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Featured Application: Determination and validation of solar irradiation data for the techno-
economic valuation of solar projects.

Abstract: The prediction and characterization of solar irradiation relies mostly on either the use
of complex models or on complicated mathematical techniques, such as artificial neural network
(ANN)-based algorithms. This mathematical complexity might hamper their use by businesses and
project developers when assessing the solar resource. In this study, a simple but comprehensive
methodology for characterizing the solar resource for a project is presented. It is based on the
determination of the best probability distribution function (PDF) of the solar irradiation for a specific
location, assuming that the knowledge of statistical techniques may be more widely extended than
other more complex mathematical methods. The presented methodology was tested on 23 cities
across Morocco, given the high interest in solar investments in the country. As a result, a new database
for solar irradiation values depending on historical data is provided for Morocco. The results show
the great existing variety of PDFs for the solar irradiation data at the different months and cities,
which demonstrates the need for undertaking a proper characterization of the irradiation when the
assessment of solar energy projects is involved. When it is simply needed to embed the radiation
uncertainty in the analysis, as is the case of the techno-economic valuation of solar energy assets,
the presented methodology can reach this objective with much less complexity and less demanding
input data. Moreover, its application is not limited to solar resource assessment, but can also be easily
used in other fields, such as meteorology and climate change studies.

Keywords: solar energy; irradiation; satellite data; predictive models; probability distribution
function; Morocco

1. Introduction

Nowadays the world is heading towards an energetic transition phase where the
main goal is to reduce the dependency on carbon-based sources of energy and increment
the integration of new technologies that can utilize renewable sources as the main fuel
to produce usable energy. A high interest is given to solar energy technologies, since it
is a power source that is not limited to a few regions around the world. However, solar
irradiation available on the Earth surface on solar power premises is not easily manageable
due to the unpredictability of weather conditions, such as cloudiness and humidity.

One of the regions where solar energy is playing an important role in the energy
sector is the MENA (Middle East and North Africa) region. The Middle East Solar Industry
Association (MESIA) has reported that in the MENA region energy investments are going
to reach USD 1 trillion in the period 2019–2023 [1]. Driven by pure market forces, many
MENA regions have stated their intentions to increase renewable energy (RE) production,
as these technologies have become cheaper than burning fossil fuels. Another reason for
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further augmenting the RE production in the region is the expected growth in the energy
demand, along with the depletion of the fossil fuel reserves. In this line, due to the water
scarcity issue that these countries experience, energy-intensive desalination operations are
increasingly being adopted [2].

Due to their geographical location, the MENA countries have a huge potential in terms
of solar energy projects, as solar energy is quite abundant in the region. As such, multiple
countries in the region devised national energy plans, where an increase in solar energy
production is a vital part of them. Concentrated solar power (CSP) capacity, for instance,
has experienced a considerable growth in the MENA region. Some of the highlighted
countries where CSP deployment has increased over the last years are Algeria, Egypt,
Israel, Kuwait, Morocco, Saudi Arabia and the United Arab Emirates (UAE) (see Figure 1).

Appl. Sci. 2023, 13, 3365 2 of 25 
 

many MENA regions have stated their intentions to increase renewable energy (RE) pro-
duction, as these technologies have become cheaper than burning fossil fuels. Another 
reason for further augmenting the RE production in the region is the expected growth in 
the energy demand, along with the depletion of the fossil fuel reserves. In this line, due to 
the water scarcity issue that these countries experience, energy-intensive desalination op-
erations are increasingly being adopted [2].  

Due to their geographical location, the MENA countries have a huge potential in 
terms of solar energy projects, as solar energy is quite abundant in the region. As such, 
multiple countries in the region devised national energy plans, where an increase in solar 
energy production is a vital part of them. Concentrated solar power (CSP) capacity, for 
instance, has experienced a considerable growth in the MENA region. Some of the high-
lighted countries where CSP deployment has increased over the last years are Algeria, 
Egypt, Israel, Kuwait, Morocco, Saudi Arabia and the United Arab Emirates (UAE) (see 
Figure 1). 

 
Figure 1. CSP capacity installed in the MENA region. Source: own elaboration based on [3]. 

Following this momentum, future plans about increasing solar investment are be-
coming more popular. Egypt, for instance, established the goal of increasing renewable 
production up to 20% by 2022. The country also expects a national capacity of solar energy 
of 3.5 GW by the year 2027. Saudi Arabia devised a plan in which by the year 2023, 9.5 
GW of the country’s energy production will come from clean energy. The United Arab 
Emirates (UAE) set an ambitious goal of 1 GW of solar capacity by 2020 and 5 GW by 2030. 

In this regard, the Kingdom of Morocco stated, through the National Solar Plan in 
2009, the goal of reaching 2 GW of installed capacity by 2020. Recently, this goal was up-
dated to 4 GW by 2030. According to it, it is expected that up to 52% of electricity produc-
tion will be based on renewable technology. As a result, Morocco is considered to be an 
important actor concerning solar energy development in the future of the MENA region 
and, consequently, it has been chosen as an object of study.  

The Kingdom of Morocco enjoys a considerable solar energy resource due to its lati-
tude. For a successful implementation of these solar projects, the use of reliable solar irra-
diation data is essential. In this regard, determination and validation of the irradiation is 
mandatory for the techno-economic valuation of solar projects—current [4–6] and fu-
ture—since working on inaccurate data may lead to significant deviations between the 
predicted and the actually achieved results. 

  

Figure 1. CSP capacity installed in the MENA region. Source: own elaboration based on [3].

Following this momentum, future plans about increasing solar investment are be-
coming more popular. Egypt, for instance, established the goal of increasing renewable
production up to 20% by 2022. The country also expects a national capacity of solar energy
of 3.5 GW by the year 2027. Saudi Arabia devised a plan in which by the year 2023, 9.5 GW
of the country’s energy production will come from clean energy. The United Arab Emirates
(UAE) set an ambitious goal of 1 GW of solar capacity by 2020 and 5 GW by 2030.

In this regard, the Kingdom of Morocco stated, through the National Solar Plan in 2009,
the goal of reaching 2 GW of installed capacity by 2020. Recently, this goal was updated to
4 GW by 2030. According to it, it is expected that up to 52% of electricity production will be
based on renewable technology. As a result, Morocco is considered to be an important actor
concerning solar energy development in the future of the MENA region and, consequently,
it has been chosen as an object of study.

