSAR Classic Platform has a lower
adaptability. ROS2 also scrores better on reusable and scalability. However, real-time and
reliability are still better in AUTOSAR.

Scalability

Real-time performance

Stakeholders

Reliability

Adaptability

Reusability

Community

Figure 5.4: Spider diagram of AUTOSAR ( ) and ROS2 ( ) architectures.

Since ROS2 is becoming increasingly attractive and profitable for companies because of
reusability, scalability and open community, many automotive stakeholders are currently
investing in the research and innovation to deploy the ROS2 middleware in series pro-
duction software. In this way, the weakness of the robotic architecture in communication
with stakeholders promises to reach the same level as AUTOSAR in the coming years.
More difficult will be to improve in real-time performance and reliability.
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Chapter 6

Conclusions and Future Development

The increasing complexity of autonomous driving systems and the necessity to improve
performance require more tools and development. The robotic middleware, ROS2, pro-
vides a wide range of open-source tools with an open community of developers. At the
same time, it improves the performance of much more aspects of established automotive
software architectures.

Vehicle manufacturers are taking advantage of ROS2 for building prototypical autonomous
functions. The robotic middleware provides more versatile and adaptive functions. This
master thesis has evaluated the use of the ROS2 framework with a focus on how a good an
architecture can contribute to ensuring safety. The engineered software developed in ROS2
is simply scalable and additional autonomous functions could be added by customizing
the system’s requirements. The ROS2 system is built on a modular structure which is
extendable to new nodes which publishes and subscribes new topics and services.

This master thesis has shown that it is possible to develop an architecture for an au-
tomated driving system in ROS2. The generic architecture is not only applicable for
autonomous vehicles, but also for other systems like robots, drones, trains, etc. The Au-
tomated Parking System developed in ROS2 has delivered impressive results in scalability
and reusability, exceeding the capabilities of the architecture previously developed in the
AUTOSAR Classic Platform. To analyze this well-established technology in the field of
robotics for the automotive domain, it is compared with an AUTOSAR Classic architec-
ture. The Automated Parking function has been integrated and validated in the CARLA
simulator.

In any case, ROS2 and the AUTOSAR Adaptive Platform are service-oriented architec-
tures. Interoperability can be achieved by using a common communication protocol, i.e.
DDS, allowing the realization of sophisticated and scalable structures as well as great
reusability and modularity of the code. The AUTOSAR Adaptive Platform has not been
in the scope of this work but it connects with the next topic, the future work.

The following improvements and enhancements have been the identified future works:

• Evaluate standardized AUTOSAR Adaptative Platform architecture and the inter-
operabity with ROS2 nodes.

• Expand the deployment of ROS2 bridge to simulate and incorporate more complex
simulations in the customized map.

• Implement advanced algorithms for the detection of obstacles and weather condi-
tions through the sensors available in the vehicle.

• Analyse the compatibility of the current approach to other simulated environments
by reusing the implemented code.
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Budget

The budget contains equipment and personal costs as shown in Table 6.1 and Table 6.2.
Additionally, there is a devaluation on the equipment materials.

Table 6.1: Equipment costs.

Item Unit Cost (€) Devaluation Total cost (€)

Computer 700 0.4 280

CARLA Simulator 0 0.4 0

ROS2 0 0.4 0

Working Station 4000 0.4 1600

Microsoft Office 60 0.2 12

TOTAL 1892

Table 6.2: Personal costs.

Position Unit Cost (€/h) Time (h) Total cost (€)

Researcher 20 600 12000

Supervisor 25 40 1000

TOTAL 13000

The final costs of the project is the sum of them, which gives a final value of 14.892€.
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Environmental Impact

Today mobility is one of the main drivers in the economy of developed countries. Mobility
is a basic commodity in our life but this mobility has had a big impact on the environment
and its effects on the climate change. The energy cost of the computational demands of
the development of the system represents one of the most significant negative aspects of
this project.

Nonetheless, the implementation of this dissertation provides a benefit to society and to
safety by reducing the accidents rates, since most accidents occur due to human error.
This reduction of accidents translates into less vehicle’s production and damage caused
by accidents.

Another factor to take into account is the reduction of emissions through the automated
parking system. The time spent looking for parking in large metropolitan areas should be
reduced. In these regions, parking search often involves much time of emissions each time
the vehicle is picked up. These positive points of view, together with the decrease in fuel
costs for consumers, contribute to the reduction of pollution emissions.
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Appendix A

System uses cases and constraints
Table A.1 shows the use cases of the automated parking system.

Table A.1: Use Cases of the system.

Use Case Definition

UC-1 [1] APS manages the driving maneuver of the vehicle instead of the driver.

UC-2 APS parking maneuver: Parallel and Perpendicular.

UC-3 [1] APS available driving zones: Indoor parking, Outdoor parking, Urban Road, and Interurban
Road.

