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ABSTRACT
This paper explores the problem of estimating a temporal series
measured from multiple independent sensors with unequal and
stationary measurement errors with unknown variances. By
formulating the data fusion problem as a joint Maximum Likeli-
hood estimation of sensor covariances and a fusion rule, a batch
data driven method is derived involving a residual covariance
determinant minimization of a diagonal matrix. It is shown
that yielding useful learning from data with good generalization
properties in the joint regression and fusion approach requires
the assumption of some structure on the sensor noises and/or
on the temporal series to be estimated. An efficient data driven
algorithm is proposed to obtain the best linear sensor combiner,
whose performance is numerically analyzed and compared with
the Cramer-Rao Lower Bound of the estimated parameters.

Index Terms— Blind data fusion, Geometric Mean Squared
Error (GMSE), Inverse Wishart distribution (IW), Sensor net-
works, Non-convex Optimization

1. INTRODUCTION

Multimodal data fusion is an expanding topic of great interest in the
Signal Processing community due to the increasing availability of
additional sources of information in several applications that range
from multisensor processing in IoT applications [1], audiovisual sig-
nal processing [2] or biomedical applications [3], to name a few.
Other topics are also tightly related to the multimodal methodology
such as in Portfolio Optimization theory [4], where the Portfolio se-
lection can be seen as an estimation based on the combined informa-
tion of multiple assets.

The general objective of multimodal data processing is to im-
prove the capabilities of classical Signal Processing algorithms by
means of exploiting the diversity that appears when several datasets
are processed jointly instead of separately. The rationale behind ex-
ploiting the diversity found in an ensemble of related datasets comes
from the general conception that the joint global dataset carries more
information than the sum of independent datasets [5].

Multisensor fusion [6] is an instance of multimodal data fusion
and the motivating context of this work. The structure of multisensor
fusion problems induces several issues which make them a challeng-
ing task. We propose a solution to a known challenge in this frame-
work: identifying differences in quality of sensors while measuring a
time variant phenomenon. Other challenges, such as self-calibration,
are not considered for clarity of exposition.
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The main purpose of this paper is the study of how the spatial di-
versity is capable of enhancing the performance in joint blind fusion
and regression problems. Our approach can be summarized as:

1. Derivation of the Geometric Mean Squared Error (GMSE)
criterion for optimal data driven sensor fusion by consider-
ing a joint Maximum Likelihood (ML) estimation, which is
a known criterion in the literature [7]. However, it is known
that GMSE induces sparse solutions, which is an undesired
feature in the estimation of multisensor fusion policies as they
reject the estimation of informative sensors.

2. A solution to overcome the sparse property of the GMSE cri-
terion in the form of a regularization. We show that the In-
verse Wishart (IW) conjugate prior [8] is capable of avoiding
an ill conditioned problem.

3. An efficient algorithm to optimize both criteria (GMSE and
IW regularized GMSE) by means of iterative local upper
bounds.

The particular application that is tightly related to our work is the
interference and multipath mitigation in multiple antenna receivers
[9]. We show in this paper that the joint estimation of the interferent
sources covariance matrix and the system time delays at the receiver
in [9] is dual to the joint estimation of the intersensor covariance and
the multisensor fusion policy.

2. PROBLEM STATEMENT

Consider N samples of a time series x(n) associated to some phe-
nomenon measured simultaneously by M calibrated sensors:

Y = 1uTBT +W, (1)

where Y,W ∈ RM×N , u ∈ RD are the latent variables (presum-
ably random but considered deterministic and unknown for a par-
ticular realization), B ∈ RN×D with D ≤ N is a known matrix
of regressors and x = Bu is the temporal evolution of the phe-
nomenon. The second order statistics of the noise matrix, W, are
given by Q = 1

N
E
[
WWT

]
, where Q is referred to as the intersen-

sor noise covariance matrix. We consider the prior knowledge that
the noise covariance matrix is diagonal, i.e. Q = diag(q) where
q = [q1, ..., qM ]T ⪰ 0 is an unknown vector. The assumption of
a diagonal covariance matrix has sense when the sensors are inter-
fered by independent phenomena [10]. The more general case of
correlated measurement noise left for future work, as it opens a more
challenging scenario.