The Kingdom of Morocco enjoys a considerable solar energy resource due to its lat-
itude. For a successful implementation of these solar projects, the use of reliable solar
irradiation data is essential. In this regard, determination and validation of the irradia-
tion is mandatory for the techno-economic valuation of solar projects—current [4–6] and
future—since working on inaccurate data may lead to significant deviations between the
predicted and the actually achieved results.

1.1. State of the Art

The scientific literature about solar irradiation is widely extended and covers all the
relevant aspects, from those studies focusing on the determination and forecasting of the
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global horizontal irradiation (GHI) as well as the beam or direct normal irradiation (DNI)
on a horizontal surface to those on a tilted surface, at different time frames (see Figure 2).
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The existing literature aimed at forecasting solar irradiation and/or irradiance is quite
extensive. Likewise, so are the different methods used to carry it out. As extracted from [7],
which presents an in-depth analysis of the performance of different solar irradiance fore-
casting models, the predominant forecasted variable in most studies is the GHI, followed
by the DNI. Moreover, the most frequent forecasting horizon is the short term, i.e., intra-
hour, intra-day or, to a lesser degree, day-ahead predictions. This same trend is observed
in [8], where an overview focused on solar irradiation forecasting methods using machine
learning approaches is given.

In this context, some references can be highlighted dealing with short-term solar
irradiance forecasting [9–35] and, to a lesser extent, some focused on monthly solar predic-
tions [36–41].

Intra-hour GHI forecast employing a cloud retrieval technique to develop a physics-
based smart persistence model is improved in [9], and an algorithm using cloud physical
properties for intra-day GHI and DNI forecasting with time horizons of 0–4 h at a 15 min
temporal resolution is developed in [10]. A GHI forecasting model based on satellite data
from Finland with a forecast horizon of 4 h and a 15 min temporary resolution is developed
and validated in [11], while the error obtained from the Japan meteorological agency
mesoscale model in the hourly-averaged GHI forecasts from 2008 to 2012 is assessed in [12].
The predictions of 15 clear-sky irradiance models by comparison with the RRTMG physical
radiative transfer model, acting as a benchmarking reference, for hourly GHI and DNI
over a whole year are evaluated in [13], while the differences induced in the hourly and
daily GHI predictions by the mesoscale atmospheric weather research forecasting model
in Greece when using different shortwave radiation are assessed in [14]. Likewise, hourly
GHI in the Arabian Peninsula using a three-dimensional meteorology–chemistry model
including a state-of-the-art prognostic treatment of aerosols is simulated in [15]. In another
prediction methodology vision, the performance of an exponential smoothing model with
decomposition methods to improve its hourly GHI forecasting accuracy and computational
efficiency is analyzed in [16], while prediction intervals for DNI estimates from GHI
observations at the minute scale over the Korean Peninsula using the Engerer model under
a probabilistic approach are calculated in [17]. Furthermore, a hybrid convolutional neural
network–long short-term memory model with spatiotemporal correlations to improve the
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accuracy of short-term GHI prediction for ensuring the optimum utilization of photovoltaic
power generation sources is proposed in [18].

In turn, the precision of short-term forecasts for GHI and DNI of a global numerical
weather prediction (NWP) model in Portugal is evaluated in [19], while the performance
of three NWP models in forecasting daily GHI for Australia is assessed in [20]. In another
forecasting methodology approach, the use of different machine learning techniques for
deterministic and probabilistic GHI and DNI forecasts using local irradiance data and
sky images with forecasting time horizons ranging from 5 min up to 30 min is evaluated
in [21]. Likewise, the integration of different forecasting models, by means of machine
learning techniques, to improve the short-term predictions of GHI and DNI with a forecast
horizon of 6 h and a temporary resolution of 15 min in the Iberian Peninsula is studied
in [22], while a benchmarking of different machine learning techniques for intra-day GHI
forecasting from 1 h to 6 h ahead in an insular context is proposed in [23]. An artificial
neural network (ANN)-based algorithm to improve GHI forecasts obtained from the NWP
model of the European Centre for Medium-range Weather Forecasts (ECMWF) with a time
horizon of 72 h and a time-step of 30 min is developed in [24]. Similarly, ANN models to
produce hourly GHI forecasts from 1 to 6 h ahead are designed in [25,26], using exogenous
(satellite and NWP model of the ECMWF) and ground data, and ground measurement
and satellite data, respectively. In the same way, six ANN models to estimate the monthly
mean daily GHI in different locations of the UAE are developed in [27]. A nonparametric
method, based on k-means algorithm, for ultra-short-term forecasting of GHI to deliver
predictions with a forecast horizon from 500 ms to 5 min under a probabilistic perspective
is assessed in [28]. Similarly, a forecast methodology based on the k-nearest neighbours
algorithm for intra-hour GHI and DNI with horizons ranging from 5 min up to 30 min
using ground telemetry and sky images is proposed in [29]. In turn, a Gaussian process
regression method for GHI forecast horizons from 30 min to 5 h is modelled in [30].

With a larger forecasting term, the daily GHI is predicted using ANN models for
25 Moroccan cities in [31], with empirical and machine learning models for 5 Moroccan
cities in [32] and with hybrid ARIMA–ANN model for 3 cities in Morocco in [33]. The
daily GHI is also forecasted with ANN models for 35 Moroccan, Algerian, Spanish and
Mauritian cities in [34] and the monthly mean daily GHI using time series models in [35].

Although hourly and sub-hourly solar irradiation data are essential for an accurate
techno-economical assessment of a CSP or PV project, a pre-feasibility study using monthly
solar irradiation data is a common practice, and it is usually performed for the selection of
potential sites where the power plant is expected to be located [36–38]. GHI and DNI are
the types of data used for evaluating these projects. For the assessment of monthly data,
ANN models are used to estimate it in Saudi Arabia [39,40] and in Uganda [41].

When it comes to the design of energy projects that involve GHI and DNI, it is im-
portant to test their model for different solar irradiation profiles to study the performance
variations that the solar system could have when it is implemented in real life. Using only
one set of data has the limitation that the model works completely fine if the studied condi-
tions are met. These conditions often represent the mean values that the solar installations
will experience. However, when the solar system is subjected to different input conditions,
the outcome results may vary greatly from the ones projected during its planning and
design phase. That is, there will be a chance that the projected profitability is not reached.
As such, the variability of solar irradiation can be considered a risk since it can jeopardize
the project’s profitability. Since solar systems are going to be implemented increasingly in
the future, this variability should be properly taken into account.