UC-4 [1] APS controlled by Smart Phone App.

UC-5a [1] APS App shows the available parking space and books the parking space selected by the user,
activates APS parking when the client selects the option “Park”, activates APS unparking

when selecting “Unpark”, allows to stop the APS function when safety cannot be
guaranteed selecting “Safe Mode”, and notifies if the result of the parking maneuver.

UC-5b [1] APS App and External Cloud Service (ECS) are transferring information allowing them to
book parking slots and providing their location.

UC-6 [1] APS App shows the status with “Active” or “Inactive”, the selectable parking slots, and
notifications about the APS status with “Parked”, “Safe Mode” or “Stop”.

UC-7 [1] APS App offers a ”Park” button to start the vehicle parking function and select the desired
parking spot and start the maneuver.

UC-8 [1] The client selects the parking spot and accepts the parking spot to start the parking
maneuver of the vehicle. The APS function will not proceed if the user does not select any

spot or rejects the selection.

UC-9 [1] If there is no parking space, APS functionality is not going to start.

UC-10 [1] The APS App ”Unpark” option allows the user to define where to pick up the vehicle.

UC-11 ECS gives the position of the parking spot to the vehicle.

UC-12 [1] APS parks in the parking spot provided by the APS App.

UC-13 [1] APS considers that there are no users inside the vehicle and it is unresponsive to verify it.

UC-14 If APS detects an obstacle, it will not finish its maneuver until the obstacle leaves the space.

UC-15 [1] APS states in “Safe Mode” if during the parking maneuver happens any collision possibility.
or the user stops the maneuver by APS App.

UC-16 When the vehicle is parked, APS functionality finishes returning to initial state.

UC-17 [1] APS locks the vehicle whenever the system is running and after its functionality.
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To simplify the safety requirements, the APS assumed the constraints in Table A.2.

Table A.2: Constrains of the system.

Constrains Definition

CON-1 [1] Misuse of the APS function is not considered.

CON-2 [1] Technical failures of the vehicle, sensors, and actuators are not to be considered during the
parking maneuver.

CON-3 [1] The vehicle can fulfill the parking maneuver and return to the initial location. Verification of
fuel or electric power.

CON-4 Indoor and outdoor roads only provide parallel parking spots.

CON-5 Indoor and outdoor parking only provide perpendicular parking spots.

CON-6 [1] Connection failures between the vehicle and the APS App are not considered.

CON-7 [1] ECS is always available.

CON-8 [1] ECS reliably provides parking spaces.

CON-9 [1] When a parking spot is booked, it cannot be offered to other vehicles.

CON-10 [1] The client has verified that the parking spots respect the minimum measures to park the
vehicle.

CON-11 [1] The client must be accessible during APS operation until receiving the notification.

CON-12 [1] The drivable zones must have traffic lane types for identifying the parking area spot. The
APS must recognize the scenario.

CON-13 [1] APS respects traffic and driving rules.

CON-14 [1] APS drives to a safe zone if the weather conditions are outside of the ODD defined.
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Appendix B

CARLA Simulator
CARLA is open-source driving simulator based on scalable client-server architecture. It
provides open digital assets (urban layouts, buildings, vehicles). The simulation supports
adaptable specification of sensor sets, environmental conditions, full control of all static
and dynamic actors, map generation and much more. The simulator is based on Unreal
Engine when the simulation is running using the OpenDRIVE standard.

The world represents the simulation and contains the main methods to generate i.e. the
actors and the weather. Figure B.1 shows its visualization.

Figure B.1: CARLA World - Town 5.

B.1 Parking spots

The simulator offers the possibility to simulate several maps with different scenarios. In
this case, the simulations have been carried out on Map 5 Opt. The chosen map is best
suited to the parking situations required by this system, as it contains all the types of
parking zones required by the system. In Figure B.2, the green areas show availability of
parallel parking and the orange is a perpendicular outdoor parking. In such a way the
simulation will have the possibility of parallel parking on the street and perpendicular
parking in outdoor parking.
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Figure B.2: Map 5 Opt parking zones.

Parking in the green regions is simpler due to the CARLA autopilot driving to the start-
ing position of the parking maneuver. However, parking in the outdoor parking requires
different implementation because the waypoints cannot be located inside the outdoor
parking. For this reason, the route chart within the outdoor parking, which was already
implemented in, has been re-adapted to the robotic environment.

The graph route inside the parking has concrete circulation directions, as shown in Figure
B.3. This rule has been defined to ensure the circulation within the parking structure
remains organized and concrete.

Figure B.3: Outdoor parking graph.
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Appendix C

ROS2 architecture topics
The Table C.1 illustrates topics which aren’t shown in the methodology.

Table C.1: Topic list.