Regarding the linear dynamical model in (1) for x, even when
the actual dynamics are a non-linear function of the latent variables,
choosing a linear function is a common practice due to the fact that
it is the simplest approximation yielding a reasonable fitting to the
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data. A classical example of linear approximations in sensor fusion
can be found in the known Extended Kalman Filter solutions [11].

Besides, many time series can be well approximated by a class
of so-called time series of finite rank [12], motivating the consider-
ation of a generic and low dimensional matrix of regressors in (1).
More generally, under the approach proposed in [13], D can be in-
terpreted either as the complexity of a linear model that fits the data,
or as a model parameter capable of trading off between accuracy and
complexity.

Based on this linear model for the temporal evolution of the mea-
surements, a time redundancy coefficient is defined:

α =
D

N
≤ 1, (2)

which is assumed constant for a particular application and sampling
rate of sensor signals.

With the previous setting, the multisensor joint blind data fusion
and regression problem is cast as estimating u from the data Y on
the model in (1) where the noise covariance matrix, Q, is unknown
and the regression matrix, B, is known. With the proposed formu-
lation, we aim at jointly exploiting the features emerging in the data
in time and space domains simultaneously, instead of performing a
two-step approach with sensor-by-sensor extraction first and fusion
of features later. This particular manner of posing the problem is
motivated by the enablement of context awareness, which is in the
core of information fusion problems.

2.1. Model driven Data Fusion

In order to establish a benchmark for assessing the performance of
the data driven fusion algorithm to be developed in Section 3, let us
first assume a full knowledge of Q with the purpose of unveiling the
structure of the benchmark joint fusion rule for the model defined in
(1). Assuming statistical independence of the columns of the noise
matrix, W, the joint log-likelihood function of the data, up to addi-
tive constants, yields the following expression:

ℓML(Y|Q) = −N

2

(
tr(Q−1Q̂) + ln(det(Q))

)
, (3)

where Q̂ is the residuals sample covariance:

Q̂ =
1

N
(Y − 1uTBT )(Y − 1uTBT )T . (4)

It is well-known in estimation theory that the ML estimator of u
is efficient and the solution for a known Q is:

û = B†YT fb, (5)

where fb = Q−11
1TQ−11

is the benchmark fusion rule and B† =

(BTB)−1BT is the Moore-Penrose pseudoinverse of B. As a
consequence, the closed-form ML solution for the phenomenon is:

x̂ = Bû = YT
1 fb, (6)

where:
Y1 = YP1, (7)

being P1 = BB† the projector onto the subspace spanned by B.
Clearly, the fusion and regression are decoupled in the case of known
covariance as the sensor by sensor regression in (7) does not have
any impact on the structure of the fusion in (6). What is more, the
previous estimator of x̂ is also known to be the Best Linear Unbi-
ased Estimator (BLUE), which means that assuming normality on
the measurement errors is not a huge restriction when linear fusion
rules are pursued (as those derived in this paper).

3. PROPOSAL: DATA DRIVEN APPROACH TO DATA
FUSION

With the previous considerations, the problem of data driven data
fusion can be reformulated as the estimation of the best fusion rule,
f , given the input data, where now Q constitutes an additional un-
known. The motive behind reformulating the problem is to derive a
more convenient cost function for the joint blind fusion and regres-
sion from (3) when Q is unknown. Indeed, the reformulation of (3)
is achieved by computing the intersensor sample covariance estima-
tion from the decomposition of the available data into two orthogonal
terms Y = Y0 + Y1 belonging to the noise and signal subspaces,
respectively. Notice that both terms in this decomposition are uncor-
related due to the orthogonality between both subspaces and thus the
sample covariance of Y can be expressed as the sum of covariances
of each term. Hence, (4) can be rewritten by plugging an estima-
tion of u in terms of an arbitrary fusion rule f in (4), inspired on the
structure of (5) and considering the aforementioned decomposition
of the data, as:

Q̂ =
1

N

(
Y0 + (Y1 − 1fTY1)

)(
Y0 + (Y1 − 1fTY1)

)T
=

(1− α)Q̂0 + α(I− 1fT )Q̂1(I− 1fT )T ,
(8)

where:

Qi ≜
1

Di+ (N −D)(1− i)
YPiY

T i = 0, 1, (9)

and P0 = I−P1 is the projector onto the noise subspace, orthogonal
to P1 defined in (7). It is clear from (8) that Q0 and Q1 are the out-
space and in-space data correlation matrices, respectively. Note that
the overall sample covariance estimator in (8) is still consistent with
respect to Q as long as fT1 = 1. Although the projectors involved
in (9) are non data driven, they retain the information of the sub-
space spanned by the regressors, which is invariant to the particular
values of B. In that sense, the developed method is not sensitive to
an exact modeling, since it is exploiting only structural model prior
knowledge instead of exact values of their latent parameters.

3.1. Geometric Mean Squared Error criterion

Assuming that Q is unknown and considering the sample covari-
ance estimation in (8), the log-likelihood function in (3) defines a
joint optimization problem with respect to f and Q, being the core
of our proposal. Given the fact that the structure of the intersensor
covariance matrix is diagonal, the maximization of (3) with respect
to Q is derived explicitly as:

∂

∂qm
ℓML(Y|diag(q)) = −q−2

m

[
Q̂
]
m,m

+ q−1
m = 0, (10)

yielding the ML estimation of Q:

Q̂ML(f) = Q̂⊙ I., (11)

where I is the identity matrix and ⊙ is the elementwise product.
It can be seen that the estimate of Q is ensured to be diagonal by
ignoring the off-diagonal entries of Q̂. By plugging (11) into (3) and
ignoring additive and negative multiplicative constants, the resulting
criterion to minimize is:

ℓGMSE(f) = ln(det(Q̂ML(f))), (12)



involving a minimization of the sample covariance with respect to
f and thus coupling the fusion and regression due to (8). As the
determinant of a diagonal matrix is a product of sample residuals,
(12) becomes a minimization of the GMSE of sensor noise estimates,
which has been also formulated in other contexts as a robust criterion
[7].

Still, the criterion in (12) is ill-posed in the case of no temporal
redundancy, i.e. α = 1. In order to illustrate this latter scenario, the
cost function in (12) when α = 1 is rewritten as follows:

ℓGMSE(f) =

M∑
m=1

ln

(
N∑

n=1

|ym(n)−
M∑
j=1

fjyj(n)|2
)
, (13)

where fi is the i-th component of f and ym(n) = [Y]m,n denotes
the m,n-th entry of Y. It is now evidenced from (13) that any solu-
tion selecting only a single sensor, i.e. fi = δm−i where δn denotes
the Kronecker delta, achieves effortlessly the minimum of the crite-
rion by nulling the overall determinant. This is also the case when
α is close to 1, being easily verified by simulations. In that case,
the undesired sparsity in f emerges as a consequence of the data ran-
domness along with the fact of being too much close to the ill-posed
scenario in (13). As a consequence, in order to derive a robust data
driven solution for the challenging case of α close to 1, it is advisable
to regularize the GMSE criterion in (12).

3.2. Regularized GMSE

With the aim of avoiding sparse solutions of f , we propose the uti-
lization of the Inverse Wishart (IW) prior on Q ∼ W−1(β

2
I, υ) as

a regularization to (3). The rationale behind choosing an IW prior is
the initial belief that the variances cannot be too high nor too small,
as informed with the considered shape parameter. The IW prior has
the advantage of being a conjugate prior of the Gaussian distribution
and it is classically used in the MAP estimation of scale parameters
such as variances [8]. As a result, this regularization avoids sparse
solutions on f and hence can be seen as an anti sparsity regulariza-
tion for this problem. The logarithm of the IW probability density
function, up to additive constants that do not depend on Q, is ex-
pressed as [14]:

ln(fQ(Q)) = −
(
v +M + 1

2
ln(det(Q)) +

β

2
tr(Q−1)