Frequently, however, the availability of enough measured data is limited. For this
reason, satellite-based data are used to assess the solar resource when the measured data
are scarce. References [42,43] compared the performance of several satellite data sets
with ground measurements data in Morocco and North Africa, respectively. Statistical
methods for measuring errors were used in various papers as a way to validate the solar
irradiation data. For instance, Aguiar et al. [44] compared satellite data and ground
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measurements for various sites in the Canary Islands. Urraca et al. [45] employed the
same validation method for various sites in Europe, detecting operational errors for some
Baseline Surface Radiation Network (BSRN) stations. Schumann et al. [46] undertook
data validation through statistical methods for Tamanrasset, Algeria, and Meyer et al. [47]
applied it in Spain. Ineichen et al. [48] concluded that for European and Mediterranean sites,
the irradiance data retrieved from various satellite databases had low uncertainty with a
negligible bias when compared to ground measurements for the same locations. For African
sites however, the lack of meteorological stations in the region could prove fatal for solar
projects evaluation. Because of that, satellite data are one option that most projects decide on.
References [49–51] showed that the SARAH database is good enough for monitoring and
analysis of solar conditions in many sites, especially for Africa. Additionally, Huld et al. [52]
concluded that the PVGIS database is of high quality for PV performance estimates for both
Europe and Africa. Finally, in references [53,54] it was stated that solar irradiance values
have high variability in areas with variable landforms, such as those with mountains and
coastal areas.

The main characteristics of interest of the several references considered here are
summarized in Table 1. The references have been listed either according to the long-
or short-term character of the solar irradiance forecasting or according to their use of
satellite-based data.

Table 1. Classification of the considered references. Source: own elaboration based on [9–54].

Term of Solar Irradiance Forecasting

Short-term
irradiance
forecasting

[9–35]

[9] Intra-hour GHI cloud retrieval technique to develop a physics-based smart
persistence model

[10] Intra-day GHI and DNI algorithm using cloud physical properties
[11] A 15 min GHI forecasting model
[12] Hourly-averaged GHI forecasts

[13] Hourly GHI and DNI clear-sky irradiance vs. RRTMG physical radiative
transfer model

[14] Hourly and daily GHI from mesoscale atmospheric weather research
forecasting model

[15] Hourly GHI with a three-dimensional meteorology–chemistry model
including a treatment of aerosols

[16] Hourly GHI exponential smoothing model with decomposition methods
[17] A 1 min DNI under a probabilistic approach

[18] Short-term GHI with hybrid convolutional ANN model with
spatiotemporal correlations

[19] Short-term GHI and DNI forecasts of a global numerical weather model
[20,21] A 5–30 min GHI and DNI with machine learning techniques

[22] A 15 min GHI and DNI with machine learning techniques
[23] Intra-day GHI with machine learning techniques

[24] A 30 min GHI with ANN algorithm
[25,26] Hourly GHI ANN models

[27] Mean daily GHI with ANN models
[28] A 500 ms–5 min GHI based on k-means algorithm

[29] A 5–30 min GHI and DNI based on the k-nearest neighbours algorithm
[30] A 30 min–5 h GHI Gaussian process regression method
[31] Daily GHI with ANN models for for 25 Moroccan cities

[32] Daily GHI with empirical and machine learning models for
5 Moroccan cities

[33] Monthly mean daily GHI using time series models
[34] Daily GHI with hybrid ARIMA–ANN model for 3 cities in Morocco

[35] Daily GHI with ANN models for 35 Moroccan, Algerian, Spanish and
Mauritian cities
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Table 1. Cont.

Term of Solar Irradiance Forecasting

Monthly
irradiance
forecasting

[36–41]

[36] Best Practices Handbook for the Collection and Use of Solar Resource Data,
selection of potential sites

[37] Steps for solar resource assessment, selection of potential sites
[38] Solar resource assessment, selection of potential sites

[39] Monthly data, ANN models are used to estimate it in Saudi Arabia
[40] ANN models are used to estimate it in Saudi Arabia

[41] ANN models are used to estimate it in Uganda

Use of satellite-based data for solar resource assessment

Use of
satellite-

based data
for solar
resource

assessment
[42–54]

[42] Satellite data comparison with ground measurements in Morocco
[43] Satellite data comparison with ground measurements in North Africa

[44] Satellite data comparison with ground measurements in the Canary Islands
[45] Satellite data comparison with ground measurements for sites in Europe

[46] Satellite data validation through statistical methods in Algeria
[47] Satellite data validation through statistical methods in Spain

[48] Satellite data comparison with ground measurements for European and
Mediterranean sites

[49–51] SARAH satellite database validation for several sites, especially
for Africa

[52] PVGIS satellite database validation for both Europe and Africa
[53,54] Variability of irradiance values in areas with variable landforms

1.2. Justification and Objectives

As mentioned earlier, Morocco is currently a key country for solar development, and
as a consequence some studies dealing with irradiation prediction and characterization
focused on that country can be found in the literature. For instance, El Mghouchi et al. [55]
carried out an assessment on the different solar irradiation prediction models for the
northern Moroccan city of Tetouan. In reference [56], two empirical models were ana-
lyzed for 24 different cities across Morocco. Marchand et al. [42] conducted a study on
the variability of solar irradiation data on different locations in the country. Proving the
above-mentioned trend of employing satellite data for the solar resource validation, Wa-
hab et al. [43] compared satellite and ground measured data for northern African countries,
including Morocco. Likewise, references [31–35] have also been focused on the irradiation
forecasting in several cities of Morocco, employing different methodologies.

Given the high potential for solar energy development in the MENA region and,
particularly in Morocco, this paper will focus on this country to ease the deployment of
solar energy projects.

As concluded in the above paragraphs, the prediction and characterization of solar
irradiation using satellite data provides accurate and satisfactory results. Moreover, as
highlighted in Section 1.1, state of the art, the prediction and characterization of solar
irradiation rely mostly on either the use of complex models (i.e., Collares-Pereira) or on
complex mathematical techniques (such as ANN-based algorithms). This mathematical
complexity might hamper their use by businesses and project developers when assessing
the solar resource.

In this regard, the first objective of the paper is to introduce a comprehensive and
simple methodology to assess the solar resource for a project, based on the determination
of its probability distribution function (PDF) for a specific location, assuming that the
knowledge of statistical techniques may be more widely extended than other more complex
mathematical techniques.

A second objective of the paper is to illustrate the selection of the best satellite database
available for a determined location, focusing on the case of several cities across Morocco.