Topic Message

/carla/actor list CarlaActorList

/carla/client/walker control cmd CarlaWalkerControl

/carla/control CarlaControl

/carla/debug maker MarkerArray

/carla/ego vehicle/APS activation Bool

/carla/ego vehicle/APS done Bool

/carla/ego vehicle/APS maneuver mode Int8

/carla/ego vehicle/APS state mode Int8

/carla/ego vehicle/APS vehicle mode Int8

/carla/ego vehicle/collision CarlaCollisionEvent

/carla/ego vehicle/control/ set target velocity Twist

/carla/ego vehicle/control/ set transform Pose

/carla/ego vehicle/depth front/camera info CameraInfo

/carla/ego vehicle/ depth front/image Image

/carla/ego vehicle/dvs front/camera info CameraInfo

/carla/ego vehicle/dvs front/events PointCloud2

/carla/ego vehicle/dvs front/image Image

/carla/ego vehicle/enable autopilot Bool

/carla/ego vehicle/gnss NavSatFix

/carla/ego vehicle/hazard detection Bool

/carla/ego vehicle/imu Imu

/carla/ego vehicle/lane invasion CarlaLaneInvasionEvent

/carla/ego vehicle/lidar PointCloud2

/carla/ego vehicle/location selection Int8

/carla/ego vehicle/next target Marker

/carla/ego vehicle/objects ObjectArray

/carla/ego vehicle/odometry Odometry

/carla/ego vehicle/out of ODD Bool
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Topic Message

/carla/ego vehicle/parking maneuver activation Bool

/carla/ego vehicle/parking maneuver ready Bool

/carla/ego vehicle/parking selection Bool

/carla/ego vehicle/radar front PointCloud2

/carla/ego vehicle/rgb front/camera info CameraInfo

/carla/ego vehicle/rgb front/image Image

/carla/ego vehicle/rgb view/camera info CameraInfo

/carla/ego vehicle/rgb view/control/set target velocity Twist

/carla/ego vehicle/rgb view/control/set transform Pose

/carla/ego vehicle/rgb view/image Image

/carla/ego vehicle/semantic lidar PointCloud2

/carla/ego vehicle/semantic segmentation front/camera info CameraInfo

/carla/ego vehicle/semantic segmentation front/image Image

/carla/ego vehicle/speed command Float64

/carla/ego vehicle/speedometer Float32

/carla/ego vehicle/target speed Float64

/carla/ego vehicle/vehicle control cmd CarlaEgoVehicleControl

/carla/ego vehicle/vehicle control cmd manual CarlaEgoVehicleControl

/carla/ego vehicle/vehicle control manual override Bool

/carla/ego vehicle/vehicle info CarlaEgoVehicleInfo

/carla/ego vehicle/vehicle status CarlaEgoVehicleStatus

/carla/ego vehicle/waypoints Path

/carla/map String

/carla/makers MarkerArray

/carla/makers/static MarkerArray

/carla/objects ObjectArray

/carla/status CarlaStatus

/carla/traffic lights/info CarlaTrafficLightInfoList

/carla/traffic lights/status CarlaTrafficLightStatusList

/carla/weather control CarlaWeatherParameters

/carla/world info CarlaWorldInfo

/clock Clock

/final parking maneuver goal pose Pose

/initial maneuver goal pose Pose

/initial parking maneuver goal pose Pose

/initialpose PoseWithCovarianceStamped

/parameter events ParameterEvent

/tf TFMessage
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Appendix D

ROS2 architecture messages
The first message is named CarlaWeatherParameters and is part of carla-msgs type, struc-
tured in nine Float 32 parameters.

Table D.1: CarlaWeatherParameters message.

Variable Units Type Description

cloudiness - Float32 Cloudiness proportion

precipitation - Float32 Precipitation proportion

precipitation deposits - Float32 Precipitation deposits proportion

wind intensity - Float32 Wind intensity proportion

fog density - Float32 Fog density proportion

fog distance - Float32 Fog distance proportion

wetness - Float32 Wetness proportion

sun azimuth angle - Float32 Sun azimuth angle proportion

sun altitude angle - Float32 Sun altitude angle proportion

Another type of message is known as std-msgs which contains different possibilities of
messages, for example, Pose and PoseStamped. This project has preferred the use of Pose
because it is the best message to communicate with the carla-waypoint node.

Table D.2: Pose message.

Variable Units Type Description

position.x - Float64 Position x

position.y - Float64 Position y

position.z - Float64 Position z

orientation.x - Float64 Orientation x

orientation.y - Float64 Orientation y

orientation.z - Float64 Orientation z

orientation.w - Float64 Orientation w
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Appendix E

ROS2 rqt-graph
The Figure represents the rqt-graph visualization through ROS2, showing all the node
connections of the APS architecture when it is running.

Figure E.1: ROS2 rqt-graph plot.
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Appendix F

ROS2 sequence diagram example
Figure F.1 shows the perpendicular maneuver sequence diagram without obstacle hazards
and without exit the ODD.

Figure F.1: Sequence diagram example PM Forward in correct situation.
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