)
, (14)

being necessary to derive the log-posterior function. By adding (14)
to (3) and rearranging terms, the negated log-posterior (up to additive
constants) defining a joint optimization problem with respect to f
and Q is expressed as:

ℓMAP (Q|Y, f) =
N

2

(
Cln(det(Q)) + tr

(
Q−1Q̃

))
, (15)

where Q̃ ≜ β
N
I + Q̂ and C =

(
1 + v+M+1

N

)
. Then, the Maxi-

mum a Posteriori (MAP) estimation of the covariance derived from
the minimization of (15) with respect to Q, recalling the diagonal
structure of the covariance of the intersensor covariance matrix, is:

Q̂MAP =
1

C

(
β

N
I+ Q̂ML(f)

)
. (16)

With a similar procedure as in the GMSE derivation, plugging
(16) onto (15) and ignoring additive constants, the IW regularized
GMSE criterion to minimize yields:

ℓRGMSE(f) = ln
(

det
(

β

N
I+ Q̂ML(f)

))
, (17)

with Q̂ML(f) given in (11). It is noted that (17) is independent
of the degrees of freedom of the IW distribution, υ. Note that the
RGMSE cost function in (17) is equivalent to the non-regularized
GMSE in two cases. The first case is obtained for β = 0, yielding a
non-informative prior. Alternatively, as the number of observations
tends to infinity, the regularizing term also tends to zero, so the IW
regularization converges asymptotically to the GMSE solution.

3.3. Iterative solution

Given that (12) is a particular case of (17), we focus on the derivation
of an efficient iterative solution to the RGMSE criterion. Our pro-
posal consists on the optimization of local upper bounds [15] of the
log-determinant in (17), as it is a way to avoid the NP-hardness that
is found when one considers the minimization of a concave objective
function [16].

Assuming, fk, a feasible fusion policy as a guess, the first order
Taylor expansion is known to fulfill, ∀f , fk:

ℓRGMSE(f) ≤ ln(det(W−1
k ))+tr

(
Wk

(
Q̂ML(f)− Q̂ML(fk)

))
,

(18)

where Wk =
(

β
N
I+ Q̂ML(fk)

)−1

. By minimizing the right hand
side (RHS) of (18), the resulting iterative criterion is equivalent to
the minimization of ℓRGMSE(f). After rearranging the RHS terms
of (18) that depend on f and ignoring additive constants [17], the
optimization problem for obtaining the next guess, fk+1, yields:

fk+1 = argmin
f

−21TQ1Wkf + (fTQ1f)(1
TWk1),

s.t. fT1 = 1,
(19)

whose solution is easily obtained by invoking the Karush-Kuhn-
Tucker conditions [18]:

fk+1 =
Wk1

1TWk1
. (20)

The resulting algorithm consists on iterative estimations of fk
and Wk. Notice that Wk is an iterative estimation of the intersensor
precision matrix, Q−1, so the update equation (20) is mimicking the
benchmark fusion rule in a data driven manner.

Algorithm 1: Regularized GMSE algorithm

Data: Q0 = YP0Y
T , Q1 = YP1Y

T

Result: fopt
Initialization: Set f0 = 1

M
1, Kmax

for k = 1, . . . ,Kmax do
Ak =(

(1− α)Q0 + α(I− 1fTk−1)Q1(I− 1fTk−1)
T
)
⊙ I

Wk =
(

β
N
I+Ak

)−1

fk = Wk1

1TWk1

if (fk−fk−1)
TW−1

k
(fk−fk−1)

fT
k−1

W−1
k

fk−1
< ϵ then

End
end

Lastly, the remaining consideration to complete the description
of the proposed algorithm is the initialization, f0. It is a known re-
sult in the field of GNSS interference and multipath mitigation that
in order to ensure the overall convergence of an iterative algorithm
from (18), W0 must be a consistent estimator [19]. In fact, taking



into consideration the discussion from (8), choosing any f0 fulfilling
the constraint guarantees the convergence. To sum up, in Algorithm
1 we outline the proposed solution to the joint sensor fusion and
regression problems where the use of a stopping criterion is imple-
mented for computational efficiency. The presented stopping crite-
rion is a relative distance between fk and fk−1 weighted with W−1

k

in such a way that it takes into account the relative quality between
different sensors.