To the best of the authors’ knowledge, no studies have been found where a new
database for solar irradiation values that depends on historical data is provided for Morocco.
Thus, it is considered to be the first study covering this gap in the scientific literature. This
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methodology is easily replicable to other locations, and it might be a useful tool to provide
reliable solar irradiation data for future solar project assessments.

The paper is organized as follows. First, a general overview of the employed method-
ology is given in Section 2. Then, the selected case study is defined, and the data collec-
tion process is explained, as well as the validation and quality control phase, in order
to use the best possible set of satellite data. Once the definitive set of data is prepared,
distribution -fitting tests are used and the frequency of the irradiation values for every
hour in a typical day of each month is presented in Section 3. In Section 4, the discussion on
the results obtained is undertaken followed by a discussion on the potential applications
that this methodology has. Finally, conclusions are raised in Section 4.

2. Materials and Methods
2.1. Methodology

The present study was conducted following different stages. Figure 3 provides a
flowchart with the applied methodology.

As can be seen in Figure 3, in the first stage, solar radiation data from different sources
is retrieved. Satellite-based data are used, as reliable and validated ground-measured
data are not easily available. This will allow to move to the next step, which is the
validation of the data among the different databases that have been retrieved by using
statistical indicators. The database with the lowest statistical error will then be chosen
to apply the distribution fitting test, which will consist of a two-step process. The first
step will determine whether the data set to be analyzed follows a unimodal distribution
or not, by applying Hartigan’s dip test. The second step is applied if the unimodality is
confirmed, determining the parametric distribution fitting the best to the set of data by the
Anderson–Darling test. A more detailed explanation of these steps will be given in the
following sections.
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2.2. Case Study Definition and Data Collection and Validation

In order to cover a significant extent of the Moroccan territory, an extensive set of
23 representative cities of this country was chosen to carry out the analysis, listed at Table 2.
Each one of the cities pertains to a different climatic zone, as defined in the map presented
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in [57,58], shown at Figure 4. The map was created using the degree day criteria and has
been adopted for the Thermal Regulation of Construction in Morocco [59].

Table 2. Distribution of the analyzed cities in the different climatic zones of Morocco. Source: own
elaboration based on [59,60].

Zone City Latitude [Degrees] Longitude [Degrees]

1

Agadir 30.383 −9.567
Casablanca 33.567 −7.667
Essaouira 31.517 −9.783
Kénitra 34.300 −6.600

Laâyoune 27.160 −13.210
Rabat 34.050 −6.767
Safi 32.283 −9.233

Sidi Ifni 29.360 −10.180

2

Al Hoceima 35.180 −3.850
Larache 35.180 −6.130
Nador 35.150 −2.910
Tànger 35.733 −5.900

Tétouan 35.580 −5.330

3

Beni Mellal 32.360 −6.400
Fes 33.933 −4.983

Meknes 33.883 −5.533
Oujda 34.793 −1.933
Taza 34.217 −4.000

4
Ifrane 33.500 −5.167
Midelt 32.683 −4.733

5 Marrakech 31.617 −8.033

6
Er-Rachidia 31.930 −4.400
Ouarzazate 30.933 −6.900
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Measured solar irradiation data at ground level are not available for all cities and since
there are no stations that belong to the BSRN in Morocco, only satellite data from different
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data sets are used [61]. Therefore, all data was collected through the PVGIS website [62].
The web application allows to obtain data using high spatial time and resolution. It allows
to know the solar conditions from different regions around the world. The data can be
obtained from different sets. Three out of four data sets are used, all of which have been
validated using ground station measurements. The data sets used are PVGIS-SARAH,
PVGIS-ERA5 and PVGIS-CMSAF.

For PV applications, the GHI is used to assess the feasibility of solar projects that use
this technology, since these use both diffuse and direct radiation. For CSP applications, how-
ever, the diffuse irradiation is not relevant, which implies that only the DNI is considered
for this technology [63]. An hourly time scale is necessary when analyzing specific projects
for a duration that takes no longer than a year. This paper intends to present data for the
assessment of solar projects for their whole lifetime, as carried out when evaluating their
bankability in long-term planning. Thus, monthly rather than hourly intervals are used [64].
With all the above, the type of data used in this paper are the monthly irradiation data from
each city, for the cases of global horizontal irradiation and direct normal irradiation.

A quality control (QC) was carried out to check whether the data are good for use
or not. Because of the unavailability of ground solar irradiation data for some of the
cities chosen in this study, the QC will be carried out between the three different data
sets mentioned before. The QC will consist of computing the relative deviation between
the solar irradiation measurements of each data set. There are statistical tools that are
used to compute these deviations, and it is given by a single number. The higher the
number, the higher the deviation between the measured values. The statistics used for the
validation process are the mean absolute deviation (MAD), the mean bias deviation (MBD)
and the root mean square deviation (RMSD), which are widely used in the validation
process of satellite-based data with ground-based data [52]. These are calculated using the
following expressions:

The mean absolute deviation (MAD):

MAD = (1/n)
n

∑
i=1

∣∣∣xa
i − xb

i

∣∣∣, (1)

The mean bias deviation (MBD):

MBD = (1/n)
n

∑
i=1

(
xa

i − xb
i

)
, (2)

The root mean square deviation (RMSD):

RMSD =

√
(1/n)

n

∑
i=1

(
xa

i − xb
i
)2, (3)

where n is the amount of data in the set, xa
i is the data from set a and xb

i is the data from set b.
It should be noted that each data set has different intervals. These are 11 years for the

PVGIS-SARAH data set, 6 years for the PVGIS-ERA5 and 9 years for the PVGIS-CMSAF
data set. Therefore, the value of n will be the lower one when computing the MAD, the
MBD and the RMSD between two data sets.

The results of calculating the former statistics for the different pairs of data sets are
shown in Tables 3 and 4 for the DNI and the GHI cases, respectively.

As it can be seen in Tables 3 and 4, the deviation between the data sets is lower
in the case of GHI than in the case of DNI. Additionally, the blue dots in each of the
subplots in Figure 5 correspond to the various months within the analyzed time intervals
for selected cities, and their coordinates are the radiation values retrieved from the databases
represented in the horizontal and the vertical axis, respectively. The subplots located at the
left side of Figure 5 refer to DNI values while those at the right side relate to GHI values.
The position of the represented data and its dispersion illustrates the degree of mismatch
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between the compared databases. Additionally, the corresponding linear regression has
been determined, helping to visualize the existing relationship between the databases.

Table 3. MAD, MBD and RMSD for DNI [Wh/m2]. Source: own elaboration.

CM-SAF and ERA5 SARAH and ERA5 SARAH and CM-SAF

City MAD MBD RMSD MAD MBD RMSD MAD MBD RMSD

Agadir 17.57 −11.62 23.53 23.18 −19.75 29.28 12.91 −5.01 16.09
Al Hoceima 13.02 4.45 16.70 27.26 −24.88 31.79 29.03 −27.39 33.59
Beni Mellal 20.98 −20.33 24.05 20.52 −19.43 24.26 13.14 1.78 16.24
Casablanca 14.23 −0.18 17.09 21.63 −17.89 25.49 20.96 −12.96 25.34

Er−Rachidia 39.11 −39.11 41.09 19.48 −15.24 21.83 26.33 25.13 30.61
Essaouira 17.98 17.71 21.04 18.80 −17.32 22.90 33.18 −32.71 36.88

Fes 23.23 −21.11 27.88 17.14 −11.45 20.28 24.40 11.62 30.82
Ifrane 23.82 −23.01 26.82 26.35 −25.51 29.89 13.02 −1.68 16.97

Kenitra 15.15 11.13 18.76 19.15 −16.30 22.22 24.58 −23.50 29.05
Laayoune 14.55 −12.71 17.80 11.92 −8.08 15.02 12.38 6.21 15.81
Larache 13.17 −5.86 16.85 19.19 −16.93 21.95 16.74 −14.04 20.66

Marrakech 10.61 −7.06 13.47 14.30 −8.06 16.70 12.88 0.02 15.75
Meknes 12.61 −7.89 15.56 16.73 −13.23 19.22 13.46 −3.79 16.84
Midelt 24.60 −24.36 27.14 25.74 −23.79 30.58 15.78 1.58 19.79
Nador 16.93 4.57 21.47 25.88 −24.26 30.56 27.78 −25.55 33.88

Ouarzazate 21.79 −21.71 24.18 15.92 −9.87 21.35 19.81 14.58 24.82
Oujda 14.81 −2.52 17.49 19.23 −18.68 22.31 19.54 −13.91 24.61
Rabat 15.24 8.14 17.83 21.76 −19.38 24.95 25.31 −22.44 29.88
Safi 14.83 12.33 17.52 15.50 −11.98 19.71 24.73 −22.82 29.06

Sidi Ifni 26.04 −13.87 33.89 25.83 −25.29 32.75 25.82 −16.33 29.85
Tanger 14.23 −3.23 17.78 17.67 −15.10 21.62 18.20 −10.85 21.76

Taza 10.98 0.43 13.66 15.42 −10.35 18.40 15.78 −8.96 19.57
Tetouan 36.69 −36.10 44.23 38.43 −37.95 46.31 13.97 −1.22 18.15

Table 4. MAD, MBD and RMSD for GHI [Wh/m2]. Source: own elaboration.

CM-SAF and ERA5 SARAH and ERA5 SARAH and CM-SAF

City MAD MBD RMSD MAD MBD RMSD MAD MBD RMSD

Agadir 6.51 1.30 8.30 6.06 0.89 7.53 3.87 0.55 5.35
Al Hoceima 7.54 4.80 8.93 6.05 −2.51 8.96 6.55 −6.20 8.20
Beni Mellal 4.65 −1.93 6.24 5.07 −1.93 6.98 3.73 0.46 4.64
Casablanca 7.23 5.53 8.51 5.70 2.44 6.88 5.29 −1.27 6.99
Er-Rachidia 11.00 −11.00 12.24 4.38 1.77 6.05 14.16 13.81 15.11
Essaouira 12.07 12.07 13.07 5.19 2.61 6.60 8.19 −8.10 10.05

Fes 4.97 −1.24 6.23 5.62 3.88 6.86 6.91 5.90 8.40
Ifrane 7.36 −6.10 8.77 6.15 −3.61 7.97 5.10 3.05 6.44

Kenitra 10.45 10.34 11.96 5.49 3.73 6.57 5.54 −4.89 7.55
Laayoune 4.89 2.75 6.29 7.00 5.36 8.03 6.33 3.79 7.76
Larache 3.95 −0.55 5.17 4.59 2.38 5.51 3.30 2.33 4.21

Marrakech 4.86 3.03 5.73 5.36 3.76 6.52 3.31 1.14 4.22
Meknes 4.70 2.71 6.17 4.82 2.78 5.85 3.27 0.71 4.07
Midelt 8.79 −8.62 10.60 7.50 −5.91 10.34 6.95 3.59 8.93
Nador 7.50 2.81 9.61 5.75 −1.49 8.63 5.12 −2.92 6.61

Ouarzazate 3.88 −2.00 4.82 6.85 2.23 9.33 8.53 5.77 10.05
Oujda 4.69 1.20 6.04 4.21 0.24 5.50 4.04 0.15 5.13
Rabat 9.91 9.56 11.46 4.98 1.80 6.02 6.67 −5.50 8.94
Safi 9.06 8.88 10.20 5.09 3.03 6.38 5.75 −4.79 7.78

Sidi Ifni 12.48 0.31 15.45 8.17 −2.60 11.66 11.22 −4.97 13.01
Tanger 5.61 3.63 6.86 5.26 3.00 6.31 3.89 −0.30 4.68

Taza 6.70 5.77 8.36 5.97 4.04 7.26 4.13 −0.55 5.85
Tetouan 13.08 −12.41 18.69 10.75 −7.97 16.04 5.42 4.87 7.87
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It is possible to observe that the GHI data have less dispersion than the DNI, suggesting
that for all the databases, the GHI values seem more reliable than the DNI ones. Using the
numerical results from Tables 3 and 4, it can be stated that those pairs of databases involving
PVGIS-SARAH for the GHI and PVGIS-CMSAF for the DNI accumulate the higher number
of error metrics with lower average values for all the analyzed cities. Consequently, it
seems convenient to use the PVGIS-CMSAF in the case of the DNI and the PVGIS-SARAH
in the case of GHI.

As can be seen in Figure 6, the selected DNI and GHI databases are then categorized
into several sets, according to the month and the considered city. A total number of sets
corresponding to 12 months by 23 cities is created for both DNI and GHI radiation data.
The size of each of the sets amounts to the number of years collected in the CMSAF and
SARAH databases, i.e., 9 and 11 years, respectively.

Once the classification of the data is complete, the process to determine the probability
distribution function (PDF) will be explained next.
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2.3. Probability Distribution Function Fitting

Probability distribution fitting is the next step in the process. To this end, the overall
procedure is illustrated in Figure 7.