4. NUMERICAL RESULTS

In order to evaluate the performance and limitations of the presented
approaches, we simulate sensor networks which have two kinds of
sensors: informative and corrupted sensors. In this sense, this dis-
tinction can be seen on the vector of variances:

q = [q1, ..., q1, q2, ..., q2]
T , (21)

where q1 < q2 and there are Mg sensors with variance q1 and M −
Mg sensors with variance q2. The motivation behind this setting
is to emphasize the difference of sensors quality such that additional
corrupted sources of information contaminate the overall data fusion.
In this way, the difference in performance of suboptimal fusion rules
is accentuated.

As a performance metric in the simulations, we introduce the
use of a relative measure between the Cramer-Rao Lower Bound
(CRLB) and the evaluated fusion rule variance. Having the ideas
presented in Section 2 in mind, it can be easily shown that the vari-
ance of an arbitrary fusion policy, f , yields:

γ(f) ≜
1

N
E
[
||x− x̂(f)||2

]
= αfTQf , (22)

from which the relative measure is defined as:

i(f) =
γ(fb)

γ(f)
, (23)

where γ(fb) is the CRLB. Notice that (23) lies between 0 and 1.
The statistical mean of the denominator in (23) is obtained by 1000
MonteCarlo simulations.

On the other hand, the GMSE and the IW regularized GMSE
are compared with additional reference fusion rules. The first con-
sidered estimator is the naive fusion rule, defined in Algorithm 1 as
the initialization f0, which is the best estimator in the case of equal
measurement errors. The idea behind using f0 is to assess the diffi-
culty of the simulated scenario.

Finally, the remaining reference estimators are the oracles,
which are built on the structure of the benchmark fusion rule pre-
sented in (6). The blind oracle fusion policy is obtained by estimat-
ing the covariance without the presence of any signal in the input
data, Q̂b =

1
N
WWT , in contrast to the proposed approaches. Sim-

ilarly, the super oracle fusion rule with known covariance structure
is obtained by adding the diagonal constraint, Q̂s = 1

N
WWT ⊙ I,

which is considered the ideal estimation in these simulations.
In Figure 1 we simulate a sensor network which has high spatial

diversity, where it is shown that both the GMSE and the RGMSE
solutions outperform the blind oracle and they even yield a similar
performance to the super oracle fusion policy with known covariance
structure, especially the RGMSE solution.

In contrast, in Figure 2 the simulated sensor network has just
Mg = 4 informative sensors. There is a degradation in perfor-
mance with respect to the previous setting, being the non-regularized

Fig. 1: Fusion performance relative to the benchmark: high spatial
diversity.

GMSE criterion the one with a greater loss while the RGMSE solu-
tion is still a close competitor to the best possible estimation of f .
In spite of that, both criteria have asymptotically better performance
than the blind oracle. The comparison between both figures mani-
fests the importance of spatial diversity in a data fusion problem as
it enhances the performance of data driven techniques, especially in
the small data regime.

Fig. 2: Fusion performance relative to the benchmark: low spatial
diversity.

5. CONCLUSIONS

We show a data driven criterion and its regularized version that yield
similar results to the ideal oracle estimator while exhibiting practical
properties. We show that it is possible to achieve a computationally
efficient data driven algorithm that solves the problem of different
quality between sensor measures. We find that providing structure
to the estimations, and hence reducing the overall degrees of free-
dom, improves the performance in the small data regime, whereas
classical approaches tend to fail. As a final remark, the fact that the
GMSE and RGMSE approaches do not require a training phase is a
practical advantage with respect to the oracle estimations.

There is still future work to be done. For instance, the consid-
eration of unknown temporal redundancy (linear or not) with known
D is still an open problem. In addition, there is a great interest in the
solution of the self-calibrating sensor networks.
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