For a given city and month, the input set of data shown in Figure 7 is collected either
from the PVGIS-CMSAF in the case of the DNI or from the PVGIS-SARAH in the case of
GHI. Then a prior test is conducted to determine whether the set of data follows a unimodal
or a bimodal distribution. Other modalities such as tri-modal distributions will not be
considered in this work. The particular selected test is Hartigan’s dip test, because of the
reliability of its results [65]. The test will use a uniform distribution that minimizes the
maximum difference between the distribution of the sample that needs to be analyzed and
the aforementioned uniform distribution. This is referred to as the “dip”, and its value will
be used to assess the unimodality of the distribution of the sample, as mentioned before.
The detailed calculation procedure follows the one explained in [66]. From this, Hartigan’s
dip statistic can be obtained, for which values can range from 0 to 1. The classification
criteria used is the following: if the statistic is less than 0.1, it means that the sample has a
significant bimodal behaviour. Conversely, the sample can be considered as unimodal.

In the case of bimodality, it is frequently difficult or even unfeasible to fit a parametric
PDF [67]. In this event, the so-called kernel density estimation is one of the most common
non-parametric approaches for estimating the PDF [68], and it is the method of choice in
this study.

On the other hand, if from Hartigan’s dip statistic the unimodal distribution of the
input sample is concluded, a parametric distribution fitting test will be employed for
characterizing the PDF of the satellite radiation data. There are many tools that are useful
to assign a parametric distribution to a set of data. Among these tests, we can find the
Kolmogorov–Smirnov test, the chi-square test and the Anderson–Darling test, the latter
being more powerful among the ones mentioned as it gives more weight to the tails than
other tests [69]. This will allow to better factor in extreme solar irradiation values that were
registered in the database.

Figure 8 illustrates the step-by-step calculation of the Anderson–Darling test statistic
and corresponds to the red block labelled “Apply the AD test” in Figure 7. The input data
to this procedure is the same as shown in Figure 7 in case that the unimodality is confirmed
by Hartigan’s dip test (p > 0.1).
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The Anderson–Darling (AD) test statistic is defined as

AD2 = −N −∑N
i=1

2i− 1
N

[ln(CDF(Yi)) + ln(1− CDF(YN+1−i))], (4)

where
N: number of elements in the input data for every city and month through the

analyzed period.
i: index taking values in the range 1 ≤ i ≤ N.
Yi: element of the input data sorted in an ascending order.
YN+1−i: element of the input data sorted in a descending order.
CDF( ): cumulative distribution function (CDF) of a specified PDF, calculated for an

element Yi or YN+1−i of the input data.
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To determine which probability distribution fits for each sample, the AD statistic is
calculated assuming it follows a specified distribution. In this study, the 10 most frequent
distributions found in the literature were chosen to have the data samples fitted into. Table 5
displays these PDFs and their CDFs for each of the selected distributions:

Table 5. Distributions considered with their respective PDF and CDF. Source: own elaboration based
on [69–71].

Distribution Name PDF [f(x)] CDF [F(x)]

Beta xα−1(1−x)β−1

B(p,q)

∫ z
0 (tp−1(1−t)q−1dt)

B(p,q)

Chi-square exp(−x/2) x
v
2 −1

2v/2 Γ(v/2)
γ( v

2 , x
2 )

Γ( v
2 )

Exponential 1
β exp

(
− x−µ

β

)
1− exp(−x/β)

Extreme value 1
β exp

(
x−µ

β

)
exp

(
− exp

(
x−µ

β

))
1− e−ex

Gamma
x(γ−1) exp(−x)

Γ(γ)

∫ x
0 (tα−1 exp(−t)dt)

Γ(γ)

Lognormal
exp

(
−
(
(ln( x−θ

m ))
2

2σ2

))
(x−θ)σ

√
2π

Φ
(

ln(x)
σ

)

Normal
exp

(
− (x−µ)2

2σ2

)
σ
√

2π

∫ x
−∞

exp(−x2/2)√
2π

Rayleigh x
σ2 exp

(
− x2

2σ2

)
1− exp

(
− x2

2σ2

)
T-distribution

(
1+
(

x2
v

))− v+1
2

B(0.5,0.5v)
√

v

1
2 +

1
2

[
I
(

1; 1
2 r, 1

2

)
− I
(

r
r+t2 , 1

2 r, 1
2

)]
sgn(t)

Weibull γ
α

(
x−µ

α

)γ−1
exp

(
−
(

x−µ
α

)γ)
1− exp(−(xγ))

As can be seen in Equation (4), the CDFs corresponding to each of the tested PDFs
are needed. The parameters of the several CDFs are obtained by adjusting their PDFs to
the input data sorted in ascending order (Yi), as can be seen in the upper part of Figure 8.
Then, the CDF values of the different elements in the input data sorted both in ascending
(Yi) and descending (YN+1−i) orders are computed and the rest of calculations represented
in Equation (4) are conducted, in order to obtain the corresponding AD statistic for each
of the tested PDFs in Table 5 (see Figure 8). If the AD statistic for a certain distribution
has the lowest value amongst the rest, the input data are best fitted into the distribution in
question [72].

3. Results and Discussion
3.1. Obtained Results

Table 6 shows the DNI PDFs for each month and for each city. The cities have been
sorted according to their own climatic zone shown in Table 2.

In this case, the predominant PDF is the extreme value for all zones except for the cities
in zone 5, where the logarithmic PDF prevails. The gamma PDF is the least predominant
among all the distributions, with an occurrence that is not significant at zone 1. In zone 4,
there are no occasions where the PDF is bimodal, while for the rest of the zones, there are
few instances when the bimodality is present and a kernel PDF is assigned.
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Table 6. PDFs for the DNI case for each city and month (normal = Nor, logarithmic = Log, extreme
value = ExV, gamma = Gmm, Weibull = Web, kernel = Krn). Source: own elaboration.

Zone City
Month

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.

1

Agadir Log ExV ExV ExV Nor Nor ExV Log ExV Nor Log Web
Casablanca ExV Web ExV ExV Log Nor ExV Web ExV Nor Krn ExV
Essaouira Krn ExV Nor Nor ExV ExV Nor ExV ExV ExV ExV Log
Kenitra ExV Web ExV Log Nor Nor ExV Nor ExV Web Gmm Nor

Laayoune ExV Nor Log ExV ExV Log Nor Web ExV Web Log Log
Rabat ExV Web Krn Nor Nor Nor Nor Nor Nor ExV Log Nor
Safi Log Web ExV Nor ExV Nor Nor ExV ExV Log Nor Log

Sidi Ifni Log Log ExV Nor ExV Nor Nor ExV ExV ExV ExV Log

2

Al Hoceima ExV Nor Nor Nor ExV Log Log Log Log Web Log ExV
Larache Log Log ExV ExV Log Nor Nor Nor Log Nor ExV ExV
Nador ExV ExV Nor Krn ExV ExV Log ExV Nor ExV Nor Nor
Tanger ExV ExV ExV Log Nor Nor Nor Krn Web ExV Log ExV

Tetouan ExV Nor Krn Nor ExV Web Log Log Nor Nor Log Nor

3

Beni Mellal Krn ExV ExV Nor ExV Log Log ExV Nor Log Nor ExV
Fes Nor ExV ExV Web Log Log Log ExV Nor ExV Log ExV

Meknes Nor Web ExV ExV Log Krn Nor ExV Web Nor Log ExV
Oujda ExV ExV Nor ExV ExV Web Web ExV ExV Nor Nor Log
Taza Nor Log ExV ExV ExV Log Web Web ExV Web Log Log

4
Ifrane ExV ExV ExV Nor Nor Log Web Log ExV Nor Log Nor
Midelt Log ExV Log ExV ExV Log Nor ExV Log Log ExV Log

5 Marrakech Nor Krn ExV Nor ExV ExV Log Log Log Log Krn Log

6
Er-Rachidia Log ExV Log ExV ExV ExV Log ExV Log Log ExV Log
Ouarzazate Nor ExV Log Web ExV ExV Web Nor Krn Nor Web Log

The same information presented in Table 6 is depicted at Figure 9, in order to graphi-
cally show the percentage that a certain PDF appears in each of the zones. From Figure 9, it
can be seen that certain PDFs appear more often in some zones, while in other zones, they
do not appear, stating the great location-dependent radiation characterization.
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Figure 10 displays examples of the PDF fitting test results. The histograms of the
data samples for the month of October in Nador, the month of December in Kenitra and
the month of March in Tetouan are shown along with the characterization of the adjusted
extreme value, normal and kernel PDFs, respectively. The results show a good performance
of the test for PDF fitting.
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Figure 10. Example of the extreme value, normal and kernel PDFs’ fitting test results for the month of
October at Nador, December at Kenitra and March at Tetouan (DNI case). Source: own elaboration.

For the GHI, the results are displayed in Table 7. As shown in Figure 11, the most
dominant PDFs are the extreme value, logarithmic and the normal ones. Specifically, the
extreme value PDF clearly prevails at zone 4, while it is less present at zone 2. In contrast to
the DNI case, now the gamma PDF has a higher rate of appearance, particularly at zone 5.
Again, a great location dependence of the obtained results is exhibited.
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Table 7. PDFs for the GHI case for each city and month (normal = Nor, Logarithmic = log, extreme
value = ExV, gamma = Gmm, Weibull = Web, kernel = Krn). Source: own elaboration.

Zone City
Month

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.

1

Agadir ExV Web Web Nor Web Web Krn Log ExV Web Web Log
Casablanca Nor Gmm Web Nor Nor Web ExV Nor Web ExV Nor Web
Essaouira Log Gmm ExV Log ExV Log ExV ExV Web ExV Log Log
Kenitra Nor Log Web Log Log Web ExV ExV Nor Nor Nor Krn

Laayoune ExV Web Nor ExV ExV Log ExV Web Web Log Log Krn
Rabat Log Log Web Log Nor Log ExV Krn Log Nor Log Krn
Safi Log Log ExV Krn ExV Log ExV ExV Nor Nor Log Log

Sidi Ifni Nor Log Log Log Nor Nor ExV ExV Nor ExV Web Log

2

Al Hoceima Log Log Krn Nor ExV Nor Nor Log Log Web Log Web
Larache Log Log Web Log Nor Nor Nor Web Nor Nor Log ExV
Nador Nor Krn Krn Nor ExV Nor Log Nor Log Web Web Nor
Tanger Log Gmm Web Log Web Krn Log ExV Nor Web Log ExV

Tetouan Log Web Web ExV ExV ExV Krn Log Log ExV Nor ExV

3

Beni Mellal Nor ExV Log Web ExV Web Web ExV Web Log Nor ExV
Fes Log Nor ExV Log Log Web Nor Nor ExV Nor Nor ExV

Meknes Log Nor ExV Log Log ExV Nor ExV ExV Krn Nor ExV
Oujda Nor ExV Log ExV ExV Log Web Web Nor Web Web Log
Taza Log Log Log ExV Krn Log Web Nor ExV Web Log ExV

4
Ifrane ExV ExV ExV ExV Log Log Nor Log ExV Nor Nor ExV
Midelt ExV Nor Log Krn ExV Log ExV Nor ExV Log Log ExV

5 Marrakech Nor Nor Log ExV ExV ExV Log Web Web Gmm Log Nor

6
Er-Rachidia Gmm Log Log Nor Nor Web Nor ExV Log Krn Web ExV
Ouarzazate Nor Log Nor Web ExV ExV ExV Nor Nor Web ExV ExV

Figure 12 shows the histograms of the month of February at Ifrane, the month of
October at Nador and the month of March at Tetouan, along with the adjusted extreme
value, normal and kernel PDFs, respectively. It can be seen that the results of the distribution
fitting test displayed good performance.

3.2. Analysis and Discussion of Results

The analysis of the results presented in Tables 6 and 7, and Figures 9 and 11 shows the
great existing variety of PDFs for the DNI and GHI data at the different months and cities.
This demonstrates the need for undertaking a proper characterization of the irradiation
when the assessment of solar energy projects is involved.

In this regard, the deterministic approach for evaluating the profitability of solar sys-
tems is still prevalent in the literature since the probabilistic methodologies are frequently
perceived by practitioners as a deterrent. Nevertheless, the presented methodology might
allow developers to conduct more accurate assessments as it takes into account the inher-
ent variability of the solar resource without adding excessive mathematical burden. This
methodology is composed of simple and clear steps making use of widely known statistical
tools, and therefore, it is an easy application when compared with the use of ANN.

The objective of foreseeing the radiation using ANN is to determine with a high rank
of precision its specific value for a particular day within a precise time frame (usually
an hour). It is used primarily when dealing with the management of energy systems.
Although the methodology presented here could be used for foreseeing the specific value of
radiation for a particular day and hour, its results would not be as accurate as those obtained
using ANN. The ANN techniques for radiation forecasting provide a value according to
the observed weather conditions of the previous years, requiring the knowledge of a
complex data set of variables such as air temperature, humidity, wind speed and direction,
atmospheric pressure, as well as solar radiation data. In this regard, the ANN techniques
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are not only far more complex, but are also more demanding in terms of the needed input
meteorological data set. Taking into account the characteristics of both ANN and the
presented methodology, it could be concluded that each method could be best suited for
different types of applications. When the accuracy of radiation forecasting is the ultimate
result, the performance of ANN is far superior. Nevertheless, when it is simply needed
to embed the radiation uncertainty in the analysis, as is the case of the techno-economic
valuation of solar energy assets, the presented methodology can reach this objective with
much less complexity and less demanding input data.
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The obtained PDFs can be embedded into probabilistic mathematical models for
obtaining a big number of possible outcomes of a variable of interest, whether it is solar
irradiation, or a profitability metric depending on it. Particularly, in the case of the well-
known Monte Carlo simulation method, repeated sampling from the solar irradiation PDF
is performed, in order to obtain the statistical properties of the uncertain output variable
and provide the likelihood of occurrence of a determined outcome.

In order to illustrate the use and to assess the performance of the obtained PDFs,
the GHI PDF for the month of October in the city of Rabat has been embedded within a
probabilistic mathematical model, specifically a Monte Carlo simulation.

The obtained results were tested against the most recent satellite hourly data available
within the PVGIS platform for Rabat, corresponding to the year 2020 SARAH2 database.
The accumulated monthly GHI for the October 2020 benchmark was then obtained by
adding all the hourly data for this month, resulting in 139.12 kWh/m2. Next, from the PDF
obtained for the city of Rabat in the month of October depicted at Figure 12, a Monte Carlo
simulation was run.
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Figure 13 shows the basic structure of the algorithm. Initially, for the selected city
and month, the appropriate PDF is fed into the probabilistic model. An iterative random
sampling process is then started for obtaining irradiation values. This process ends when
the predefined number of samples (Nsamples) is achieved. In this case, 10,000 samples have
been obtained.

As can be seen in Figure 14, the mean value of the simulated accumulated monthly
GHI for October in the city of Rabat was 137.01 kWh/m2. This figure also shows the
evolution of the average of all the simulated values as the number of samples grows. The
obtained mean of 137.01 kWh/m2 represents a relative difference of 1.5% regarding the
2020 benchmark data of 139.12 kWh/m2. The interpretation of this result is that the PDF in
Figure 12 can provide a set of Nsamples feasible values of accumulated monthly GHI for
the benchmark city and month, whose behaviour properly reflects the implied stochastic
pattern of the irradiation.

In this sense, the determined PDFs can be considered as a new solar irradiation
database for the corresponding locations and time, since random values can be generated
from them, all of which reflect the variability of the solar resource of the site.

It must be clear that this methodology is not intended for predicting the real irradiation
value for a specific location and month, but for providing feasible irradiation data able to
characterize the irradiation variability. This methodology may be more than sufficient when
assessing the economic profitability of solar assets, and far better than the deterministic
approaches usually employed.

The same method can be applied for studying other phenomena, such as the variability
of wind speeds, the ambient temperature of a location, or the seasonal humidity. This
method is not limited to the energy sector but can be applied in other areas of science
as well.
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4. Conclusions

The main aim of this paper was to present a straightforward and comprehensive
method to determine the PDF of the solar irradiation, addressed to handle the inherent
variability of the solar resource for the techno-economic assessment of the energy assets.
The final product of this methodology is a set of PDFs that characterizes the solar irradiation
of the desired site and for a selected time resolution, which can be used as a solar irradiation
database when assessing CSP and PV projects. In this regard, a second objective of the
paper was to illustrate the selection of the best satellite database available for a determined
location, which is exemplified on the country of Morocco, applying it to 23 representative
cities belonging to the different climatic zones. Morocco being one of the most outstanding
countries in the active promotion of solar energies in the MENA region, the presented
method can be a useful tool for the accurate assessment of these projects.

First, monthly solar irradiation data were retrieved from various satellite databases
(PVGIS-SARAH, PVGIS-ERA5 and PVGIS-CMSAF). The DNI and the GHI were the types
of solar irradiation data used when applying the method. A quality control was performed
on the retrieved data in order to determine which of the considered databases presented
the lowest statistical errors. From the quality control results, the databases PVGIS-CMSAF
and PVGIS-SARAH were considered the most convenient for characterizing the DNI and
the GHI, respectively.

Next, a probability distribution fitting test was presented, able to identify bimodal be-
haviours in the irradiation data. When the bimodality was confirmed, a kernel distribution
function was applied. Conversely, the set of data was regarded as unimodal and the PDF
that fitted best was chosen.

It can be concluded that for both the DNI and the GHI cases, the extreme value, the
logarithmic and the normal PDFs are predominant for the extensive set of Moroccan cities
examined. On the other hand, other distributions are not that often. Likewise, the bimodal
behaviour appears in some instances but does not follow a recognizable pattern. These
varied results remark the need for incorporating the characterization of solar irradiation
at the different climatic zones when undertaking the economic feasibility analysis of solar
energy assets.

The main merit of the presented methodology is that it is composed of simple and clear
steps making use of widely known statistical tools, and therefore it is an easy application
when compared with the use of other state-of-the-art methods, as ANN. When it is simply
needed to embed the radiation uncertainty in the analysis, as is the case of the techno-
economic valuation of solar energy assets, the presented methodology can reach this
objective with much less complexity and less demanding input data.
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In order to assess the validity of the proposed methodology, the obtained PDF for
the GHI of the month of October in the city of Rabat was employed in a Monte Carlo
simulation, resulting in an average monthly GHI of 137.01 kWh/m2. This value was then
confronted to the most recent satellite data corresponding to the same city and month, i.e.,
the year 2020. A relative difference of 1.5% was obtained, thus evincing the goodness of the
method for representing the stochastic pattern of the irradiation.

The results obtained in this paper can be used for future solar related projects. A
monthly interval set of data can be useful for long-term studies, whereas a smaller interval
is favourable when it comes for a more technical point of view. The reliability of the data is
also important, as a low trustworthiness can lead to complications in a project assessment.
Additionally, the method presented in this paper for determining the distribution that fits
the best to a set of data is not limited to solar resource assessment, but can be used in other
fields of study.
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